

CSE 420W
Mozilla Group
Design Document

Overview
This document describes the proposed CDE Calendar connection design for the Calendar
component of Mozilla. This design is based on a request for enhancement “bug”
(Bugzilla Bug # 188660 http://bugzilla.mozilla.org/show_bug.cgi?id=188660). The
design will inherit the existing design of the Mozilla code base. Any new technologies to
fulfill the requirements for the enhancement will be described here.

Goals of the system
The goal of this project is to allow a Mozilla Calendar Client to connect to and utilize a
Sun CDE Calendar Server. This will include the ability to:

• Connect to, Authenticate with, and Disconnect from a Sun calendar server
• Create and Remove calendars
• Add, Modify, and Delete events
• View Events
• Update the Mozilla User Interface to accommodate our enhancements

System Requirements
The following will be required for proper operation of our project:

• Mozilla 1.3b
• Mozilla Calendar component
• Sun Workstation running Solaris 8
• Sun CDE Calendar Server version 5 data version 4
• libcsa calendar library

Approach
Our approach will follow the Mozilla development model. We will utilize Mozilla’s
cross platform component architecture (XPCOM). XPCOM allows for binary
compatibility with the libcsa calendar interface. XPCOM will allow JavaScript to
communicate with our C++ components.

Our user interface will be developed using Mozilla’s User Interface tools (XUL-
pronounced “Zool”).

Sun Calendar
Server

UI

UI Update JavaScript

Calendar Interface JS

XPCOM
Interface

libcsa Library

eXtensible User Interface
Language (XUL)

JavaScript

C++

Sun RPC

Diagram 1 - Basic Infrastructure:

System Flow
Our system will function as follows:

1. The user will interface with our JavaScript/XUL front end
2. JavaScript handlers will communicate with our XPCOM/IDL interface and the

polymorphic objects from which we inherit
3. Our XPCOM component will interact with libcsa
4. The libcsa library, through a series of RPC calls, will instruct the Sun Calendar

Server to perform the requested actions
5. The Sun Calendar Server will then return the requested data which will bubble up

through the series of steps above

Functional Development
• Connect to a Sun calendar server

o The user will enter his or her username and location into the current UI.
The password field is ignored by the libcsa library in Solaris 8 version 5
data version 4, and as such will not be included. Here is a proposed mock-
up:

o The UI will call preexisting functions within Mozilla. These functions

already communicate with a layer above the layer at which we are
developing.

o JavaScript will call our interface functions which will, in turn call our
XPCOM component.

o The XPCOM component will call functions specified in libcsa to create a
connection with a calendar server. The function we will be calling is
csa_logon().

• Authenticate with a Sun calendar server
o Authentication will be performed implicitly upon connection. The libcsa

library handles authentication on a RPC level.
• Disconnect from a Sun calendar server

o This will disconnect from the calendar server with csa_close().
o This will occur when the UI closes a calendar window.
o The calendar will remain on the server awaiting connections.

• Create a calendar
o If a user enters a calendar name that doesn’t exist, the XPCOM component

will instruct the libcsa backend to create a calendar of that name on the
server.

o The libcsa command is csa_add_calendar().

• Remove a calendar
o There are 2 methods to remove a calendar from the User Interface:

Deleting the calendar from the server; Removing the calendar from the list
of calendars presented. Here is a proposed mock-up:

• Delete from Server - Deleting the calendar from the server will
entail deallocating the calendar from the Mozilla instance. A call
will be made to our XPCOM interface to delete the calendar, and
then the libcsa command csa_delete_calendar() will be used.

• Remove from List - Removing the calendar from the list of
calendars will deallocate the calendar from Mozilla, and force a
“Disconnect from a Sun calendar server” event.

• Add events
o The user will add an event using the preexisting Mozilla add event dialog.

This dialog will send a command to our JavaScript interface which will
communicate with our XPCOM component. The XPCOM component will
call the libcsa command csa_add_entry().

• Delete events
o When a user deletes an event through the preexisting Mozilla interface, the

JavaScript will call our XPCOM component which will run the libcsa
command csa_delete_entry().

• Modify events
o The user will change properties of events through the preexisting Mozilla

interface. Any properties modified will be sent to our XPCOM interface
which will use one of the many libcsa update commands.

• Get Events
o Get by Month

• When the view changes to a month view, the JavaScript will call
the XPCOM getEventsByDateRange() function which will call the
appropriate libcsa commands.

o Get by Week
• When the view changes to a week view, the JavaScript will call the

XPCOM getEventsByDateRange() function which will call the
appropriate libcsa commands.

o Get by Day
• When the view changes to a day view, the JavaScript will call the

XPCOM getEventsByDateRange() function which will call the
appropriate libcsa commands.

o These functions will return the appropriate events which will be rendered
to the screen.

Security
We will be following the Mozilla Security Guidelines which can be found at:
http://www.mozilla.org/projects/security/components/reviewguide.html
Due to the current implementation of the libcsa library, we will not require the user to
enter a password. This is due to the fact that the current version of the libcsa library (as
stated above) ignores the password parameter in function calls. The server relies on the
underlying RPC calls for user level authentication.

Estimated Time Requirements
• Getting to know Mozilla 80 person hours
• Requirements Document 50 person hours
• Design Document 80 person hours
• Prototype

o UI front end 40 person hours
o JavaScript middleware 80 person hours
o XPCOM component 80 person hours
o libcsa implementation 120 person hours

• Alpha Testing 60 person hours
• Beta Development 100 person hours
• Final Version Development 60 person hours

