
Early Draft: Breaking Client and Server Authentication
through TLS Resumption across Hostnames

Erik Sy
University of Hamburg

ABSTRACT
KEYWORDS
ACM proceedings, LATEX, text tagging

1 INTRODUCTION
2 BACKGROUND
In this section, we describe the TLS 1.3 0-RTT connection establish-
ment and its known security limitations. Subsequently, we review
the mechanism of TLS Client Certificate Authentication.

2.1 TLS 1.3 0-RTT Handshake
We begin this section by describing the protocol flow of the TLS 1.3
0-RTT connection establishment. Subsequently, we review known
security limitations of this resumption handshake.

Protocol Flow. This TLS handshake allows a client to send en-
crypted application data without waiting for the server’s response.
To successfully establish TLS 1.3 0-RTT connections, the client and
server exchanged prior to this handshake a symmetric pre-shared
key (PSK). Figure 1 shows a schematic of this handshake where
encrypted data are highlighted in grey. To begin with, the client
sends its ClientHello message. Furthermore, the client signals its
intention to directly send encrypted application data using the
EarlyData extension. The application data are encrypted with a
previously retrieved pre-shared key and a reference to this used
key is provided in the PSK extension. Upon receiving the client’s
messages, the server retrieves the referenced pre-shared key and
decrypts the presented application data. The Server responds with
a ServerHello message containing the PSK and EarlyData extension
to signal successful decryption of the received application data. In
resumption handshakes, the peers authenticate each other based
on their capability to decrypt/ encrypt data with the secret PSK.
Thus, compared to an initial handshake the peers do not use certifi-
cates in the authentication process. To validate the integrity of the
exchanged messages, the server provides hashes of the exchanged
messages within its encrypted Finished message. Moreover, the
server can start sending encrypted application data. Subsequently,
the client indicates with the EndOfEarlyData message, that it stops
using the PSK to send encrypted data. Then, it validates that the
exchanged messages were not tampered with using the server’s
Finished message. Finally, it provides its own Finished messages to
the server and connection establishment is completed.

Know Security Limitations. The TLS 1.3 0-RTT handshake does
by design neither provide forward secrecy nor protect against re-
play attacks for application data encrypted under the PSK [1]. For-
ward secrecy describes the property of secure communication pro-
tocols, that compromised long-term key material does not lead
to a compromise of the confidentiality of past sessions. In detail,

Client Server

ServerHello, PSK, EarlyData,
Finished, Application Data , ...

EndOfEarlyData, Finished ,

ClientHello, PSK, EarlyData,
Application Data , ...

Application Data

Finished, Application Data

Application Data

EndOfEarlyData, Finished

Figure 1: Schematic of the TLS 1.3 0-RTT handshake.

early application data sent by the client are only protected by the
PSK without forward secrecy. However, the optional inclusion of
a Diffie-Hellman key exchange within the 0-RTT handshake pro-
vides forward secrecy for application data encrypted after this key
exchange completed. RFC 8446 [1] describes several replay attacks
using 0-RTT data. The simplest attack assumes a network attacker
that duplicates a flight of 0-RTT data and sends them to the same
physical server. This attack can be prevented by ensuring that the
server accepts 0-RTT data at most once. Other replay attacks take
advantage of client retry behavior with the aim to provide multiple
copies of the same application message to the server. Note, that
this class of attacks cannot be prevented by TLS. Due to the limited
security guarantees of 0-RTT data, this handshake mode must not
be used by applications vulnerable to replay attacks [1]. As a re-
sult of this, TLS implementations deactivate the 0-RTT connection
establishment by default.

2.2 TLS Client Certificate Authentication
This type of TLS authentication is used to establish a secure and
trusted communication channel in both directions between a client
and server. Thus, this handshake requires both peers to present
proof for their identity during the mutual authentication. Use cases
include IoT devices where the server authenticates the client before
processing the provided requests/ data. Another use case presents
mobile banking apps which provide each installed app a unique
certificate for the purpose of client authentication.

The concept of Client Certificate Authentication (CCA) is sup-
ported by all TLS versions. Figure 2 provides a schematic of this
authenticationmechanism for the TLS 1.3 connection establishment.
In this schematic encrypted messages of the handshake protocol
are highlighted with grey color. The connection establishment is
initiated by the ClientHello message. The server responds with its
ServerHello message and its server certificate. To prove its owner-
ship of the private key belonging to the presented certificate, the
server uses this key to compute a fresh CertificateVerifiy message.

Erik Sy

Subsequently, the server is requesting the client to authenticate it-
self indicated by the CertificateRequest message. Then, it computes
the Finished message and optionally starts sending encrypted appli-
cation data. Upon receiving these messages, the client validates the
certificate presented by the server and the server’s ownership of
the corresponding private key using the obtained CertificateVerify
message. Next, the client provides its own authentication certificate
and uses the corresponding private key to generate a fresh Cer-
tificateVerifiy message. To detect modifications to the exchanged
messages, the client validates the received Finished message and
provides the server its own version of this message type. The server
can now authenticate the client using the presented client certificate
and CertificateVerifiy message. If this final validation is success-
ful, the peers have established a secure connection with mutual
authentication.

Client Server

Application Data

Certificate, CertificateVerify, Finished , …

ClientHello, ...

ServerHello, Certificate, CertificateVerify , ...,
CertificateRequest, Finished, Application Data

Certificate, CertificateVerify, Finished

Certificate, CertificateVerify
CertificateRequest, Finished, Application Data

Figure 2: Client Certificate Authentication in TLS 1.3.
In the case of resumption handshakes, the TLS 1.3 specification

explicitly does not permit the server to send a CertificateRequest
message. Thus, the client has to authenticate its identity via a
certificate only during a full TLS handshake. This practice assumes
that a client that resumes a connection to the TLS server enforcing
Client Certificate Authentication has been authenticated in this
way during a prior connection. This assumption will be exploited
in the following of this paper to circumvent TLS Client Certificate
Authentication.

3 ATTACK ON TLS CLIENT CERTIFICATE
AUTHENTICATION

In this section, we present a design flaw in TLS allowing an ad-
versary without valid credentials to establish a TLS session with a
server configured to conduct client certificate authentication. To
begin with, we introduce our attacker model. Then, we describe
the scenario leading to a successful circumvention of TLS Client
Certificate Authentication.

3.1 Attacker Model
We consider the following adversary. Our adversary has no con-
trol over the attacked TLS server and cannot break the deployed
cryptographic primitives. However, our attacker can learn whether
different hostnames served via TLS share a cryptographic secret
such as a session cache or Session Ticket Encryption Key (STEK)
that allows to mutually resume TLS sessions across theses identified
hostnames. To learn this information, the attacker may attempt to
resume a TLS session previously established towards one hostname

with a different hostname. Thus, our active attacker is capable to
modify the TLS messages exchanged during the handshake. In our
attack, we abstract the application layer on top of TLS. However, we
assume that our attacker is able to read andwrite requests/responses
using the deployed application protocol.

3.2 Attack Scenario
To be vulnerable against our attack, the victim TLS server must
support TLS session resumption mechanism. Note, that about 96%
of the TLS server hosting the Alexa Top Million Sites fulfills this
requirement [3]. As another precondition, the attacked host must
share its session cache or STEK across different hostnames. This
practice of TLS secret state sharing is also very common on the
web [4]. For example, CloudFlare uses a single STEK allowing the
resumption of TLS sessions between more than 60 000 hostnames
within the Alexa Top Million Sites [2].

Attacker a.com

Resumption ticket after handshake completion

ClientHello (TLS version ! {1.3, 1.2, 1.1,1.0})

b.com

Client Certificate
Authentication

Shared session
cache/ STEK

Resumption handshake reusing ticket from a.com

Handshake completion without requesting the client‘s certificate

Application data

Figure 3: Schematic of the attack on TLS CCA.

Figure 3 presents a schematic of the introduced attack on TLS
Client Certificate Authentication. Here, the TLS secret state is
shared between hostname a.com and b.com. Furthermore, b.com is
configured to validate the identity of its clients via Client Certificate
Authentication. The attacker starts by connecting to a.com, where
it is legitimate for the attacker to establish a TLS session. During
this session, the attacker receives a session resumption ticket. This
ticket can be used to resume the session with b.com because of the
secret state sharing between these hostnames. During this resump-
tion handshake with b.com, the server does not repeat the process
of client certificate authentication [1]. As a result, the attacker con-
nects to b.com without presenting client credentials. In a real-world
attack, the client can now use the established TLS session to retrieve
sensitive material from the server or apply illegitimate modifica-
tions to the server’s state. In total, this attack breaks the TLS design
goal of client authentication.

4 CONFUSION ATTACK USING EARLY DATA
The TLS 1.3 0-RTT handshake provides the option to send early data
before the connection establishment is completed. Thus, server-
and client-side applications may already process exchanged data
before it is validated that the exchanged messages are not tampered
with. In this section, we present a confusion attack against this
handshake design of TLS 1.3. We start by describing our attacker
model and subsequently introduce our attack scenario.

Early Draft: Breaking Client and Server Authentication
through TLS Resumption across Hostnames

4.1 Attacker Model
Our attacker has neither control over the client nor the TLS server.
However, the attacker is able to modify the exchanged packets
between client and server during transit. Moreover, we assume
that the attacker cannot break the deployed cryptographic prim-
itives. Furthermore, we suppose that the adversary is aware of a
shared secret TLS state such as a session cache between different
hostnames.

4.2 Attack Scenario
We consider the following scenario. Hostname a.com and b.com
support TLS 1.3 0-RTT handshakes and share their secret TLS state
with each other. Furthermore, we assume that these hostnames
return different results for the same client request. For example, if
the client provides two integer values to a.com, it will respond with
the sum of these values. However, providing two integer values to
b.com will return the difference between these values.

Client a.com

Resumption ticket after handshake completion

ClientHello (TLS 1.3)

b.com

Shared session cache/ STEK

0-RTT ClientHello with
early data towards a.com

Response on early data, ..., Finished

Handshake failure during
validation of server‘s

Finished message

Attacker

Content spoofing and forwarding
messages towards b.com

Figure 4: Schematic of the confusion attack using early data.
Figure 4 provides a schematic of the proposed confusion attack

using early data. Prior to the attack, the client retrieves resumption
ticket from one of these hostnames. Then, we assume that the client
wants hostname a.com to compute the sum of two presented inte-
ger values. The client attaches these values as early data within its
TLS 1.3 0-RTT resumption request and sends them towards a.com.
For some reason, the adversary wants the client to receive the dif-
ference of the provided values. Thus, it rewrites the server name
indication from a.com to b.com and forwards these modified packets
to b.com. Upon receiving these packets, b.com finds that it is able
to resume the TLS session and can decrypt the attached early data.
Subsequently, b.com computes the difference between the received
values and sends them along with further handshake messages to-
wards the client. The client forwards this first flight of data towards
its application layer before the handshake is completed. Thus, the
application layer receives the difference instead of the sum of the
provided integers. Upon validating the server’s Finished message,
the client learns that the messages have been tampered with during
transit because both peers observed different handshake messages.
This results in a handshake failure. However, the client processed
already data from the unauthenticated hostname b.com presenting
a violation of the TLS design goals.

A variation of this attack could use the client’s early data to
modify the state of the TLS server. In this scenario, the proposed
confusion attack would lead to a modification of the server state of
the wrong hostname.

5 IMPACT AND LIMITATIONS
Impact: Replay protections across hostnames, if TLS state is shared?

Limitations: Application layer authentication such as HTTPHost
Header, Cookies?

6 COUNTERMEASURES
Session resumption only to the same hostname of original session
(secure default) by including hostname of prior session in session
cache/ ticket-> Eventually breaks applications using resumption
across hostnames as performance optimization

Deactivate TLS state sharing or session resumption if early data
or Client Certificate Authentication is used -> Eventually perfor-
mance impact

7 RELATEDWORK
Selfie attack

HTTP Host Confusion Attack

8 CONCLUSION
REFERENCES
[1] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC

8446. https://doi.org/10.17487/RFC8446
[2] Drew Springall, Zakir Durumeric, and J. Alex Halderman. 2016. Measuring

the Security Harm of TLS Crypto Shortcuts. In Proceedings of the 2016 Inter-
net Measurement Conference (IMC ’16). ACM, New York, NY, USA, 33–47. https:
//doi.org/10.1145/2987443.2987480

[3] Erik Sy, Christian Burkert, Hannes Federrath, and Mathias Fischer. 2018. Tracking
Users Across the Web via TLS Session Resumption. In Proceedings of the 34th
Annual Computer Security Applications Conference (ACSAC ’18). ACM, New York,
NY, USA, 289–299. https://doi.org/10.1145/3274694.3274708

[4] Erik Sy, Moritz Moennich, Tobias Mueller, Hannes Federrath, and Mathias Fischer.
2019. Enhanced Performance for the encrypted Web through TLS Resumption
across Hostnames. CoRR abs/1902.02531 (2019). arXiv:1902.02531 http://arxiv.
org/abs/1902.02531

https://doi.org/10.17487/RFC8446
https://doi.org/10.1145/2987443.2987480
https://doi.org/10.1145/2987443.2987480
https://doi.org/10.1145/3274694.3274708
http://arxiv.org/abs/1902.02531
http://arxiv.org/abs/1902.02531
http://arxiv.org/abs/1902.02531

	Abstract
	1 Introduction
	2 Background
	2.1 TLS 1.3 0-RTT Handshake
	2.2 TLS Client Certificate Authentication

	3 Attack on TLS Client Certificate Authentication
	3.1 Attacker Model
	3.2 Attack Scenario

	4 Confusion Attack using Early Data
	4.1 Attacker Model
	4.2 Attack Scenario

	5 Impact and Limitations
	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

