XMLHttpRequest Caching Tests in FireFox
3 October 2008
Bjarne Geir Herland (bjarne @runitsoft.com)

This document contains an analysis of why FireFox fails a number
of tests on the web page located at
http://www.mnot.net/javascript/xmlhttprequest/cache.html . The
approach is reactive, meaning that only tests reported to fail
are analysed. In light of some of the findings, a more proactive
approach (analysing all tests, also those reported to be
successful) might be recommended.

Throughout this document, the term “the test” means tests on the
mentioned page, and the term “the server” means the HTTP-server
hosting the mentioned page and the server-side scripts called by
the test. When running the test, Wireshark was used to capture
the entire network-conversation, which is referred to as “the
dump” .

The test is run using Mozilla/5.0 (X11l; U; Linux i686; en-US;
rv:1.9.0.3) Gecko/2008092510 Ubuntu/8.04 (hardy) Firefox/3.0.3
but results are similar when running builds from the latest
trunk.

By request, the analysis is inlined in a copy of the test. In
order to separate text from the original testpage and the
analysis, a different font (the current font) is used.

XMLHttpRequest Caching Tests

nearby: XMLHttpRequest Tests
2006-06-01

This is a set of functional tests for determining how client-side HTTP caches
operate.

Note that while they are implemented using XMLHttpRequest (a JavaScript
HTTP client), most implementations should use the same cache as for
“normal" requests. However, there may be variations.

Each group of tests explains what is being tested and what the implications
of failure are. Although many of the tests are automated, some may require
user interaction, via a "run test" button. Be sure to follow any

carefully.


http://www.mnot.net/javascript/xmlhttprequest/
http://www.mnot.net/javascript/xmlhttprequest/cache.html
mailto:bjarne@runitsoft.com

See this blog entry for more information.

Testing Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.3) Gecko/2008092510
Ubuntu/8.04 (hardy) Firefox/3.0.3

Request Cache-Control

Cache-Control headers in HTTP requests allow clients to control how
downstream caches operate. In APIs like XMLHttpRequest, they can also be
used to control how the local (i.e., in-browser) cache operates.

Request Header Pass-Through

Request cache-control headers can be used by page authors to control the
behaviour of the local as well as downstream caches. For example, an author
may want to bound the freshness of a response based on the request
context, or invalidate the cache from code.

If the browser cache does not pay attention to these directives, it can't be
controlled by authors.

1. Cache-Control: no-store request header honoured: fail (Cache-Control:
no-store not honoured.)

2. Cache-Control: no-cache request header honoured: fail (Cache-Control:
no-cache not honoured.)

3. Pragma: no-cache request header honoured: fail (Pragma: no-cache
not honoured.)

In this section, FF fails all three sub-tests. Each sub-test
loads a URI three times, setting a request-header (not to be
confused with headers in the response) on request#2. The sub-
tests all expect to see the server-response from request#2 also
for request#3. Thus, the test expects behaviour as outlined in
the tables below. The column Server response contains the
response by the server if the request goes to it and the column
Cacheable indicates whether such response can be cached. The
column Expected contains the expected value in the sub-tests.

Request# Header Server-resp Cacheable Expected Comment

1 - 1 Yes - Initial load
2 no-store 2 No - Forced reload
3 - 3 Yes 2 Wrong. Should expect 3

This sub-test is wrong in expecting “2” since that value can not
be cached due to the no-store directive in request #2.


http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.mnot.net/blog/2006/05/11/browser_caching

Request# Header Server-resp Cacheable Expected Comment

1 - 1 Yes - Initial load
2 no-cache 2 Yes - Forced reload
3 - 3 Yes 2 Ok — value from cache

This sub-test is ok, but FF does not handle it. The test for
Pragma: no-cache behaves (and should do so) like this sub-test
so I don't repeat it here.

The proper behaviour, according to my understanding, should be
like below (again not showing Pragma: no-cache) :

Request# Header Server-resp Cacheable Expected Comment

1 - 1 Yes 1 Initial load

2 no-store 2 No 2 Forced reload

3 - 3 Yes 3 Prev not cached, loaded
4 no-cache 4 Yes 4 Forced reload

5 - 5 Yes 4 Value from cache

Observe the difference between no-store and no-cache in the
Cacheable column, and for the subsequent request in the Expected
column. This behaviour has been implemented in a unit-test.

Conclusion : The first sub-test is wrong, but FF does not handle
any of these correctly and should be fixed in any case. It
should be noted that I don't find anything in RFC 2616 to back
up my claim that no-store should force a reload from the server,
but the first sub-test would be wrong even if this was not the
case.

Related bugs : I have not found any

Automatic Request Cache-Control

Some implementations try to automatically bust upstream caches for
XmlHttpRequests, because many people use XHR as an RPC mechanism.
However, doing so takes control away from calling code that might want to
take advantage of the cache, and reduces cache efficiency.

Implementations that fail this test have automatically appended Cache-
Control request headers.

1. Cache-Control request headers automatically appended: success



Validation

Validation is one of the primary caching mechanisms in HTTP; it allows a
cache to see if it can reuse an entity it already has, by asking the server if
it's still fresh.

Conditional Request Headers

HTTP defines request headers that can be used to make conditional
requests, which are used to validate cached representations on the server.
Implementations that fail these tests don't send the appropriate request
headers that trigger validation.

1. If-Modified-Since request header used: success
2. If-None-Match request header used: success

304 Not Modified Handling

The 304 Not Modified status code indicates that a cached representation is
still fresh. Generally, it isn't useful to expose this to authors; a 200 OK
response should instead be constructed from the cache.

1. 304 status code automatically handled: success

Freshness

Another key caching technique is allowing the server to specify that a
representation is fresh for a given amount of time, so that caches can avoid
round-trips to check if it's fresh altogther.

Basic Freshness

Servers can instruct caches to use a stored response without validation.
Additionally, clients can use a heuristic (usually based on the Last-Modified
header) if no explicit freshness information is present.

Implementations that fail this test do not take advantage of these hints.
1. Heuristic freshness: success

2. Cache-Control max-age response freshness: success
3. Expires response freshness: success

Query Freshness

HTTP requires that URIs with a query string (i.e., those containing a "?") not
be cached, unless the server gives explicit freshness information.

1. Heuristic freshness w/ "?": fail (Stale representation used)
2. Cache-Control max-age response freshness w/ "?": success
3. Expires response freshness w/ "?": success


http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.3

Note that failing the first test is an indication that a freshness heuristic may
not be used, which may be desireable behaviour for some applications.

In this section, FF fails the first sub-test (Heuristic
freshness w “?”). The sub-test checks that a URI containing a
query-string (i.e. a “?"”) is not cached UNLESS the server
provides “explisit expiration time” (RFC 2616 section 13.9,
second paragraph). (The test-page uses the term “explisit
freshness information” but this should be equivalent.) The
problem is that the dump shows that the server in fact does
provides an Expires-header, thus the first sub-test does not
check what it claims to be doing.

Conclusion : The first sub-test is wrong. FF behaviour for a
working test is unknown.

Related bugs : I have not found any

Redirect Caching

Certain 3xx redirects are allowed to be cached. 301 Moved Permanently is
cacheable by default, while 302 Found and 307 Temporary Redirect both
need explicit information. 303 See Other is not cacheable.

. 301 w/ freshness information: fail (301 w/ freshness not cached.)

. 301 w/o freshness information: fail (301 w/o freshness not cached.)
. 302 w/ freshness information: fail (302 w/ freshness not cached.)

. 302 w/o freshness information: success

. 303 w/ freshness information: success

. 303 w/o freshness information: success

. 307 w/ freshness information: fail (307 w/ freshness not cached.)

. 307 w/o freshness information: success

oNOOUTS WN

This section checks caching of certain responses in the 300-
series. Each sub-test loads a certain resource twice and on the
second load, depending on the sub-test and response-headers,
either expects or not to see the cached response. Those sub-
tests not expecting to see a cached response (4,5,6 and 8) are
marked successful, the others are marked as failed.

The dump shows that the server sends no 30x-responses, only “200
OK” with no freshness information. Thus none of these resources
are cached, and the effect that sub-tests not expecting to see a
cached response are considered successful can be expected. But
this sub-test doesn't really test how FF handles 30x responses.

Conclusion : The sub-test is wrong. FF behaviour for a working
test is unknown.

Related bugs : 415086, 341189

Private Caches

HTTP distinguishes between private and public caches; a browser cache is
private, and should cache responses marked as such. Implementations that
fail this test don't recognise that they're a shared cache, and therefore can't
be targetted as one (which is a useful technique for separating browser-



cacheable content from proxy-cacheable content).

1. Private responses cached: success

Directive Precedence

HTTP has many caching directives that might conflict, such as HTTP 1.0's
Pragma and Expires, as well as HTTP 1.1's Cache-Control: max-age.

Sometimes, it is useful to direct caches that understand HTTP/1.1 caching
directives (like Cache-Control) to do one thing, while directing those that
don't to do something else. For example, if you're taking advantage of
advanced features, you might want to allow more capable devices to cache
something, while making sure that older ones don't.

HTTP accommodates this by specifying that the Cache-Control: max-age
directive takes precedence over the Expires header; a response that
contains both of them should be cached according to the Cache-Control
header by a device that understands it, while those that don't will honour the
Expires header.

There are a number of other situations where directives may conflict; in most
cases, caches should follow the most conservative directive (i.e., something
that says not to cache) present.

Browsers that don't correctly handle directive precedence will make it
difficult to target directives at caches with different levels of conformance.

Tests where there are two results test each combination with a different
ordering of headers; the results should be the same.

1. Cache-Control: max-age and stale Expires is fresh: fail (Fresh
representation not used), fail (Fresh representation not used)

2. Cache-Control: max-age and Pragma: no-cache is stale: success,
success

3. Cache-Control: no-cache and fresh Expires is stale: success, success

4. Cache-Control: no-store and fresh Expires is not cached: success,
success

This test checks various precedence between conflicting
freshness-related headers. The failing sub-test if the first one
and it specifically checks that the “Cache-control: max-age”
directive takes precedence over an Expires-header. It performs
the check twice, switching the order of the headers, to ensure
that the order in which the headers come does not make a
difference. FF fails the precedence regardless of the order of
the headers.

Conclusion : FF fails this test

Related bugs : 203271

Variant Caching

HTTP allows responses to requests for the same URI to vary based on the
values of request headers; this is called server-driven content negotiation.
This has special implications for caches, because they usually store


http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html#sec12.1

representations based on their URIs, but HTTP 1.1 requires them to also
consider the content of the Vary header, which indicates what other headers
form part of the cache key.

The first test checks to see that a negotiated response will be cached; the
second makes sure that two different variants aren't cached as the same
thing. The third test sees if the cache is smart enough to ignore the case of
the request header-names specified by the Vary response header. Finally,
the fourth test specifically checks to see if responses that vary on the
Accept-Encoding header (which commonly implements compression in HTTP)
work.

This last test is important, because if compressed content isn't cached by the
browser, this popular technique may become less useful.

1. Arbitrary Negotiated response caching: success

2. Arbitrary Negotiated response differentiation: success
3. Arbitrary Negotiated response canonicalisation: success
4. Encoded Negotiated response caching: success

POST Caching

Contrary to conventional wisdom, HTTP does allow caching of the response
to a POST request. From RFC2616, section 9.5;

Responses to this method are not cacheable, unless the response includes
appropriate Cache-Control or Expires header fields. However, the 303 (See
Other) response can be used to direct the user agent to retrieve a cacheable
resource.

This means that if a POST response includes Cache-Control or Expires (or,
given a strict reading of section 13, even a validator like Last-Modified or
ETaqg), the response can be used to satisfy future GET requests.

For example, a blog entry page could accept comments by taking a POST
with the comment text; if the response were cacheable, the commenter
would immediately see their comment on the page, even if they reloaded
from cache (because their cache would contain the POST response).

Implementations that pass this test will cache a POST response.
1. POST freshness: fail (POST not cached)

This test checks whether responses to POST-requests are cached
for subsequent GET-requests if the server provides appropriate
Expires or Cache-control headers. It is done by first POSTing,
then GETting the same URI.

Conclusion : FF fails this test, probably because POST and GET
URLs are encoded into different cache-keys and the GET would not

find a cache-entry for the URL because of the different key.

Related bugs : 417841


http://www.ietf.org/rfc/rfc2616.txt

Cache Invalidation

Even if an implementation doesn't actively cache POST responses, it needs
to invalidate the cache when a POST is made. Otherwise, the wrong
response may be sent from cache.

For example, if the blog entry page above used the same URI for POSTing
comments and GETting the latest version of the entry, an implementation
that doesn't invalidate the cache upon a POST will show an old version of the
page (out of cache) upon a subsequent GET.

HTTP talks about this in RFC2616, section 13.10;

Some HTTP methods MUST cause a cache to invalidate an entity. This is
either the entity referred to by the Request-URI, or by the Location

or Content-Location headers (if present). These methods are:

- PUT

- DELETE

- POST
In order to prevent denial of service attacks, an invalidation based
on the URI in a Location or Content-Location header MUST only be
performed if the host part is the same as in the Request-URI.
A cache that passes through requests for methods it does not
understand SHOULD invalidate any entities referred to by the

Request-URI.

POST Invalidation

Implementations that pass this test will invalidate the appropriate cache
entry (the Request-URI, the Content-Location and Location) upon a POST.
Implementations that fail this test are not conformant to RFC2616, and will
serve the incorrect entry from cache.

Request-URI: fail (POST to Request URI did not invalidate the cache.)
Content-Location: fail (POST to Content-Location did not invalidate the
cache.)


http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.10

Location: fail (POST to Location did not invalidate the cache.)

PUT Invalidation

Implementations that pass this test will invalidate the appropriate cache
entry (the Request-URI, the Content-Location and Location) upon a DELETE.
Implementations that fail this test are not conformant to RFC2616, and will
serve the incorrect entry from cache.

Request-URI: fail (PUT to Request URI did not invalidate the cache.)
Content-Location: fail (PUT to Content-Location did not invalidate the
cache.)

Location: fail (PUT to Location did not invalidate the cache.)

DELETE Invalidation

Implementations that pass this test will invalidate the appropriate cache
entry (the Request-URI, the Content-Location and Location) upon a DELETE.
Implementations that fail this test are not conformant to RFC2616, and will
serve the incorrect entry from cache.

Request-URI: fail (DELETE to Request URI did not invalidate the cache.)
Content-Location: fail (DELETE to Content-Location did not invalidate
the cache.)

Location: fail (DELETE to Location did not invalidate the cache.)

Unknown Method Invalidation

RFC2616, section 13.10 goes on to say how unrecognised methods should be
handled;

A cache that passes through requests for methods it does not

understand SHOULD invalidate any entities referred to by the

Request-URI.

Request-URI: fail (Unknown method to Request URI did not invalidate
the cache.)

These tests check whether mutating methods (POST, PUT or DELETE)
as well as unknown methods invalidates cached entries for the
URI. Please see https://bugzilla.mozilla.org/show bug.cgi?
id=327765 for details, testcase and patch.

There is an issue with these tests though : Since they all load
the same URI, a properly cached response for the POST sub-test
will make the subsequent sub-tests (PUT, DELETE and Unknown)
successful as well, even though only the POST-method has been
fixed. Similarly, if only the DELETE-method was fixed, the POST


https://bugzilla.mozilla.org/show_bug.cgi?id=327765
https://bugzilla.mozilla.org/show_bug.cgi?id=327765
http://www.ietf.org/rfc/rfc2616.txt

and PUT sub-tests would fail, but DELETE and the subsequent
Unknown sub-test would be successful. The unit-test attcahed to
bug 327765 avoids this by loading one URI for each method.

Conclusion : FF fails this test but a patch is available. The
test have a subtle issue which can lead to false positives.

Related bugs : 327765, 200948



	XMLHttpRequest Caching Tests
	Request Cache-Control
	Request Header Pass-Through
	Automatic Request Cache-Control

	Validation
	Conditional Request Headers
	304 Not Modified Handling

	Freshness
	Basic Freshness
	Query Freshness
	Redirect Caching
	Private Caches
	Directive Precedence
	Variant Caching
	POST Caching

	Cache Invalidation
	POST Invalidation
	PUT Invalidation
	DELETE Invalidation
	Unknown Method Invalidation



