
Allocators for 
Compressed Pages
Vitaly Wool



Intro: Compressed memory allocator

• It’s an allocator, Cap.
– allocates memory according to user’s 

demands
• It’s designed to store compressed data 

– chunks of arbitrary length
• usually quite small, way less than a page
• ordinary kernel allocator would be a waste of space

– it doesn’t compress anything itself



Okay what purpose 
does all that serve?



Swapping 

• using secondary storage to store and 
retrieve data
– secondary storage is usually a HD or a flash 

dveice

– saves memory by pushing rarely used pages out

• trade memory for performance?
– reading and writing pages may be quite slow



Swapping optimization

• use RAM to cache swapped-out pages
– but what’s the gain then?

• compress swapped-out pages
• trade performance for memory?

– bigger cache means better performance
– now we can be more flexible



Swapping and compression

• zswap: compressed write-back cache
– compresses swapped-out pages and moves 

them into a pool
– when the pool is full enough, pushes the 

compressed pages to the secondary storage
– pages are read back directly from the storage



Allocator for zswap?

• zbud: the first compressed data allocator
– stores up to 2 objects per page

• one bound to the beginning
• one bound to the end

– actual compression ratio may be quite low
• imagine high amount of chunks sized 2K+Ɛ



zsmalloc

• came as an alternative to zbud
– addresses the situation with 2k+ε sized objects
– allocates objects contiguously within physically 

uncontiguous pages
• objects may span across several pages

– high compression ratio in the beginning
– hard to mitigate in-page fragmentation over time 

as objects are allocated and released



Compressed allocator API

• 2 allocators used by zswap and doing the 
same thing differently
– That calls for unification

• zpool: a common compressed allocator API
– zswap is converted to use zpool
– zbud and zswap both implement zpool API



Quite boring so far...
What happened next?



ZRAM: compressed RAM disk

• RAM block device with on-the-fly 
compression/decompression
– uses zsmalloc directly via its API

• Alternative to zswap for embedded 
devices
– no backing storage necessary
– pages swapped to compressed RAM storage



Can’t do zram with zbud?!

zbud zsmallo
c

zswap  

zram  



ZRAM over zpool API

• Pros
– unification and versatility

• Cons
– none

• Patches ready
• Several attempts to mainline the patches

– blocked by the maintainer



ZRAM over zpool API: test with zbud

• No performance degrade over time
– stable and sustainable operation

• Peak performance lower than with zsmalloc
– spinlocks don’t scale well

• Low compression ratio
– 1.5x - 1.7x in real life scenarios
– not enough to justify ZRAM for embedded 



So what if we modify zbud 
to hold up to 3 objects?



z3fold: new kid on the block

• spun off zbud
• 3 objects per page instead of 2
• can handle PAGE_SIZE allocations
• only implements zpool API

– no custom API here
• work started after ELC 2016 in San Diego

– in the mainline since 4.8



z3fold: good for both ZRAM and zswap

• for ZRAM
– supports up to page size allocations
– low latency operation
– good compression ratio

• for zswap
– supports eviction unlike zsmalloc
– higher compression ratio than zbud



Ok let’s do the fun part.
Comparisons!



Currently allowed combinations

zbud zsmallo
c

z3fold

zswap   

zram   



Compression under stress (4.8)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

zsmalloc
zbud
z3fold

hours

ra
ti
o



Random read/write(4.8)

0 10 20 30 40
0

50

100

150

200

zsmalloc
zbud
z3fold

threads

k
b
/s



Conclusions so far

• z3fold provides good compression ratio

• z3fold doesn’t scale well to larger number 
of CPUs/threads

• Third level
– Fourth level

» Fifth level



z3fold: profiling

• using perf while running fio
– identify bottlenecks under stress load

• using perf while Android LMK is triggered
– how z3fold operation affects user experience



z3fold: profiling results

• spinlocks are the main obstacle to 
scalability
– the “big” spinlock that protects “unbuddied” 

lists is the biggest one 
• using perf while Android LMK is triggered

– how z3fold operation affects user experience



z3fold: per-page locks

• Keep “big” spinlock for list operations
• Have “small” spinlocks to protect in-page 

operation
– this goes well with async in-page layout 

optimization
• in mainline kernel since 4.11



Random read/write(4.12)

0 5 10 15 20 25 30 35
0

50

100

150

200

zsmalloc
zbud
z3fold
z3fold 4.12

threads

k
b
/s



z3fold: lockless lists (llist)

• Idea: implement unbuddied lists using llist
– Should improve scalability with less locking 

needed

• Unfortunately llist wasn't a fit
– Can't do a llist_del

● Complicates unbuddied lists manipulation up to the 
point where it makes no sense



z3fold: per-CPU “unbuddied” lists

• z3fold can operate only on this CPU's list
– Reduces contention on spin lock
– Speeds up search

• That can have adverse effect on ratio
– Z3fold header gets bigger
– Worse selection 
– More memory for multiple lists

• Will get into 4.14



Random read/write(4.14-rc4)

0 5 10 15 20 25 30 35
0

50

100

150

200

z3fold 4.14
z3fold
z3fold 4.12

threads

k
b
/s



z3fold: bit locks

• Z3fold header size better be 1 chunk
– Now 2

• Bit locks may be used to mitigate bigger 
header

– Slightly worse performance

– Evaluation in progress



Conclusions

● Z3fold is still a young allocator
• Still z3fold already outperforms other 

allocators
• Z3fold is a good fit both for zswap and 

ZRAM
• We need to push ZRAM to use zpool



Questions welcome!

vitalywool@gmail.com




	Slide 1
	Intro: Compressed memory allocator
	Slide 3
	Swapping
	Swapping optimization
	Swapping and compression
	Allocator for zswap?
	zsmalloc
	Compressed allocator API
	Slide 10
	ZRAM: compressed RAM disk
	Slide 12
	ZRAM over zpool API
	ZRAM over zpool API: test with zbud
	Slide 15
	z3fold: new kid on the block
	z3fold: good for both ZRAM and zswap
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Conclusions so far
	z3fold: profiling
	z3fold: profiling results
	z3fold: per-page locks
	Slide 26
	z3fold: lockless lists (llist)
	z3fold: per-CPU “unbuddied” lists
	z3fold: bit locks
	Slide 32
	Slide 33

