
HTML Resource Package Experiments

Justin Lebar

June 7, 2010

1 Introduction

As a CS191W project, we implemented a basic version of HTML resource pack-
ages1 in Firefox and wrote a formal specification for the feature.2 Resource
packages allow websites to aggregate together sets of resources into one zip or
tar-gz file. Instead of issuing requests for each resource individually, browsers
download a resource package with a single HTTP request.

In theory, reducing the number of HTTP requests necessary to load a page
should improve its load speed, especially on high-latency networks, where the
overhead of issuing a request is high. In this writeup, we document two experi-
ments we conducted to judge the efficacy of resource packages in improving the
speed of loading webpages. Our results are encouraging.

2 Experiments

2.1 Website survey

We first conducted an informal survey of websites to get an idea of how many
resources webpages usually include and how large they usually are.

Table 1 includes the results of our survey. We should note that we ran our
tests only once, so our results aren’t particularly accurate. (We found that even
the number of requests varied greatly between two consecutive page loads for
some pages.) All tests were run with an empty browser cache.

Two patterns emerge from our data: First, the average resource on many
pages is about 4KB and usually is smaller than 10KB (although there are clear
exceptions to this). Second, even rich-content pages include wildly differing
numbers of resources.

The main conclusion we draw is that despite the popularity of image spriting
and js/css unification as techniques to decrease the number of resources on a
page, many pages—even highly-optimized pages such as Facebook’s homepage—
include many relatively small resources. If our goal is to reduce the number of

1Introduced at http://limi.net/articles/resource-packages/
2http://stanford.edu/~jlebar/moz/respkg

1



Size Requests KB/req Eth (s) 3G (s)

nytimes.com 4.8 MB 170 28 9 27
cnn.com 1.3 MB 141 9.2 14 23
cakewrecks.com 1.1 MB 129 8.5 9 48
facebook.com/home.php 421 KB 100 4.2 6 13
bbc.co.uk 312 KB 78 4.0 15 39
amazon.com 424 KB 80 5.3 7 16
en.wikipedia.org 230 KB 54 4.2 3 10
Google image search 144 KB 25 5.8 1 4
youtube.com 235 KB 17 14 3 15

Table 1: Results from our survey of websites. The eth column lists seconds to
onload dispatch over unmodified ethernet connection; 3G column lists seconds
to onload over a 700 KB/s, 440ms (roundtrip) connection.

HTTP requests necessary to load a page, there is clearly room for improvement
even on well-optimized sites.

2.2 Resource package tests

We conducted experiments using our proof-of-concept implementation of re-
source packages in Firefox to determine whether resource packaging would yield
faster page load times.

We constructed an artificial benchmark for this test so we could run it locally
without experiencing the variability of real network speeds. The page consists of
126 resources, mostly thumbnail images, totaling 1.3MB. This makes it similar
on average to cnn.com or cakewrecks.com in terms of total size and number of
resources. Our results are summarized in Table 2.

Consistent with our expectations, resource packages never made a page
slower, and the largest gains from using resource packages were on high-bandwidth
links. This demonstrates that resource packaging is beneficial across a large
range of connection types.

Perhaps the most intriguing data in our table are for the connections with
880ms of latency. In those cases, without resource packages, the page loaded
at almost the same speed regardless of how much bandwidth was available. We
suspect that this is an effect of TCP slow-start interacting with the serialization
of HTTP requests: TCP slow-start increases the stream’s window size as we send
more packets. Without resource packages, each of our TCP connections wastes
half an RTT for each HTTP request it issues (i.e. we wait for all the packets for
our last request to arrive, and then we send our next HTTP GET request, which
takes half an RTT to arrive at the server). In contrast, when we use a resource
package, we fully utilize our TCP stream. At high latencies, forcing a flush
of the TCP window on every HTTP request should add significant overhead.
With resource packages, we see performance gains from adding bandwidth up

2



KB/s RTT (ms) No pkg (s) Pkg (s)

175 55 8.6 8
175 110 9.6 8.4
175 220 11.4 9.0
175 440 15.0 11.4
175 880 24.5 15.5
350 55 4.8 4.3
350 110 5.8 4.8
350 220 7.7 7.1
350 440 12.4 7.9
350 880 23.6 12.2
700 55 3.5 2.4
700 110 3.9 2.7
700 220 6.4 3.5
700 440 12.0 7.5
700 880 23.4 9.2

1400 55 3.3 1.4
1400 110 3.2 1.5
1400 220 6.0 2.7
1400 440 11.9 5.7
1400 880 23.3 9.0

Table 2: Time to load a page with 126 resources totalling 1.3MB over various
(simulated) network conditions with and without resource packages.

to 700 KB/s.

3 Conclusions

Overall, we saw significant gains from using resource packages. When given
1400 KB/s of bandwidth, our benchmark page loaded more than 2x faster with
resource packages than without at all latencies. Our benchmark represents a
best-case scenario in some ways, since we were able to encapsulate all of our
page’s resources into a single package. But even if only some of a page’s resources
could be packaged, we’d expect to see gains proportional to the number of
packaged images.

Crucially, resource packages are easy to add to a webpage (just add one line
of HTML in the page’s head), and backwards compatible with older browsers,
which will just ignore the packages and download the resources individually.
Given the performance improvements we’ve seen with our proof-of-concept im-
plementation, we hope that a full implementation will be well-received by browser
vendors and web developers alike.

3


