
Distributed Decision-Making

The Mozilla project is far too big for any one person -- or even a small
set of people-- to make the ongoing decisions regarding code
appropriateness, quality or readiness to be checked into the CVS
source repository. The project includes both a set of core
technologies (layout engine, networking libraries, cross-platform
component model, etc.) and a set of applications built with those
technologies (browsers, mail/news readers, calendar, Internet Relay
Chat client). The code is large and complex; the number of daily
decisions to be made is enormous. The project would slow to a crawl
if a small set of people tried to make the majority of decisions
regarding particular pieces of code.

Instead, decision-making is distributed to a range of participants
through its "modules" and module ownership. A module is a set of files
that implement a piece of functionality that has reasonably defined
boundaries. A module may be the set of files in a directory, such as
"accessible" for Accessibility. Or a module may be more conceptual,
such as "Stylesheets". In such a case the module would include a
number of files in different areas of the source tree. A module could
contain just two files (if written in C or C++): a .h file and a .c or .cpp
file.

Of course, "reasonably defined boundaries" doesn't provide absolute
clarity. We use this definition because it reflects the code itself, where
there may be overlap and ambiguity as to where a particular
functionality ends and a different one begins. Trying to create absolute
definitions would require elaborate rules and exceptions which aren't
needed in most cases. Rather than spend energy devising such
definitions, we prefer to let module owners manage any overlap or
shared ownership if possible, with mediation when necessary.

Oversight of the Module Ownership System.

Tiffney Mortensen ! 5/23/08 10:06 AM
Comment: Frank’s comment: “A module
may be the set of files in a directory, such
as the directory "accessible" for the
"Accessibility" module, or a module may
be more conceptual, such as
"Stylesheets"; in the latter case the module
might include a number of files in different
areas of the source tree.”

The module owners and the health of the system are tended by an
identified group. That group is itself a module -- the "Module
Ownership" module -- subject to the same process and policies as all
modules.

The Module Owner Role

A "module owner" is the person to whom leadership of a module's
development has been delegated. Historically the delegation was
done by a group known as "mozilla.org staff," going forward will be
done by the Owner and Peers of the Module Ownership module.
Module ownership includes a range of responsibilities, such as:
improving code quality, implementing revisions and innovations as
appropriate, coordinating development with that of the rest of the
codebase, developing and maintaining a shared understanding of
where the module is headed, developing APIs where appropriate,
documenting as much as possible, responding appropriately to code
contributions, design suggestions and stated needs of the community;
and creating an environment where competent newcomers are
welcomed and included.

A module owner's OK is required to check code into that module. In
exchange, we expect that the module owner care about what goes in,
respond to patches submitted by others, and be able to appreciate
code developed by other people. Module owners have a fair amount of
flexibility in how they do this. We do not have an elaborate set of rules
or procedures for how module owners manage their modules. If it
works and the community is generally happy, great. If it doesn't, let's
fix it and learn.

Module Owners need not do all the work of managing the module
themselves. Module owners may identify others who can also approve
code for check-in into a module. These developers are known as
"peers" and ought to possess many of the qualities of a good module
owner. Module owners must designate to a peer the evaluation of their

Tiffney Mortensen ! 5/23/08 10:07 AM

Tiffney Mortensen ! 5/23/08 10:09 AM

Tiffney Mortensen ! 5/23/08 10:09 AM

Comment: Frank’s Comment: I don't
think it's that the "group is itself a module",
it's the set of tasks and responsibilities
that's a module. Also, I think "tended" is
the wrong word, at least as applied to
module owners. Finally, this introduces the
idea of a "non code module" in passing
without any explanation. I suggest
rewriting as

“The work of the module owners and the
health of the system are overseen by an
identified group. Although it doesn't
necessarily involve writing code, that task
of module ownership oversight can itself
be thought of as a module -- the "Module
Ownership" module -- subject to the same
processes and policies as all other
modules.

Comment: Frank: going forward that task
will be done

Comment: Mitchell: This gives us a
clearly understood framework for
addressing questions about modules and
module ownership.

own code; module owners are not permitted to review their own code.
If there is no module owner, the OK of a peer is sufficient to check
code into that module.

Module owners are not tyrants. They are chartered to make decisions
with input from the community and in the best interests of the
community. Module owners are not required to write code because the
community wants them to. (Like anyone else, the module owners may
write code because they want to, because their employers want them
to, because the community wants them to, or for some other reason.)
Module owners do need to pay attention to patches submitted to that
module. However "pay attention" does not mean agree to every patch.
Some patches may not make sense for Mozilla; some may be poorly
implemented. Module owners have the authority to decline a patch;
this is a necessary part of the role. We ask the module owners to
describe in the relevant bug their reasons for wanting changes to a
patch, for declining it altogether, or for postponing review for some
period. We don't ask or expect them to rewrite patches to make them
acceptable. Similarly, module owners may need to delay review of a
promising patch due to an upcoming deadline. For example, a patch
may be of interest, but not for the next milestone. In such a case it
may make sense for the module owner to postpone review of a patch
until after matters needed for a milestone have been finalized. Again,
we expect this to be described in the relevant bug. And of course, it
shouldn't go on very often or for very long or escalation and review is
likely.

Escalation and Review

The owner and peers of the Module Ownership module will get
involved if controversy develops and cannot be resolved otherwise. A
module owner may ask for a public statement of agreement with a
particular action. Sometimes other contributors suggest ways in which
a module owner might improve. Sometimes there is ongoing
controversy. We prefer that the community resolve these issues when

Tiffney Mortensen ! 5/23/08 10:10 AM

Tiffney Mortensen ! 5/23/08 10:11 AM

Comment: Frank: Module owners are not
required to make code changes or
additions solely because the community
wants them to do so.

Comment: Frank: agreeing

possible, but acknowledge that this can't happen all the time. We try to
avoid making absolute decisions like "this must happen" but will do so
if required.

Criteria for Module Ownership

There are a number of elements which are important for good module
ownership. First of course, is the person's expertise with the code in
question. But over time we've learned that a set of additional criteria is
also important, and that a great hacker can be a poor module owner.
The criteria that go into the mix for a good module owner include:

 1. expertise with the code in the module
 2. current level of involvement with the module
 3. understanding/vision of where the module ought be headed
 4. appropriate understanding of Mozilla codebase as a whole and
the module's relationship to it
 5. ability to evaluate code for that module, including contributions of
patches and new features
 6. ability to evaluate impact of code on other parts of the codebase
 7. ability to communicate with a diverse, geographically distributed
community
 8. willingness to evaluate contributions on their merits, regardless of
their source (i.e., no 'not invented here' syndrome)
 9. ability to consider varying perspectives and needs of different
consumers of that module
 10. ability to resolve different needs through factoring or other
abstraction techniques when appropriate.

Designating a Module Owner

We prefer that an individual work with a module for some time and
demonstrate his or her ability to fulfill most of the criteria most of the
time (we're not naive enough to require perfection), and that a
consensus form about designating this person as the module owner.

Tiffney Mortensen ! 5/23/08 10:11 AM
Comment: Frank: ought to

This way the designation is more of a confirmation than an
appointment. We haven't always done this, and we haven't always
done it well.

This means that there will be times when there is no module owner.
Especially in cases of modules that have received little attention, have
started to rot, and some brave soul steps up to figure things out and
get us back on track. We'll shower these folks with thanks for tackling
the job, and we can do this immediately. We may not immediately
designate these people as module owners. Almost by definition, it will
be difficult for this person to have demonstrated some of the criteria,
particularly 1-5 until s/he has spent some time working with the
module. It's possible that someone's expertise is so broad and so
deep that s/he could do this, but we would expect this to be the
exception rather than the rule.

In determining a module owner, the criteria above are not necessarily
accorded the same weight for each module. The importance of a
particular element depends on the module. For example, criteria 4
(appropriate understanding of Mozilla codebase as a whole and the
module's relationship to it) and 6 (ability to evaluate impact of code on
other parts of the codebase) will be of less importance for modules
that are self-contained, and of great importance for modules
containing core technologies which affect other parts of the code
significantly. Similarly, criteria 9 (ability to consider varying
perspectives and needs of different consumers of that module) and 10
(ability to resolve different needs through factoring or other abstraction
techniques when appropriate) will be less important to a module which
serves a specific, clearly defined function for a small number of
contributors, and critical to a module which supports a variety of uses
and a broad contributor group.
Tracking Module Owner and Peer Data through Despot

Mozilla uses a database known as "Despot" (despot.mozilla.org) to
track code modules, module owners and peers. The data can be

Tiffney Mortensen ! 5/23/08 10:13 AM

Tiffney Mortensen ! 5/23/08 10:12 AM

Comment: Frank: This means that there
will be times when there is no module
owner. In particular, in some cases
modules have received little attention,
have started to rot, and some brave soul
steps up to figure things out and get us
back on track. We'll shower these folks
with thanks for tackling the job, however
we may not immediately designate them
as module owners.

Comment: Frank: the Mozilla
codebase

viewed at www.mozilla.org/owners.html. This page also contains an
indication of what code makes up each module. Modules, module
owners and peers for modules relating to other, non-coding activities
can be found at [wiki.mozilla.org/XXXXXX.]

Transfer of Module Ownership

Module ownership is transferred through the owner and peers of the
Module Ownership module. A module owner should resign by sending
mail to this group. The module owner should feel free to include
recommendations for a new module owner. In some cases, the
module will have a peer who has demonstrated the criteria for module
ownership, is interested in being the module owner, and is generally
accepted as being a logical successor. In such cases, the Module
Ownership owner or peers will commit the change of ownership to
Despot. In other cases there may not be anyone who has
demonstrated the ownership criteria with respect to that module. In
these cases, the module may go without an owner until an owner
develops, with the peers of the module providing the review and OK
necessary to check into that module.

Relationship to Bugzilla Component Owners

Occasionally there is some confusion between the role of module
owner/peer and that of default owner of a Bugzilla component. The
roles are quite different. A component owner is the person best suited
to receive incoming bug reports for a particular component; not
necessarily the person best suited to make decisions about the
direction of the module and the review of its code. There are several
reasons for this. First, Bugzilla components do not map exactly to
modules. That's because components reflect the way bugs are
perceived and experienced, not necessarily the structure of the code.
Second, managing bugs is a different task than managing the code of
a module. The skills required are different. Some great hackers are
not so good at reviewing bug reports regularly, tracking progress,

Tiffney Mortensen ! 5/23/08 10:14 AM

Tiffney Mortensen ! 5/23/08 10:15 AM

Tiffney Mortensen ! 5/23/08 10:16 AM

Tiffney Mortensen ! 5/23/08 10:17 AM

Comment: Frank: Mozilla uses a access-
controlled database known as "Despot"
(despot.mozilla.org) to track code
modules, module owners and peers. The
data from that database, including an
indication of what code makes up each
module, can be publicly viewed at
www.mozilla.org/owners.html.

Comment: Modules, module owners and
peers for modules relating to other, non-
coding activities, including the Module
Ownership module itself, can be found at
[wiki.mozilla.org/XXXXXX.]

Comment: Frank: component,

Comment: Frank: Second, managing
bugs is a different task than managing the
code of a module, and the skills required
are different.

reassigning bugs to correct owners, making sure test cases exist, etc.
Some contributors are excellent at these skills but not necessarily at
directing code development. So in some cases the Bugzilla
component owner and the module owner may be the same person.
But in many cases they will be different.

Poorly Maintained Modules

Periodically a module is not well maintained and no longer interacts
well with the rest of the codebase. This can happen where there is no
module owner, or when a designated module owner is too busy with
other things to tend to the module. Conceivably it could happen when
a module owner is active, but has an approach to a module that the
community in general believes is inappropriate. We prefer that the
development community identify such modules, propose a solution,
and implement improvement. If this can't happen for some reason
then the Module Ownership Peers will get involved to find the best
possible resolution.

Tiffney Mortensen ! 5/23/08 10:33 AM
Comment: Frank: So in some cases the
Bugzilla component owner and the module
owner may be the same person, but in
many cases they will be different.

