
~ % ./cyphar.sh_ Home Blog Code Security Papers

Aleksa Sarai

containers oci ociv2-images rant 21 January 2019

« The Road to OCIv2 Images: What's Wrong
with Tar?

You might not realise it yet, but you very likely want a better container image format
than the ones currently available. How can I say this with such confidence? Because
the current design of container images provides almost none of the properties that
most people likely want from container images – even the properties you think you
have aren’t omnipresent. The root cause of this problem is an unlikely and seemingly
innocent suspect – tar . But don’t let its appearance and familiarity fool you, tar
isn’t the format you might think it is.

This is the first of a series of articles I will be writing over the coming weeks, which
will outline an improvement to the Open Container Initiative (OCI) image format in
order to provide the properties that you want.

My first instinct was to title this article “Tar Considered Harmful”, but I had a feeling
that the peanut gallery would cringe at such a title. However, this article is very much
a foundational discussion of tar and how it fundamentally fails in the use-case of
container images (which will outline what we really want from a container image
format). There have been some other articles that touch on the issues I go over here,
but I hope I can provide a more cohesive insight into the issues with tar . Then
again, some folks believe that tar is the best format for container images. I hope
this first article will serve as a decent rebuttal.

I am currently working on a proof-of-concept of these ideas, and hopefully it will be
ready soon for inclusions into umoci (a generic OCI image manipulation tool, which
is being used by quite a few folks now-a-days for building and operating on container
images).

But first, I guess we should make sure we’re on the same page on what container
images actually are.

What [Container Images] Are Made Of
I hope that you’re already familiar with a concept of a container, so I’ll just give a one-

Home | Blog | Code | Security | Papers
Copyright © Aleksa Sarai 2014-2019. This website is free software and is licensed under the GNU

AGPLv3+. Source code.

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

1 of 19 3/3/20, 9:12 AM

host kernel, but in a context where the filesystem (among other system resources)
are virtualised. (To paraphrase Bryan Cantrill, “virtual” in this context is just a more
diplomatic way of saying “lie”.)

Because the filesystem is virtualised, we need to have a different root filesystem than
our host (just like a chroot , which one could argue was the first instance of
“something like a container”). Obviously a root filesystem is just a directory (or some
union filesystem that looks like a directory at the end of the day). But then the follow-
on question is “how are we going to distribute these directories?” – and that’s what a
container image is.

Currently there are basically two models of container images:

Layered container images. These are what most people think of when you say
“container image”, and are made up of a series of layers which are stacked on top
of each other during container execution (with a union filesystem or similar tricks).
These layers are almost always tar archives, and is the beginning of the problem.
Usually such images also contain several bits of metadata (usually JSON).
“Flat” container images. You can think of these as being more analogous to VMs.
The most obvious examples of such container images are LXD’s images (which
are effectively a single archive) and Singularity (which passes around a full
filesystem image, which gets loopback mounted).

Most of the issues I will go over only really apply to layered container images. Due to
the their design, “flat” container images have fewer problems (mainly because they
aren’t interested in some of the features you get from layered images). In the case of
LXD, their design actually handles some of these concerns anyway (in particular,
“transfer de-duplication” isn’t necessary because they use binary deltas for updating
images – and images are auto-updated by default on LXD).

This article will be focusing on OCI (Open Container Initiative) images, because
that’s the standardised container image format (and I really hope it will get wider use
if we can provide a clear advantage over other image formats). However, the same
issues apply verbatim to Docker images – the OCI image format was based directly
on the on-disk Docker format.

Just to make sure you get what an OCI image looks like, here is what it looks like
after you’ve downloaded one (skopeo is a tool which translates images between
formats, and also supports fetching images):
% skopeo copy docker://rust:latest oci:rust:latest% skopeo copy docker://rust:latest oci:rust:latest

Getting image source signaturesGetting image source signatures

Copying blob sha256:54f7e8ac135a5f502a6ee9537ef3d64b1cd2fa570dc0a40b4d3b6f7ac81e7486Copying blob sha256:54f7e8ac135a5f502a6ee9537ef3d64b1cd2fa570dc0a40b4d3b6f7ac81e7486

 43.22 MB / 43.22 MB [==] 4s 43.22 MB / 43.22 MB [==] 4s

Copying blob sha256:d6341e30912f12f56e18564a3b582853f65376766f5f9d641a68a724ed6db88fCopying blob sha256:d6341e30912f12f56e18564a3b582853f65376766f5f9d641a68a724ed6db88f

 10.24 MB / 10.24 MB [==] 1s 10.24 MB / 10.24 MB [==] 1s

Copying blob sha256:087a57faf9491b1b82a83e26bc8cc90c90c30e4a4d858b57ddd5b4c2c90095f6Copying blob sha256:087a57faf9491b1b82a83e26bc8cc90c90c30e4a4d858b57ddd5b4c2c90095f6

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

2 of 19 3/3/20, 9:12 AM

 4.14 MB / 4.14 MB [==] 0s 4.14 MB / 4.14 MB [==] 0s

Copying blob sha256:5d71636fb824265e30ff34bf20737c9cdc4f5af28b6bce86f08215c55b89bfabCopying blob sha256:5d71636fb824265e30ff34bf20737c9cdc4f5af28b6bce86f08215c55b89bfab

 47.74 MB / 47.74 MB [==] 4s 47.74 MB / 47.74 MB [==] 4s

Copying blob sha256:0c1db95989906f161007d8ef2a6ef6e0ec64bc15bf2c993fd002edbdfc7aa7dfCopying blob sha256:0c1db95989906f161007d8ef2a6ef6e0ec64bc15bf2c993fd002edbdfc7aa7df

 203.34 MB / 203.34 MB [===] 20s 203.34 MB / 203.34 MB [===] 20s

Copying blob sha256:734ee16af2dd89c09a46ff408ffc44679aca2e1b8a10baec4febd9a7b6ac9778Copying blob sha256:734ee16af2dd89c09a46ff408ffc44679aca2e1b8a10baec4febd9a7b6ac9778

 218.11 MB / 218.11 MB [===] 41s 218.11 MB / 218.11 MB [===] 41s

Copying config sha256:af2dafa4b223aa1ab6ca6f6c35c5fce093254602cff4b2a8429850764d533b29Copying config sha256:af2dafa4b223aa1ab6ca6f6c35c5fce093254602cff4b2a8429850764d533b29

 4.14 KB / 4.14 KB [==] 0s 4.14 KB / 4.14 KB [==] 0s

Writing manifest to image destinationWriting manifest to image destination

Storing signaturesStoring signatures

% tree rust/% tree rust/

rust/rust/

├── blobs├── blobs

│ └── sha256│ └── sha256

│ ├── 087a57faf9491b1b82a83e26bc8cc90c90c30e4a4d858b57ddd5b4c2c90095f6│ ├── 087a57faf9491b1b82a83e26bc8cc90c90c30e4a4d858b57ddd5b4c2c90095f6

│ ├── 0c1db95989906f161007d8ef2a6ef6e0ec64bc15bf2c993fd002edbdfc7aa7df│ ├── 0c1db95989906f161007d8ef2a6ef6e0ec64bc15bf2c993fd002edbdfc7aa7df

│ ├── 2696f7292a958d02760e3a8964e554a3a6176fb7e04fc66be8760b3b05cbe65b│ ├── 2696f7292a958d02760e3a8964e554a3a6176fb7e04fc66be8760b3b05cbe65b

│ ├── 54f7e8ac135a5f502a6ee9537ef3d64b1cd2fa570dc0a40b4d3b6f7ac81e7486│ ├── 54f7e8ac135a5f502a6ee9537ef3d64b1cd2fa570dc0a40b4d3b6f7ac81e7486

│ ├── 5d71636fb824265e30ff34bf20737c9cdc4f5af28b6bce86f08215c55b89bfab│ ├── 5d71636fb824265e30ff34bf20737c9cdc4f5af28b6bce86f08215c55b89bfab

│ ├── 734ee16af2dd89c09a46ff408ffc44679aca2e1b8a10baec4febd9a7b6ac9778│ ├── 734ee16af2dd89c09a46ff408ffc44679aca2e1b8a10baec4febd9a7b6ac9778

│ ├── af2dafa4b223aa1ab6ca6f6c35c5fce093254602cff4b2a8429850764d533b29│ ├── af2dafa4b223aa1ab6ca6f6c35c5fce093254602cff4b2a8429850764d533b29

│ └── d6341e30912f12f56e18564a3b582853f65376766f5f9d641a68a724ed6db88f│ └── d6341e30912f12f56e18564a3b582853f65376766f5f9d641a68a724ed6db88f

├── index.json├── index.json

└── oci-layout└── oci-layout

2 directories, 10 files2 directories, 10 files

% find rust/ -type f | xargs file -z% find rust/ -type f | xargs file -z

rust/blobs/sha256/54f7e8ac135a5f502a6ee9537ef3d64b1cd2fa570dc0a40b4d3b6f7ac81e7486: POSIX tar archive (gzirust/blobs/sha256/54f7e8ac135a5f502a6ee9537ef3d64b1cd2fa570dc0a40b4d3b6f7ac81e7486: POSIX tar archive (gzi

rust/blobs/sha256/d6341e30912f12f56e18564a3b582853f65376766f5f9d641a68a724ed6db88f: POSIX tar archive (gzirust/blobs/sha256/d6341e30912f12f56e18564a3b582853f65376766f5f9d641a68a724ed6db88f: POSIX tar archive (gzi

rust/blobs/sha256/087a57faf9491b1b82a83e26bc8cc90c90c30e4a4d858b57ddd5b4c2c90095f6: POSIX tar archive (gzirust/blobs/sha256/087a57faf9491b1b82a83e26bc8cc90c90c30e4a4d858b57ddd5b4c2c90095f6: POSIX tar archive (gzi

rust/blobs/sha256/5d71636fb824265e30ff34bf20737c9cdc4f5af28b6bce86f08215c55b89bfab: POSIX tar archive (gzirust/blobs/sha256/5d71636fb824265e30ff34bf20737c9cdc4f5af28b6bce86f08215c55b89bfab: POSIX tar archive (gzi

rust/blobs/sha256/0c1db95989906f161007d8ef2a6ef6e0ec64bc15bf2c993fd002edbdfc7aa7df: POSIX tar archive (gzirust/blobs/sha256/0c1db95989906f161007d8ef2a6ef6e0ec64bc15bf2c993fd002edbdfc7aa7df: POSIX tar archive (gzi

rust/blobs/sha256/734ee16af2dd89c09a46ff408ffc44679aca2e1b8a10baec4febd9a7b6ac9778: POSIX tar archive (gzirust/blobs/sha256/734ee16af2dd89c09a46ff408ffc44679aca2e1b8a10baec4febd9a7b6ac9778: POSIX tar archive (gzi

rust/blobs/sha256/af2dafa4b223aa1ab6ca6f6c35c5fce093254602cff4b2a8429850764d533b29: JSON datarust/blobs/sha256/af2dafa4b223aa1ab6ca6f6c35c5fce093254602cff4b2a8429850764d533b29: JSON data

rust/blobs/sha256/2696f7292a958d02760e3a8964e554a3a6176fb7e04fc66be8760b3b05cbe65b: JSON datarust/blobs/sha256/2696f7292a958d02760e3a8964e554a3a6176fb7e04fc66be8760b3b05cbe65b: JSON data

rust/oci-layout: JSON datarust/oci-layout: JSON data

rust/index.json: JSON datarust/index.json: JSON data

J’accuse! There are our tar archives, and you’ll notice that there’s one for each
layer. There are also some JSON blobs, which aren’t really of interest to us here.
There is also another important point to notice – OCI images use a content-
addressable store as their backbone storage mechanism (index.json is an “entry
point” to the store – and is what contains the tags in most cases).

It should also be noted that OCI images all use “smart pointers” (that is, “pointers”

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

3 of 19 3/3/20, 9:12 AM

which contain the content-addressable digest of the target as well as its media-type
and size) which you can see in index.json :

% jq '.manifests[0]' rust/index.json% jq '.manifests[0]' rust/index.json

{{

 "mediaType": "application/vnd.oci.image.manifest.v1+json", "mediaType": "application/vnd.oci.image.manifest.v1+json",

 "digest": "sha256:2696f7292a958d02760e3a8964e554a3a6176fb7e04fc66be8760b3b05cbe65b", "digest": "sha256:2696f7292a958d02760e3a8964e554a3a6176fb7e04fc66be8760b3b05cbe65b",

 "size": 1146, "size": 1146,

 "annotations": { "annotations": {

 "org.opencontainers.image.ref.name": "latest" "org.opencontainers.image.ref.name": "latest"

 }, },

 "platform": { "platform": {

 "architecture": "amd64", "architecture": "amd64",

 "os": "linux" "os": "linux"

 } }

}}

These facts will become important later, when we talk about a new container image
format that is built on top of the OCI content-addressable store (smart pointers and
the ability to add new media-types will help us out).

As an aside, if you’ve ever wanted to know what the best container image format is,
the short answer is basically “none of them”. The problem is that almost all of them
have nice features that the others could really use, but because everyone wants to
work on their own thing there’s much less cross-pollination than you’d like. Examples
of such features include LXC’s templates, OCI’s content-addressability, or AppC’s
dependencies.

What Has [Tar] Done For Us Lately?
tar is a very old format, having been born within the original Unix source, and thus
there is a lot of history within it. And, to no-one’s surprise, it’s a pretty ugly format in
many ways. It simply doesn’t match what we need in a container image format, and I
would argue it barely matches what most people today need in an archive format
(though that’s out-of-scope for now).

Now, don’t misunderstand what I’m saying – my point here is not “it’s old, so it’s bad.”
tar is the obvious choice for an archive format, due to its long history and ubiquity,
and writing a custom format with no justification would be a borderline reckless thing
to do. However, tar ‘s history is important to understanding how it got to the state it’s
in today. This section will be quite long-winded (there’s forty-something years of
history to distil into a single blog post), but you can skip to the end.

This is not necessarily a new idea or argument, other folks have voiced similar
concerns. I’m hoping that I can provide a cohesive overview of both tar ‘s generic
issues as well as how its usage is even worse in the context of container images.

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

4 of 19 3/3/20, 9:12 AM

The full history lesson is a bit long (and probably something I’m not qualified to give)
so I’ll just give you the highlights – if you’d like more in-depth information you can
always take a look at pax(1) , tar(5) , star(5) and the GNU tar internals
documentation. This OCI PR discussion is a good example of how much back-and-
forth can come about when discussing what an image specification “really means”
when it says “ tar ”.

Genesis

tar first originated in Unix v7. Curiously, it was not the first archiving tool available
for Unix. tar was a successor to tp (Unix v4), which itself was a successor to tap
(Unix v1). As a complete aside, this appears to be the reason why tar accepts
dash-less arguments (such as tar xvf). Unix v1 didn’t have dashed argument flags
like -xvf (as far as I can tell from the man pages), and tar appears to have been
backwards-compatible with tp (which was backwards-compatible with tap).
Therefore the most likely reason why tar supports dash-less arguments is because
some folks in the 70s wanted to be able to alias tap=tp tp=tar and it’s stuck ever
since. This should tell you what the primary theme of these history sections will be.

But that’s all besides the point. tar was introduced in Unix v7, as a format for storing
data on tape archives. It didn’t support compression. It didn’t even contain a magic
header (so file foo.tar couldn’t always tell you the file type). The design of the
format was very simple, with fixed-length (512-byte) headers that contained all the
information you might expect (file name, a single-byte “entry type”, length, mode,
owner, modified time, and so on). If there was a non-zero length then it was followed
by the contents of the file. This basic structure of tar archives has been retained
over the past 40 years.

To say that the format was strangely designed would be an understatement. First of
all, all of the numerical values were stored in octal ASCII – which artificially limited
the maximum entry size to about 8GB. In addition, symlinks (and hardlinks) were
handled by storing the “link name” in the fixed-length header – resulting in each
header containing 100 NUL bytes unless it was a symlink or hardlink. Obviously the
pathname was restricted, but the restriction was exceptionally peculiar – rather than
restricting the total pathname to 255 bytes, they restricted the basename of the path to
100 bytes and the dirname to 155 bytes (meaning that long dirnames and long
basenames were both forbidden needlessly – and strangely tar calls dirname
“prefix”). Curiously, the final 12 bytes of this 512-byte header remain unused in any
standard to this day (it has been used by Solaris’s tar as well as star , but these
are extensions).

Very soon, people started extending the original tar. The history of this is quite

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

5 of 19 3/3/20, 9:12 AM

complicated, and tar definitely went through all of the Unix wars (in a way, it’s a
looking-glass for the history of Unix). Long before POSIX.1-1988 (which introduced
ustar) came around, there were a few competing implementations. Solaris’s tar ,
FreeBSD’s bsdtar , GNU’s tar , and Jörg Schilling’s star are the most notable.
There was some cross-over between these different implementations, but eventually
you ended up with a hodgepodge of different tar -like archive formats (usually the
same feature was re-implemented in different ways by different implementations).
And, at the request of users, most of tar implementations were forced to become
somewhat interoperable with all of these other formats.

It’s important to keep in mind where tar comes from to understand why its use is no
longer reasonable.

The [Extension] Wars

Before we get into the flurry of extensions (and POSIX’s inability to contain them), I
should probably explain how you might extend a tar archive. I mentioned above that
each tar header contains a one-byte “entry type”. This is the primary way that
extensions operate. All of the built-in entry types were ASCII decimals (with the
exception of an ordinary file which could be represented either as a NUL byte or as
'0'). Before POSIX.1-1988, this was essentially a free-for-all, with various vendors
coming up with their own custom header extensions as well as creating their own
wacky entry types. It was definitely a fun time.

The most obvious things to extend should be pretty apparent – the limited size as
well as pathname restrictions. GNU tar partially fixed the size problem by storing
size in “base-256”, and created special “long name” entry types that allowed you to
have files (and links) with arbitrarily long pathnames. Sparse file support was added
too, with varying degrees of support by other implementations (recall that
interoperability requires everyone else to implement your special feature too).

Then the push for a “standard Unix for the masses” came along in the form of POSIX
and the eventual release of the first edition of the standard, POSIX.1-1988. And tar
was included as part of this specification, with a new format called ustar (Unix
Standard TAR) that was meant to be the one format to rule them all. Unfortunately
(like most things in POSIX) there was a need to placate every Unix vendor, and so
the specification was incredibly generic and basic in terms of the features it defined.
Most of the core properties of tar were unchanged, though some quite important
changes were made. For instance, POSIX.1-1988 requires all ustar archives to set
ustar\0 as the magic field (and to add an empty header with just magic set to
ustar\0 at the beginning of the archive) so that tools like file can actually reliably
recognise ustar archives (as I mentioned above, before this change, there was no

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

6 of 19 3/3/20, 9:12 AM

reliable way of detecting whether something was a tar archive).

Unfortunately, one of the largest problems with tar compatibility was left woefully
underspecified in POSIX.1-1988’s ustar – how extensions should be handled
between vendors. This was an issue that had caused lots of compatibility troubles in
the past because implementations couldn’t recognise that the strange header they’re
parsing was actually a foreign extension they didn’t support). The only “extension”
handling that was provided by POSIX.1-1988 was that vendors could use any upper-
case letter (all 26 of them) to store their own implementation-defined extensions and
headers. After all, who would need more than 26 extensions – right?

Unsurprisingly, this didn’t help resolve the issue at all. GNU, Solaris, star , and
several others started using up this very limited namespace for a variety of their own
extensions. As I mentioned above, file names and link targets were hideously
restricted in length, and so GNU used L and K (not to mention their previous usage
of N in the old GNU format) for this purpose. And so the namespace became
saturated with all of these different extensions, with people being worried about
conflicts between different implementations – a rather odd example is that the
“POSIX.1-2001 eXtended” format uses X as an extension header, despite this
header having been used by Solaris for a very long time. Another quite problematic
conflict is that both GNU tar and star used S to represent sparse files, but had
slightly different semantics which usually ended brilliantly. So everyone went back to
supporting everyone else’s extensions to keep users happy, and POSIX pretty much
sat on their hands in this department until 2001.

Interestingly, as far as I can tell, we never actually used up all 26 extensions slots.
But there were still a bunch of conflicts within the slots that were used (such as S
sparse file support). I guess you could argue this is a side-effect of the Birthday
“Paradox” or we’re just really bad at sharing resources between different
implementations.

PAX: A New [Standard]

In 2001, POSIX declared that enough was enough. It was clear that ustar hadn’t
solved the issues that they’d hoped to solve (vendor compatibility and modernising
the Unix v7 tar format). In addition, the tar vs. cpio war hadn’t fizzled out – and
POSIX wanted to have One Format To Rule Them All™. So POSIX.1-2001 scrapped
cpio and ustar and came up with a new format, called PAX (apparently “pax” is
meant to to be a pun, since it means “peace” in Latin – and the intention of PAX was
to bring peace between the tar and cpio camps).

PAX is effectively ustar but with a series of extensions that they hoped would
alleviate some of the issues that weren’t fixed by ustar . While POSIX might refer to

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

7 of 19 3/3/20, 9:12 AM

PAX as being a different format from tar , when someone these days uses the word
“tar” they usually are referring to PAX. The only thing PAX stole from cpio is its
lovely command-line argument design in the POSIX-defined tool pax (which was
meant to replace the need for tar and cpio – though of course tar just ended up
supporting PAX, cpio is still alive and kicking, and almost nobody has even heard of
pax).

The primary extension was the addition of “pax Header Blocks”, which is a pair of
new entry types that allow for key-value metadata to be applied for a given ustar
entry (x applies it to the next entry, while g applies the metadata to the entire
archive and must appear at the start of the archive). The metadata is stored as the
“file contents” of the entry, with each key-value mapping being stored as key=value
(separated by NUL bytes). A variety of keywords were defined as part of PAX, which
deprecated older vendor extensions (examples include long names with path and
linkpath , large file sizes with size , as well as support for custom text encodings
with hdrcharset and charset). Interestingly, pre-PAX there was no standard way to
represent the atime or ctime of a file since the Unix v7 header only had a field for
mtime . PAX “resolved” this issue for the most part, though see the next section for
more details.

Another interesting extension was to add an end-of-archive delimiter, which is two
empty 512-byte headers (meaning all PAX-compliant tar archives have a 1K blank
footer).

For extensions they decided to create a much more fully-fledged extension system
than existed in ustar . Keeping with the theme of “uppercase ASCII is vendor space”,
they allowed vendors to use keywords in the form <VENDOR>.<keyword> (with <VENDOR>
being a vendor-specific name in all-caps). This opened the door to arbitrarily many
vendor-specific extensions – with each vendor using their own namespace! This is
nice, though as we’ll see in a minute, it did come with some downsides.

All-in-all, PAX was a fairly large improvement to tar . They standardised some things
vendors had been doing for a while, but unfortunately (like all POSIX standards)
there were several things that were left under-specified. Extended attributes is the
most obvious example, as well as how to handle new file-types (other than just doing
it the old-fashioned ustar way).

The [Extensions] Strike Back

With POSIX.1-2001 and PAX, surely we’re all done and there’s nothing left for
vendors to extend, right? Oh my sweet summer child, if only that were the case. To
cut the vendors some slack (especially Jörg Schilling’s star , where most of the work
on sane extensions has happened), PAX simply didn’t specify enough things to be

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

8 of 19 3/3/20, 9:12 AM

usable as an archive format on modern Unix-like systems. So extensions were
necessary, and this time folks weren’t limited to just 26 extension slots.

star has an enormous number of extensions, many of which I won’t get into here
because most of them are exceptionally niche and you probably aren’t interested. But
there are a few important ones we should quickly discuss.

Extended attributes are an absolutely awful beast, and tar makes it even harder to
actually use them. First of all, not all Unix-like systems have the same ideas of what
an extended attribute is (since it’s – surprise – not defined in POSIX and yet
everyone has their own flavour of it). This automatically makes it ludicrously hard to
support them in the first place, but then you get into how the support actually turned
out – and that’s a whole different flavour of trash-fire.

There are five different extensions for storing them. The BSDs use
LIBARCHIVE.xattr.<name>=<value> and star uses the very similar
SCHILY.xattr.<name>=<value> (though only libarchive supports binary extended
attributes using HTTP-style % -encoding). Apple’s tar is really out there and uses a
special “resource file” with ._ prefixed to the basename of the file in question, which
contains some Apple-specific magic that is used to represent extended attributes.
AIX tar uses the E typeflag – because it was added during the pre-PAX days, as
does Solaris (though of course, it’s done incompatibly). If you’re confused, don’t
worry – so is everyone else.

Another related problem to extended attributes is “POSIX” (it was never in an actual
standard) and NFSv4 ACLs. On Linux, NFSv4 ACLs are represented as extended
attributes, which is a really fun time. I won’t get too far into ACLs, since you rarely run
into them. But in short, star has a lot of extensions for NFSv4 ACLs and
POSIX.1e-2001 ACLs are fairly complicated, to say the least. Again, there are
incompatibilities between different implementations.

There are some forms of extended metadata that most people forget exist, like
chattr(1) “file attributes”, which are not even included in most vendor
implementations (star uses SCHILY.fflags). Yet again, this is another case of an
extension that wasn’t widely supported (GNU tar doesn’t support this metadata type
at all, as far as I can tell).

Another problem that arose out of the current extension hell is that you can have files
that use different extensions for the same tar entry (not all extensions support
everything you might want – so you need to mix-and-match for some cases). This
massively increases the complexity of most tar implementations (and some
implementations like Go’s archive/tar are still struggling with it).

I could go on with the countless extensions and problems that arise form them, but

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

9 of 19 3/3/20, 9:12 AM

I’m sure I’m boring you by now. The key take-away is that these extensions have all
resulted in the same interoperability issues as the past, and in quite a few cases
vendors re-invent each others’ extensions (because they need them, POSIX doesn’t
provide them, so they end up NIH-ing them).

Where Are We Today?

As a result, these days when you refer to tar you are actually referring to a
collection of different formats that have been re-implementing each others’
extensions slightly differently for decades. And while PAX, star , BSD tar , and GNU
tar are all mostly interoperable there are decades worth of legacy powering this
whole ship.

Examples of where issues like this crop up are Go’s archive/tar library that now has
a deceptively simple-looking Format attribute which allows you to forcefully select a
tar format to use (if you don’t explicitly use GNU or PAX then the atime and ctime
will not be included in the archive). Furthermore, recent Go versions have changed
the default output of archive/tar in ways that are new readings of the PAX
specification. To put it simply, tar is what most implementations seem to support
(which is usually PAX-plus-extensions) – and that’s not a really good bedrock to use
for a new standard (as I mentioned before, even agreeing on “what is tar ” can be
difficult).

I will admit that I enjoy using tools that were written long before I was born (since I’m
actually a huge critic of almost all NIH projects), but you should ask whether you are
reaching for a tool out of familiarity or because you earnestly believe it is the best
tool for the job.

But What Practical Issues Are There?
All of this history might be interesting (well, to me at least), but it’s hardly a reason to
not use a format right? Any old format will have similar growing pains, and given the
ubiquity of tar it seems fairly drastic to not use it just because it’s old. Unfortunately
there are a whole host of practical problems with tar for container images, which
can be found by looking at what we might want in a theoretical container image
format. Here is the list I have, and will be working through:

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

10 of 19 3/3/20, 9:12 AM

Machine-independent representation.
De-duplication (both transfer and storage).
Parallelisable (both transfer and extraction).
Sane handling of deleted files.
Reproducible, with a canonical representation.
Non-avalanching.
Transparent.

For each of these, I will go into some depth what they mean and how tar -based
container images cannot provide them to a degree that is satisfactory. It might be a
bit of a long ride, but I hope that this will help explain why tar is fundamentally not a
good match for this problem. It might be possible to modify tar beyond recognition,
but then the only benefit of tar (it’s ubiquity) is lost because we’ve just created an
incompatible variant of tar . In fact (as we’ll see in a minute), container images
already are incompatible variants of tar when you look at how white-outs work!

Machine-Independent Representation

Specifically, it should be possible to create a container image on any given machine
and it should work on any other machine. In fact, ideally you would hope that
machine-specific configurations shouldn’t affect the container image’s creation and
all machines should be able to equally use the image regardless of their machine-
specific configuration. The latter statement is more general and is harder to get.

Arguably, this is something that tar was designed for. And so it does quite well here
– most machine-specific things (inode numbers, filesystem-specific layout
information, and so on) are not embedded into tar archives. Similarly, extraction of
a tar archive is the same regardless of filesystem.

So, we’re all good – right? Unfortunately no. While tar does quite well here, you can
run into a variety of issues very quickly.

First of all, tar archive entries can be put in any order and it’s still semantically the
same tar archive. This is a problem for reproducibility but let’s deal with that later. In
the context of machine-independence, the ordering of a tar archive’s entries can be
impacted by the filesystem used. In particular, the ordering of directory entries in
readdir(3) is dependent on how the filesystem stores directory entries. Many
container image implementations sort them in user-space in an attempt to get
around this problem, but most tar implementations do not. Thus, to preserve
ubiquity we must admit that tar can result in this type of change based on host-
specific conditions. Extraction is unaffected by this, but it harms reproducibility.

In addition, extended attributes (xattrs) are a real pain. Their ordering in

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

11 of 19 3/3/20, 9:12 AM

llistxattr(2) is also completely filesystem-dependent and will affect how they are
ordered in the tar archive (not to mention there are several ways of representing
them). There are several other problems with xattrs , which I will expand on in
reproducibility.

All-in-all though, tar does pretty well here. Too bad this is the only section where
that’s the case.

Lack of De-duplication

De-duplication is pretty important for container images, because without it we might
as well be shipping around a rootfs archive for the entire image each time (this is
actually want LXD does – though with a bit more care).

It should be noted that I’ve separated de-duplication into two forms, since there is a
clear difference between not having to re-download bits that you already have
(transfer de-duplication) and saving disk space when the image is on-disk and in-use
(storage de-duplication). Ideally our format should help us with both problems, but
different users care about one more than the other (depending on what they are
optimising for).

To put it bluntly, tar archives provide no standard method of de-duplication and in
fact almost encourage duplication on every level (and the extensions that add de-
duplication won’t help us). tar archives have no internal de-duplication other than
hard-links which are not really a form of de-duplication within our format because
they require the on-disk image to be using hard-links.

What we’re really talking about here is how tar layers operate with regards to de-
duplication. And to be honest, tar layer-based de-duplication is effectively useless
outside of the FROM <foo> flow of Dockerfiles. Updating a base image requires you to
re-download the whole thing and store it entirely separately. If only a single byte in a
single package has changed, that’s tough – you just have to re-download and store
another 50MB. That’s just awful, and has resulted in a lot of folks moving to smaller
container images (which is a mistake in my opinion – distributions serve a clear
purpose and hacking away bits of a distribution image or switching to a niche
distribution shouldn’t be done lightly).

In addition, there are many places where duplication is rampant:

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

12 of 19 3/3/20, 9:12 AM

If you modify the metadata or bit-flip a large file in a lower layer, the next tar layer
has to include the entire file contents. tar doesn’t have metadata or partial-
content entries. Solaris had an extension for it called LF_META , but see my above
rant about extensions. star also has a similar (but incompatible) extension using
PAX’s keywords with SCHILY.tarfiletype=meta , and the same rant applies.
If you delete a file, then a “white-out” needs to be stored in the next layer (which is
effectively a tombstone) – meaning that removing a file increases the size of
our image. As an aside, this tombstone actually means that standard tar
implementation will not be able to correctly extract a container image (we’ve
already forked from standard tar). A very fun restriction added by these
tombstones is that you cannot have a container image that has a file containing a
.wh. prefix. I will go into more detail about white-outs in a later section.
If you create a hardlink to an existing file in a previous layer, in order for the new
layer’s tar archive to be valid you need to copy the original file into the new tar
archive as well as add the hardlink entry (tar archives have hardlink entries which
just store the target of the link). This is fairly expensive duplication (especially if the
file is large) and can’t really be fixed without generating archives that are no longer
valid and self-contained. Hardlinks are also a pretty large pain in the tar format
anyway, but I won’t get into that much here.

And while you do get layer de-duplication because layers are content-addressable,
the layers themselves are so fragile (a single bit-flip makes the entire layer hash
different) that you end up with very little practical de-duplication (of transfer and
storage).

Lack of Parallelisable Operations

Given that our machines have the ability to multi-task, it’d be nice if we weren’t bottle-
necked on many image operations. In particular, transfer and extraction (taking the
image from it’s OCI representation and actually putting into a storage driver) are very
important to parallelise if possible.

A single tar archive cannot be extracted in parallel without a single linear pass (to
figure out where the headers start) since tar archive entries are header-followed-by-
content based. Adding an index might help with this, but requires adding more out-
of-spec things to our tar -like format. There are some other tar forks that have
indexes, but as you’ll see in a second we’d need something a bit more complicated.

But what about extracting layers in parallel? I’m sure I’m not the only person who has
been frustrated that a lot of the time spent on getting a cold-start container to run is
in extracting the image. There are a few problems with extracting tar layers in
parallel (though it actually could be possible to do, it would just be quite difficult
without more extensions). Since two layers can contain the same file but with
different contents (which means that the file is extracted twice), and you have

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

13 of 19 3/3/20, 9:12 AM

“white-outs” to deal with (which means that the file is extracted and immediately
deleted) you can’t just extract them all concurrently. You could be more clever about
it by extracting them in parallel and making sure that earlier layers don’t overwrite
later ones. But you’re still subject to races (which would decide whether or not you
extract the same file more than once) as well as making extraction code quite
complicated (figuring out whether two non-existent paths refer to the same file would
be a “fun” exercise, as well as dealing with hard-links and the like).

The obvious solution would be to add an index on the whole-image level which tells
you what paths are present in each archive (and where their header offset is). There
is a slight problem with using the header offset – the PAX extension headers (x and
g) can scattered throughout the archive, and you need to know their values when
interpreting a tar header. Which means you have to store the whole header once
parsed, and then you can use the content offset to extract everything in parallel
(since you know which layer has the latest copy of the file). Unfortunately we’ve just
out-sourced the header information to a separate index, and the archives are now
just being used as content stores – which means we’ve invented our own format that
uses a stunted form of tar . All of this work and gymnastics for no good reason.

In addition, most container images use compressed tar archives. A compressed
archive cannot be seeked without extracting everything before it, making partial
extraction (or other such partial operations) needlessly expensive. Duplicity hit this
problem, and the only way of solving it is to make compression happen underneath
the archive format (not above it, as is the case with tar+gzip).

Insane Handling of Deleted Files (White-outs are
Awful)

This issue is an overlapping of a few other issues such as de-duplication and
parallelisation, but is specifically focused on deleted files and white-outs because
they deserve extra-special attention.

Because it’s possible for a file to be deleted in a layer, it’s necessary to be able to
represent this in a tar archive. And immediately we’ve hit a barrier – tar doesn’t
support this concept at all. So it’s necessary to have some kind of extension for it.

In order to support deleting files in layers, the OCI image format adopted AUFS’s on-
disk format (the reason for this is historical and is because Docker baked the AUFS
on-disk format into their image format since it was the only storage driver they
supported originally, and this has been carried into the OCI as legacy). Deleted files
(and directories) are represented as an empty regular file (known as a “white-out”)
with .wh. prepended to their basename . Aside from being incompatible with other tar
implementations (which will just extract the weird .wh. file without knowing what it is)

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

14 of 19 3/3/20, 9:12 AM

it also means that you cannot include a real file with a prefix of .wh. inside any OCI
image. Personally, I think embedding AUFS’s format was a fairly big mistake but
we’re stuck with it for now. There are other ways of dealing with deleted files, but they
all have similar problems with interoperability:

Using SCHILY.filetype=white-out is possibly the best solution, since it’s already
used by BSD and exists specifically to represent opaque directory entries created
through BSD’s mount_unionfs . However it is a star -only extension, and arguably
would be somewhat lying about the source of the filesystem being from a BSD
mount_unionfs (though it would probably interoperate just as well with star).
Using a special entry type that we create ourselves. If an implementation sees our
white-out entry type, they will at least have an opportunity to fail loudly (which is
somewhat better than the fail-silent .wh. approach we have right now). But
obviously most implementations won’t support our special white-out entry type,
breaking interoperability.
Having an external deleted file list. This is nice because it doesn’t require touching
the tar format, but it comes with the downside that the archives no longer fully
describe the root filesystem (and users have to be aware of this because it no
longer is just “good old tar ”). If we have to supplement tar to make it work, why
still use tar ?
Copying the representation that Linux’s overlayfs uses, which is to use device
number {0,0} for non-directories and the xattr overlay.opaque=y for directories.
The main problem with this is that it is repeating the AUFS mistake again by
baking a particular overlay filesystem’s representation of white-outs into a format –
as a result it won’t be interoperable. Not to mention that if you wanted to store a
real overlayfs directory inside a container image you wouldn’t be able to (because
on extraction there would be no way of telling if the white-outs are meant to be
inside the image or are the image’s own white-outs). In addition, overlayfs has
changed their white-out format in the past, so baking it into our format seems like
a bad idea.
Creating our own fake xattr (like opencontainers.whiteout=y) to represent all
white-out files. This is potentially better than copying overlayfs , as it means we
don’t need to worry about not being able to represent overlayfs directories inside
container images. It also doesn’t conflict with anything, because we invented it.
And (on Linux at least), the xattr namespaces are quite restrictive to write to and
I don’t think you could actually set opencontainers. xattrs on any Linux filesystem
(though on other operating systems this might be possible – which would lead to
issues of not being able to store any universal filesystem structure). The main
downside is that we are explicitly removing any chance of interoperability without
convincing other tar implementations to implement our weird format.

All of these are fairly disappointing solutions (though it is nice that star has
something we could re-use that is at least somewhat interoperable). This is a direct
result of trying to have a layered format built with another format that wasn’t designed
for layering. In addition, layering causes fun problems because the image history is
contained in the image. Embedding the history of an image in every image has

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

15 of 19 3/3/20, 9:12 AM

caused some security concerns in the past related to having build-time secrets that
would be included in layers and attempting to redact them by deleting them didn’t
remove them from the previous layers (something that is somewhat of a restriction
made by using tar layers, but is also more of a workflow issue).

Lack of Reproducibility and Canonical Representation

Reproducible builds have gotten quite a lot of hard work put into them in the past few
years. These days, a vast majority of the packages available in distributions are built
bit-for-bit reproducibly – which is an astonishing achievement (and allows for far
more independent verification of binaries). It would be fairly self-defeating if the
packaging format we use for containers wasn’t also reproducible. Not to mention that
reproducible images would mean that two image generators that have never
communicated could benefit from de-duplication. You could reproducibly create a
distribution image yourself (using the distribution’s build scripts and sources), and
still be able to de-duplicate with it! A canonical representation is very important in
order to make sure that all image generators will always produce reproducible
representations of the image (any lee-way will allow for dissonance). Not to mention
that you could now verify distribution images in more ways than currently available
(such as adding your own extra verifications during image build and verifying that the
final image is identical to the distribution one).

Due to a large variety of reasons, tar archives are practically impossible to
reproduce effectively. While there is no technical reason why they are hard to
reproduce, there are a myriad of complications that make it difficult to reproducibly
create the same archive. There are projects which attempt to solve this problem, but
the fundamental issue remains (and tar-split only allows you to take an archive
and make it look like another version of itself if you have the pre-generated
metadata).

One of the most obvious problems (as mentioned in the machine-independent
section) is that you can re-order archive entries without issue. This results in trivially
different representations, and without a canonical representation they’re all as good
as one another (most implementations end up storing them in the order given by the
filesystem).

The other really obvious problem is that different extensions overlap significantly,
resulting in there being many different ways of representing (with different
extensions) things not available with the base tar format. Examples include long
path names, or new file types. Compounded with no canonical format (and that
different tar generators and consumers having differing levels of support for mixed
extensions in the same archive), you end up with a real mess and the same
filesystem having many different representations.

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

16 of 19 3/3/20, 9:12 AM

Extended attributes are a really bad problem, on many levels (to the point where I
could make a whole blog post just about that). As I mentioned in the history of tar ,
there are five different extensions for storing them. This means that an
implementation could use any of them and still be a valid tar archive – furthering
the canonical representation problems.

Then you have how languages treat xattrs . Since they’re basically a key-value store
for metadata almost every library developer thinks they should be stored in hash
tables. This means that their iteration order is randomised. Which means that the
output archive has random xattr order and thus is not reproducible and has no
canonical format. Many languages also incorrectly assume that xattrs can only
contain valid UTF-8 (or ASCII) strings – this is also false, they can contain arbitrary
binary data. I have yet to see a tool that handles this correctly. Also empty xattrs
are entirely valid, but PAX doesn’t allow them – so there are valid filesystems that
cannot be represented with tar (aside from the .wh. problem I outlined earlier).
How awesome is that!

But my favourite thing is that a given tar implementation can start producing
different archives between versions, for any variety of reasons. With Go, there were a
series of releases where each one changed the default output of the built-in
archive/tar library. It got so bad I had to add regression tests for the language in
umoci. And all of this is possible because there is no defined canonical
representation of a tar archive and so library developers feel free (quite rightly) that
they can change the default output – it’s entirely our own fault we’re depending on it
not to change (there was even a proposal to randomise the output of archive/tar).

Avalanching

I’ve borrowed this term-of-art from cryptography. In this context, it means that a small
change in an image results in a disproportionately large change such that we need
to re-download or store much more data. This is slightly different from de-duplication
in that it’s about the way the format handles small changes rather than how we
handle similar data throughout all images (though a single solution can solve both
issues).

tar layers are avalanching by nature, because any change in a layer results in us
needing to download the whole thing all over again. I’m not sure it’s necessary to
elaborate this point, since I went over it in the de-duplication section.

Lack of Transparency

This last one is a fairly nebulous goal, and is one that will require quite a bit of
thought. Effectively the problem is that currently almost all techniques for finding

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

17 of 19 3/3/20, 9:12 AM

security vulnerabilities is to scan the filesystem. But distributions already know what
packages they have (and what security vulnerabilities were fixed in those package
versions). So why are we duplicating work – why can’t you just have a verifiable
manifest of the packages in an image?

In the Open Build Service we have this, though it’s only used internally so that OBS
knows when to re-build a container image (if any of the packages in the image are
updated in the dependency tree). However, this information would be useful to more
than just distribution folks – the security status of packages is something that
distributions and distributions alone know for sure.

In this case, tar doesn’t make things easier or harder for us. Transparency needs to
be added as a manifest on top (though tar archives might make verification of the
manifest harder, since they need to be extracted in-memory and also the format is
opaque to the OCI image archives). With a less opaque format, it might be possible
to make it easier to verify that a particular package is verbatim present and that the
manifest is complete.

I’ll be honest, my current ideas for how to solve this issue are quite primordial
(compared to my solutions for the other issues I’ve listed). I believe my new format
idea could help make this easier, but it will still require a fair bit of work (ideally a
Merkle tree would allow us to combine the filesystem tree of packages and verify that
a package is present fairly trivially, but doing so would compromise the canonical
representation goal). I’m still thinking on how this particular issue can be solved.

How Do We Get It?
I’m afraid to find that out, you’ll need to wait until the next instalment. I hope to get it
complete in a few weeks (I was hoping to have a PoC available with the next
instalment but that’s just a silly goal at this point).

If you want a taste though, the general idea is that we can resolve most of the issues
I’ve listed and gain most of the properties we want by creating our own format that is
built on top of the OCI content-addressable store, and is a Merkle tree with content-
defined chunking of file contents. The basic idea is very similar to backup tools like
restic or borgbackup. Since OCI has smart pointers, we can define a few new media-
types, and then our new format would be completely transparent to OCI image tools
(as opposed to opaque tar archives).

But you’ll learn all about that next time. Thanks for reading, and happy hacking!

Unless otherwise stated, all of the opinions in the above post are solely my own and do not necessary represent
the views of anyone else. This post is released under the Creative Commons BY-SA 4.0 license.

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

18 of 19 3/3/20, 9:12 AM

Want to keep up to date with my posts?
You can subscribe to the Atom Feed.

normal

The Road to OCIv2 Images: What's Wrong with Ta... https://www.cyphar.com/blog/post/20190121-ociv...

19 of 19 3/3/20, 9:12 AM

