
The C# Station Tutorial - Lesson 16: Using Attributes http://www.csharp-station.com/Tutorials/Lesson16.aspx

1 of 5 25-Apr-05 10:03p

The C# Station Tutorial

by Joe Mayo, 12/15/02, updated 3/12/03

Lesson 16: Using Attributes

This lesson explains how to use C# attributes. Our objectives are as follows:

Understand what attributes are and why they're used
Apply various attributes with multiple or no parameters
Use assembly, type member, and type level attributes

Why Attributes?

Attributes are elements that allow you to add declarative information to your
programs. This declarative information is used for various purposes during
runtime and can be used at design time by application development tools. For
example, there are attributes such as DllImportAttribute that allow a program
to communicate with the Win32 libraries. Another attribute,
ObsoleteAttribute, causes a compile-time warning to appear, letting the
developer know that a method should no longer be used. When building
Windows Forms applications, there are several attributes that allow visual
components to be drag-n-dropped onto a visual form builder and have their
information appear in the properties grid. Attributes are also used extensively
in securing .NET assemblies, forcing calling code to be evaluated against
pre-defined security constraints. These are just a few descriptions of how
attributes are used in C# programs.

The reason attributes are necessary is because many of the services they
provide would be very difficult to accomplish with normal code. You see,
attributes add what is called metadata to your programs. When your C#
program is compiled, it creates a file called an assembly, which is normally an
executable or DLL library. Assemblies are self-describing because they have
metadata written to them when they are compiled. Via a process known as
reflection, a program's attributes can be retrieved from its assembly
metadata. Attributes are classes that can be written in C# and used to
decorate your code with declarative information. This is a very powerful
concept because it means that your can extend your language by creating
customized declarative syntax with attributes.

This tutorial will show how to use pre-existing attributes in C# programs.
Understanding the concepts and how to use a few attributes, will help in
finding the multitude of other pre-existing attributes in the .NET class libraries
and use them also.

Attribute Basics

Attributes are generally applied physically in front of type and type member
declarations. They're declared with square brackets, "[" and "]", surrounding
the attribute such as the following ObsoleteAttribute attribute:

[ObsoleteAttribute]

The "Attribute" part of the attribute name is optional. So the following is
equivalent to the attribute above:

[Obsolete]

You'll notice that the attribute is declared with only the name of the attribute,
surrounded by square brackets. Many attributes have parameter lists, that
allow inclusion of additional information that customizes a program even
further. Listing 16.1 shows various ways of how to use the ObsoleteAttribute
attribute.

Listing 16-1. How to Use Attributes: BasicAttributeDemo.cs

The C# Station Tutorial - Lesson 16: Using Attributes http://www.csharp-station.com/Tutorials/Lesson16.aspx

2 of 5 25-Apr-05 10:03p

using System;

class BasicAttributeDemo
{
 [Obsolete]
 public void MyFirstDeprecatedMethod()
 {
 Console.WriteLine("Called MyFirstDeprecatedMethod().");
 }

 [ObsoleteAttribute]
 public void MySecondDeprecatedMethod()
 {
 Console.WriteLine("Called MySecondDeprecatedMethod().");
 }

 [Obsolete("You shouldn't use this method anymore.")]
 public void MyThirdDeprecatedMethod()
 {
 Console.WriteLine("Called MyThirdDeprecatedMethod().");
 }

 // make the program thread safe for COM
 [STAThread]
 static void Main(string[] args)
 {
 BasicAttributeDemo attrDemo = new BasicAttributeDemo();

 attrDemo.MyFirstDeprecatedMethod();
 attrDemo.MySecondDeprecatedMethod();
 attrDemo.MyThirdDeprecatedMethod();
 }
}

Get Setup Instructions For How to Run this Program

Examining the code in listing 16-1 reveals that the ObsoleteAttribute attribute
was used a few different ways. The first usage appeared on the
MyFirstDeprecatedMethod() method and the second usage appeared in the
MySecondDeprecatedMethod() method as follows:

 [Obsolete]
 public void MyFirstDeprecatedMethod()
 ...
 [ObsoleteAttribute]
 public void MySecondDeprecatedMethod()
 ...

The only difference between the two attributes is that
MySecondDeprecatedMethod() method contains the "Attribute" in the attribute
declaration. The results of both attributes are exactly the same. Attributes
may also have parameters, as shown in the following declaration:

 [Obsolete("You shouldn't use this method anymore.")]
 public void MyThirdDeprecatedMethod()
 ...

This adds customized behavior to the ObsoleteAttribute attribute which
produces different results from the other ObsoleteAttribute attribute
declarations. The results of all three ObsoleteAttribute attributes are shown
below. These are the warnings that are emitted by the C# compiler when the
program is compiled:

>csc BasicAttributeDemo.cs
Microsoft (R) Visual C# .NET Compiler version 7.10.2292.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

BasicAttributeDemo.cs(29,3): warning CS0612:
'BasicAttributeDemo.MyFirstDeprecatedMethod()' is obsolete

The C# Station Tutorial - Lesson 16: Using Attributes http://www.csharp-station.com/Tutorials/Lesson16.aspx

3 of 5 25-Apr-05 10:03p

'BasicAttributeDemo.MyFirstDeprecatedMethod()' is obsolete
BasicAttributeDemo.cs(30,3): warning CS0612:
'BasicAttributeDemo.MySecondDeprecatedMethod()' is obsolete
BasicAttributeDemo.cs(31,3): warning CS0618:
'BasicAttributeDemo.MyThirdDeprecatedMethod()' is obsolete: 'You
shouldn't use this method anymore.'

As you can see, the ObsoleteAttribute attribute caused the
MyThirdDeprecatedMethod() method to emit the message that was a
parameter to the ObsoleteAttribute attribute of that method in the code. The
other attributes simply emitted standard warnings.

Listing 16-1 also contains another attribute you're likely to see, the
STAThreadAttribute attribute. You'll often see this attribute applied to the
Main() method, indicating that this C# program should communicate with
unmanaged COM code using the Single Threading Apartment . It is generally
safe to use this attribute all the time because you never know when a 3rd
party library you're using is going to be communicating with COM. The
following excerpt shows how to use the STAThreadAttribute attribute:

 [STAThread]
 static void Main(string[] args)
 ...

Attribute Parameters

Attributes often have parameters that enable customization. There are two
types of parameters that can be used on attributes, positional and named.
Positional parameters are used when the attribute creator wishes the
parameters to be required. However, this is not a hard and fast rule because
the ObsoleteAttribute attribute has a second positional parameter named error
of type int that we can omit as demonstrated in Listing 16-1. That attribute
could have been written with the second positional parameter to force a
compiler error instead of just a warning as follows:

 [Obsolete("You shouldn't use this method anymore.", true)]
 public void MyThirdDeprecatedMethod()
 ...

The difference between positional parameters and named parameters are that
named parameters are specified with the name of the parameter and are
always optional. The DllImportAttribute attribute is one you are likely to see
that has both positional and named attributes (Listing 16-2).

Listing 16-2. Using Positional and Named Attribute Parameters: AttributeParamsDemo.cs

using System;
using System.Runtime.InteropServices;

class AttributeParamsDemo
{
 [DllImport("User32.dll", EntryPoint="MessageBox")]
 static extern int MessageDialog(int hWnd, string msg, string caption, int msgType);

 [STAThread]
 static void Main(string[] args)
 {
 MessageDialog(0, "MessageDialog Called!", "DllImport Demo", 0);
 }
}

Get Setup Instructions For How to Run this Program

The DllImportAttribute attribute in Listing 16-2 has a one positional
parameter, "User32.dll", and one named parameter,
EntryPoint="MessageBox". Positional parameters are always specified before
any named parameters. When there are named parameters, they may appear
in any order. This is because they are marked with the parameter name like
in the DllImportAttribute attribute, EntryPoint="MessageBox". Since the

The C# Station Tutorial - Lesson 16: Using Attributes http://www.csharp-station.com/Tutorials/Lesson16.aspx

4 of 5 25-Apr-05 10:03p

in the DllImportAttribute attribute, EntryPoint="MessageBox". Since the
purpose of this lesson is to explain how to use attributes in general, I won't go
into the details of the DllImportAttribute attribute, which has extra parameters
that require knowledge of Win32 and other details that don't pertain to this
lesson. Many other attributes can be used with both positional and named
parameters.

Attribute Targets

The attributes shown so far have been applied to methods, but there are many
other C# language elements that you can use attributes with. Table 16-1
outlines the C# language elements that attributes may be applied to. They
are formally called attribute "targets".

Attribute Target Can be Applied To
all everything
assembly entire assembly
class classes
constructor constructors
delegate delegates
enum enumerations
event events
field fields
interface interfaces
method methods

module modules (compiled code that can be
part of an assembly)

parameter parameters
property properties
returnvalue return values
struct structures

Whenever there is ambiguity in how an attribute is applied, you can add a
target specification to ensure the right language element is decorated
properly. An attribute that helps ensure assemblies adhere to the Common
Language Specification (CLS) is the CLSCompliantAttribute attribute. The CLS
is the set of standards that enable different .NET languages to communicate.
Attribute targets are specified by prefixing the attribute name with the target
and separating it with a colon (;). Listing 16-3 shows how to use the
CLSCompliantAttribute attribute and apply it to the entire assembly.

Listing 16-3. Using Positional and Named Attribute Parameters: AttributeTargetDemo.cs

using System;

[assembly:CLSCompliant(true)]

public class AttributeTargetDemo
{
 public void NonClsCompliantMethod(uint nclsParam)
 {
 Console.WriteLine("Called NonClsCompliantMethod().");
 }

 [STAThread]
 static void Main(string[] args)
 {
 uint myUint = 0;

 AttributeTargetDemo tgtDemo = new AttributeTargetDemo();

 tgtDemo.NonClsCompliantMethod(myUint);
 }
}

The code in Listing 16-3 won't compile because the uint type parameter
declared on the NonClsCompliantMethod() method. If you change the

The C# Station Tutorial - Lesson 16: Using Attributes http://www.csharp-station.com/Tutorials/Lesson16.aspx

5 of 5 25-Apr-05 10:03p

declared on the NonClsCompliantMethod() method. If you change the
CLSCompliantAttribute attribute to false or change the type of the
NonClsCompliantMethod() method to a CLS compliant type, such as int, the
program will compile.

The point about Listing 16-3 is that the CLSCompliantAttribute attribute is
decorated with an attribute target of "assembly". This causes all members of
this assembly to be evaluated according to the CLSCompliantAttribute
attribute setting. To limit the scope of the CLSCompliantAttribute, apply it to
either the AttributeTargetDemo class or NonClsCompliantMethod() method
directly.

Summary

Attributes are C# language elements that decorate program elements with
additional metadata that describes the program. This metadata is then
evaluated at different places, such as runtime or design time for various
purposes. The examples in this lesson showed how the ObsoleteAttribute
attribute could be used to generate compile time warnings for deprecated
code. Through applying the DllImportAttribute attribute, you could see how to
apply both positional and named parameters to an attribute. Attributes may
also be used to decorate various different types of program elements with a
target descriptor. The example applied the CLSCompliantAttribute attribute to
an entire assembly. However, it could have also been applied to different
program elements with applicable target descriptors to limit its scope.

I invite you to return for Lesson 17: Enums.

