ADMINISTRATOR’S GUIDE

FOR THE COMMON TOOLBOX

A Look at the Toolbox Logical Directory Structure

The following is a description of the file and directories contained in the Toolbox distribution tree:

toolbox.cfg

The Toolbox software configuration file.

index.html

The initial Toolbox web page shown by the web browser for Unix users, pcindex.html for PC users.

toolbox.install

The Toolbox installation script.

bin/toolbox

Startup script for the Toolbox.

doc/

Local online engineering manuals and documents (like ALLMTHs, .pdf and .ps files)

html/

HTML pages, .gif and .txt files. Local documents refer to the doc directory, applications refer to the bin directory.

motd

A symbolic link to the current Message Of The Day in the motds directory.

motds/

Message Of The Day files. These are plain text files (.txt) providing users notification of system changes.

log/

Usage logs for applications launched with the Toolbox. The file ‘toolbox_log’ contains the usage statistics. This directory also contains helper scripts to generate usage stats suitable for spreadsheet processing.

scripts/

Internal scripts used to implement and support the Toolbox.

shbin/

Application scripts for launching individual software products.

Enabling Remote Shells

Users must be enabled to execute remote shells on Toolbox machines without being prompted for a password.

This can be a significant issue in DFS directory systems. In that case it is suggested to have users start the Toolbox on a DFS or NFS machine and have all remote applications run on NFS machines. This is because DFS machines always require a password to execute remote shells.

Each user’s .rhosts file should contain either a wildcard (‘+’) or specific machine name and the user’s login name to allow remote shell execution. Examples: + ndo2040 or raptor.ds.boeing.com ndo2040. All shells spawned from Netscape or the Toolbox will be Bourne shells, so users may want to edit their $HOME/.profile to define any specific user environment settings.

Debugging via error logs

If the file .tb_debug exists in the user’s $HOME directory, debugging messages go to the file $HOME/tb_log. It is replaced at the start of each new Toolbox session.

The Toolbox Configuration File

By default the Toolbox assumes that all machines of a certain OS have the same software reachable by the same pathname. Exceptions to this rule may be specified in the file toolbox.cfg, which contains lists of applications that can only run on particular platforms. Toolbox.cfg attempts to be a self-documenting configuration file. Here is an example of the configuration file:

#

Toolbox host configuration file.

#

This file ($TB_ROOT/toolbox.cfg) exists in the Toolbox directory

and specifies which nodes of what type users can run on.

#

Normal "#" followed by whitespace may be used to comment configuration lines.

#

#---

#

LAUNCH POLICY

#

This is the global launch policy as determined by the sys admin.

Valid choices are:

#
local_first - ALWAYS launch on the local node first when possible.

#
local_first_threshold - launch on the local node when the 5 minute 'uptime'

on the local node is below 'launch_threshold',

otherwise launch on the 'best' node.

#
best_first - ALWAYS launch on the 'best' node first.

It can take some time to find the 'best' node,

but this will balance the system.

#---

#

launch_policy:

local_first_threshold

launch_threshold:
1.5

#---

#

REMOTE_NODE_LIST

#

Below is a list of nodes of a particular machine type that is checked

for the least loaded node when the software cannot run locally. This

list is used only when there is NOT an entry for a particular

machine type in the SPECIFIC_NODE_LIST.

#

Form of entries : <machine_type>_list: <nodes>

#

<machine_type> - a machine type supported by the Toolbox.

DO NOT CHANGE THESE ENTRIES.

#

<nodes> - a space delimited list of node names

of this machine type.

#

hp10 denotes HP-UX 10.2 or greater

#

#---

hp_list:
erie moses huron

hp10_list:
erie moses huron

aix_list:
alta

sgi_list:
julia

sol_list:
megarea

dec_list:
wiley

linux_list:
bullwinkle

#---

#

SPECIFIC_NODE_LIST

#

Below is a list of applications per machine type that MUST execute

on specific nodes

#

Form of entries : <app_name>:<type>:<nodes>

#

<app_name> - corresponds with the variable USAGE_NAME in the

application script in the 'bin' directory

#

<type> - a 'valid' machine type from above, without the '_list'.

'Valid' machine types are restricted to types

defined in the launch script's MACHINES_REQUIRED variable.

If the MACHINES_REQUIRED variable is "any", then any of the types

in the REMOTE_NODE_LIST section of this file may be used.

#

<nodes> - a space delimited list of node names

#

THIS IS A LIST OF EXCEPTIONS. Only specify rules for applications that MUST execute

on SPECIFIC nodes. Absence of a rule implies that any node of that type may

launch the application.

#

This list is always checked before any application is launched.

#

#---

Abaqus5.5:hp10:huron

Advisor98.2c:hp10:moses

Ansys5.5:hp10:ksc2

Catia4.1.7:aix:alta

DSAS11:hp10:moses

Ghostview1.5:hp10:erie moses

Interleaf.6:hp10:erie

Imageview10:hp10:erie

Iashp.c13:hp10:moses

Ias.c13:aix:alta

Incap.a04:hp10:erie

Mechanica20:hp10:ksc2

Loadbuild99.1:hp10:huron moses

Lyx1.0.1:sol:megarea

Panda2.34:hp10:erie

Panda2.5:hp10:erie

Panda2.54:hp10:huron

Steps To Configuring the Toolbox

Define what launch policy will apply

Edit the toolbox.cfg file and choose a LAUNCH_POLICY that you would like to be enforced. Local_first would be best if there is a dedicated machine per user, local_first_threshold if machines are partially shared, or best_first if jobs should be optimally distributed across machines. The value for launch_threshold corresponds to the five minute load average from the Unix uptime utility (check the man page).

Define what machines may be used to run remote processes

Edit the toolbox.cfg file to change the REMOTE_NODE_LIST. This list determines which machines may be considered for remote launching. This list must be defined because the Toolbox cannot know what machines are available and if the software is installed properly on them. This list is checked when there are no specific machines restrictions and we are searching for the best node or an alternate platform type.

Define what software must run on specific machine types or nodes

Edit the toolbox.cfg file to change the SPECIFIC_NODE_LIST. This list determines which specific machines certain software must execute on. This list is checked first when before any job is launched, locally or remotely.

Editing the Execution Scripts (.sh files)

Edit each .sh file in the Toolbox shbin directory to determine which machine types a script may be launched from. The following is an example script in the shbin directory (dsas11.sh):

#!/bin/sh

#

LAUNCH_METHOD="-app"

USAGE_NAME="DSAS11"

MACHINES_REQUIRED="hp10"

APP_hp="/usr/local/bin/DSAS"

OPT_hp=""

APP_hp10=$APP_hp

OPT_hp10=$OPT_hp

APP_aix=$APP_hp

OPT_aix=$OPT_hp

APP_sgi=$APP_hp

OPT_sgi=$OPT_hp

APP_sol=$APP_hp

OPT_sol=$OPT_hp

APP_dec=$APP_hp

OPT_dec=$OPT_hp

APP_linux=$APP_hp

OPT_linux=$OPT_hp

export APP_hp APP_hp10 APP_aix APP_sgi APP_sun APP_sol APP_dec APP_linux

export OPT_hp OPT_hp10 OPT_aix OPT_sgi OPT_sun OPT_sol OPT_dec OPT_linux

if [-n "$TB_SCRIPTS"] ; then

 $TB_SCRIPTS/launch $LAUNCH_METHOD $USAGE_NAME "$MACHINES_REQUIRED" >> $TB_LOG_FILE &

else

 echo

 echo "The Toolbox must be started by using the startup script 'toolbox'."

 echo

fi

LAUNCH_METHOD may be “-xterm” or “-app”. “-xterm” executes the script in a xterm, consequently showing any messaging output in the xterm. “-app” executes directly without showing a transcript.

USAGE_NAME is a text string that the application is logged under. It is also referred to in the configuration file (toolbox.cfg) lines that define applications that must run on specific nodes. Keep them synchronized.

MACHINES_REQUIRED is a space delimited list of machine types that this application may execute on. This entry may also be “any” if it will execute on any type of platform. The list of valid machine types is defined at the top of the toolbag configuration file.

APP_<machine type> is the path to the actual executable or startup script for that machine type. This entry is checked to see if it exists and is an executable file at launch time.

OPT_<machine_type> defines optional flags or parameters to launch the command with. This entry is appended to the APP_<machine type> entry on the command line and executed in a Unix shell.

The Execution Process Explained

To start executing an application, users will click on a link on the Toolbox web page after the Toolbox has been started. Since the name of the link has a “shell” suffix (.sh on Unix, .bat on NT), Netscape looks up its MIME “.sh” type rule and determines to spawn this script as a shell on the local machine. For NT, the .bat file contains batch commands (MS-DOS) to execute the NT program. For Unix machines this is more involved because of remote execution potential.

The Unix Toolbox web page link points to shbin/<application>.sh. Each of these scripts calls a launch script with the logical name of the application, the machine types it can run on, the application path and options to launch the application.

When this launch script is executed it performs the following operations:

1. The launch script initially checks to see if the Toolbox environment variables are set. If they aren’t, the user arrived at this link by web page only and not by the Toolbox startup script, so the applications won’t fire up correctly. An error message is shown in the browser telling the user to start the Toolbox via the Toolbox startup script.

2. The launch script checks to see if the local machine is one of the types that the software can run on (uses the MACHINES_REQUIRED settings in the application launch script). If the launch script specifies “any” or “local” the local machine qualifies.

3. It then checks to see if there are any rules in the Toolbox configuration file (toolbox.cfg) that restrict which nodes of the correct type that the application can run on and then uses these rules to determine what nodes qualify for launching. It then launches the application wrapper script on the local machine if it still qualifies, otherwise it remotely launches on the “best” (least loaded) qualifying node of the right type.
4. A remote shell is started on the qualifying node. The application wrapper executes the system-wide profile (/etc/profile), the users’s personal profile ($HOME/.profile) and $HOME/.Xdefaults file if they exist. It also attempts to change the user’s present working directory to the same directory that the Toolbox was started from. It then checks for the existence of the executable file or startup script, launches the application and detects failures. Errors are reported to the optional debug file ($HOME/tb_log) and also with interactive popup message dialogs.

Some applications start from an Xterm (-xterm option) and wait for a prompt after the application is finished before closing the Xterm. This allows users to use software that requires console support and also inspect informational messages as the application runs.

BCAG Stress Workstation Software (SWS) Requirements

To legitimately use SWS software you need to place a request for SWS software. Check the document support/BCAG_Sw_Request_Form.doc for a copy of this form and submit the signed form.

A detailed description of installing the /boeing tree for SWS software is described at http://www-sws-is.ca.boeing.com/Install/how_to_install.shtml .

The following must be installed in the /boeing tree (this may be a symbolic link):

· UPR

· METATRAN

· LIBSAWGR

· MATDB (for IAS, references an external Oracle database server)

· FASDB (for IAS, references an external Oracle database server)

· SWSBIN

· ORACLIENT

· The various selected SWS applications

· The MANPATH environment variable must be defined to avoid any annoying dialogs when starting up SWS applications (perhaps set this in the /etc/profile)

· UPR looks at the configuration file /boeing/netinfo/lan_printers3. Make sure it is configured correctly (Local Area Network (LAN) Printer Setup Manual, D6-56235-600). Use print queue names of at most seven characters due to some old software requirements.

· If you encounter font selection problems, it might be best to install a font server on an RS/6000 somewhere in the domain to supply fonts for non-AIX Unix machines. eXceed software for PCs already contains these fonts (you might have to import all of the font aliases).
· Obtain the font server software.

· Edit the file /usr/lib/X11/fs/config. Use port 7100 unless there is a conflict.

· Start a font server daemon with:

/usr/bin/X11/fs -cf /usr/lib/X11/fs/config &

Be sure to add this command to the appropriate system startup files as well.

· The Toolbox will access the fonts with :

xset fp+ tcp/<machine_name>:7100 (or however the port is. This must be in sync with what is defined in /usr/lib/X11/fs/config)

· Check that the font server is running with:

$ fslsfonts -server tcp/<machine_name>:7100 -fn rom14

· Database Connectivity

· In a “white” world situation some SWS applications connect to Oracle servers to retrieve database information. In an extreme “black” situation it is possible (but not desirable for the SWS support staff) to have a local copy of the database maintained on a local Oracle server.

· To connect to the white world Oracle servers the following must be configured:

· It is highly recommended to install Oraclient.

· The correctly configured sqlnet.ora file (tnsnames.ora is the fallback file) gives the SWS software database connectivity information at runtime. There is a default file supplied when you install Oraclient. If you don’t install Oraclient, we suggest placing this file in the /boeing/netinfo directory. An example of an sqlnet.ora file is on the Boeing web at http://www-sws-is.ca.boeing.com/Oracle/name_server_setup.shtml. If you don’t have DNS running on your machine, you might have to put some entries into your /etc/hosts file for resolution.

· The environment variable TNS_ADMIN must be defined (before runtime) which specifies the location of the sqlnet.ora file. This is also defined by Oraclient. For non-Oraclient installations a place to define this variable is in the system-wide profile (/etc/profile) so that it is set for every user. Another place could be in the /boeing/sw/sws/bin/sws_setup file if it exists. It is possible that if your machine contains an instlallation of Oracle that TNS_ADMIN has already been defined. This will take precedence over the Oraclient setting, so some merging of the settings may have to be done.

· The more recent versions of SWS software use the sqlnet.ora file. Older versions have configuration file in their respective ‘sys’ directories which have to be individually configured. This file is typically named “*keyfile” (as in it ends in the phrase “keyfile”). The contents of this file is of the form @t:<server>:<database>. This file might have to be customized to point to servers that can be “pinged” from your network.

· For additional help see http://www-sws-is.ca.boeing.com/Oracle .

