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Abstract

The Mozilla Firefox browser currently accounts for ∼25%

of the total web browsers market segment share, estab-

lishing itself as the second most popular browser world-

wide after Microsoft’s Internet Explorer. With the recent

adoption of a tracing JavaScript Just-In-Time (JIT) com-

piler in Firefox 3.5, its performance has improved signif-

icantly, especially for web pages that make heavy use of

JavaScript. Currently, the heavy performance hitter com-

ponent of Firefox is its layout engine. According to our

extensive performance measurements and analysis on rep-

resentative applications running on Intel platforms, the

layout engine of Firefox accounts for ∼40% of its total ex-

ecution time, with the Cascading Style Sheets (CSS) rule-

matching process being the hot part of layout. We have

developed a tracing and profiling mechanism that has en-

abled us gain in-depth insight into the CSS rule-checking

runtime characteristics. This data has proven extremely

helpful in determining that the CSS rule-matching com-

ponent is a suitable target for parallelization. The col-

lected trace information has also guided us to an effective

parallel implementation of the Firefox CSS rule-matching

component that delivers large performance speedups on

popular web pages, including almost 90% of Mozilla’s

page-load tests that comprise ∼400 distinct web pages

from all over the world. For some of these tests, the en-

tire page-load process is sped up by a factor of 1.84x when

two worker threads cooperate in doing the layout. To our

knowledge, this is the first fully functional parallel imple-

mentation of CSS rule matching that delivers significant

speedups in a world-class browser.

1 Motivation
Multi-core processors have gained widespread use in
general-purpose systems and are expected to prolif-
erate in embedded devices as well. However, many of
the popular applications run by end users do not take
advantage of the available hardware parallelism, and
as such it is common to have computing resources
sitting unused.
More recently, with the advancements in the web ap-

plication technology, the browser has emerged as the
favorite platform for deploying sophisticated applica-
tions that were traditionally possible only as native
desktop applications (e.g., Google Docs and Zimbra
Collaboration Suite). However, among the most pop-
ular browsers, there are only a few that actually take
advantage of the available cores in their various com-
ponents. The Chrome browser is one such browser,
by treating each tab as a separate process (including
any JavaScript code being executed in a tab), thus
naturally lending itself to parallelism.
Among the open-source browsers, Mozilla Firefox is
currently the most widely used one. According to
[2], as of December 2009 Firefox accounts for ∼25%
of the total browsers market share, second only to
Microsoft’s Internet Explorer in terms of usage, as
shown in Figure 1.

Figure 1: Browser market share distribution, as of December
2009

With the recent adoption of the tracing JIT
JavaScript engine (code-named TraceMonkey [5]) in
the Firefox 3.5 browser, its performance has im-
proved significantly, especially for web pages that
make heavy use of JavaScript. Our extensive per-
formance experiments show that currently the heavy
performance hitter component in the Firefox browser
in many real usage cases is its layout engine, with the
Cascading Style Sheets(CSS) rule-matching compo-
nent accounting for the largest portion of the layout
engine execution time (more details in Section 2.2).
Moreover, by incorporating our tracing and profiling
mechanism into the Firefox’s CSS rule-checking com-
ponent, we were able to identify performance bottle-
necks and determine that the rule-matching process
is a suitable target for parallelization.
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The in-depth profiling and tracing data obtained
proved to be of utmost importance in our develop-
ment of the first fully-functional parallel implemen-
tation of CSS rule matching in a real browser. As
we will show in the upcoming Section 3, our par-
allelized Firefox prototype yields considerable per-
formance speedups despite thread management over-
head and unavoidable speculative execution (for more
details, see Section 2.3).
The rest of this paper is organized as follows: in Sec-
tion 2 we will give a brief overview of how the CSS
process works in general and how it is implemented in
the Firefox browser in particular. We will also show
the profiling and tracing data indicating that the CSS
rule-matching component is a heavy performance hit-
ter in Firefox, as well as amenable to parallelization
and we will discuss the parallelization strategy we
used in developing the CSS rule-matching parallelized
prototype in Firefox. Section 3 illustrates the perfor-
mance speedups obtained by carrying out browsing
experiments using our parallelized prototype. Sec-
tion 4 reviews other projects related to our research,
followed by a brief summary of the work presented in
this paper in Section 5.

2 Methodology
In this section we will discuss the approach we took
for developing a parallelized version of the CSS rule-
matching component in Firefox and we begin by giv-
ing a brief review of how CSS works in general.

2.1 CSS Overview

Cascading Style Sheets (CSS) [10] represent a style-
sheet language used for describing the presentation
semantics of web pages. It offers a way of provid-
ing clean separation between webpage content (e.g.,
HTML) and its presentation (e.g., fonts, colors, spac-
ing, etc.). CSS allows multiple webpages to share for-
matting characteristics, reduces the amount of repe-
tition in specifying layout styles, and makes it easy
to apply style changes in the possibly large number
of web pages of a given site. The desired layout fea-
tures are expressed through CSS rules. Figure 2 il-
lustrates the general format of CSS rules, as well as a
very simple example: a CSS rule that will apply the
black color to the <body> element of the web docu-
ment that uses this CSS declaration, as well a 1em
padding1. There are many types of selectors, such as
descendant selectors, sibling selectors, child selectors,
class selectors, and attribute selectors among others
(for more details, see [10]). To explain how the CSS
rule-matching process works, we will use the sample

1Figure courtesy of http://css.maxdesign.com.au

Figure 2: General CSS rule structure and a simple CSS rule
example

HTML document tree shown in Figure 3 and the fol-
lowing sample rule : ul em {color: blue}. For
the web document using this CSS rule (which is a
descendant selector rule), any <em> element that is
contained in a <ul> element (i.e., the <ul> element
is an ancestor of the <em> element in the web docu-
ment’s tree) will be colored blue. This matching pro-
cess is illustrated in Figure 3, with the <em> element
that will potentially be colored blue being the hashed
node in the figure and its ancestors being the lighter
colored nodes in the highlighted path from the <em>
element up to the root of the tree. The matching pro-
cess is carried bottom up, starting with the parent of
the <em> element, until either a match is found or the
root of the document tree has been reached and no
match has been found.

Figure 3: CSS rule-matching example on a sample HTML
document tree

Since in the rest of the paper we will mostly refer
to descendant and sibling selectors, we will briefly de-
scribe how they work.
A descendant selector is formed by two or more sim-
ple selectors that are separated by white space. The
general form of such a selector is ’A B’ and it will
match when an element of type B is a descendant-
of/contained-in an element of type A.
Similarly, an (adjacent) sibling selector is made up
of two or more selectors separated by +. For a rule
of the form A + B, this selector will match if A and
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B have the same parent in the document tree and A
immediately precedes B.

2.2 Profiling Strategy and Results

Before doing any parallelization, we needed to deter-
mine which Firefox component(s) accounted for large
amounts of the browser execution time. According to
our extensive VTune [1] experiments on many Intel
platforms, the layout engine of Firefox is its heavy
hitter performance component. For example, on In-
tel Atom platform, the layout component accounted
for ∼40% of the total browser execution time, while
the JavaScript execution engine covered only ∼13%.
Further profiling showed that the CSS rule-matching
process represents the hot part of the layout en-
gine. The top two most executed functions of the
layout engine, that account for an overall ∼32% of
the execution time of the layout engine, were the
SelectorMatches and SelectorMatchesTree func-
tions, which are the most important components
of the CSS rule-matching process. Unlike appli-
cations that are easily parallelizable (e.g., scien-
tific/numerical applications), the rest of the execu-
tion time spent in the layout engine is thinly spread
over a large number of components rather than con-
centrated in a small portion of code. Thus we fo-
cused our efforts to optimize the browser execution
on the CSS rule-matching component as it had the
best chances of making a considerable impact on the
overall browser performance.
The rule-matching process involves executing a series
of iterations for each selector in order to match the
selector in question against the nodes of a tree-like,
dynamic data structure that abstracts the underlying
structure of each web page (see a very simple match-
ing example outlined in Figure 3). This process is
not only highly dynamic, but also highly speculative
due to many decision points, which increases the dif-
ficulty of optimizing it.
In order to determine if the rule-matching process
would benefit from parallelization and to assess the
speedup potentials, we built a tracing mechanism
based on VProf, the value-profiling package available
in the Firefox source tree. We incorporated this trac-
ing mechanism into the layout engine of Firefox and
we conducted extensive experiments using the Zimbra
Collaboration Suite performance tests [12], as well
as the Firefox page-load benchmarks that were gra-
ciously supplied to us by the Mozilla Team (more
details on these benchmarks in Section 3).
We found that in the CSS rule-matching process of
typical web pages, not only are the selectors heavily
biased towards one particular type (namely descen-

#Occurrences Pattern %iterations covered

5561595 p3 2.93

1997994 pppppppppppn1 13.43

1977238 pppppppppppn1 24.88

1846126 pn3 25.85

1599769 ppppppppn1 32.58

1530957 pppppppppn1 39.83

1293911 ppppppppppppn1 47.99

1187742 pppppppn1 52.37

840304 ppppppn1 55.02

619361 pppppppppppppn1 59.25

550482 ppppppppppppppn1 63.31

418940 pppppppppppppppn1 66.61

382272 ppppppppppppppppn1 69.83

310138 pppppn1 70.65

Table 1: Most frequent execution patterns observed during
CSS rule matching on Firefox page-load tests

dant selectors, which were seen 99% of the time for
both benchmark suites), but also that in the vast ma-
jority of cases, the matching process for a CSS rule
results in a non-match. In other words, the domi-
nant execution pattern is carried out by a series of
iterations over an underlying tree-like dynamic data
structure that could be refactored to operate in par-
allel and independent of each other.
To illustrate the observations above, Table 1 shows
the top 15 most frequent patterns of execution in the
CSS rule-matching process for the Firefox page-load
benchmarks. In this table, ’p’ indicates that a de-
scendant selector match against an ancestor was at-
tempted, while the ’1’ at the end of a pattern signals
that the matching process ended in a non-match. As
can be observed from Table 1, the rule matching is
very heavily biased towards descendant selectors (if
there were any sibling selectors involved, ’b’ symbols
would be shown) and most rule matching attempts
result in a non-match. Surprisingly, we observed a
very similar tracing data for the Zimbra Collabora-
tion Suite (ZCS) - a leading-edge AJAX-based, rich-
browser integrated suite of email, calendar, contacts
and VoIP.
Since rule matching accounts for a significant portion
of execution time as discussed earlier, it is evident
that parallelizing the CSS rule-matching component
of Firefox, with a focus on non-matching descendant
selectors based on the tracing data detailed above,
should yield considerable performance speedups.

2.3 Parallel Implementation
With the profiling and tracing data analyzed in
Section 2.2 in mind, we re-factored the CSS rule-
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matching algorithm of Firefox into a parallel equiv-
alent. One should note that the sequential CSS
rule-matching mechanism used in Firefox has been
heavily optimized over years, making it even more
challenging to achieve further performance improve-
ments through parallelism. As we have described
before in Section 2.2, the CSS rule-matching pro-
cess involves applying a series of iterations for each
selector in order to match the selector in question
against the nodes of a tree-like, dynamic data struc-
ture that abstracts the underlying structure of each
web page (see a very simple matching example out-
lined in Figure 3). Each iteration essentially consists
of a SelectorMatches call that takes the current (an-
cestor) node being matched against as a parameter.

Figure 4: Transition from sequential to parallel rule matching
for a sample CSS rule

Based on the empirical profiling and tracing results
that we gathered, we utilized the observed two ma-
jor properties of the CSS rule-matching process be-
ing heavily biased towards descendant selectors and
the majority of CSS rule checks ending up in non-
matches. Thus, in most of the cases, all the iterations
that carry out the CSS rule-matching process are ac-
tually executed (i.e., selector matches need to be car-
ried out against all ancestors of the selector node in
question) and having them execute speculatively in
parallel by an adjustable number of worker threads
should lead to a considerable performance improve-
ment.
Each thread is assigned a certain amount of ancestors
to process. This amount is computed based on how
many ancestors are available for the node under op-
eration, as well as on the number of available worker
threads. Figure 4 illustrates the transition from the
sequential CSS rule-matching process to the paral-
lelized version we developed, based on the CSS rule
and document tree samples shown in Figure 3.
There is some degree of speculation involved, as not
all iterations might have been executed in the orig-
inal sequential version (i.e this corresponds to the
case where there is a CSS rule match; however, as we

outlined in Section 2.2, matches are quite rare); the
speculative work that proves to be unnecessary is dis-
carded. Furthermore, the code is also redesigned in
such a way that the speculative work does not cause
any unwanted side effects. There is also a check by
each worker thread to avoid extraneous computation
if another thread has already found a match.
The parallel CSS rule-matching process we imple-
mented depends on three adjustable parameters:
• The number of worker threads available;
• The default workload size to be assigned to a

worker thread for processing (i.e., the minimum
number of selector matching iterations that a
worker thread will execute);

• The threshold on the workload size that needs
to be hit before enabling the parallel CSS rule
matching. This is needed in order to amortize
the overhead of thread management.

In the next section we will show the performance
results obtained using the parallelized CSS rule-
matching prototype we developed.

3 Performance Results

We experimented with a large number of configu-
rations by varying the three parameters described
in Section 2.3. Our measurements were performed
on an single socket Quad-Core (2.93 GHz) Nehalem
machine, with hyper-threading enabled and 2.49 GB
RAM.
In the performance experiments with our parallelized
CSS rule-matching prototype, we used two real-world
benchmark suites:
• The Zimbra Collaboration Suite (ZCS) perfor-

mance tests (described in Section 2.2).
• The Firefox page-load benchmarks that were

provided to us by the Mozilla team. This is a col-
lection of 390 webpages from all over the world
that test the page loading process in Firefox.

Figure 5 shows the performance speedups obtained
for the best performing parallel configuration on the
Nehalem platform, using two worker threads for the
parallelized layout component and running the Fire-
fox page-load tests. As we can see, out of the 390
webpages tested, ∼87% of them yield performance
improvements, with speedups of up to a maximum of
1.84x.

Figure 6 shows the performance speedups obtained
for the best performing parallel configuration on the
Nehalem platform, using two worker threads for the
parallelized layout component and executing the Zim-
bra Collaboration Suite. As can be observed, out
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Figure 5: Performance speedups obtained on Intel Nehalem
for the Firefox page-load tests

of all the ZCS benchmarks tested, ∼50% yield per-
formance improvements, with speedups of up to a
factor of 1.6, while ∼14% were not affected perfor-
mance wise. The reason why the ZCS benchmarks

Figure 6: Performance speedups obtained on Intel Nehalem
for the Zimbra Collaboration Suite

show overall less of a performance improvement com-
pared to the Firefox page-load tests is because ZCS
is a more JavaScript-oriented benchmark, as opposed
to Mozilla’s page load tests, which are used specifi-
cally to test layout features.
We experimented with varying the amount of worker
threads available, but due to thread management
overheads, in conjunction with the thread workload
characteristics of the two benchmark suites we tested,
we found that using two worker threads was the best
option in terms of execution performance. Since the
trend is towards more complex and more sophisti-
cated web pages, we expect that the benefits from
parallel layout would be on the rise, as more process-
ing would be required for their layout.
As it can be observed from Figures 5 and 6, there
are some tests for which we experience a certain
amount of performance degradation. Based on the
behavior observed during the development of our CSS
rule-matching parallelized prototype, we believe that

these instances correspond to cases where the work-
loads assigned to the worker threads are not large
enough to mitigate the thread management overhead.
We plan to address the slowdowns in our future work.
It is worth noting that if we were to show the per-
formance results obtained relative to the CSS rule-
matching component alone, the speedups reported
would have been much higher. However, we report
the speedups relative to the overall browser perfor-
mance since that is the measure that the end-user
experiences.

4 Related Work
Web browsers are large, CPU-intensive and increas-
ingly complex programs that present monolithic,
single-threaded characteristics which are becoming
unsuitable for the current multi-core trend observed
both in general purpose systems, as well as in embed-
ded devices. As mentioned in Section 1, the Google
Chrome browser is adapting to the increasing multi-
core presence by treating each tab as a separate pro-
cess, thus naturally lending itself to multithreading.
In [7], Ha et al. propose a concurrent, trace-
based JIT compiler prototype, incorporated in the
Tamarin Tracing project [14] and showing through-
put improvements ranging from 6% on average up
to 34% when tested on the SunSpider benchmarks
[3], thus being another good candidate for paralleliz-
ing the TraceMonkey JavaScript engine in the Fire-
fox browser. Since the layout component currently
accounts for a considerably larger portion of the ex-
ecution time than the JavaScript engine (∼40% vs.
∼15%), we focused our efforts on parallelizing the
Firefox layout engine.
Meyerovich and Bodik [8] present their work on de-
signing a parallel web browser, namely parallel imple-
mentations of their own stand-alone CSS rule match-
ing, layout solving, and font rendering. They report
performance speedups of up to 80x. However, the
CSS selector-matching implementation that is paral-
lelized and tested for performance is based on their
own browsers models, not based on the implementa-
tion in any of the finely-tuned and highly-optimized
real browsers. As such, it is hard to compare these
results to ours based on the layout performance of a
popular world-class web browser.
King, et al. [6, 11] present their work on building
a new web browser [9] to improve on the existing
level of web browsing security. One feature in their
browser implementation is parallelizing the opera-
tions of the window manager, which leads to per-
formance improvement for a few of the web pages
tested [11]. The baseline in the performance ex-
periments is the Arora browser [4], which is a free,
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lightweight cross-platform browser. Thus, it is hard
to compare our results to theirs since our parallel
prototype is based on a highly-optimized and rich-in-
feature browser that is widely used (by far top among
open-source browsers; see Figure 1).

5 Conclusions
We have developed a fully-functional parallel imple-
mentation of the CSS rule-matching process, based
on the in-depth tracing and profiling data obtained
indicating that the CSS rule-matching component is
an excellent candidate for parallelization. We showed
that it delivers large speedups when incorporated into
the Firefox browser. On popular web pages, includ-
ing almost 90% of the Mozilla’s page-load bench-
marks that comprise ∼400 distinct web pages from
all over the world, our parallel layout implementa-
tion achieves up to 1.84x page-load speedup when
two worker threads cooperate in the page layout. We
have submitted our parallel CSS rule-matching im-
plementation to Mozilla [13] and have received very
encouraging feedback. We plan to further refine our
parallelization strategy to address the small number
of slowdowns that we have observed in some of the
benchmarks.
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