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SUMMARY 
Most schemes to parametrize gravity-wave drag effectively assume that the total wave-stress is associated 

with a single wave-vector pointing in the direction of the stress vector. However, the wave stress over real terrain 
is an integral over all azimuthal directions of wave-vector contributions. In unidirectional flow, all of these modes 
will have a critical line at the same height-if one exists. However, if the wind turns montonically with height, 
by whatever degree, critical-level absorption wiZZ occur at all heights for some portion of the wave spectrum. The 
resultant critical-line wave-drag is always normal to the local wind direction and the wave stress itself turns with 
height. This contrasts with the height-independent stress assumption used in parametrizing gravity-wave drag 
outside regions where the wave stress is saturated. 

A practical approach to computing the gravity-wave stress over anisotropic orography, which includes this 
selective critical-level absorption effect, will be presented. This will be supported by an analytical model calculation 
for constant-shear flow with wind turning. 
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1. INTRODUCTION 

The linear theory of orographically-forced internal gravity-waves in the atmosphere 
is at least 50 years old (e.g. Lyra 1940, 1943; Queney 1948) and is the cornerstone of 
our understanding of mountain-wave dynamics, momentum transport and wave drag. The 
predicted trapping of gravity -wave energy in the troposphere for commonly occurring 
airstream profiles of wind and temperature (Scorer 1949) is in accord with our everyday 
observation of lee-wave clouds in satellite images. Weather forecasters at the Meteoro- 
logical Office have for many years used a simplified form of the analytical theory of 
Palm and Foldvik (1960) to forecast the likely occurrence, amplitude and wavelength of 
trapped lee-waves (see Foldvik 1962; Caswell 1966). Using linear theory, Sawyer (1959) 
argued that even over moderately hilly terrain, the pressure force exerted by stationary 
gravity-waves could be comparable with the frictional stress exerted over open countryside 
typical of southern England. He proposed that gravity-wave drag (GWD) be represented 
in numerical weather prediction models and suggested a vertical stress-distribution that is 
linear and decreasing with height to zero at the tropopause. The need to parametrize GWD 
was further supported by Bretherton (1969) and Lilly (1972), amongst others, but it was 
not until the work of Boer et al. (1984), Palmer et al. (1986) and MacFarlane (1987) that 
it was clearly demonstrated to be a necessary requirement in modern numerical weather 
prediction and climate modelling. 

Another important development in the linear theory of internal gravity-waves was the 
realization that wave energy could be absorbed at points in the fluid where the intrinsic 
frequency goes to zero (Bretherton 1966; Booker and Bretherton 1967). Their physical 
interpretation of the process involved the consideration of wave packets propagating in a 
flow with sufficiently slow variation in wind and stability (the 'WKB' assumption). It was 
shown that the group velocity decreases to zero in such a way that a wave packet takes 
an infinite time to reach a critical line and is effectively absorbed. Booker and Bretherton 
(1967) clarified the nature of the mathematical singularity in the wave equation at the 
critical level and showed that almost total absorption of wave energy occurs there provided 
that the Richardson number there is greater than unity. 
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Studies of critical-line absorption have, for the most part, concentrated on unidirec- 
tional and horizontally inhomogeneous flows within which the wind speed goes to zero and 
the flow direction reverses. In an orographic forcing context, this flow would represent the 
component of the wind directed normal to the axis of two-dimensional orographic ridges. 
For a general specification of the orography one can consider an integral over all possible 
wave-vector orientations, and in the special case of unidirectional flows, each wave-vector 
contribution to the total wave-field has a critical line where the wind speed goes to zero. 

Consider for a moment the idealized problem of horizontally -uniform, unidirectional 
constant-shear flow over sinusoidal orography of infinite extent. If the orography is char- 
acterized by a single wave-vector pointing in the same direction as the flow, then the wave 
stress will similarly remain parallel to the wind. The problem is unchanged by adding an 
arbitrary mean-flow component normal to the orographic wave-vector and so the wave- 
stress direction need not bear any particular relation to the local wind direction. However, 
at the critical level, the wind direction must in general be at right angles to the direction of 
the wave-drag vector since the component of flow along the wave-vector vanishes there. 
Notice that in this general (though time-independent) context, critical levels are not asso- 
ciated with zero wind speed. Since the full, linear, orographic-flow problem is an integral 
over the entire wave-spectrum of two-dimensional flow solutions, one may conclude that 
the critical-level drag is always normal to the local wind direction except for the case 
where the wind speed goes to zero and the angle is itself ill-defined. 

Leaving the mathematical expression of this concept until later, one may go on to 
deduce that any turning of the wind will result in the critical-line absorption of wave- 
vector contributions normal to the local wind. The accompanying continuous vertical 
drag-profile is not accounted for in parametrizations of GWD which use a monochromatic 
idealization of the wave spectrum accompanying the sub-grid-scale orography (i.e. all 
the momentum flux is attributed to a single wave-vector). Hines (1988) investigated this 
oversimplification and introduced a bichromatic wave-stress idealization of the sub-grid 
orography in which two wave-stress vectors separately carry the positive and negative 
azimuthal contributions to total wave-stress. He also drew attention to the differing critical- 
level heights of different parts of the wave-number spectrum. In the middle-atmosphere 
context, Pertsev (1989) has discussed the azimuthal filtering effect of wind turning with 
height on upward-propagating gravity-waves. Here, wave filtering is caused by trapping of 
short waves, damping mechanisms (such as radiative relaxation of the temperature field) 
as well as selective critical-level absorption. 

Rather surprisingly, few solutions to the three-dimensional, linear mountain-wave 
problem have been published which involve wind shear. Sawyer (1962) gave some ana- 
lytic solutions for multi-layer models for which the wind direction was different in each 
layer and the waves were trapped: the layer assumption ruled out the possibility of crit- 
ical levels though. Numerical solutions to the vertical-structure equation (Sawyer 1960, 
Eq. (10)) are rendered difficult by the presence of critical levels (which are singularities 
in the differential equation) and resonances. Bretherton (1969) gave some results from 
a numerical calculation of the vertical gravity-wave momentum-flux over North Wales 
using real profiles of wind and temperature in a linear model. Although vertical profiles 
are not given, Bretherton states that the ground-level wave-stress was 0.4 N m-* due 
west and at a height of 20 km (the model top) it was 0.32 N m-2 with a bearing of 262”. 
This change in magnitude and orientation of the wave stress was due to critical-layer 
absorption of some wave modes and is precisely the effect that is the main concern of this 
paper. 

Vosper (personal communication, 1994) has developed a computer code to solve the 
full three-dimensional, steady-state problem and has applied it to study lee waves over the 
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Lake District (in northern England). Even on the latest supercomputers this calculation is 
time-consuming, due mainly to the evaluation of the trapped-lee-wave component. 

The purpose of this paper is to provide a simplified mathematical framework for 
describing the vertical flux of horizontal momentum over complex orography due to 
untrapped gravity-waves. As part of the simplification, the spectrum function of the 
orographic-height variance is assumed to be separable in total wave-number and azimuth 
with a power-law dependence for the former. Analytic expressions can then be obtained for 
the stress variation with height caused by turning of the wind vector. A computed stress- 
profile is given, based on an analytic solution for constant-shear flow over an isolated 
circularly symmetric mountain. 

2. THE MOMENTUM-FLUX INTEGRAL 

The following derivation of the total vertical momentum-flux generated by a rect- 
angular region of hills is adapted from Bretherton (1969) and uses similar nomenclature. 
Basic-state-density variations are ignored to simplify the analysis: their quantitative effect 
on the vertical momentum-flux in gravity waves is slight for typical atmospheric flows. 
Consider an isolated mountainous region within the rectangle defined by 0 S x S X  and 

S y S Y with h ( x ,  y ) ,  the height of the orography, equal to zero outside this area. Let 
h ( k ,  1 )  be the double Fourier transform of h ( x ,  y) defined by 

k ( k ,  1 )  = 1 4n2 Srn -, 1: h ( x ,  y) exp {-i(kx + l y ) )  dx dy (1) 

with inverse given by 

with k ( k ,  I )  = k * ( - k ,  -1) and ( )* denotes the complex conjugate. Parseval’s equality? 
can then be used to get an expression for the mean orographic-height variance since 

or 
A ( k ,  1)dk dl 

1 
X Y  

where 
4n2 A 

A ( k ,  1 )  = -lhI2 XY 
by definition. 

Now, if the vertical velocity w ( x ,  y ,  z )  is expressed as a Fourier transform, 
w o o  

w ( x ,  Y ,  z )  = [, [, 8 ( k ,  I ,  z )  exp {i(kx + l y ) }  dk dl 

where &(k, I, z )  satisfies the vertical-structure equation 

a 2 i i  
__ + (1,” - K 2 ) 8  = 0 
a22 

Parseval’s theorem can be found in most textbooks dealing with Fourier transforms. 
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in which Zs(# ,  z) is the Scorer parameter given by 

where N is the buoyancy frequency and Un($, z) is the mean wind component in the direc- 
tion of the wave-vector whose magnitude and azimuth angle are given by 
K = ( k 2  + Z2)1’2 and Cp respectively. If i ( k ,  I, z) and $ ( k ,  I, z )  are the Fourier transformsof 
the x and y components of the horizontal-wind perturbation (i.e. u(x, y, z )  and u(x, y ,  z )  
respectively) then the incompressible form of the continuity equation 

implies that 
a i i  
az  

i(kii + ZG) + - = 0. 

The steady-state perturbation momentum equations can be written in quasi-Boussinesq 
form as 

and 
a (“’> 

au  a u  

ax ay ax Po 

a 
a v  a v  
ax ay a Y  Po 

u - + v - + w U , + -  - = o  

u - + v - + w v , + -  - = o  
where U ( z )  and V ( z )  are the basic-state wind components in the x and y directions 
respectively, p’ is the pressure perturbation and po(z) the basic-state density. Eliminating 
p’ in the above equations and substituting the transform expressions for u and u gives the 
following relation between fi and G 

Using Eq. (10) to eliminate 8 from Eq. (13) gives for fi 

(14) 
~ . C O S ~  a 8  i i i s i n 4  sin@U, -cos#V, 
u=1-*- +-. 

K az K U” 
Now, multiplying the transform expression for w by the corresponding expressions 

for u and then integrating over the entire (x , y) plane gives 

which is equivalent to 

cos Cp dK d#. (16) 
az 

uw dx dy = 4n2i 

The second term on the right-hand side of Eq. (14) does not contribute to the 
momentum-flux integral since the resulting quantity is purely imaginary and its azimuthal 
integral vanishes. 
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It is helpful to introduce a response function F (K, 4) given by 

where, in accordance with the linearized lower-boundary condition, 

&(K, 4,O) = iKUo cos(4 - xo)i(K, 4) (18) 

and where Uo and xo are the speed and direction, respectively, of the surface wind. Note that 
F ( K ,  4) is independent of height (away from critical lines) for any solution to the vertical- 
structure equation Eq. (7). Therefore the net surface momentum-flux in the x-direction 
averaged over the rectangular region of mountains is given by 

and it is easily shown that the vector surface momentum-flux is given by: 

Now consider the form of F(K, 4) for hydrostatic waves in a flow with constant 
wind speed and direction. Equation (7) admits solutions of the form 

6 = C exp(imz) (21) 
where m = *(Zf - K2)'12 and C is an arbitrary constant. It is then easily shown that 
F ( K ,  4) = m. Following Smith (1979) amongst others, we ignore the small error in the 
momentum-flux integral resulting from the simplification m = I , .  Under these conditions 
Eq. (20) becomes 

As an example of the use of Eq. (22) consider the drag exerted on a bell-shaped hill 
defined by 

(23) 
h0 

(1 + ?-2/a2)3/2 
h(r) = 

where r = (x2 + y2j1l2 and a is a characteristic half-width. The Fourier transform of h(r )  

may then be substituted in Eq. (22) and integrated analytically to give 

where Uo is the surface-wind vector. Following Hines (1988), if the normalizing area XY 
is chosen to be the projected area of the mountain for which h(r) > ho/5 then XY M 
1 . 9 2 4 0 1 1 ~ ~ ~  and the surface drag is given by 

M -0.129936a-'h~NUo (26) 
which agrees with Hines's result. 
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3. CONSTANT-SHEAR ANALYTIC SOLUTION WITH TURNING 

Before proceeding to the detail of the analytic calculation there are some important 
matters to consider regarding the basic state. Firstly, although the Coriolis force has been 
ignored in the derivation of the vertical-structure equation, its effect is also implied in 
the choice of basic state. Vertical wind-shear implies a horizontal temperature-gradient 
through the thermal-wind relation and turning of the wind with height implies thermal 
advection. This causes the static stability to be a local function of time if the vertical wind- 
shear changes with height. One might then consider that this is inconsistent with the search 
for time-independent wave solutions. One could justifiably assume that the time-scale for 
these changes in static stability is much longer than the time-scale required to set up the 
orographic-wave response. For the analytic solution given below this inconsistency does 
not arise since the shear and implied horizontal temperature-gradient are constant. For a 
non-rotating system there is no problem with a time-independent basic state in which the 
wind vector rotates with height. 

The simplest type of flow exhibiting wind turning with height is given by 
UO = (U*, Az) where U, and the shear (A) are constant and assumed here to be positive. 
Wind profiles of this form are characterized by ‘warm advection’ and are often encoun- 
tered ahead of developing Atlantic depressions where upper-level north-westerlies overlie 
south-westerlies associated with an advancing tropical maritime airstream. Although a sig- 
nificant idealization of this synoptic situation, the wind profile used here serves to illustrate 
the phenomenon of selective critical-level absorption. 

The vertical-structure equation for each wave mode ( K ,  4) (Eq. (7)) can be simplified 
by transforming to a new height coordinate Z defined by 

so that 
a 2 8  Ri(4) 
a z2 ~ + (zz - 1) 8 = 0 

where the Richardson number Ri(4) = N 2 / ( A  sin 4)2. Equation (28) has a general solu- 
tion of the form 

where p = (Ri - 1/4)1’27 Zip(Z) is a modified Bessel function of pure imaginary order 
i p  and A and B are constants. 

Below the critical level located at Z = 0, Z is real and negative 
(i.e. Z = 121 lim,,,,{exp(ij?)}) and since 

6 = Z1’* [AZi,(Z) + BZ-i,(Z)] (29) 

Z,{lZl exp(inm)} = exp(inrnu)Z,(lZI) (30) 

(Abramowitz and Stegun 1965, Eq. (9.6.30)), where m is an integer, then 

Iip(Z) = zip(lzl) e x p ( f n ~ )  (31) 

for real and negative Z. The appropriate sign in the exponent above is dictated by a causality 
condition and for negative shear this is negative. Therefore Eq. (29) can be written as 

Gi(z) = IZ11’2{AZi@(IzI) e x p ( - x ~ )  + BZ-ip(IzI) e x p ( n ~ ) ~ .  (32) 

The reader is referred to Booker and Bretherton (1967) for a full account of the method 
by which the correct branch is selected. Essentially, they allow wave modes to have a 
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small imaginary phase-speed and consider which side of the real Z axis the critical-line 
singularity lies. 

They also show that for the case of negative shear, the second term in the curly 
brackets corresponds to upward energy-propagation and the vertical momentum-flux is 
attenuated by a factor exp(-2pn) on passing through the critical level. If the downward 
energy-propagating mode is rejected by setting A = 0 and the exp(pn) factor absorbed 
into B ,  then 

for Z < 0 

Now using Eq. (17) and defining Zo = UoK cot @/A, the response function F ( K ,  4) 
can be shown to be given by 

for Z < 0, but the term in round brackets is the Wronskian W (Zip, Z - i p )  and has the property 
that 

(Abramowitz and Stegun 1965, Eq. (9.6.14)) so that Eq. (33) simplifies to 

K sinh(np) 
F ( K ,  4) = 

~c I 20 I I I-ip (ZO) I (35) 

for Z < 0. Numerical evaluation of F is assisted by writing the Bessel function in the form 

where S(p, z) is given by 

(Z2/4Ik k=w 

k!(ip + k)(ip + k - 1) . . . ip S(P,  z )  = c 
k=O 

(37) 

Using the property of gamma functions (Abramowitz and Stegun 1965, Eq. (6.1.29)) 

(38) 
Tc 

that 
I'(ip)I'(-ip) = 

,u sinh(Tc,u) 
the response function becomes 

remembering that ZO = Z o ( K ,  4) and p = ~ ( 4 ) .  

with xO = 0 giving 
Finally, the momentum-flux profile is obtained by substituting Eq. (39) in Eq. (20) 
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where H ( ) is the Heaviside function equal to zero(unity) for negative(positive) argument 
and zc = (U,  cot 4) /A .  H ( z ,  - z )  enforces the critical-level absorption effect by switching 
off the vertical momentum-flux for each wave mode above its critical-level height z,(@). 
It has been assumed here that the Richardson number at each critical level is greater than 
unity so that any transmitted momentum-flux can be ignored. 

Another way to express this critical-level 'filtering' of wave-momentum contributions 
is to define a critical azimuth (Pc equal to 2 - n / 2  where x ( z )  is the local wind direction. 
Equation (40) can then be written as 

and its vertical derivative is given by 

where pLL, = ~ ( 4 , )  and Zoc = Zo(K, &). Furthermore, it can be shown that 

and on substituting for lZoCl one finds 

(44) 
dV'w 2A2 sin3 4, cos Cpc / m  A ( K , 4 C ) K 2  dK. 

(cos 40 sin 4,) -- - 
dz P C  0 IS(Pc, I Z O c 1 > l 2  

Equation (44) has been evaluated for the bell-shaped mountain given by Eq. (23) 
usiiig its simple transform (Eq. (24)) to provide A ( K ,  4). The integral was computed 
by summing wave contributions at a constant interval of AK between Kmin and K,,,. 
Figure 1 shows a polar plot of the mean drag on unit mass (using the same normalizing 
area as in Eq. (25)) at 1 km intervals between the surface and a height of 30 km when 
U, = 10 m s-', A = s-', N = lo-* s-l, the mountain height ho = 600 m and half- 
width a = 4 km. The annular region in wave-number space over which the integral was 
evaluated is defined by Kmin = 2n / (5  x lo4) m-' and K,,, = 2n x 

Since the wind direction remains between westerly and southerly (0 < 4 < n /2 ) ,  the 
critical-level drag-which is always normal to the local wind-lies between southerly and 
easterly directions (i.e. n / 2  < 4 < n). At low levels the critical-level drag is just east of 
south and of small amplitude since the corresponding wave-modes have phase lines almost 
parallel to the surface wind and so are only weakly forced. At about 6 km the magnitude of 
the drag reaches a maximum and decreases higher up. This can be thought of as due to the 
increasing height-separation of successive wave-modes suffering critical-level absorption 
resulting from the monotonic decrease in the rate of change of the wind direction with 
height. 

It is important to emphasise that wave-modes in the first quadrant have been excluded 
from the above calculation since they have no critical levels. Since all gravity-wave modes 
in this quadrant are trapped, there exists the possibility of a resonant lee-wave response 
which would contribute to the net vertical momentum-flux and drag on the orography. The 
calculation of these modes is beyond the intended scope of this paper. 

m-'. 
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5 

Figure 1. Vectors respresenting the drag 3 (on unit mass) caused by critical-level absorption of stationary gravity- 
waves forced by a bell-shaped hill in an atmosphere where the wind turns monotonically with height. See section 

3 of the text for further detail. The units of the components and 9, are m s-* x lo-’. 

4. PARAMETRIZATION OF CRITICAL-LEVEL DRAG FOR ARBITRARY WIND-PROFILES 

An important practical application of these ideas is in the design of schemes for 
GWD parametrization (GWDP) for any profile of wind and stability. In order to obtain 
a suitable expression for use in GWDP schemes, the vertical momentum-flux integral 
(Eq. (20)) will be simpli€ied in two ways. Firstly, it will be assumed that the surface stress 
is given by Eq. (22) which applies for a uniform airstream under the hydrostatic assumption. 
This is equivalent to adopting the WKB solution to the vertical-structure equation on the 
assumption that variations in the mean wind and stability are slow compared to the vertical 
wavelength of the gravity wave. It implies that there is no partial internal-wave reflection. 
The second simplification of the momentum-flux integral will involve the choice of a 
particular separable form for the spectrum function A ( K ,  4) of the orographic-height 
variance. In this way it is possible to deal with mountain anisotropy within the same 
mathematical framework. 

Having established the surface momentum-flux, each wave-vector contribution will 
be preserved with height until the wind vector becomes normal to that wave vector, at 
which point critical-level absorption will occur. At any height, therefore, the azimuthal 
limits of the integral Eq. (22) will change according to the range of wind directions that 
have been swept out below. The azimuthal sector of wave-vector contributions which are 
removed by critical-level absorption is at right angles to the sector of wind directions swept 
out about the surface wind (Fig. 2). 

If & and & are lower and upper azimuths defining the sector in the wave-number 
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XU 

x o  
X L  

k 

Figure Schematic diagram :--)wing the region of wave-number space excluded from the momer m-flux 
integral due to critical-level absorption in the atmosphere below. xo represents the surface wind direction and xu 
and XL represent the limits of backing and veering of the wind respectively up to the height in question. k and 1 

are easterly and northerly components of the wave vector; see section 2 of the text. 

plane that is removed - from the momentum-flux integral by critical-layer absorption, then 
from Eq. (22) t(z) = V'w and 

w T+@LL(Z) 
v'w = -2NUo /,,, A ( K ,  4) cos(4 - xo)K2(cos 4, sin 4) dK d4. (45) 

Differentiating the vertical momentum-flux t with respect to z then gives 
00 a t  

- cos(4, - XO)(COS @*, sin 4,) K 2 A ( K ,  &) dK (46) az 
where q5* is either @L or 4, depending on whether the wind direction is at the lower or 
upper limit of its range at that height. Note that d$,/dz can be expressed as 

d@* U V ,  - V U ,  
dz u2 + v2 

where U and V are the mean wind components evaluated at either 4~ or 4". As an accuracy 
test, Eq. (46) can now be used to compute the vertical profile of critical-level wave-drag 
for the bell-shaped mountain of the previous section and this will be compared to the 
corresponding exact result from Eq. (44). Using the transform expression for the bell- 
shaped mountain (Eq. (24)) in the definition of A ( K ,  4) and noting that 

(47) -- - 
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and 

it can be shown that 

Since, by definition, 
expression to give 

at NAh;a 
sin2 4u cos ~ ( C O S  r p ~ ,  sin cp~). _ -  - 

az ~ X Y  

UO cos 4~ + Az sin & = 0, 4u may be eliminated from the above 

As before, the Hines (1988) normalizing area for X Y  is used and the resulting plots 
of drag per unit mass with height (for three different values of the the shear A) are shown 
in Fig. 3 together with the corresponding vectors obtained from Eq. (44). The WKB 
assumption appears to be fairly successful for this range of wind shears and rate of wind 
turning with height. This suggests that its use in deriving an expression for the parametrized 
drag-profile is well-founded. Also note from Fig. 3 the increasing magnitude of the drag 
as the shear increases. 

The main problem with the practical application of Eq. (46) in GWDP is the unknown 
spectrum-function A ( K ,  4). Bretherton (1969) proposed a power law of the form y K b  for 
the scalar spectrum-function A( K )  defined by 

A ( K )  = l'" A ( K ,  4 ) K  d4. (52) 

Using gridded terrain-height data for north Wales and performing one-dimensional Fourier 
transforms he deduced that b % -1.5. A similar study for the mountains of west Colorado 
by Young and Pielke (1983) found b % -1 whilst Bannon and Yuhas (1990) found b % 

- 1.7 for the Appalachian mountains. These authors deduced the scalar spectrum-function 
A from one-dimensional (1-D) transforms and then assumed isotropy. Here, a full two- 
dimensional (2-D) Fourier transform of an orographic-height field has been used and 
wave-vector contributions to its variance binned into concentric annular regions of the 
wave-number plane. The width of these annular zones is chosen to be 2n/L where L is the 
length of the side of the square domain. The orographic-height data consist of 160x 160 
points with 1 km separation representing the Lake District region of northern England. 
Figure 4 shows the binned values of A ( K )  plotted against wave number on a logarithmic 
scale. The straight line depicts the roll-off associated with a K-1.5 spectrum and is in 
agreement with Bretherton's finding. 

appears to have some practical utility, the 
following expression for the spectrum function is proposed 

Since a power-law expression for 

(53) 
Y K b  K A ( K ,  4) = - (1 + C1 cos 24 + C2 sin 24) 

where y ,  b, C1 and C2 are all treated as constants to be determined. The choice of cos 24 and 
sin 24 is made so that the condition A ( K ,  4) = A ( K ,  4 + n) is automatically satisfied. 
Clearly the isotropic mountain-range case corresponds to C1 = C2 = 0. It will he assurned 
that Eq. (53) applies when KL < K < KU where KL and Ku are the smallest and largest 
wave-numbers resolvable in the orographic-height data. Actually, KL and KU should be 

2n 
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Figure 3.  Drag vectors at 1 km intervals for three different values of A ,  the vertical shear of the horizontal wind: 
(a) and (d) 1 x lop3 s-l; (b) and (e) 2 x s-l; (c) and (Q 3 x s-’. (a), (b) and (c) are obtained from the 
exact analytic formula Eq. (44) whereas (d), (e) and (0 are obtained using the parametrization formula Eq. (46). 

All other parameters as for Fig. 1. 
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Figure 3. continued. 
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Wave number 

Figure 4. The variation of A ( K )  with wave number, on logarithmic scales. A ( K )  is the scalar spectrum-function 
of the variance of orographic height, obtained by binning spectral contributions from a two-dimensional Fourier 
series into concentric annular regions of wave-number space. The orographic-height data consists of 160 x 160 
points with 1 km separation covering the Lake District of northern England. Wave number is the number of waves 

in this domain. 

limited by K u S N / U O  and K L ~ ~ / U O  where f is the Coriolis parameter. The first of 
these two requirements excludes scales that are small enough to be outside the hydrostatic 
regime; the second excludes waves that are long enough to be under inertial control. 

The constant C1 may then be determined from real-height data by multiplying Eq. 
(53) by cos 24 and then integrating over wave-number space so that 

(54) c -  b + l  KA(K, 4) cos 24 dK d4  

and similarly for CZ. 
Equation (46) may be evaluated using the power law expression for A (K, 4)  in the 

wave-number integral between the limits KL and Ku. Also, the orographic-height variance 
0 may be written as a wave-number integral so that 

Y 
b t l  

KA(K, 4) dK d4  = -(KF1 - KF').  u = L; I" (55) 

Equation (46) can then be written as 

(56) 
a t  
- = (1 + C1 cos 24% + C2 sin 24*) cos(4, - xo) az 

where i is the unit vector normal to the wind direction (located on the side towards which 
the wind vector is moving) and 

Consistent with the use of Eq. (53) in the stress equation Eq. (45), the surface stress 
ts is given by 

n h 

ts = ~ N U O G  K {(CI + 2) cos xo + CZ sin KO, C2 cos K O  - (CI - 2) sin K O }  . (58) 
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Equation (56) (or a similar equation) could be adopted in GWDP schemes in place of 
the currently used assumption that the sub-saturated wave-stress is independent of height. 
2 could be computed from real terrain-height data by estimating b for K L  < K < KU: in 
practice, though, it would be used as a tuning parameter. The anisotropy parameters C1 
and C2 would also need to be evaluated from the orographic-height data. Computation of 
d&/dz would require storing the upper and lower limits of the range of wind directions 
sampled whilst moving up from the surface within each grid column (i.e. xu and xL). The 
critically absorbed wave-numbers then lie between q5 = q 5 ~  = xL - n / 2  and q5 = $U = 
xu - n/2. It should be noted that i37/az can only be non-zero if q5 = q5*. 

5.  DISCUSSION 

Most current GWD schemes employ simplifications which are equivalent to assuming 
that the wave field is two-dimensional. The wave stress is then assumed to be independent 
of height until the criterion for wave breaking is satisfied or a critical level is detected. 
The critical level is deemed to occur when the component of the wind in the direction of 
the wave stress vanishes. GWD schemes which permit some representation of orographic 
anisotropy allow the wave stress and surface wind directions to differ (Baines and Palmer 
1990) but still treat the stress as a sum of contributions from wave vectors pointing in the 
same direction. 

Hines (1988) used linear theory to examined these weaknesses in GWDP. For 
mountainous regions that are almost isotropic he proposed representing the wave stress 
by two azimuthal contributions whose sum is in the direction of the surface wind. Each of 
these modes carries an equal and opposite contribution normal to the surface wind which 
would suffer critical-level absorption at different heights. For highly anisotropic mountains 
he suggested returning to the single-azimuth wave-stress representation where the wave 
stress lies normal to the orographic ridge axes. 

Hines’s study is one of few that explicitly recognize the fact that the wave stress is, in 
general, not height-independent in the linear regime. Only for the special cases of unidirec- 
tional flow and/or 2-D orography can the wave stress be assumed to be height-independent 
away from critical levels (in the sense of the Eliassen-Palm theorem). Under ‘real’ con- 
ditions, changing wind direction with height will remove momentum-flux contributions 
from some sector of wave-number space and cause the stress vector to rotate and decrease 
in magnitude. Unlike the classical purely 2-D critical-level problem there is no requirement 
for the wind speed to go to zero. Of course in the 2-D problem it is always permissible 
to add a redundant flow-component along the direction of the wave-phase lines without 
changing the vertical-structure equation. This implies that in general the critical-level drag 
will be normal to the local wind direction. Since the linear 3-D gravity-wave response 
can be regarded as a Fourier summation of 2-D contributions from all wave-vector direc- 
tions, this statement will also hold in three dimensions. Its truth can also be shown from a 
generalization of the Eliassen-Palm approach (Broad, personal communication). 

Although the theoretical aspects of the problem discussed here are not new, the phys- 
ical interpretation of critical-level absorption due to directional wind shear is interesting 
and some aspects seem unexpected. Unlike the usual 2-D linear view of critical-level ab- 
sorption where a finite wave-stress is delivered to a zone of infinitesimal thickness, here the 
drag force predicted by linear theory is finite (e.g. Eq. (46)) and proportional to the angular 
rate of change of the wind direction. It is conceivable that the linearization assumption has 
greater validity when the rate of turning of the wind is finite since the gravity wave-action 
is spread continuously over the layer with directional wind shear rather than delivered to a 
single height. Presumably, very short vertical wavelengths are realized at small amplitude 
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without wave breaking-unlike the classical 2-D problem where wave breaking always 
occurs at the critical line. How this might appear to an observer of flow over an isolated 
hill in a region of wind turning is a matter of some interest. 

Observational verification of the effect of wind turning on vertical fluxes of horizontal 
momentum will not be easy. Computation of momentum fluxes from aircraft data requires 
extreme care (e.g. taking averages over a whole number of wavelengths after appropriate 
de-trending of the data) and transience in the wave field causes apparent height varia- 
tions due to the delay between flight legs in a vertical stack. Mesospheric-Stratospheric- 
Tropospheric (MST) radar observations are effectively continuous in time but (for a single 
radar) require the assumption of horizontal homogeneity between the positions of verti- 
cal and slanted beam at any level. This may not be valid for short-horizontal-wavelength 
gravity-waves. Nevertheless, using the Aberystwyth MST radar on the west coast of Wales, 
Thomas (personal communication) has found vertical profiles of momentum flux which 
appear to support the critical-level absorption model presented here. 

It should be emphasized that the drag force calculated here is only that associated 
with critical-level effects. The problem of determining the profile of wave stress in wave- 
breaking regions remains. The expressions derived for a t / a z  should be regarded as re- 
placements for the a t / &  = 0 assumption used in GWDP outside wave-breaking regions. 
The net effect of using this more accurate treatment of the linear aspects of GWD should 
be a more evenly spread vertical distribution of wave stress. This of course depends on how 
much wind direction variation occurs. There are likely to be characteristic synoptic flow 
patterns in which directional wind shear is large (e.g. warmkold advection near fronts). 
How common these are in a global sense remains to be seen. 
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