€mbedded Linux
Conference

Europe

Allocators for

Compressed Pages

Vitaly Wool

THE
I LINUX
FOUNDATION



Intro: Compressed memory allocator

* |t's an allocator, Cap.
— allocates memory according to user’s
demands

* |t's designed to store compressed data

— chunks of arbitrary length
* usually quite small, way less than a page
* ordinary kernel allocator would be a waste of space

— It doesn’t compress anything itself

THE
1 LINUX
FOUNDATION



Okay what purpose
does all that serve?

THE
i I LINUX
FOUNDATION




Swapping

* using secondary storage to store and
retrieve data

— secondary storage is usually a HD or a flash
dveice

— saves memory by pushing rarely used pages out
* trade memory for performance?
— reading and writing pages may be quite slow

THE
L JLiNux



Swapping optimization

* use RAM to cache swapped-out pages
— but what’s the gain then?

* compress swapped-out pages

* trade performance for memory?
— bigger cache means better performance
— now we can be more flexible

THE
L JLiNux




Swapping and compression

* zswap: compressed write-back cache

— compresses swapped-out pages and moves
them into a pool

— when the pool is full enough, pushes the
compressed pages to the secondary storage

— pages are read back directly from the storage

THE
L JLiNux




Allocator for zswap?

* zbud: the first compressed data allocator

— stores up to 2 objects per page
* one bound to the beginning
* one bound to the end

— actual compression ratio may be quite low
* imagine high amount of chunks sized 2K+¢&

THE

L LINUX

FOUNDATION



Zsmalloc

* came as an alternative to zbud
— addresses the situation with 2k+¢ sized objects
— allocates objects contiguously within physically

uncontiguous pages
* objects may span across several pages
— high compression ratio in the beginning
— hard to mitigate in-page fragmentation over time
as objects are allocated and released

THE

L LINUX

FOUNDATION



Compressed allocator API

* 2 allocators used by zswap and doing the
same thing differently
— That calls for unification

* zpool: a common compressed allocator API
— zswap Is converted to use zpool
— zbud and zswap both implement zpool API




Quite boring so far...
What happened next?




ZRAM: compressed RAM disk

* RAM block device with on-the-fly

compression/decompression
— uses zsmalloc directly via its API
* Alternative to zswap for embedded

devices
— no backing storage necessary
— pages swapped to compressed RAM storage

THE
L LINUX
FOUNDATION



Can’t do zram with zbud?!

zbud | zsmallo

C

Zswap
Zram




ZRAM over zpool API

° Pros
— unification and versatility

* Cons
— none

* Patches ready

* Several attempts to mainline the patches
— blocked by the maintainer

THE
1 LINUX
FOUNDATION



ZRAM over zpool API: test with zbud

* No performance degrade over time
— stable and sustainable operation

* Peak performance lower than with zsmalloc
— spinlocks don’t scale well

* Low compression ratio

— 1.5x - 1.7x in real life scenarios
— not enough to justify ZRAM for embedded

THE
L JLiNux



So what if we modify zbud
to hold up to 3 objects?

THE
i I LINUX
FOUNDATION




z3fold: new kid on the block

* spun off zbud
* 3 objects per page instead of 2
* can handle PAGE_SIZE allocations

* only implements zpool AP
— no custom API here

* work started after ELC 2016 in San Diego
— In the mainline since 4.8




z3fold: good for both ZRAM and zswap

* for ZRAM
— supports up to page size allocations
— low latency operation
— good compression ratio
* for zswap
— supports eviction unlike zsmalloc
— higher compression ratio than zbud

THE
L JLiNux




Ok let’s do the fun part.
Comparisons!

THE
i LINUX
FOUNDATION




Currently allowed combinations

Zswap

ZIam

zbud

zsmallo
C

z3fold




Compression under stress (4.8)

4
3 -—\\,\\Jf\¥/n\,\/
\'\/\.\/._/\/_
o]
"}"; 2 —_— —~____~— — zsmalloc
- 1 — zbud
— z3fold
0

01234567809

hours
LA EINYX




Random read/write(4.8)

200
150
100

kb/s

50
0

T

—zsmalloc
— zbud
— z3fold

0 10 20 30 40

threads

THE
L LINUX
FOUNDATION




Conclusions so far

 z3fold provides good compression ratio

* z3fold doesn’t scale well to larger number

of CPUs/threads
 Third level

— Fourth level
» Fifth level




z3fold: profiling

* using perf while running fio
— Identify bottlenecks under stress load

* using perf while Android LMK Is triggered
— how z3fold operation affects user experience

THE
L JLiNux




z3fold: profiling results

* spinlocks are the main obstacle to

scalabllity
— the “big” spinlock that protects “unbuddied”
lists is the biggest one

* using perf while Android LMK Is triggered
— how z3fold operation affects user experience




z3fold: per-page locks

* Keep “big” spinlock for list operations
* Have “small” spinlocks to protect in-page

operation
— this goes well with async in-page layout
optimization
* In mainline kernel since 4.11




Random read/write(4.12)

200
150 zb"\,\,
Y 100 — zsmalloc
v, — zbud
50 — z3fold
»—7z3fold 4.12
0

O 5 1015 20 25 30 35

threads L JLiNux

FOUNDATION




z3fold: lockless lists (llist)

* ldea: iImplement unbuddied lists using llist
— Should improve scalability with less locking
needed

* Unfortunately llist wasn't a fit
- Can't do a llist_del

* Complicates unbuddied lists manipulation up to the
point where it makes no sense

THE
L JLiNux




z3fold: per-CPU “unbuddied” lists

* z3fold can operate only on this CPU's list
— Reduces contention on spin lock
- Speeds up search

* That can have adverse effect on ratio
— Z3fold header gets bigger
— Worse selection
— More memory for multiple lists
* Will get into 4.14
L] EINuX



Random read/write(4.14-rc4)

200

s
e

it

5 100 — z3fold 4.14
~ z3fold
50 - 73fold 4.12
0

0 5 1IO 1l5 20 25 30 35

threads L EEE‘D%%%E




z3fold: bit locks

« /Z3fold header size better be 1 chunk
- Now 2

* Bit locks may be used to mitigate bigger

header
- Slightly worse performance

— Evaluation in progress




Conclusions

 Z3fold is still a young allocator

 Still z3fold already outperforms other
allocators

» Z3fold is a good fit both for zswap and
ZRAM

* We need to push ZRAM to use zpool




Questions welcome!

vitalywool@gmail.com

THE
i LINUX
FOUNDATION




&3

€Embedded Linux
Conference

Europe

THE
I LINUX
FOUNDATION



	Slide 1
	Intro: Compressed memory allocator
	Slide 3
	Swapping
	Swapping optimization
	Swapping and compression
	Allocator for zswap?
	zsmalloc
	Compressed allocator API
	Slide 10
	ZRAM: compressed RAM disk
	Slide 12
	ZRAM over zpool API
	ZRAM over zpool API: test with zbud
	Slide 15
	z3fold: new kid on the block
	z3fold: good for both ZRAM and zswap
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Conclusions so far
	z3fold: profiling
	z3fold: profiling results
	z3fold: per-page locks
	Slide 26
	z3fold: lockless lists (llist)
	z3fold: per-CPU “unbuddied” lists
	z3fold: bit locks
	Slide 32
	Slide 33

