
Property Trees: An Efficient Object Property Lookup Mechanism
for Dynamic Languages

Brendan Eich, Andreas Gal, Luke Wagner, David Mandelin, Gregor Wagner, Roy Frostig, Boris Zbarsky,
Jason Orendorff, Mike Shaver, David Anderson, Nicholas Nethercote, Jeff Walden

Mozilla Corporation
{brendan,gal,lw,dmandelin,gwagner,froystig, bzbarsky,

jorendorff,shaver,danderson,nnethercote,jwalden}@mozilla.com

Abstract
JavaScript is a dynamically typed programming language widely
used in browser-based web applications. As with many dynamic
languages, JavaScript objects are essentially associative arrays that
lack static typing; object properties can be added and removed
at runtime. JavaScript also provides a prototype-based inheritance
mechanism to create complex object hierarchies. As a result, prop-
erty lookups in JavaScript imply a potentially slow search of the
objects along the prototype chain. We present property trees as an
efficient technique to dynamically infer structural types for objects.
We show that, using this inferred type information, we can speed
up property accesses and common sequences of property additions
by up to 2.2x in some benchmarks.

Categories and Subject Descriptors D.3.4 [Programming Lan-

guages]: Processors — Runtime Environments, Optimization.

General Terms Design, Experimentation, Measurement, Perfor-
mance.

Keywords JavaScript, property tree, property cache, shapes.

1. Introduction
Dynamic languages such as JavaScript, Python, and Ruby are pop-
ular since they are expressive, accessible to non-experts, and make
deployment as easy as distributing a source file. They are used for
small scripts as well as for complex applications. JavaScript, for
example, is the de facto standard for client-side web programming
and is used for the application logic of browser-based productivity
applications such as Google Mail, Google Docs and Zimbra Col-
laboration Suite. Dynamic languages often use a hash table-like ob-
ject abstraction that holds a set of properties that can be added and
removed dynamically.

Compilers for statically typed languages rely on type informa-
tion to generate space-efficient object representations and fast prop-
erty access code. Accessing a Java [14] object field, for example, is
as simple as reading the property value using a compile-type com-
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puted offset relative to the object base. In a dynamically typed pro-
gramming language such as JavaScript there is no notion of class
and property access is typically much slower than the equivalent
property access in a statically typed language.

In this paper we describe a new strategy for implementing
dynamic language objects efficiently using a property tree and a
property cache.

The Self language [9] pioneered the use of property map shar-

ing to represent dynamic objects with less memory and polymor-

phic inline caching (PICs) to speed property access. Property map
sharing means that the representation of the set of properties and
their attributes is shared among all objects that have the same prop-
erties. The objects only need to store unique copies of the property
values. Polymorphic inline caching means that after performing an
initial property lookup, the implementation patches the code, inlin-
ing a fast path for the same property lookup that can be used on
future executions. The fast path can be used as long as the object
on which the lookup is performed has the same property map. If
the property map changes, the inlined fast path must be invalidated
and replaced by the initial slow path or a newly valid fast path. To-
gether, property map sharing and PICs make dynamic objects much
more efficient.

These techniques do have a few disadvantages and limitations.
The main disadvantage of PICs is that they require patching the
code at run time. This makes the implementation fairly complex.
Also, in multithreaded systems, the code cannot be shared across
threads without locking, which may be slow. PICs also require in-
validation, which is often hard to get right and is also complex to
implement, because the invalidation code needs to know about all
the generated fast paths and how to patch them back. Another prob-
lem with patching is that it is expensive on most processors. This
is a problem especially if there is a code expression that accesses
properties using objects with many different object property maps
on different executions (“megamorphic” property access expres-
sions), because then the code must be patched frequently.

To avoid all of these problems, we introduced the property

cache, which achieves mostly the same effect without requiring
any patching. This technique fits in especially well with pure in-
terpreters that have limited code generation facilities. Instead of
patching the code, we insert an entry into a fast associative array
structure. Instead of running patched fast paths, we do a lookup into
the associative array, and on a cache hit find a simple description of
the steps needed to read the property. The property cache is not par-
ticularly bothered by megamorphic property access expressions–it
simply incurs a low hit rate, and incurs the cost of creating useless
property cache entries, which is much faster than creating useless



code patches. The property cache can also be invalidated simply
and quickly: Instead of patching code for objects that are invali-
dated, we simply update the property cache key of those objects to
a new unique value, so future cache lookups will miss.

A limitation of previously described property map sharing sys-
tems is that property maps are represented with hash tables, which
must be copied and updated in order to add a new property, which
is expensive. Also, two objects that have almost identical property
maps must have two separate property maps, which mitigates the
benefits of sharing.

The property tree is our solution to the problems with property
map sharing. Instead of using hash tables, we represent all the
shared property maps in the entire system with a single tree. Each
node is labeled with a single property. Each node represents a
shared property map, where the properties in the map are all those
found on the path to the root node, which represents the empty map.
This structure gives more sharing than the hash table solution. The
property tree also makes adding properties much faster–instead of
copying and updating a hash table, we need only add a new node to
the tree.

Together, these techniques produced up to a 2x improvement
in total application performance on standard benchmarks in a pro-
duction interpreter, compared to the previous naı̈ve property imple-
mentation.

The contributions of this paper are:

• The property tree, which represents shared property maps using
less memory and with faster updates than previously described
implementations.

• The property cache, an alternative to polymorphic inline caching
(PICs) that is simpler to implement and has a simpler, faster in-
validation strategy

• Implementation and experimental evaluation of these tech-
niques in a production interpreter.

The remainder of this paper is organized as follows. In Section 2
we give an overview of name lookup in JavaScript. Section 3
describes our property tree abstraction and Section 4 details our use
of the property tree and shape numbers to implement an efficient
name lookup cache for JavaScript. Related work is discussed in
Section 5. In Section 6 we evaluate our approach by observing its
hit rate and behavior for a set of synthetic benchmarks and real-
world web application workloads. The paper ends with conclusions
in Section 7.

2. JavaScript and Name Lookup
We now consider some of the relevant aspects of the JavaScript lan-
guage and formalize the required behavior of property and variable
access. We refer to the lookup required for these two related opera-
tions as name lookup. Existing formalisms for JavaScript [4, 23, 10]
provide operational semantics that capture many key features of
the language and even interactions with the browser. However,
for name lookup, these formalisms use a more restrictive form of
lookup than allowed by JavaScript in the existing and upcoming
ECMAScript standards [15, 22]. In particular:

• Properties can be looked up using first class string values, not
just elements of an a priori fixed set of identifiers.

• The runtime lookup mechanism must consider more than just
an object’s own state; it must consider the object’s prototype
chain as well as the dynamic contents of its lexical scope.

2.1 Property Lookup
Properties may be added to an object when the object is created.
The two main ways to create an object in JavaScript are: an object-
literal syntax

cow1 = { weight:100,
fatten:function() { this.weight++ } };

which defines an object’s properties using a list of name:expr pairs,
and a constructor syntax

function Cow(w) {
this.weight = w;
this.fatten = function() { this.weight++ };

}
cow2 = new Cow(100);

which involves writing a constructor function and then using it to
construct an object with the new operator.

Once an object is created, properties can be added and removed
dynamically:

assertEq(cow2.horns, undefined);
cow2.horns = true;
assertEq(cow2.horns, true);
delete cow2.horns;
assertEq(cow2.horns, undefined);

(undefined is the value returned when a non-existent property is
accessed.) In this way, an object’s set of properties can vary over
time and, in general, is not fixed for a given program point.

JavaScript supports a form of inheritance/delegation through
prototyping. Specifically, if an object a has another object b as its
prototype, a property lookup a.x will first look for property x in a

and, failing to find it there, look for x in b, and so on.
The prototype association is primarily established through the

use of constructor functions as below:

function Shape(c) { this.center = c; };
Shape.prototype = { color:"red" };
s = new Shape({x:0, y:0});
assertEq(s.color, "red");

Here, prototype is a special property of the Shape function object
which is used to set the prototype of all objects subsequently cre-
ated by Shape.

Updates made to a property on an object a are immediately
visible to all other objects which have a as their prototype. For
example:

Shape.prototype.color = "blue";
assertEq(s.color, "blue");

The last relevant feature of property access is the ability to
define getter and setter functions for properties. For example, the
following code uses a getter and setter function to derive an area

property from the side property of a square.

sq = { side:4,
get area() { return this.side * this.side },
set area(a) { this.side = Math.sqrt(a) } };

assertEq(sq.area, 16); // call getter
sq.area = 25; // call setter
assertEq(sq.side, 5);

Together, a getter and setter constitute a property, and thus the pair
of functions can be inherited like data properties.

With this background, we can formalize the relevant definitions.
We use �fin to denote a finite partial mapping and, for such a
mapping f , f(x) ↓ to mean “f is defined on x”. Additionally,
definitions are given in the context of a single fixed program state;
a full operational semantics with dynamic name lookup is beyond



s ∈ String

f ∈ Function

v ∈ V alue ::= Object ∪ String ∪ . . .

p ∈ Property ::= v

| <f1,f2>

pm ∈ PropMap ::= String �fin Property

mo ∈ Maybe(Object) ::= Object ∪ {null}
mp ∈ Maybe(Property) ::= Property ∪ {null}

o ∈ Object ::= {pm,mo}

Figure 1. JavaScript object

prop : Object× String → Maybe(Property)

prop({pm,mo}, s) =

8
><

>:

pm(s) if pm(s)↓,
prop(mo, s) if mo �= null,

null otherwise.

Figure 2. Property lookup

the scope of this paper. Hence, the standard indirection through a
domain of heap addresses is not necessary and, for simplicity, the
Object and Property domains are used directly.

Figure 1 defines the components of a JavaScript object neces-
sary for name lookup. Figure 2 defines the effect-free portion of
property lookup (i.e., up to a potential getter or setter call). Having
performed the lookup prop, the interpreter can take the appropri-
ate action by changing the data value, calling the getter/setter, or
returning undefined.

2.2 Variable Lookup
In JavaScript, names that are not explicitly accessed as properties
(using the syntactic form “e.o”) perform a lookup in the current
scope. While scopes are nested lexically, their contents are dynamic
and, in general, identifiers cannot be resolved to variables at com-
pile time. One source of dynamism is a special object, called the
global object, which forms the root of every scope chain and whose
properties are treated as global variables. Hence, after executing the
script:

x = 0;
function f() { var y; y = 0; z = 0; };
f();

the global object has properties named “x” and “z”. As an object,
the global object can have its properties dynamically added and
removed:

function g() { return x; }
x = 10;
assertEq(g(), 10);
delete x;
g(); // ReferenceError: x is not defined

Objects can also be inserted further down the scope chain using the
with operator. A block with(o) { ... } uses object o as a nested
local scope of code in the block, with o’s properties serving as local
variables. For example:

function h(o) {
var x = 42;
function h() { with(o) { return x; } }

vm ∈ V arMap ::= String �fin V alue

sc ∈ Scope ::= call(vm,sc)

| with(o,sc)

| global(o)

Figure 3. JavaScript scope

var : Scope× String → Maybe(Property)

var(call(vm,sc), s) =

(
vm(s) if vm(s)↓,
var(sc, s) otherwise.

var(with(o,sc), s) =

(
prop(o, s) if prop(o, s)↓,
var(sc, s) otherwise.

var(global(o), s) = prop(o, s)

Figure 4. Scope lookup

return h();
}
assertEq(h( {/* empty object */} ), 42);
assertEq(h( { x:"moose" } ), "moose");

Lastly, even the contents of local scopes can change at runtime, due
to the fact that eval executes in the current scope:

var g = 42;
function i(s) {

eval(s);
return g;

}
assertEq(i(""), 42);
assertEq(i("var g = true"), true);

To give a formal definition of variable lookup, we first give a
recursive definition of Scope in Figure 3 that handles the cases
described above: local scopes of nested calls, with blocks, and the
global object. Based on this, Figure 4 defines variable lookup.

Another concept, used in subsequent sections, that can be de-
fined formally in terms of the given definitions is shadowing. A
property is shadowed, in the context of a particular lookup, if an-
other property with the same name is found first by the lookup func-
tion. This is captured by the predicate shadow in Figure 5 which
returns whether the given identifier names a shadowed property for
the given object or scope.

3. Property Tree
A naı̈ve implementation of JavaScript objects1 could give each ob-
ject a hash table mapping names to properties and a pointer to the
prototype. But in many programs, this strategy wastes memory stor-
ing redundant property maps. Consider this example constructor
function:

function Point(x, y) {
this.x = x;
this.y = y;

}

1 JavaScript scopes are similar to objects except that most scopes do not
have a prototype, so we will simply refer to objects in our presentation.



shadow : Object× String → Bool

shadow({pm,mo}, s) =

8
><

>:

false if mo = null,

prop(mo, s)↓ else if pm(s)↓,
shadow(mo, s) otherwise.

shadow : Scope× String → Bool

shadow(call(vm,sc), s) = vm(s)↓ ∧ var(sc, s)↓
shadow(with(o,sc), s) = shadow(o, s) ∨

prop(o, s)↓ ∧ var(sc, s)↓
shadow(global(o), s) = false

Figure 5. Property shadowing

If the program creates one million Point objects, the naı̈ve im-
plementation creates one million identical maps giving the names,
getters, setters, attributes, and storage location of x and y. In the
SpiderMonkey JavaScript VM [1], for example, small objects are
32 bytes, and property definitions are 20 bytes.2 Thus, a program
that creates one million Points uses 32 MB for the objects, and at
least 40 MB for redundant property maps, so over half the allocated
space is wasted.

The creators of Self noticed this problem and solved it by giving
each object a pointer to the property map and sharing the maps
among objects [9]. This reduces the memory required for property
maps in our example to only 40 bytes or so.

The basic version of the shared property map technique uses a
hash table for each shared map. Initially, objects have the same map
as their prototype, which is how the sharing is achieved in practice.
If the property map of an object ever needs to be modified, the
shared map is copied, and then the copy is modified. This strategy
has two inefficiencies. First, objects with slightly different property
maps must use distinct hash tables, and do not share their redundant
information. Second, hash tables have to be copied when properties
are added or modified, which is a relatively expensive operation.

Our technique solves both of these problems by representing
property maps in a tree that allows partially redundant maps to
overlap, and can generate new scopes without copying. In the rest
of this section, we explain the property tree in detail and analyze its
memory usage quantitatively.

Given P independent, non-unique properties each of size S

words mapped by all scopes in a runtime, we construct a property
tree of N nodes each of size S + L words (with L words being
used for tree linkage). A nominal L value is 2 for leftmost-child
and right-sibling links. We hope that N < P by enough that the
space overhead of L, and the overhead of scope entries pointing at
property tree nodes, is worthwhile.

3.1 Property tree construction
The property tree is constructed as follows. If any empty scope S

in the runtime has a property x added to it, find or create a node
under the tree root labeled x, and set SLastPropto point at that node.

If any non-empty scope S whose SLastPropis labeled y has an-
other property z added, find or create a property tree node labelled
z under SLastProp, and set SLastProp to point at that node. This pro-
duces the following path to root in the property tree:

∗ ← x ← . . . ← y ← z ← SLastProp

2 Properties are actually 32 bytes, but 12 of those are for the optimizations
described in this paper and would not be used in a naı̈ve implementation.

A property is labeled by its members’ values: the property name,
getter function, setter function, slot-storage offset, property at-
tributes (e.g. read-only), short id (used for quick lookup of fre-
quently encountered property names such as length), and a field
indicating iteration order.

Sidebar on iteration order: The ECMAScript Specification [15]
requires no particular order, but traditionally web-compatible
JavaScript engines have promised and delivered property defini-
tion order and web authors have come to rely on it. We could use
an order number per property, which would require a sort when
enumeration commences, and an entry order generation number
per scope. An order number beats a list, which should be doubly-
linked for O(1) delete. An even better scheme is to use a parent link
in the property tree, so that the ancestor line can be iterated from
SLastProp when creating the list of keys to enumerate. This parent
link also helps the garbage collector to sweep properties iteratively.

Note that labels are not unique in the tree, but they are unique
among a node’s children (barring rare and benign multi-threaded
race condition outcomes, see below) and along any ancestor line
from the tree root to a given leaf node.

Thus the root of the tree represents all empty scopes, and the
first ply of the tree represents all scopes containing one property,
etc. Each node in the tree can stand for any number of scopes
having the same ordered set of properties, where that property
represented by the node was the last added to the scope.

3.2 Property Deletion
What if a property y is deleted from a scope? If y is the last property
in the scope, and its predecessor is x, we simply adjust SLastProp to x

after we remove the scope’s value table entry corresponding to that
property node. The parent link mentioned in the iteration sidebar
above makes this adjustment O(1).

. . . ← x ← y

If the deleted property y comes between x and z in the scope,
modeling the deletion appears to require “forking” the tree at x,
leaving x ← y ← z in case other scopes have those properties
added in that order; and to finish the fork, we have add a node
labeled z with the path x ← z, if it doesn’t exist. In pathological
cases this can result in the creation of a large number of extra nodes,
and to O(n2) growth when deleting many properties.

To avoid such pathological cases and retain predictable O(1)
behavior, we disengage scopes from the property tree regimen
when the first property is deleted from a position other than
SLastProp. For such scopes we fall back onto the traditional hash-
table implementation. Web code rarely makes use of property dele-
tion, making this a rare compensation path. We measured about
0.09% property deletion rate per scope.

3.3 Thread Safety
While web JavaScript has “run to completion” semantics for indi-
vidual JS programs, specific embeddings of JavaScript might prefer
the concurrent execution of JavaScript programs sharing a common
heap (and thus a shared property tree).

If the property tree operations done by concurrent threads are
find-node and insert-node, then the only concurrency hazard is
duplicate insertion. This is harmless except for minor bloat.

When all concurrent thread accesses to the property tree have
ended or been suspended, the garbage collector is free to sweep
the tree after marking all nodes reachable from scopes, performing
remove-node operations as needed.

3.4 Efficiency
To decide whether the property tree is worthwhile compared to
direct property storage in each scope, we must find the relation �



between the number of words used with a property tree and the
number of words required without a tree.

We model all scopes as one super-scope of capacity T entries
(with T being a power of 2). Let α be the load factor of this double
hash table. With the property tree, each entry in the table is a word-
sized pointer to a node that can be shared by many scopes. But
all such pointers are overhead compared to the situation without
the property tree, where the table stores property nodes directly, as
entries each of size S words.

With the property tree, we need L = 2 extra words per node for
sibling and child pointers. Without the tree, (1− α) ∗ S ∗ T words
are wasted on free or removed sentinel-entries required by double
hashing.

Therefore,
(property tree) � (no property tree)

N ∗ (S + L) + T � S ∗ T

N ∗ (S + L) + T � P ∗ S + (1− α) ∗ S ∗ T

N ∗ (S + L) + α ∗ T + (1− α) ∗ T � P ∗ S + (1− α) ∗ S ∗ T

Note that P is α ∗ T by definition, so
N ∗ (S + L) + P + (1− α) ∗ T � P ∗ S + (1− α) ∗ S ∗ T

which we can rewrite as follows:
N ∗ (S + L) � P ∗ S − P + (1− α) ∗ S ∗ T − (1− α) ∗ T

N ∗ (S + L) � (P + (1− α) ∗ T ) ∗ (S − 1)

N ∗ (S + L) � (P + (1− α) ∗ P/α) ∗ (S − 1)

N ∗ (S + L) � P ∗ (1/α) ∗ (S − 1)

Let N = P ∗ β for a compression ratio β, β <= 1:
P ∗ β ∗ (S + L) � P ∗ (1/α) ∗ (S − 1)

β ∗ (S + L) � (S − 1)/α

β � (S − 1)/((S + L) ∗ α)

For S = 6 (32-bit architectures) and L = 2, the property tree wins
iff

β < 5/(8 ∗ α)

We ensure that α ≤ 0.75, so the property tree wins if β < 0.83.
An average β for browser startups is approximately 0.6.

3.5 Compressed Child Table
So far we have assumed a binary tree with L = 2. However, in
many cases we observe that the property tree degenerates into a list
of lists if at most one property Y follows X in all scopes. In or near
such a case, we waste a word on the right-sibling link outside of the
root ply of the tree. Note also that the root ply tends to be large, so
O(n2) growth searching it is likely, indicating the need for hashing
(but with increased thread safety costs).

If only K out of N nodes in the property tree have more than
one child, we could eliminate the sibling link and overlay a children
list or hash-table pointer on the leftmost-child link (which would
then be either null or an only-child link; the overlay could be
tagged in the low bit of the pointer, or flagged elsewhere in the
property tree node, although such a flag must not be considered
when comparing node labels during tree search).

For such a system,

L = 1 + (K ∗ averageChildrenTableSize)/N

instead of 2. If K << N , L approaches 1 and the property tree is
worthwhile if β < .95.

We observe that fan-out below the root ply of the property tree
appears to have extremely low degree (Figure 6), so instead of a
hash-table we use a linked list of child node pointer arrays.
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Figure 6. Histogram of child nodes in the property tree. Most
property tree nodes have no or one child node.
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Figure 7. Histogram of properties per scope. The mean number
of properties per scope is relatively small (N < 5) with a large
standard deviation Nσ ≈ 8.

3.6 Property Lookup
So far we have assumed that each scope contains a table with a
pointer into the property tree for each property. Figure 7 shows that
the mean number of entries per scope is relatively small (N < 5),
with a large standard deviation Nσ ≈ 8.

Instead of always allocating a table for every scope, we leave
it null while initializing all the other scope members as if it were
non-null and minimal-length. Until a property is added that crosses
a threshold of 6 or more entries for hashing (or until a ”middle
delete” occurs and the scope opts out of the property tree regimen),
we use linear search from SLastProp to find a given property, and save
on the space overhead of a hash-table.

4. Property Cache
Property access in dynamic languages with prototypes is com-
plex and potentially expensive. Even without prototypes, a simple
lookup requires searching the property tree for the property. After
finding the property, the implementation runs the operations spec-
ified by the property to get or set the value. With prototypes and
nested lexical scopes, a lookup requires searching the property tree
for each property in the prototype or scope chain until the property
is found or the end of the chain is reached. The result is that even in
the simplest case, property lookup requires traversing pointer struc-
tures and is tens or hundreds of times slower than in a language like
Java. Also, prototypes and nested lexical scopes incur a high run-
time cost.

Consider this code example:

function init(points) {
for (var i = 0; i < 10; ++i)



points[i].x = get_x(i);
}

The variables i and points can be bound statically, but reading the
ith array element, the x property, and the get_x function must be
done dynamically. Notice that if every element of points is a Point

object, the property, and hence the property access operations, for
.x are the same every time. Similarly, the property access opera-
tions for get_x may also be the same every time, and furthermore,
the value of the property (the function itself) may also be the same
every time. But reading the ith element is not the same every time:
the property and its storage location are different on every itera-
tion. Thus, we observe that for property accesses that use the dot
syntax (in which the property name is given statically), the property
operations are likely to be the same every time. This gives us the
opportunity to speed up property access by caching the operations.

4.1 Overview
For the overview, we will consider the simple case of caching
property accesses for single objects, with no prototype chain or
lexical scope chain. The goal here is to avoid searching the property
map in favor of a faster cache read.

In this simple case, the property access operations are the same
for two property accesses if the objects have the same property
maps and the property names are also the same. This suggests we
design a cache where the key consists of the object property map
and the property name. The value should be a simple description
of how to access the property. For simple objects, properties are
simply stored in an array, so the value would be simply the index
into the array. For objects with getters and setters, the value would
be a pointer to the getter and setter.

The strategy above would work, but there are some language
and implementation considerations that lead us to use a somewhat
different key. First, in a typical interpreter, the property name is an
additional operand to the bytecode that would need to be loaded
from memory to form the key. But note that the property name is
fixed for a given interpreter PC (because we will only cache for
dot-syntax operations), so we can use the interpreter PC for the key
instead, saving the load.

Second, certain language features mean that objects can have
identical property maps but should not be considered to have iden-
tical property access operations. For example, a JavaScript object
can be sealed, which means that it is read-only, and an attempt to
write to its properties throws an exception. Thus, we must avoid
getting a cache hit for a sealed object when the cache entry was
originally created for a non-sealed object. We can solve this prob-
lem by using a shape number in place of the property map for the
key. For most objects, the shape number is simply a unique identi-
fier for the property map. But when required, objects can be given
their own unique shape number, so they will not get property cache
hits from any other objects.

Thus, in our property cache:

• The key is a pair of the interpreter PC and object shape num-
ber.

• The value represents the property access operations. We have
three kinds of values, distinguished by tag bits:

In the normal case, we have a simple property without getter
or setter and the value is simply the array index of the
property value.
For more complex cases, such as when there is a getter, the
value is a pointer to the property definition.
As our example suggests, for function-valued properties,
not only are the property access operations usually the same,

but the value itself is usually the same. Thus, for function-
valued properties, the cache value is the function value
itself.

For speed, the cache is a fixed-size hash-table with no chaining.
Collisions simply cause old entries to be overwritten.

Statically typed programming languages generate property ac-
cess code that is valid for all objects of a specific class. As a dy-
namically typed language, JavaScript lacks the notion of classes.3
A Point object can only be identified as such based on the obser-
vation that it has a certain set of properties (i.e. x, y and color).

4.2 Shapes
As we have discussed in Section 3, each object or scope embeds a
pointer into the property tree pointing at the last property that was
added. We could consider this pointer to be a hidden class [9, 3],
and use it as part of each key in the property cache. All objects
with a last property pointer pointing to the same property descrip-
tor behave identically as far as a property lookup in the object it-
self is concerned. However, objects with identical direct properties
(sometimes also called own properties) could have different pro-
totypes, producing different overall lookup results. Therefore we
would have to embed not only the last property pointer into each
cache entry, but also the precise composition of the entire prototype
chain to guarantee that the cached access is applied to the object in
question.

Instead, we assign every object a machine-word sized shape
number. Property cache entries use the shape field in their key, and
for a property cache hit the shape number in the cache entry must
match the object’s shape. Shapes are assigned to objects in such a
way that the following guarantees are maintained:

• Basic layout guarantee – If object x has shape s and later
object y has the same shape s, then x and y have a set of
properties with the same: names, getters, setters, attributes, slot-
storage offsets, and ordering.

• Sealed scope guarantee – If object x has shape s and is not
sealed and later object y has the same shape s, then y is also not
sealed.

Notice the shape of an object does not cover anything about
the object’s prototype or parent or anything about the values of
the object’s own properties (beyond the method and branded scope
guarantees we will discuss in the next section). In particular, a
shape does not cover the types of property values: it is possible
for {a : “x”} and {a : 12} to have the same shape.

4.3 Shape Evolution
We use an incremental approach to assign shapes that maintain the
guarantees laid out in the previous section. Each property descriptor
in the property tree contains a shape number. The root of the
property tree represents all empty scopes, and is assigned the shape
number 0. A strictly increasing shape number generator G is used
to assign a unique shape number to all property descriptors in the
property tree as they appear. Shape numbers are never re-used.

In JavaScript, all objects are initially created empty, which
means that we initially assign them the shape number of the empty
scope, which is 0. For a more compact representation, we split
scopes and objects. Each object contains a pointer to a scope, which
in turn stores the shape number of the last property that was added

3 ECMAScript uses the term class to describe objects with specific behav-
iors, such as Date and String objects. This is not to be confused with
classes in the type sense. A JavaScript Date class can still have an arbitrary
number of properties and the fact that it was born as a Date object doesn’t
guarantee the presence or absence of any specific properties.



to it. As properties are added to or removed from the scope, we
update the shape number in the scope. While not strictly neces-
sary (we could look up the shape number in the property descriptor
pointed to by SLastProp for scope S), this does avoid an extra
indirection when performing shape checks on the scope.

By copying the pre-assigned shapes found in the property tree
into the scope we obtain predictably evolving shape numbers for
scopes that match the shape number of other scopes with the same
properties (basic layout guarantee).

4.4 Unique Shapes
A scope may be given a unique shape that differs from the shape
of the last property that was added to it. This is done in order to
“bump” the shape of one scope without affecting other objects that
happen to have the same properties. Such a “bump” is necessary
to model special circumstances that should force invalidation of
certain property cache entries (or code generated by the just-in-time
compiler).

For example, when sealing an object, we must prevent any fu-
ture property cache hits for property sets on that object. We do
this by giving the sealed scope a unique shape. Existing property
cache entries that cache access information for property-set opera-
tions become invalid since we precondition property cache hits on
a matching shape; the resulting property cache miss will purge the
existing property cache entry and re-fill it with new access informa-
tion. In case of a sealed scope, the new cached access information
instructs the VM to silently ignore the property set, as dictated by
the language specification. By assigning unique shapes to sealed
scopes we satisfy the sealed scope guarantee.

Note that two different objects may have the same “unique”
shape. The shape uniquely identifies a point on a path of property
operations, it does not necessarily identify a particular object.

4.5 Shadowing
As discussed in Figure 2.2, properties can be shadowed along the
prototype and scope chains. Since shapes don’t make any guaran-
tees about the prototype relationship between objects, for property
lookups that result in a hit along either the prototype or scope chains
we would have to perform a multi-step lookup to ensure that each
object along the chain has the same shape as at the time when we
filled the property cache. If any of the shapes changed, the property
we are looking for might have been shadowed by a newly defined
property closer to the direct objected we started the search with.

This is particularly unfortunate considering that in most pro-
grams, usually only a small set of objects are actually used as
prototype or parent objects (delegate objects). When invoking the
toString() method on any string object, for example, the method
is almost always found by walking along the prototype chain from
a string object to String.prototype.4 Walking up the prototype chain
every time toString() is called only to find the same receiver ob-
ject there is wasteful.

Lexical scopes behave similarly to object hierarchies. When we
look up a global variable in a chain of scopes we often walk past
a predictable path of scope objects before arriving at the global
object where we find the property we are looking for. To be able to
execute such non-direct property accesses (properties found along
the property or scope chains) via property cache hits, we observe
that a small set of objects serve as delegate objects, and add the
following two guarantees to our shape rules:
• Prototype chain shadowing guarantee – If the property

lookup x.p finds property p in x’s prototype chain on object

4 As we will discuss in a moment, method property lookup differs from reg-
ular property lookups due to scope branding. For the sake of this example,
we will ignore branding momentarily.

y which has shape s, then if later y still has shape s, the lookup
x.p will still find p on y.

x → . . . → y → . . . → Object.prototype

• Scope chain shadowing guarantee – If the variable lookup for
p in a scope chain starting at sc finds p on a scope y of shape
s, and there are no scopes before y along the scope chain that
have prototypes, then if later y still has shape s, the lookup for
p in sc will still find p on y.

sc

↓
. . .

↓
global → . . . → y → Object.prototype

→ prototype chain

↓ scope chain

Using these shadowing guarantees, it is sufficient to first guard on
the shape of the scope chain and, using information stored in the
cache entry, the shape of the prototype object on which the property
was found.

To ensure the shadowing guarantees above, we use a write
barrier in the property set path. Every time a property is set, we test
the property cache to see if we are about to shadow a property, in
which case we walk from the direct object to the original delegate
object and assign a unique shape to each scope along the way.
This automatically invalidates any cached access information for
the direct object or any intermediary objects along the prototype
and scope chains.

4.6 Branded Scopes
Function-valued properties can be invoked like methods in JavaScript
using the object.method() syntax. In practice, such method values

very rarely change once assigned. We use this observation and
brand scopes with a unique shape when a property in the scope is
assigned a function value. This provides us with the following final
guarantee:
• Branded scope guarantee If at time t0 the object x has shape

sx; and x’s scope is branded and x has an own property p, which
is a non-readonly, Function-valued property; and at time t1 an
object y has shape sx; and no shape-regenerating GC occurred;
then y is x, and at time t1 x’s own property p has the same
Function value it had at time t0. (The existence of this property
is guaranteed by the basic layout guarantee above.) (Informally:
if x has a branded scope, changing any of x’s own methods will
change its shape.)

With this optimization we can cache the value of invoked functions
in the property cache. As long the shape of the receiving object
matches the shape in the property cache entry, we can directly
proceed with the function call without even having to retrieve the
value of the function from the object.

4.7 Polymorphic Lookups
Property accesses are not always monomorphic. Consider the fol-
lowing JavaScript code:

var x = [ { x:5, y:7, color:Red },
{ x:2, y:4, w:12, h:8, color:Blue } ];

function color(y) {
return y.color;

}



List x contains Point and Rectangle objects. Both have a color

property. Due to their differing structural types, color is stored in
different object slots. Assuming an equally distributed access pat-
tern, accessing the color property would result in constant cache
misses and refills if we were to use the program counter as the sole
property cache key. To be able to deal with such polymorphic prop-
erty accesses we key the property cache using the program counter
as well as the shape of the object the lookup starts with. In this
concrete example thus we would consult the property cache with
(pc, sPoint) for points and (pc, sRect) for rectangles, and each ac-
cess variant would (likely) be mapped to a different cache location,
avoiding unnecessary collisions and cache flushes.

4.8 Garbage Collection
To generate unique shapes we have to ensure that generated shape
numbers are never reused. We don’t keep track of wasted shapes
that were used temporary for some scope with a unique shape that
is no longer alive. Instead, occasionally during garbage collection
we regenerate all shape numbers in order to recycle unused shape
numbers so that we don’t run out. This could end up in changing the
shape of every object, so the property cache (and the just-in-time
compiler code cache) are emptied when this happens.

Regenerating shapes follows the same rules as initial shape
assignment. We apply the same numbering rules to re-number all
property descriptors in the property tree, and then proceed to copy
the new shapes into scopes referencing them and generate unique
shape numbers for scopes as needed.

We carefully track the utilization of shape numbers as the pro-
gram executes and schedule a shape-generating garbage collection
as needed. For implementation reasons, our shape space only con-
sists of 224 distinct shapes. If there come to be more than 224 ob-
jects that need distinct shapes, the shape rules can no longer be
satisfied. The property cache cannot operate without them, so it is
disabled permanently. In practice this condition is very unlikely to
occur.

5. Related Work
JavaScript combines a number of aspects of different programming
languages. It adapted the prototypal inheritance and dynamic ob-
jects from Self [9], closures from Scheme [13], lexical conventions
from Java [14] and the regular expressions from Perl [2].

Self was an early, well-known prototype-based language. Self
is based on Smalltalk [11] and shares many of Smalltalk’s key
concepts [20]. Chambers and al. [9] introduced a fast property
lookup mechanism with the first implementation of Self. Self uses
maps to represent shared members of a clone family. Each map
contains slot names, pointers to slot code or constant slot values,
slot-storage offsets in objects, and metadata indicating whether
each slot is a parent slot. Self’s hierarchy of maps is similar to our
property tree.

The main difference between our work and Self’s maps is our
notion of shapes and the use of unique shapes to detect various
hazards such as object sealing and property shadowing.

Self uses its maps to implement polymorphic inline caching,
which is conceptually very similar to our property cache. The main
difference between the approaches is that we use one shared cache
whereas Self uses small dedicated caches per site. Our property
cache can cache a much larger number of polymorphic cases per
site, but has the disadvantage of possible collisions across sites.

Google’s V8 JavaScript engine [3] implements hidden classes,
which are conceptually very similar to our property tree. Just as
Self V8 does not use unique shapes to invalidate cache entries in
case of shadowing or object sealing.

Most prototype based languages share either a delegation or
cloning based inheritance mechanism. Cecil [7] implements a

prototype-based object model with multiple dispatch. Furthermore,
it provides predicate classes [8] instead of slot-based dynamic in-
heritance.

Alternatively to dealing with the full flexibility of dynamic
property lookups and prototype-based inheritance, existing work
has suggested to constraint dynamic behavior to reduce lookup
cost.

Dony et al. [12] present a survey about prototype based lan-
guages and explore their advantages and disadvantages. They pro-
pose a model where prototypes should be represented either with
methods and variables or with slots but at least follow the imple-
mentation of an encapsulation mechanism. Delegation should be
implicit and achieved by creating split objects.

Borning [6] compares classes versus prototypes in object-
oriented languages. He uses constraints to establish and maintain
inheritance relations. To overcome the slow property lookup, he
suggests to automatically compile property lookup methods.

Steyaert et al. [19] combine class- and object-based Inheritance.
They show the encapsulated inheritance on objects and combine the
object model of class-based languages with the more orthogonal
inheritance model of object-based inheritance.

Lieberman [17] studies the efficiency between delegation and
inheritance approaches based on time/space tradeoffs. Inheritance
based approaches may be more efficient because of fewer messages
but the advantage of a delegation based solution is the smaller
object size. Smaller objects make for faster object creation times,
which can be important in systems that create large numbers of
small objects with short lifetimes.

Moore presents Guru [18], an automatic restructuring and refac-
toring of hierarchy object models for Self. Guru takes a collection
of objects and restructures them into a new inheritance hierarchy in
which there are no duplicated methods and the behavior of objects
is preserved.

A related problem to fast property lookup is effective dynamic
method lookup.

André et al. [5] discuss the problem of huge memory consump-
tion for static method lookup caches. They propose an incremen-
tal coloring algorithm that still guarantees the constant lookup cost
and no expensive conflict graph generation. Similar work was done
by Vitek et al. [21]. They show how to increase the efficiency of
dynamic binding by cached inheritance search or selector-indexed
table look-up.

Static analysis has also been used successfully to analyze and
optimize property lookup behavior. Jang et al. [16] use points-to
analysis for JavaScript to detect redundant property references.

6. Benchmarks
To evaluate our property tree and property cache implementation,
we implemented them in the open source JavaScript VM Spider-
Monkey [1], which is used by Mozilla Firefox. As a result of this
choice we are able to provide benchmark numbers for in-browser
synthetic benchmarks as well as actual JavaScript web applications.

All experiments were performed on a Mac Pro with 2 x 2.66
GHz Dual-Core Intel Xeon processor and 4 GB RAM running Ma-
cOS 10.6 and a version of Firefox 3.6beta3 that uses the property
tree and property cache mechanisms we have introduced in this pa-
per.

First we measured the cache hit ratio for the SunSpider Bench-
mark suite. As shown in Figure 8 we obtain an almost 100% hit rate
for most benchmark programs. The property cache is clearly well
suited for high regular and computationally intensive JavaScript
code. Figure 9 shows the cache hit ratio for a number of web appli-
cations. Again computationally intensive JavaScript code display
good cache hit rates. For less computationally intensive JavaScript
code the hit ratio is substantially lower (70% for 280slides).
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Figure 8. Cache Hit Ratios for the SunSpider Benchmark
Suite. No results are reported for benchmark programs that have
only a handful of name lookups (N < 5), which strongly biases
the cache hit ratio (see Figure 13).
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Figure 9. Cache Hit Ratios for a set of popular web applica-
tions. The most computationally intensive applications have the
highest cache hit ratios (r > 95%).

Cache misses are predominantly caused by collisions or initial
fills (Figure 10). To reduce these misses we would have to increase
the size of the property cache. We currently use 212 property cache
slots. Substantially increasing the size of the cache would almost
inevitably cause poor machine L2/L1 cache behavior. For the Bub-
blemark benchmark we suffer from foreshadowing cache misses
along the prototype chain due to the benchmark’s particular use of
a large number of objects of different shapes that are accessed from
the same location. We are evaluating techniques to key such cases
differently into the property cache to avoid constant cache refilling.

For most web applications such “deep prototype hits” are not
particular relevant. The overwhelming number of property lookups
yields a hit in the direct object, or its immediate prototype (Fig-
ure 11). GMail has the largest amount of non-direct and non-
immediate prototype hits, but even for GMail these only add up
to 10%.

We also evaluated the overall speedup due to the property cache
and found that it speeds up execution of the SunSpider Benchmark
set by up to 220% for certain benchmark programs (Figure 12).
The overall speedup is less dramatic for some of the benchmark
programs because they perform relatively fewer expensive name
lookups. For very short programs (some of the SunSpider bench-
mark programs only run for a few milliseconds) the overhead of
filling the property cache can even cause a slight performance loss.
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Figure 10. Distribution of cache miss causes for a set of pop-
ular web applications. The majority of cache misses are due to
collisions or not yet filled cache entries. The second most frequent
reason for a cache miss is foreshadowing of a deep prototype chain
hit. Cache behavior is fairly consistent across applications. A note-
worthy exception is the Bubblemark benchmark that uses a large
array of objects with variant shapes, causing constant cache misses
(and fills).
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Figure 11. Distribution of property locations. The overwhelm-
ing number of properties is found on the direct object, followed
by 10-20% of properties found in the immediate prototype of the
object. Deep hits along the prototype chain a rare.

7. Conclusions
In this paper, property trees and property caches are introduced as
a mechanism to increase the efficiency of property lookup in dy-
namic object-oriented languages. Property trees allow decreased
memory usage through increased data-structure sharing and faster
property update operations, while the property cache allows fast,
cached lookup without requiring code patching. These two com-
ponents are tied together by associating shapes with nodes in the
property tree that can be efficiently guarded upon by the property
cache. This paper describes details of an implementation in a pro-
duction JavaScript engine. Experimental results show high cache
hit rates for both computationally-expensive benchmarks and real-
world web applications, as well as an overall speedup of up to 220%
for certain benchmark programs.
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