

Using a Distributed Heuristic Evaluation to Improve the
Usability of Open Source Software

Alexander Faaborg
Mozilla

650 Castro Street Suite 300
Mountain View CA, 94041 USA

faaborg@mozilla.com

Daniel Schwartz
Oracle

500 Oracle Parkway, MS2op10
Redwood Shores, CA 94065 USA

daniel.schwartz@oracle.com

ABSTRACT

Building tools to enable a large scale distributed Heuristic
Evaluation of usability issues can potentially reshape how
open source communities view usability, and educate a new
generation of user experience designers. We are exploring
adding the ability to perform a distributed Heuristic
Evaluation into the Bugzilla instance used to develop
Firefox. Ideally this approach will build more of a culture
around HCI principles, and will create a framework and
vocabulary that will cross pollinate to other open source
projects.

Author Keywords
Heuristic Evaluation, Open Source, FLOSS

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
When contemplating how to increase the influence of user
experience design in open source communities, a common
approach is to attempt to "increase the involvement and
visibility of UX professionals" [1]. However, this paper
asks a different question: how can we convert current
developers in open source projects to have a skill set
equivalent to what academia or a corporation would
consider to be formally trained user experience
professional? The approach we propose consists of
embedding HCI concepts and practices directly into the
tools that control an open source community's work flow.

Beyond controlling an open source community's process
and work flow, tools also indirectly shape the community's
values and ideals. This is important, because if social

currency in the community is inherently linked to one's
ability to make the software better, the concept of better
must be expanded to encompasses "easier to use."

QUANTITATIVELY MEASURING USABILITY
Measurements like the time it takes an application to load,
the amount of memory used, or load on the cpu are all
trivial to calculate, and wonderfully quantitative. One of the
reasons open source communities tend to discount usability
(both in practice and in artifacts like the severity
descriptions in Bugzilla), is an inaccurate view that
usability is an amorphous, and subjective thing that simply
can't be scientifically quantified and measured. However,
measuring an application's usability is an area where
previous HCI research can make a strong and very
significant contribution to open source development.

The usability inspection technique of Heuristic Evaluation,
which was introduced by Jakob Nielsen [2,3,4] has emerged
as one of the most common ways for professional user
experience designers to evaluate the usability of a software
application. Heuristic Evaluations are extremely useful
because they formally quantify the usability of a software
application against a set of well defined and irrefutable
principles. Usability violations can be quantified
individually: either an interface supports undo, or it does
not, either an interface is internally consistent, or it is not,
etc. Usability violations can also be quantified in aggregate:
the software application currently has 731 known usability
issues. Additionally, by building the tracking system on a
set of agreed upon principles, much of the debate on the
level of "there is no right or wrong with UI / every user is
entitled to their personal opinion / all that matters is the
ability to customize" which is currently found in open
source software development communities may be
significantly reduced. Usability heuristics will help ground
these debates, just as currently no one in an open source
community argues in favor of data loss, or in favor of
crashing.

INJECTING HCI PRINCIPLES INTO BUGZILLA
Adapting an open source community's bug tracker to
capture usability issues defined by a set of specific
heuristics can reshape the way developers think about
usability. Just as open source development communities

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 9–16, 2010, Atlanta Georga, USA.
Copyright 2010 ACM 978-1-60558-246-7/09/04...$5.00.

currently have a shared vocabulary to describe good and
bad with concepts such as performance, data loss, and
crashing, usability heuristics can introduce additional
concepts, like consistency, jargon, and feedback. All of
these concepts, covering both the underlying
implementation as well as the user interface, can now have
an equal potential to impact the software application at any
level of severity, from trivial to critical.

Modifying a bug tracking system to track a Heuristic
Evaluation of software is reasonably straightforward. Each
issue needs to be able to be associated with the specific
usability heuristic being violated (for example: "using the
term POSTDATA in a dialog is technical jargon"). We plan
to utilize Bugzilla's keyword functionality, similar to how
current bugs can be flagged as violating implementation
level heuristics, like data loss. Since the evaluations will be
performed by contributors who likely will not have any
additional interface design training, it is important that each
heuristic is very clearly defined with specific examples and
detailed explanations. Additionally, allowing contributors
to view all of the bugs in the software marked as the same
type of issue, both current and resolved, serves as an
effective way for them to further learn about the heuristic.

We are now working to embedded to functionality needed
for a distributed Heuristic Evaluation into the Bugzilla
instance used to develop Firefox and Thunderbird. These
specific modifications may spread to a variety of other open
source projects as Bugzilla is currently used by
communities including the Linux Kernel, Gnome, KDE,
Apache, Open Office and Eclipse [5]. Ideally embedding
HCI principles into development tools will also embed the
ideals into the community. Similar to other forms of bugs,
there will be a social incentive for contributors to locate and
classify violations, and there will be a social incentive for
other contributors to resolve them. As open source
contributors travel between different communities and
projects, the usability heuristics will also see a similar cross
pollination between open source communities. A shared
vocabulary will emerge across open source projects,
allowing for clearer communication and debate.

Side Effects of Distributed Heuristic Evaluation
Today the process of Heuristic Evaluation is normally
completed in corporations and academia by a small number
of designers, who are extremely well practiced at
identifying usability issues. However, it is worth noting two
important aspects of the Heuristic Evaluation method from
when it was first introduced:

Education - First, the method of Heuristic Evaluation has its
roots not in the functional purpose of evaluating usability,
but rather in the even more basic purpose of teaching
usability. We see this in Nielsen's 1989 SIGCHI bulletin:
Teaching User Interface Design Based on Usability

Engineering [2] that Heuristic Evaluation was introduced as
part of the curriculum for a masters degree in Computer
Science. This is still true today: the road to becoming a
good user experience designer begins with mastering the
identification of well defined heuristics.

Power in Numbers - The second important aspect of
Heuristic Evaluations is that it was quickly found that the
number of evaluators played a major role in how successful
it was. Nielsen wrote in 1990 that "evaluators were mostly
quite bad at doing such heuristic evaluations... they only
found between 20 and 51% of the usability problems in the
interfaces they evaluated. On the other hand, we could
aggregate the evaluations several evaluators to a single
evaluation and such aggregates do rather well" [3]. For
large open source projects, Bugzilla instances often have
thousands to hundreds of thousands of users.

CONCLUSION
In open source software development, the educational and
distributed aspects of a Heuristic Evaluation are critically
important. While the majority of open source projects
currently lack user interface designers capable of
performing a perfect Heuristic Evaluation in isolation, that's
irrelevant. The collaborative nature of open source projects
allows for a group of contributors to effectively compete
with a formerly trained user experience professional by
aggregating their abilities. And similar to all of the other
ways in which people contribute to open source projects,
there is a mutually advantageous feedback loop: the more
effort a contributor puts into improving the software, the
more they are able to increase their own skill set. Hours
spent performing heuristic evaluations and brainstorming
ways to address usability issues will allow a new generation
of user experience designers to emerge in open source
communities, just as rock star software develops are
currently forged there.

REFERENCES
1. Schwartz, D. and Gunn, A. 2009. Integrating user

experience into free/libre open source software: CHI
2009 special interest group. CHI EA '09. ACM, New
York, NY, 2739-2742.

2. Nielsen, J. and Molich, R. 1989. Teaching user interface
design based on usability engineering. SIGCHI Bull. 21,
1 (Aug. 1989), 45-48.

3. Nielsen, J. and Molich, R. 1990. Heuristic evaluation of
user interfaces. CHI '90. ACM, New York, NY, 249-
256.

4. Nielsen, J. 1994. Enhancing the explanatory power of
usability heuristics. CHI '94. ACM, New York, NY,
152-158.

5. Bugzilla Installation List,
http://www.bugzilla.org/installation-list

