
5. Additional attacks 

So far the discussion was around the ability to recover the Math.random() seed 

and/or the CRT rand/srand seed. This represents information leakage (when the 

seed value is e.g. the browser startup time or the first time the random function was 

invoked) in itself, as well as a means to tell browser instances apart, thereby 

effectively enabling tracking users. The PRNG mileage can be used to further 

distinguish among browsers which have the same seed value.  

However, there are several other interesting attacks that abuse the same 

vulnerabilities, mostly cross-site ones.  

It should be noted that while there is no explicit requirement for the Math.random() 

PRNG (or for the boundary string value) to be cryptographically strong, there is still a 

legitimate expectation that those mechanisms would not leak information (or be 

influenced) across domains. So while it is probably a bad idea for an application to 

rely on strong randomness of Math.random(), it is nevertheless a valid assumption 

(in the author’s opinion) that the Math.random() values would not be predictable 

from another domain, nor that they would be in any way influenced by another 

domain, nor would it be possible to count the number of invocations of 

Math.random() from another domain. 

 

5.1 Cross-domain application state detection 

Suppose a banking site (www.bank.site) has a login page which invokes 

Math.random() once, and a protected page (i.e. a page that requires the user to be 

logged-in on order to be accessed) that does not invoke Math.random() at all. In 

such case, an attacker can dynamically embed (via an IFRAME HTML tag added by 

Javascript) the protected page in his/her site. The attacker needs to sample 

Math.random() before and after the IFRAME is embedded. Using the above 

techniques, the attacker can easily determine whether an additional Math.random() 

value was consumed. If so, it means that the user was not logged in (because the 

protected page redirected to the login page, which consumed the additional 

Math.random value). If not, the user was logged in.  

This demonstrates that an attacker can discern among two application states – user 

logged in, and user not logged in, across domains. 

In general, if it is possible to map application states into different amount of 

Math.random() consumption, then it is possible to discern among those application 

states across domains. 

It should be noted that using Math.random() in web pages is quite popular, e.g. 
Google Analytics’ urchin.js script (http://www.google-analytics.com/urchin.js) invokes 

Math.random(), and it seems that the standard script for embedding DoubleClick ads 

uses Math.random() as well. 

Another example is (to continue the banking application example above) a post-login 

page that displays a random security tip for Silver-tier, Gold-tier and Platinum-tier 

users, additionally a random investment tip for Gold-tier and Platinum tier users, and 

additionally a random life-style tip for Platinum-tier users only. Suppose the 

randomization is implemented using Javascript’s Math.random(). Then an attacker 



can dynamically embed this page, and assuming the user is logged in, the attacker 

can tell the user’s tier by the number of Math.random() values consumed (1 – Silver 

tier, 2 – Gold tier, 3 – Platinum tier). 

This works across all browsers studied (as long as an embedded frame is used). 

 

5.2 Cross-domain partial setting of Math.random() 

Continuing the previous example, the attacker can engage in a slightly different 

attack. Let’s assume that the attack target is a Gold-tier user, and that the random 

investment tip is a stock exchange ticker symbol chosen at the client side from a 

pool of 100 ticker symbols (presumably those researched and recommended by the 

bank analysts). This would typically be implemented in the following fashion: 

 

ticker=ticker_array[Math.floor(Math.random()*100)]; 

 

Just before the page is rendered and displayed to the user, the attacker can roll 

forward the Math.random() PRNG, until the next value of 

Math.floor(Math.random()*100) is any desirable value. The attacker can thus fix the 

ticker investment tip the user sees to any one of the 100 tickers, per the attacker’s 

whim. 

 

5.3 Cross-domain Math.random() predictability 

Another by-product of the research is the ability to predict the next values from 

Math.random(), and to reconstruct previous values from Math.random(), even across 

domains. This jeopardizes client-side password generation schemes (google for 

Javascript password generator, e.g. [28], to get an idea of how widespread this 

practice is; naturally not all entries indexed by Google are vulnerable, but probably a 

large part of them is), and similar applications that rely on strong randomness of the 

Javascript Math.random() facility, or at least on the premise of cross-domain non-

leakage. 

Math.random() predictability was demonstrated for: 

• IE (Windows) 

• Firefox (all platforms) 

• Safari (Mac OS/X) 

Chrome’s Math.random() is also predictable, but since it’s process scoped, and since 

Chrome starts a new process in each navigation to a new site, the de-facto scope of 

Math.random()’s predictability is limited (e.g. two frames on the same page). 

It should be noted again that the Javascript standard ([7]) does not require 

Math.random() to be implemented as a cryptographically strong PRNG. As such, 

assuming that Math.random() is strong is a web application programming mistake. 

At the same time, a browser should not leak information about Math.random()’s 

state, values and seed across domains. 

 



5.4 Cross-site file upload 

From the description in section 3, it may appear that forcing the browser to upload 

arbitrary content as a file to a 3rd party site is impossible. After all, there’s no way to 

instruct the browser which content to upload (save for user assisted attack in which 

an actual file is chosen by the user).  

However, [25] describes a vulnerability is many browsers which is exploited as 

described in  [26] to conduct “cross site file upload” in which a browser bug is used 

to spoof headers and file content inside a single “part” of the POST request body. 

There is one tiny shortcoming of the method – it leaves at least one superfluous 

double quote somewhere in the part. This effect can be negated by attaching it to a 

meaningless header, or as a meaningless attribute in an existing header. [27] also 

describes a “cross site file upload” which requires the Adobe Flex player. 

But being able to predict the exact boundary string that will be used next, which is a 

by-product from the above research, enables a “clean” (i.e. identical to manually 

sent requests) construction of cross site file upload requests, requiring only HTML 

and Javascript (no Flash). The construction is per browser and O/S, and is possible 

(and tested) for: 

• IE (Windows) 

• Firefox (Windows, Mac OS/X, probably all BSDs) 

• Safari (Windows) 

• Chrome (Windows) 

 

Note that conducting “cross site file uploads” can be used to effectively DDoS a 

website, e.g. if it scans each incoming file for viruses (which is very CPU intensive). 

 

5.5 Detecting user behavior (IE only) 

IE’s boundary string exposes a unique piece of information – that of the foreground 

window handle. If an attacker manages to have his/her site rendered (even 

minimized) for an extended period of time by IE, the attacker can keep track of the 

foreground window handles. A-priori, the attacker cannot associate those handles to 

the actual applications/windows, but a careful analysis may still reveal some 

interesting data, such as when the user is idle, or when a user switches among many 

open applications vs. working in the same application for a long time. 

It should be stressed that this technique leaks information on all applications – both 

browsers and non-browsers alike, i.e. it extends beyond the browser (IE) world and 

covers the whole desktop. 

 


