TechOnLine - Current Chip Design Flow is Flawed http://www.techonline.com/cgi-bin/printerpage.pl 2link=/community/...

30of 6

overlap of capabilities between synthesis and physical-design tools.

Synthesis Does Too Much

When originally designed, logic-synthesis tools needed certain optimization capabilities to help meet
timing specifications. When synthesizing a structural representation (gate level) of a chip design from its
RTL (architectural) representation, a logic-synthesis tool must choose a structure, often from several
alternatives, that will meet timing and/or area requirements. The tool does this by optimizing the
gate-level design to meet these specifications. The synthesis tool now comprises two sets of
capabilities—compiling the gate-level design from an RTL representation, and optimizing the chip to
meet design objectives—in the logical design space.

However, logic synthesis does a poor initial estimate of wire delay. When the physical-design tool takes
the gate-level netlist from the synthesis tool, it must re-optimize the chip so that it meets design
constraints in the physical design space. In other words, the P&R tools must "throw out" the
optimization provided by logic synthesis and re-optimize taking into account the more accurate physical
layout. This wastes time in the logic-synthesis operation (optimization dramatically increases run time)
and actually hinders the operation of the subsequent physical-implementation tool.

Inserting a software tool between synthesis and physical implementation to more closely couple the
logical and physical tools may provide some additional design optimization for small and medium
designs (Figure 2). However, this added physical-synthesis tool does not eliminate the need to
re-optimize large SoC designs in the physical-layout environment. In addition, a pre-P&R
physical-optimization tool may also use a logic-synthesis core, thus just redoing the optimization done
by the logic-synthesis tool—another waste of time.

Logic Mapping

& Optimization P&R
Physical Plysiodl |
Synthesis e :*

.. .

Figure 2: Chip design flow including a physical-synthesis tool

To illustrate the complexity and inefficiency of designing a chip using the current
logic-synthesis/physical-synthesis/physical-implementation flow, a benchmark four-million-gate design
took 26 weeks of design time. Each iteration through this flow requires around 20 intermediate files,
comprising command files, scripts, data-translation files, and data files such as netlist, DEF/PDEF,
SDF, SPEF, and PLIB. For a 4M-gate design, with 20-30 blocks, that adds up to several hundred files.
Adding to the complexity of the accompanying data management are tasks dealing with directory
structure, version control, user environments, hardware platform, and design network.

Parasitic extraction on our 4M-gate design creates a 7 Gbyte file that takes 12 hours to read out from an
extraction tool and 10 hours to read into a static-timing-analysis tool. A complete iteration through the
RTL-to-GDSII flow with commonly used point tools requires over 27 hours of run time and around 15
Ghytes of disk space for all the necessary intermediate files (Figure 3). Finally, to reach timing closure
you typically need between 6 and 10 full synthesis/physical-implementation iterations. You can see that
a lot of time and effort are wasted due to an inefficient front-end/backend handoff. There are no
advantages in having such long file I/O times and large file transfers—they don't add anything to design
quality.

8/30/2003 12:07 AM

TechOnLine - Current Chip Design Flow is Flawed http://www.techonline.com/cgi-bin/printerpage.pl 2link=/community/...

40f 6

nsd
. uB Tirning ATL
Design Size: 4M Gates i Congtrarta
\ o 1
File Transfer time per) , Logic Module
Netlist-to-GDS lteration: 27.5 Hrs | o : '?em & i
Y e o
Total Netlist-to-GDS S‘fie:al_'irpr'ng- . . T
Iterations: 6 to 10 e T s s o
A . T :
-y Yy File Size: 1 GByte
Physical - FIobe, atrite Time: 1 Hour
R Pt P48 N\Read Time: 0.5 Hou:
F L S . |
| MNat List PDEF OFT
. T Compitation
A =75 2
pne —— GOS
File Size: 1 GByte Loy 28 _‘ ' :
rite Time T raosciad & B ceid
Read Time: 30 Min v = { GEyvtes
& G—ﬂs.’f 1 SIEE & LEYIeSs
- : Write Time: 2 Hours
L Read Time: 1 Houwr
— File Size: T GBytes
o v Write Time: 12 Hours
5‘;‘:&;:':‘9 _ SPEF Read Time: 10 Hours

Figure 3: Current design flow is marked by large file sizes, long read and write times, and multiple
synthesis/P&R iterations

Another problem with a physical-synthesis tool following logic synthesis is that such a tool is usually
concerned only with timing specifications or, at most, also with some types of crosstalk optimization.
Physical synthesis does not adequately address crosstalk and signal-integrity problems, since these
problems are very layout dependent and the physical-synthesis tool does not have knowledge of the final
chip layout. Furthermore, physical-synthesis tools do not address problems caused by interconnect
inductance and do not understand the complex layout design-rules associated with complex SoCs. Even
with physical synthesis, design issues such as these result in difficult-to-solve front-to-back design
problems.

Size Is Important

Besides the issues already described concerning traditional synthesis to physical-layout handoff, another
problem with popular synthesis tools concerns tool capacity. Logic-synthesis design-size limitations limit
the size of the design that this type of tool can handle. Large chip size, even down at the
few-hundred-thousand gate level, requires you to partition the design into several blocks, with each block
within the capacity limitation of the logic-synthesis tool. Current SoC sizes at 10-million-gates and higher
may require dozens of partitions, leading to problems reconciling the timing budgets between these
blocks when considering overall chip timing. This is true even when the design includes several
pre-designed silicon-IP cores.

Design partitioning requires guard-banding performance. This means that you must over-constrain

interfaces to allow back-end tools to account for inaccuracies in front-end tools. You also have to define
"registered" interfaces to allow constraints to be set—this results in extra logic in the design. In addition,
you must derive the constraints and keep them consistent with any change in design-block constraints.

The need for a large number of design partitions places an additional resource load on both the design
team and on logic-synthesis and other design tools. Partitioning adds complexity to resource allocation
for the various serial and parallel design activities, and in accounting for the interdependencies between
these activities. Reducing the number of partitions decreases the cost of design development and
EDA-tool licenses, reduces time-to market due to decreased tool run times and chip design time, and
improves quality of results.

8/30/2003 12:07 AM

