
Foreword
It wasn’t always so clear, but the Rust programming language is funda
empowerment: no matter what kind of code you are writing now, Rust
to reach farther, to program with con�dence in a wider variety of dom
did before.

Take, for example, “systems-level” work that deals with low-level detai
management, data representation, and concurrency. Traditionally, thi
programming is seen as arcane, accessible only to a select few who ha
necessary years learning to avoid its infamous pitfalls. And even those
do so with caution, lest their code be open to exploits, crashes, or corr

Rust breaks down these barriers by eliminating the old pitfalls and pro
friendly, polished set of tools to help you along the way. Programmers
“dip down” into lower-level control can do so with Rust, without taking
customary risk of crashes or security holes, and without having to lear
points of a �ckle toolchain. Better yet, the language is designed to guid
towards reliable code that is e�cient in terms of speed and memory u

Programmers who are already working with low-level code can use Ru
ambitions. For example, introducing parallelism in Rust is a relatively l
operation: the compiler will catch the classical mistakes for you. And y
more aggressive optimizations in your code with the con�dence that y
accidentally introduce crashes or vulnerabilities.

But Rust isn’t limited to low-level systems programming. It’s expressiv
ergonomic enough to make CLI apps, web servers, and many other kin
quite pleasant to write — you’ll �nd simple examples of both later in t
Working with Rust allows you to build skills that transfer from one dom
you can learn Rust by writing a web app, then apply those same skills
Raspberry Pi.

This book fully embraces the potential of Rust to empower its users. It
approachable text intended to help you level up not just your knowled
also your reach and con�dence as a programmer in general. So dive in
learn—and welcome to the Rust community!

— Nicholas Matsakis and Aaron Turon

Introduction

Note: This edition of the book is the same as The Rust Programmin
available in print and ebook format from No Starch Press

Welcome to The Rust Programming Language, an introductory book abo
Rust programming language helps you write faster, more reliable soft
ergonomics and low-level control are often at odds in programming la
Rust challenges that con�ict. Through balancing powerful technical ca
great developer experience, Rust gives you the option to control low-l
(such as memory usage) without all the hassle traditionally associated
control.

Who Rust Is For

Rust is ideal for many people for a variety of reasons. Let’s look at a fe
important groups.

Teams of Developers

Rust is proving to be a productive tool for collaborating among large t
developers with varying levels of systems programming knowledge. Lo
prone to a variety of subtle bugs, which in most other languages can b
through extensive testing and careful code review by experienced dev
the compiler plays a gatekeeper role by refusing to compile code with
bugs, including concurrency bugs. By working alongside the compiler,
spend their time focusing on the program’s logic rather than chasing d

Rust also brings contemporary developer tools to the systems program

Cargo, the included dependency manager and build tool, makes
compiling, and managing dependencies painless and consistent
ecosystem.
Rustfmt ensures a consistent coding style across developers.
The Rust Language Server powers Integrated Development Envir
integration for code completion and inline error messages.

By using these and other tools in the Rust ecosystem, developers can
while writing systems-level code.

Students

Rust is for students and those who are interested in learning about sy
Using Rust, many people have learned about topics like operating syst
development. The community is very welcoming and happy to answer
questions. Through e�orts such as this book, the Rust teams want to m
concepts more accessible to more people, especially those new to pro

Companies

Hundreds of companies, large and small, use Rust in production for a
Those tasks include command line tools, web services, DevOps tooling
devices, audio and video analysis and transcoding, cryptocurrencies, b
search engines, Internet of Things applications, machine learning, and
parts of the Firefox web browser.

Open Source Developers

Rust is for people who want to build the Rust programming language,
developer tools, and libraries. We’d love to have you contribute to the

People Who Value Speed and Stability

Rust is for people who crave speed and stability in a language. By spee
speed of the programs that you can create with Rust and the speed at
you write them. The Rust compiler’s checks ensure stability through fe
and refactoring. This is in contrast to the brittle legacy code in languag
these checks, which developers are often afraid to modify. By striving
abstractions, higher-level features that compile to lower-level code as
written manually, Rust endeavors to make safe code be fast code as w

The Rust language hopes to support many other users as well; those m
are merely some of the biggest stakeholders. Overall, Rust’s greatest a
eliminate the trade-o�s that programmers have accepted for decades
safety and productivity, speed and ergonomics. Give Rust a try and see
work for you.

Who This Book Is For

This book assumes that you’ve written code in another programming
doesn’t make any assumptions about which one. We’ve tried to make
broadly accessible to those from a wide variety of programming backg
don’t spend a lot of time talking about what programming
If you’re entirely new to programming, you would be better served by
that speci�cally provides an introduction to programming.

How to Use This Book

In general, this book assumes that you’re reading it in sequence from
Later chapters build on concepts in earlier chapters, and earlier chapt
delve into details on a topic; we typically revisit the topic in a later cha

You’ll �nd two kinds of chapters in this book: concept chapters and pr
In concept chapters, you’ll learn about an aspect of Rust. In project ch
build small programs together, applying what you’ve learned so far. C
and 20 are project chapters; the rest are concept chapters.

Chapter 1 explains how to install Rust, how to write a Hello, world! pro
to use Cargo, Rust’s package manager and build tool. Chapter 2 is a ha
introduction to the Rust language. Here we cover concepts at a high le
chapters will provide additional detail. If you want to get your hands d
Chapter 2 is the place for that. At �rst, you might even want to skip Ch
covers Rust features similar to those of other programming languages
straight to Chapter 4 to learn about Rust’s ownership system. Howeve
particularly meticulous learner who prefers to learn every detail befor
the next, you might want to skip Chapter 2 and go straight to Chapter
Chapter 2 when you’d like to work on a project applying the details yo

Chapter 5 discusses structs and methods, and Chapter 6 covers enum
expressions, and the if let control �ow construct. You’ll use structs
make custom types in Rust.

In Chapter 7, you’ll learn about Rust’s module system and about priva
organizing your code and its public Application Programming Interface
8 discusses some common collection data structures that the standar
provides, such as vectors, strings, and hash maps. Chapter 9 explores
handling philosophy and techniques.

Chapter 10 digs into generics, traits, and lifetimes, which give you the
code that applies to multiple types. Chapter 11 is all about testing, wh
Rust’s safety guarantees is necessary to ensure your program’s logic is
Chapter 12, we’ll build our own implementation of a subset of function

grep command line tool that searches for text within �les. For this, w
the concepts we discussed in the previous chapters.

Chapter 13 explores closures and iterators: features of Rust that come
functional programming languages. In Chapter 14, we’ll examine Carg
and talk about best practices for sharing your libraries with others. Ch
discusses smart pointers that the standard library provides and the tr
their functionality.

In Chapter 16, we’ll walk through di�erent models of concurrent progr
talk about how Rust helps you to program in multiple threads fearless
looks at how Rust idioms compare to object-oriented programming pr
might be familiar with.

Chapter 18 is a reference on patterns and pattern matching, which are
of expressing ideas throughout Rust programs. Chapter 19 contains a
of advanced topics of interest, including unsafe Rust and more about
types, functions, and closures.

In Chapter 20, we’ll complete a project in which we’ll implement a low-
multithreaded web server!

Finally, some appendixes contain useful information about the langua
reference-like format. Appendix A covers Rust’s keywords, Appendix B
operators and symbols, Appendix C covers derivable traits provided b
library, and Appendix D covers macros.

There is no wrong way to read this book: if you want to skip ahead, go
might have to jump back to earlier chapters if you experience any con
whatever works for you.

An important part of the process of learning Rust is learning how to re
messages the compiler displays: these will guide you toward working
we’ll provide many examples of code that doesn’t compile along with
message the compiler will show you in each situation. Know that if you
a random example, it may not compile! Make sure you read the surro
see whether the example you’re trying to run is meant to error. In mo
we’ll lead you to the correct version of any code that doesn’t compile.

Source Code

The source �les from which this book is generated can be found on

Getting Started
Let’s start your Rust journey! There’s a lot to learn, but every journey s
somewhere. In this chapter, we’ll discuss:

Installing Rust on Linux, macOS, and Windows
Writing a program that prints Hello, world!
Using cargo , Rust’s package manager and build system

Installation

The �rst step is to install Rust. We’ll download Rust through
tool for managing Rust versions and associated tools. You’ll need an in
connection for the download.

Note: If you prefer not to use rustup for some reason, please see
installation page for other options.

The following steps install the latest stable version of the Rust compile
stability guarantees ensure that all the examples in the book that com
continue to compile with newer Rust versions. The output might di�er
between versions, because Rust often improves error messages and w
other words, any newer, stable version of Rust you install using these
work as expected with the content of this book.

Command Line Notation

In this chapter and throughout the book, we’ll show some comman
the terminal. Lines that you should enter in a terminal all start with
need to type in the $ character; it indicates the start of each comm
that don’t start with $ typically show the output of the previous co
Additionally, PowerShell-speci�c examples will use

Installing rustup on Linux or macOS

If you’re using Linux or macOS, open a terminal and enter the followin

The command downloads a script and starts the installation of the
which installs the latest stable version of Rust. You might be prompted
password. If the install is successful, the following line will appear:

If you prefer, feel free to download the script and inspect it before run

The installation script automatically adds Rust to your system PATH af
login. If you want to start using Rust right away instead of restarting yo
run the following command in your shell to add Rust to your system P

Alternatively, you can add the following line to your

Additionally, you’ll need a linker of some kind. It’s likely one is already
when you try to compile a Rust program and get errors indicating that
not execute, that means a linker isn’t installed on your system and you
install one manually. C compilers usually come with the correct linker.
platform’s documentation for how to install a C compiler. Also, some c
packages depend on C code and will need a C compiler. Therefore, it m
installing one now.

Installing rustup on Windows

On Windows, go to https://www.rust-lang.org/install.html
for installing Rust. At some point in the installation, you’ll receive a me
explaining that you’ll also need the C++ build tools for Visual Studio 20
easiest way to acquire the build tools is to install
The tools are in the Other Tools and Frameworks section.

The rest of this book uses commands that work in both
there are speci�c di�erences, we’ll explain which to use.

Updating and Uninstalling

$ curl https://sh.rustup.rs -sSf | sh

Rust is installed now. Great!

$ source $HOME/.cargo/env

$ export PATH="$HOME/.cargo/bin:$PATH"

After you’ve installed Rust via rustup , updating to the latest version is
your shell, run the following update script:

To uninstall Rust and rustup , run the following uninstall script from y

Troubleshooting

To check whether you have Rust installed correctly, open a shell and e

You should see the version number, commit hash, and commit date fo
stable version that has been released in the following format:

If you see this information, you have installed Rust successfully! If you
information and you’re on Windows, check that Rust is in your
variable. If that’s all correct and Rust still isn’t working, there are a num
you can get help. The easiest is the #rust IRC channel on irc.mozilla.or
can access through Mibbit. At that address you can chat with other Ru
nickname we call ourselves) who can help you out. Other great resour
Users forum and Stack Over�ow.

Local Documentation

The installer also includes a copy of the documentation locally, so you
o�ine. Run rustup doc to open the local documentation in your bro

Any time a type or function is provided by the standard library and yo
what it does or how to use it, use the application programming interfa
documentation to �nd out!

Hello, World!

$ rustup update

$ rustup self uninstall

$ rustc --version

rustc x.y.z (abcabcabc yyyy-mm-dd)

Now that you’ve installed Rust, let’s write your �rst Rust program. It’s t
learning a new language to write a little program that prints the text
to the screen, so we’ll do the same here!

Note: This book assumes basic familiarity with the command line. R
no speci�c demands about your editing or tooling or where your co
you prefer to use an integrated development environment (IDE) ins
command line, feel free to use your favorite IDE. Many IDEs now ha
degree of Rust support; check the IDE’s documentation for details.
Rust team has been focusing on enabling great IDE support, and pr
been made rapidly on that front!

Creating a Project Directory

You’ll start by making a directory to store your Rust code. It doesn’t m
where your code lives, but for the exercises and projects in this book,
making a projects directory in your home directory and keeping all you
there.

Open a terminal and enter the following commands to make a
a directory for the Hello, world! project within the

For Linux and macOS, enter this:

For Windows CMD, enter this:

For Windows PowerShell, enter this:

$ mkdir ~/projects
$ cd ~/projects
$ mkdir hello_world
$ cd hello_world

> mkdir "%USERPROFILE%\projects"
> cd /d "%USERPROFILE%\projects"
> mkdir hello_world
> cd hello_world

> mkdir $env:USERPROFILE\projects
> cd $env:USERPROFILE\projects
> mkdir hello_world
> cd hello_world

Writing and Running a Rust Program

Next, make a new source �le and call it main.rs. Rust �les always end w
extension. If you’re using more than one word in your �lename, use a
separate them. For example, use hello_world.rs rather than

Now open the main.rs �le you just created and enter the code in Listin

Filename: main.rs

Listing 1-1: A program that prints Hello, world!

Save the �le and go back to your terminal window. On Linux or macOS
following commands to compile and run the �le:

On Windows, enter the command .\main.exe instead of

Regardless of your operating system, the string
terminal. If you don’t see this output, refer back to the “Troubleshootin
Installation section for ways to get help.

If Hello, world! did print, congratulations! You’ve o�cially written a
That makes you a Rust programmer—welcome!

Anatomy of a Rust Program

Let’s review in detail what just happened in your Hello, world! program
�rst piece of the puzzle:

fn main() {
println!("Hello, world!");

}

$ rustc main.rs
$./main
Hello, world!

> rustc main.rs
> .\main.exe
Hello, world!

fn main() {

}

These lines de�ne a function in Rust. The main function is special: it is
code that runs in every executable Rust program. The �rst line declare
named main that has no parameters and returns nothing. If there we
they would go inside the parentheses, () .

Also, note that the function body is wrapped in curly brackets,
these around all function bodies. It’s good style to place the opening c
the same line as the function declaration, adding one space in betwee

At the time of this writing, an automatic formatter tool called
development. If you want to stick to a standard style across Rust proje
will format your code in a particular style. The Rust team plans to even
this tool with the standard Rust distribution, like
read this book, it might already be installed on your computer! Check
documentation for more details.

Inside the main function is the following code:

This line does all the work in this little program: it prints text to the scr
four important details to notice here. First, Rust style is to indent with
a tab.

Second, println! calls a Rust macro. If it called a function instead, it
entered as println (without the !). We’ll discuss Rust macros in mor
Appendix D. For now, you just need to know that using a
a macro instead of a normal function.

Third, you see the "Hello, world!" string. We pass this string as an a
println! , and the string is printed to the screen.

Fourth, we end the line with a semicolon (;), which indicates that this
over and the next one is ready to begin. Most lines of Rust code end w

Compiling and Running Are Separate Steps

You’ve just run a newly created program, so let’s examine each step in

Before running a Rust program, you must compile it using the Rust co
entering the rustc command and passing it the name of your source

println!("Hello, world!");

$ rustc main.rs

If you have a C or C++ background, you’ll notice that this is similar to
After compiling successfully, Rust outputs a binary executable.

On Linux and macOS you can see the executable by entering the
your shell as follows:

With PowerShell on Windows, you can use ls as well, but you'll see th

With CMD on Windows, you would enter the following:

This shows the source code �le with the .rs extension, the executable
Windows, but main on all other platforms), and, when using CMD, a �l
debugging information with the .pdb extension. From here, you run th
main.exe �le, like this:

If main.rs was your Hello, world! program, this line would print
your terminal.

If you’re more familiar with a dynamic language, such as Ruby, Python
you might not be used to compiling and running a program as separa
an ahead-of-time compiled language, meaning you can compile a progr
executable to someone else, and they can run it even without having R
you give someone a .rb, .py, or .js �le, they need to have a Ruby, Pytho
implementation installed (respectively). But in those languages, you on
command to compile and run your program. Everything is a trade-o�

$ ls
main main.rs

> ls

 Directory: Path:\to\the\project

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/1/2018 7:31 AM 137728 main.exe
-a---- 6/1/2018 7:31 AM 1454080 main.pdb
-a---- 6/1/2018 7:31 AM 14 main.rs

> dir /B %= the /B option says to only show the file names
main.exe
main.pdb
main.rs

$./main # or .\main.exe on Windows

design.

Just compiling with rustc is �ne for simple programs, but as your pro
you’ll want to manage all the options and make it easy to share your c
introduce you to the Cargo tool, which will help you write real-world R

Hello, Cargo!

Cargo is Rust’s build system and package manager. Most Rustaceans u
manage their Rust projects because Cargo handles a lot of tasks for yo
building your code, downloading the libraries your code depends on,
those libraries. (We call libraries your code needs

The simplest Rust programs, like the one we’ve written so far, don’t ha
dependencies. So if we had built the Hello, world! project with Cargo, i
use the part of Cargo that handles building your code. As you write m
Rust programs, you’ll add dependencies, and if you start a project usin
dependencies will be much easier to do.

Because the vast majority of Rust projects use Cargo, the rest of this b
that you’re using Cargo too. Cargo comes installed with Rust if you use
installers discussed in the “Installation” section. If you installed Rust th
other means, check whether Cargo is installed by entering the followin
terminal:

If you see a version number, you have it! If you see an error, such as
command not found , look at the documentation for your method of in

determine how to install Cargo separately.

Creating a Project with Cargo

Let’s create a new project using Cargo and look at how it di�ers from o
Hello, world! project. Navigate back to your projects
decided to store your code). Then, on any operating system, run the fo

The �rst command creates a new directory called

$ cargo --version

$ cargo new hello_cargo
$ cd hello_cargo

project hello_cargo, and Cargo creates its �les in a directory of the sam

Go into the hello_cargo directory and list the �les. You’ll see that Cargo
two �les and one directory for us: a Cargo.toml �le and a
�le inside. It has also initialized a new Git repository along with a

Note: Git is a common version control system. You can change
use a di�erent version control system or no version control system
--vcs �ag. Run cargo new --help to see the available options.

Open Cargo.toml in your text editor of choice. It should look similar to
Listing 1-2.

Filename: Cargo.toml

Listing 1-2: Contents of Cargo.toml generated by

This �le is in the TOML (Tom’s Obvious, Minimal Language
con�guration format.

The �rst line, [package] , is a section heading that indicates that the f
statements are con�guring a package. As we add more information to
add other sections.

The next three lines set the con�guration information Cargo needs to
program: the name, the version, and who wrote it. Cargo gets your na
information from your environment, so if that information is not corre
information now and then save the �le.

The last line, [dependencies] , is the start of a section for you to list an
project’s dependencies. In Rust, packages of code are referred to as
need any other crates for this project, but we will in the �rst project in
we’ll use this dependencies section then.

Now open src/main.rs and take a look:

Filename: src/main.rs

[package]
name = "hello_cargo"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]

[dependencies]

Cargo has generated a Hello, world! program for you, just like the one
Listing 1-1! So far, the di�erences between our previous project and th
generates are that Cargo placed the code in the
Cargo.toml con�guration �le in the top directory.

Cargo expects your source �les to live inside the
directory is just for README �les, license information, con�guration �l
anything else not related to your code. Using Cargo helps you organiz
There’s a place for everything, and everything is in its place.

If you started a project that doesn’t use Cargo, as we did with the Hello
you can convert it to a project that does use Cargo. Move the project c
directory and create an appropriate Cargo.toml �le.

Building and Running a Cargo Project

Now let’s look at what’s di�erent when we build and run the Hello, wo
with Cargo! From your hello_cargo directory, build your project by ente
following command:

This command creates an executable �le in target/debug/hello_cargo
\hello_cargo.exe on Windows) rather than in your current directory. Yo
executable with this command:

If all goes well, Hello, world! should print to the terminal. Running
for the �rst time also causes Cargo to create a new �le at the top level
�le keeps track of the exact versions of dependencies in your project.
doesn’t have dependencies, so the �le is a bit sparse. You won’t ever n
this �le manually; Cargo manages its contents for you.

We just built a project with cargo build and ran it with
./target/debug/hello_cargo , but we can also use

fn main() {
println!("Hello, world!");

}

$ cargo build
 Compiling hello_cargo v0.1.0 (file:///projects/hello_car
 Finished dev [unoptimized + debuginfo] target(s) in 2.8

$./target/debug/hello_cargo # or .\target\debug\hello_carg
Windows
Hello, world!

and then run the resulting executable all in one command:

Notice that this time we didn’t see output indicating that Cargo was co
hello_cargo . Cargo �gured out that the �les hadn’t changed, so it jus

If you had modi�ed your source code, Cargo would have rebuilt the pr
running it, and you would have seen this output:

Cargo also provides a command called cargo check
your code to make sure it compiles but doesn’t produce an executable

Why would you not want an executable? Often,
cargo build , because it skips the step of producing an executable. If

continually checking your work while writing the code, using
up the process! As such, many Rustaceans run cargo check
their program to make sure it compiles. Then they run
ready to use the executable.

Let’s recap what we’ve learned so far about Cargo:

We can build a project using cargo build or
We can build and run a project in one step using
Instead of saving the result of the build in the same directory as
stores it in the target/debug directory.

An additional advantage of using Cargo is that the commands are the
which operating system you’re working on. So, at this point, we’ll no lo
speci�c instructions for Linux and macOS versus Windows.

Building for Release

$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/hello_cargo`
Hello, world!

$ cargo run
 Compiling hello_cargo v0.1.0 (file:///projects/hello_car
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/hello_cargo`
Hello, world!

$ cargo check
 Checking hello_cargo v0.1.0 (file:///projects/hello_carg
 Finished dev [unoptimized + debuginfo] target(s) in 0.3

When your project is �nally ready for release, you can use
compile it with optimizations. This command will create an executable
instead of target/debug. The optimizations make your Rust code run fa
turning them on lengthens the time it takes for your program to comp
there are two di�erent pro�les: one for development, when you want
quickly and often, and another for building the �nal program you’ll giv
won’t be rebuilt repeatedly and that will run as fast as possible. If you’
benchmarking your code’s running time, be sure to run
benchmark with the executable in target/release.

Cargo as Convention

With simple projects, Cargo doesn’t provide a lot of value over just usi
will prove its worth as your programs become more intricate. With com
composed of multiple crates, it’s much easier to let Cargo coordinate t

Even though the hello_cargo project is simple, it now uses much of t
you’ll use in the rest of your Rust career. In fact, to work on any existin
can use the following commands to check out the code using Git, chan
project’s directory, and build:

For more information about Cargo, check out its documentation

Summary

You’re already o� to a great start on your Rust journey! In this chapter
how to:

Install the latest stable version of Rust using
Update to a newer Rust version
Open locally installed documentation
Write and run a Hello, world! program using
Create and run a new project using the conventions of Cargo

This is a great time to build a more substantial program to get used to
writing Rust code. So, in Chapter 2, we’ll build a guessing game progra
rather start by learning how common programming concepts work in

$ git clone someurl.com/someproject
$ cd someproject
$ cargo build

Chapter 3 and then return to Chapter 2.

Programming a Guessing Game
Let’s jump into Rust by working through a hands-on project together!
introduces you to a few common Rust concepts by showing you how t
real program. You’ll learn about let , match , methods, associated fun
external crates, and more! The following chapters will explore these id
detail. In this chapter, you’ll practice the fundamentals.

We’ll implement a classic beginner programming problem: a guessing
how it works: the program will generate a random integer between 1
then prompt the player to enter a guess. After a guess is entered, the
indicate whether the guess is too low or too high. If the guess is correc
print a congratulatory message and exit.

Setting Up a New Project

To set up a new project, go to the projects directory that you created in
make a new project using Cargo, like so:

The �rst command, cargo new , takes the name of the project (
the �rst argument. The second command changes to the new project’

Look at the generated Cargo.toml �le:

Filename: Cargo.toml

If the author information that Cargo obtained from your environment
�x that in the �le and save it again.

As you saw in Chapter 1, cargo new generates a “Hello, world!” progra
Check out the src/main.rs �le:

$ cargo new guessing_game
$ cd guessing_game

[package]
name = "guessing_game"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]

[dependencies]

Filename: src/main.rs

Now let’s compile this “Hello, world!” program and run it in the same s
cargo run command:

The run command comes in handy when you need to rapidly iterate
we’ll do in this game, quickly testing each iteration before moving on t

Reopen the src/main.rs �le. You’ll be writing all the code in this �le.

Processing a Guess

The �rst part of the guessing game program will ask for user input, pr
and check that the input is in the expected form. To start, we’ll allow th
input a guess. Enter the code in Listing 2-1 into src/main.rs

Filename: src/main.rs

Listing 2-1: Code that gets a guess from the user and prints it

This code contains a lot of information, so let’s go over it line by line. T

fn main() {
println!("Hello, world!");

}

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessin
 Finished dev [unoptimized + debuginfo] target(s) in 1.5
 Running `target/debug/guessing_game`
Hello, world!

use std::io;

fn main() {
println!("Guess the number!");

println!("Please input your guess.");

let mut guess = String::new();

 io::stdin().read_line(&mut guess)
 .expect("Failed to read line");

println!("You guessed: {}", guess);
}

input and then print the result as output, we need to bring the
library into scope. The io library comes from the standard library (wh
std):

By default, Rust brings only a few types into the scope of every progra
prelude. If a type you want to use isn’t in the prelude, you have to brin
scope explicitly with a use statement. Using the
number of useful features, including the ability to accept user input.

As you saw in Chapter 1, the main function is the entry point into the

The fn syntax declares a new function, the parentheses,
parameters, and the curly bracket, { , starts the body of the function.

As you also learned in Chapter 1, println! is a macro that prints a st
screen:

This code is printing a prompt stating what the game is and requestin
user.

Storing Values with Variables

Next, we’ll create a place to store the user input, like this:

Now the program is getting interesting! There’s a lot going on in this li
that this is a let statement, which is used to create a
example:

This line creates a new variable named foo and binds it to the value o
variable. In Rust, variables are immutable by default. We’ll be discussin
in detail in the “Variables and Mutability” section in Chapter 3. The foll

use std::io;

fn main() {

println!("Guess the number!");

println!("Please input your guess.");

let mut guess = String::new();

let foo = bar;

shows how to use mut before the variable name to make a variable m

Note: The // syntax starts a comment that continues until the end
Rust ignores everything in comments, which are discussed in more
Chapter 3.

Now you know that let mut guess will introduce a mutable variable
On the other side of the equal sign (=) is the value that
the result of calling String::new , a function that returns a new instan
String is a string type provided by the standard library that is a grow

encoded bit of text.

The :: syntax in the ::new line indicates that
String type. An associated function is implemented on a type, in this

rather than on a particular instance of a String
method.

This new function creates a new, empty string. You’ll �nd a
types, because it’s a common name for a function that makes a new v
kind.

To summarize, the let mut guess = String::new();
variable that is currently bound to a new, empty instance of a

Recall that we included the input/output functionality from the standa
use std::io; on the �rst line of the program. Now we’ll call an assoc
stdin , on io :

If we hadn’t listed the use std::io line at the beginning of the progra
have written this function call as std::io::stdin
instance of std::io::Stdin , which is a type that represents a handle
input for your terminal.

The next part of the code, .read_line(&mut guess)
the standard input handle to get input from the user. We’re also passi
argument to read_line : &mut guess .

let foo = 5; // immutable
let mut bar = 5; // mutable

io::stdin().read_line(&mut guess)
 .expect("Failed to read line");

The job of read_line is to take whatever the user types into standard
place that into a string, so it takes that string as an argument. The strin
needs to be mutable so the method can change the string’s content b
user input.

The & indicates that this argument is a reference
parts of your code access one piece of data without needing to copy t
memory multiple times. References are a complex feature, and one of
advantages is how safe and easy it is to use references. You don’t nee
of those details to �nish this program. For now, all you need to know i
variables, references are immutable by default. Hence, you need to w
rather than &guess to make it mutable. (Chapter 4 will explain referen
thoroughly.)

Handling Potential Failure with the Result

We’re not quite done with this line of code. Although what we’ve discu
single line of text, it’s only the �rst part of the single logical line of code
part is this method:

When you call a method with the .foo() syntax, it’s often wise to intr
and other whitespace to help break up long lines. We could have writt

However, one long line is di�cult to read, so it’s best to divide it: two l
method calls. Now let’s discuss what this line does.

As mentioned earlier, read_line puts what the user types into the str
passing it, but it also returns a value—in this case, an
of types named Result in its standard library: a generic
versions for submodules, such as io::Result .

The Result types are enumerations, often referred to as
type that can have a �xed set of values, and those values are called th
variants. Chapter 6 will cover enums in more detail.

For Result , the variants are Ok or Err . The Ok
successful, and inside Ok is the successfully generated value. The
the operation failed, and Err contains information about how or why
failed.

.expect("Failed to read line");

io::stdin().read_line(&mut guess).expect("Failed to read li

The purpose of these Result types is to encode error-handling inform
of the Result type, like any type, have methods de�ned on them. An
io::Result has an expect method that you can call. If this instance

is an Err value, expect will cause the program to crash and display t
that you passed as an argument to expect . If the
, it would likely be the result of an error coming from the underlying o
system. If this instance of io::Result is an Ok value,
value that Ok is holding and return just that value to you so you can u
case, that value is the number of bytes in what the user entered into s

If you don’t call expect , the program will compile, but you’ll get a war

Rust warns that you haven’t used the Result value returned from
indicating that the program hasn’t handled a possible error.

The right way to suppress the warning is to actually write error handli
you just want to crash this program when a problem occurs, you can u
You’ll learn about recovering from errors in Chapter 9.

Printing Values with println! Placeholders

Aside from the closing curly brackets, there’s only one more line to dis
added so far, which is the following:

This line prints the string we saved the user’s input in. The set of curly
a placeholder: think of {} as little crab pincers that hold a value in pla
print more than one value using curly brackets: the �rst set of curly br
the �rst value listed after the format string, the second set holds the s
and so on. Printing multiple values in one call to

$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessin
warning: unused `std::result::Result` which must be used
 --> src/main.rs:10:5
 |
10 | io::stdin().read_line(&mut guess);
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: #[warn(unused_must_use)] on by default

println!("You guessed: {}", guess);

This code would print x = 5 and y = 10 .

Testing the First Part

Let’s test the �rst part of the guessing game. Run it using

At this point, the �rst part of the game is done: we’re getting input fro
and then printing it.

Generating a Secret Number

Next, we need to generate a secret number that the user will try to gu
number should be di�erent every time so the game is fun to play mor
Let’s use a random number between 1 and 100 so the game isn’t too d
doesn’t yet include random number functionality in its standard librar
Rust team does provide a rand crate.

Using a Crate to Get More Functionality

Remember that a crate is a package of Rust code. The project we’ve be
binary crate, which is an executable. The rand crate is a
code intended to be used in other programs.

Cargo’s use of external crates is where it really shines. Before we can w
uses rand , we need to modify the Cargo.toml �le to include the
dependency. Open that �le now and add the following line to the bott

let x = 5;
let y = 10;

println!("x = {} and y = {}", x, y);

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessin
 Finished dev [unoptimized + debuginfo] target(s) in 2.5
 Running `target/debug/guessing_game`
Guess the number!
Please input your guess.
6
You guessed: 6

[dependencies] section header that Cargo created for you:

Filename: Cargo.toml

In the Cargo.toml �le, everything that follows a header is part of a sect
continues until another section starts. The [dependencies]
Cargo which external crates your project depends on and which versio
crates you require. In this case, we’ll specify the
speci�er 0.3.14 . Cargo understands Semantic Versioning
which is a standard for writing version numbers. The number
shorthand for ^0.3.14 , which means “any version that has a public A
with version 0.3.14.”

Now, without changing any of the code, let’s build the project, as show

Listing 2-2: The output from running cargo build
dependency

You may see di�erent version numbers (but they will all be compatibl
thanks to SemVer!), and the lines may be in a di�erent order.

Now that we have an external dependency, Cargo fetches the latest ve
everything from the registry, which is a copy of data from
people in the Rust ecosystem post their open source Rust projects for

After updating the registry, Cargo checks the [dependencies]
any crates you don’t have yet. In this case, although we only listed
dependency, Cargo also grabbed a copy of libc
work. After downloading the crates, Rust compiles them and then com
project with the dependencies available.

If you immediately run cargo build again without making any chang
get any output aside from the Finished line. Cargo knows it has alrea

[dependencies]

rand = "0.3.14"

$ cargo build
 Updating registry `https://github.com/rust-lang/crates.
 Downloading rand v0.3.14
 Downloading libc v0.2.14
 Compiling libc v0.2.14
 Compiling rand v0.3.14
 Compiling guessing_game v0.1.0 (file:///projects/guessin
 Finished dev [unoptimized + debuginfo] target(s) in 2.5

and compiled the dependencies, and you haven’t changed anything ab
your Cargo.toml �le. Cargo also knows that you haven’t changed anyth
code, so it doesn’t recompile that either. With nothing to do, it simply

If you open up the src/main.rs �le, make a trivial change, and then sav
again, you’ll only see two lines of output:

These lines show Cargo only updates the build with your tiny change t
src/main.rs �le. Your dependencies haven’t changed, so Cargo knows i
what it has already downloaded and compiled for those. It just rebuild
the code.

Ensuring Reproducible Builds with the Cargo.lock

Cargo has a mechanism that ensures you can rebuild the same artifac
or anyone else builds your code: Cargo will use only the versions of th
you speci�ed until you indicate otherwise. For example, what happens
version v0.3.15 of the rand crate comes out and contains an impor
also contains a regression that will break your code?

The answer to this problem is the Cargo.lock �le, which was created th
ran cargo build and is now in your guessing_game
project for the �rst time, Cargo �gures out all the versions of the depe
the criteria and then writes them to the Cargo.lock
the future, Cargo will see that the Cargo.lock �le exists and use the ver
there rather than doing all the work of �guring out versions again. Thi
a reproducible build automatically. In other words, your project will re
until you explicitly upgrade, thanks to the Cargo.lock

Updating a Crate to Get a New Version

When you do want to update a crate, Cargo provides another comman
which will ignore the Cargo.lock �le and �gure out all the latest version
speci�cations in Cargo.toml. If that works, Cargo will write those versio
Cargo.lock �le.

But by default, Cargo will only look for versions larger than
0.4.0 . If the rand crate has released two new versions,

would see the following if you ran cargo update

$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessin
 Finished dev [unoptimized + debuginfo] target(s) in 2.5

At this point, you would also notice a change in your
version of the rand crate you are now using is

If you wanted to use rand version 0.4.0 or any version in the
have to update the Cargo.toml �le to look like this instead:

The next time you run cargo build , Cargo will update the registry of
and reevaluate your rand requirements according to the new version
speci�ed.

There’s a lot more to say about Cargo and its ecosystem
Chapter 14, but for now, that’s all you need to know. Cargo makes it v
reuse libraries, so Rustaceans are able to write smaller projects that a
from a number of packages.

Generating a Random Number

Now that you’ve added the rand crate to Cargo.toml
step is to update src/main.rs, as shown in Listing 2-3:

Filename: src/main.rs

$ cargo update
 Updating registry `https://github.com/rust-lang/crates.
 Updating rand v0.3.14 -> v0.3.15

[dependencies]

rand = "0.4.0"

Listing 2-3: Adding code to generate a random number

First, we add a line that lets Rust know we’ll be using the
dependency. This also does the equivalent of calling
anything in the rand crate by placing rand:: before it.

Next, we add another use line: use rand::Rng
random number generators implement, and this trait must be in scop
those methods. Chapter 10 will cover traits in detail.

Also, we’re adding two more lines in the middle. The
give us the particular random number generator that we’re going to u
local to the current thread of execution and seeded by the operating s
call the gen_range method on the random number generator. This m
de�ned by the Rng trait that we brought into scope with the
statement. The gen_range method takes two numbers as arguments
a random number between them. It’s inclusive on the lower bound bu
the upper bound, so we need to specify 1 and
and 100.

Note: You won’t just know which traits to use and which methods a
to call from a crate. Instructions for using a crate are in each crate’s
documentation. Another neat feature of Cargo is that you can run t
cargo doc --open command, which will build documentation prov

extern crate rand;

use std::io;
use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(

println!("The secret number is: {}", secret_number);

println!("Please input your guess.");

let mut guess = String::new();

 io::stdin().read_line(&mut guess)
 .expect("Failed to read line");

println!("You guessed: {}", guess);
}

your dependencies locally and open it in your browser. If you’re int
other functionality in the rand crate, for example, run
click rand in the sidebar on the left.

The second line that we added to the code prints the secret number. T
while we’re developing the program to be able to test it, but we’ll dele
�nal version. It’s not much of a game if the program prints the answer
starts!

Try running the program a few times:

You should get di�erent random numbers, and they should all be num
1 and 100. Great job!

Comparing the Guess to the Secret Number

Now that we have user input and a random number, we can compare
is shown in Listing 2-4. Note that this code won’t compile quite yet, as

Filename: src/main.rs

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessin
 Finished dev [unoptimized + debuginfo] target(s) in 2.5
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 7
Please input your guess.
4
You guessed: 4
$ cargo run
 Running `target/debug/guessing_game`
Guess the number!
The secret number is: 83
Please input your guess.
5
You guessed: 5

Listing 2-4: Handling the possible return values of comparing two num

The �rst new bit here is another use statement, bringing a type called
std::cmp::Ordering into scope from the standard library. Like

another enum, but the variants for Ordering are
are the three outcomes that are possible when you compare two valu

Then we add �ve new lines at the bottom that use the

The cmp method compares two values and can be called on anything
compared. It takes a reference to whatever you want to compare with
comparing the guess to the secret_number . Then it returns a variant
Ordering enum we brought into scope with the

expression to decide what to do next based on which variant of
returned from the call to cmp with the values in

A match expression is made up of arms. An arm consists of a
that should be run if the value given to the beginning of the
that arm’s pattern. Rust takes the value given to
pattern in turn. The match construct and patterns are powerful featu
let you express a variety of situations your code might encounter and
you handle them all. These features will be covered in detail in Chapte
18, respectively.

Let’s walk through an example of what would happen with the
used here. Say that the user has guessed 50 and the randomly genera
number this time is 38. When the code compares 50 to 38, the
return Ordering::Greater , because 50 is greater than 38. The
gets the Ordering::Greater value and starts checking each arm’s pat

extern crate rand;

use std::io;
use std::cmp::Ordering;
use rand::Rng;

fn main() {
// ---snip---

println!("You guessed: {}", guess);

match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"
 Ordering::Greater => println!("Too big!"
 Ordering::Equal => println!("You win!"
 }
}

the �rst arm’s pattern, Ordering::Less , and sees that the value
does not match Ordering::Less , so it ignores the code in that arm an
next arm. The next arm’s pattern, Ordering::Greater
Ordering::Greater ! The associated code in that arm will execute and
Too big! to the screen. The match expression ends because it has n

at the last arm in this scenario.

However, the code in Listing 2-4 won’t compile yet. Let’s try it:

The core of the error states that there are mismatched types
type system. However, it also has type inference. When we wrote
let mut guess = String::new(); , Rust was able to infer that
String and didn’t make us write the type. The

a number type. A few number types can have a value between 1 and 1
bit number; u32 , an unsigned 32-bit number; i64
others. Rust defaults to an i32 , which is the type of
type information elsewhere that would cause Rust to infer a di�erent
The reason for the error is that Rust cannot compare a string and a nu

Ultimately, we want to convert the String the program reads as inpu
number type so we can compare it numerically to the guess. We can d
adding the following two lines to the main function body:

Filename: src/main.rs

$ cargo build
 Compiling guessing_game v0.1.0 (file:///projects/guessin
error[E0308]: mismatched types
 --> src/main.rs:23:21
 |
23 | match guess.cmp(&secret_number) {
 | ^^^^^^^^^^^^^^ expected struct
`std::string::String`, found integral variable
 |
 = note: expected type `&std::string::String`
 = note: found type `&{integer}`

error: aborting due to previous error
Could not compile `guessing_game`.

The two new lines are:

We create a variable named guess . But wait, doesn’t the program alre
variable named guess ? It does, but Rust allows us to
guess with a new one. This feature is often used in situations in whic

convert a value from one type to another type. Shadowing lets us reus
variable name rather than forcing us to create two unique variables, li
and guess for example. (Chapter 3 covers shadowing in more detail.)

We bind guess to the expression guess.trim().parse()
expression refers to the original guess that was a
trim method on a String instance will eliminate any whitespace at t

and end. Although u32 can contain only numerical characters, the us
enter to satisfy read_line . When the user presses
added to the string. For example, if the user types
like this: 5\n . The \n represents “newline,” the result of pressing
method eliminates \n , resulting in just 5 .

The parse method on strings parses a string into some kind of numb
method can parse a variety of number types, we need to tell Rust the
type we want by using let guess: u32 . The colon (
annotate the variable’s type. Rust has a few built-in number types; the
is an unsigned, 32-bit integer. It’s a good default choice for a small pos
You’ll learn about other number types in Chapter 3. Additionally, the

// --snip--

let mut guess = String::new();

 io::stdin().read_line(&mut guess)
 .expect("Failed to read line");

let guess: u32 = guess.trim().parse()
 .expect("Please type a number!");

println!("You guessed: {}", guess);

match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"
 Ordering::Greater => println!("Too big!"
 Ordering::Equal => println!("You win!"
 }
}

let guess: u32 = guess.trim().parse()
 .expect("Please type a number!");

in this example program and the comparison with
will infer that secret_number should be a u32 as well. So now the com
between two values of the same type!

The call to parse could easily cause an error. If, for example, the strin
A��% , there would be no way to convert that to a number. Because it
parse method returns a Result type, much as the

(discussed earlier in “Handling Potential Failure with the Result Type”).
Result the same way by using the expect method again. If
Result variant because it couldn’t create a number from the string, th

will crash the game and print the message we give it. If
convert the string to a number, it will return the
will return the number that we want from the Ok

Let’s run the program now!

Nice! Even though spaces were added before the guess, the program
that the user guessed 76. Run the program a few times to verify the d
behavior with di�erent kinds of input: guess the number correctly, gu
that is too high, and guess a number that is too low.

We have most of the game working now, but the user can make only o
change that by adding a loop!

Allowing Multiple Guesses with Looping

The loop keyword creates an in�nite loop. We’ll add that now to give
chances at guessing the number:

Filename: src/main.rs

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessin
 Finished dev [unoptimized + debuginfo] target(s) in 0.4
 Running `target/guessing_game`
Guess the number!
The secret number is: 58
Please input your guess.
 76
You guessed: 76
Too big!

As you can see, we’ve moved everything into a loop from the guess inp
onward. Be sure to indent the lines inside the loop another four space
the program again. Notice that there is a new problem because the pr
exactly what we told it to do: ask for another guess forever! It doesn’t
user can quit!

The user could always halt the program by using the keyboard shortcu
there’s another way to escape this insatiable monster, as mentioned i
discussion in “Comparing the Guess to the Secret Number”: if the user
number answer, the program will crash. The user can take advantage
to quit, as shown here:

// --snip--

println!("The secret number is: {}", secret_number);

loop {
println!("Please input your guess."

// --snip--

match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"
 Ordering::Greater => println!(
 Ordering::Equal => println!("You win!"
 }
 }
}

Typing quit actually quits the game, but so will any other non-numbe
However, this is suboptimal to say the least. We want the game to aut
when the correct number is guessed.

Quitting After a Correct Guess

Let’s program the game to quit when the user wins by adding a

Filename: src/main.rs

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessin
 Finished dev [unoptimized + debuginfo] target(s) in 1.5
 Running `target/guessing_game`
Guess the number!
The secret number is: 59
Please input your guess.
45
You guessed: 45
Too small!
Please input your guess.
60
You guessed: 60
Too big!
Please input your guess.
59
You guessed: 59
You win!
Please input your guess.
quit
thread 'main' panicked at 'Please type a number!: ParseIntE
InvalidDigit }', src/libcore/result.rs:785
note: Run with `RUST_BACKTRACE=1` for a backtrace.
error: Process didn't exit successfully: `target/debug/gues
101)

// --snip--

match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"
 Ordering::Greater => println!(
 Ordering::Equal => {

println!("You win!");
break;

 }
 }
 }
}

Adding the break line after You win! makes the program exit the loo
user guesses the secret number correctly. Exiting the loop also means
program, because the loop is the last part of main

Handling Invalid Input

To further re�ne the game’s behavior, rather than crashing the progra
user inputs a non-number, let’s make the game ignore a non-number
continue guessing. We can do that by altering the line where
a String to a u32 :

Switching from an expect call to a match expression is how you gene
from crashing on an error to handling the error. Remember that
Result type and Result is an enum that has the variants
match expression here, as we did with the Ordering

If parse is able to successfully turn the string into a number, it will re
value that contains the resulting number. That Ok
pattern, and the match expression will just return the
produced and put inside the Ok value. That number will end up right
it in the new guess variable we’re creating.

If parse is not able to turn the string into a number, it will return an
contains more information about the error. The
Ok(num) pattern in the �rst match arm, but it does match the

second arm. The underscore, _ , is a catchall value; in this example, w
want to match all Err values, no matter what information they have i
the program will execute the second arm’s code,
next iteration of the loop and ask for another guess. So e�ectively, th
ignores all errors that parse might encounter!

Now everything in the program should work as expected. Let’s try it:

let guess: u32 = match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue,

};

Awesome! With one tiny �nal tweak, we will �nish the guessing game.
program is still printing the secret number. That worked well for testin
the game. Let’s delete the println! that outputs the secret number.
shows the �nal code:

Filename: src/main.rs

$ cargo run
 Compiling guessing_game v0.1.0 (file:///projects/guessin
 Running `target/guessing_game`
Guess the number!
The secret number is: 61
Please input your guess.
10
You guessed: 10
Too small!
Please input your guess.
99
You guessed: 99
Too big!
Please input your guess.
foo
Please input your guess.
61
You guessed: 61
You win!

Listing 2-5: Complete guessing game code

Summary

At this point, you’ve successfully built the guessing game! Congratulat

This project was a hands-on way to introduce you to many new Rust c
match , methods, associated functions, the use of external crates, and

next few chapters, you’ll learn about these concepts in more detail. Ch
concepts that most programming languages have, such as variables, d

extern crate rand;

use std::io;
use std::cmp::Ordering;
use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(

loop {
println!("Please input your guess."

let mut guess = String::new();

 io::stdin().read_line(&mut guess)
 .expect("Failed to read line");

let guess: u32 = match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue,

 };

println!("You guessed: {}", guess);

match guess.cmp(&secret_number) {
 Ordering::Less => println!("Too small!"
 Ordering::Greater => println!(
 Ordering::Equal => {

println!("You win!");
break;

 }
 }
 }
}

functions, and shows how to use them in Rust. Chapter 4 explores ow
feature that makes Rust di�erent from other languages. Chapter 5 dis
and method syntax, and Chapter 6 explains how enums work.

Common Programming Concepts
This chapter covers concepts that appear in almost every programmin
how they work in Rust. Many programming languages have much in c
core. None of the concepts presented in this chapter are unique to Ru
discuss them in the context of Rust and explain the conventions aroun
concepts.

Speci�cally, you’ll learn about variables, basic types, functions, comme
�ow. These foundations will be in every Rust program, and learning th
give you a strong core to start from.

Keywords

The Rust language has a set of keywords that are reserved for use b
language only, much as in other languages. Keep in mind that you c
these words as names of variables or functions. Most of the keywo
special meanings, and you’ll be using them to do various tasks in yo
programs; a few have no current functionality associated with them
been reserved for functionality that might be added to Rust in the f
can �nd a list of the keywords in Appendix A.

Variables and Mutability

As mentioned in Chapter 2, by default variables are immutable. This is
nudges Rust gives you to write your code in a way that takes advantag
and easy concurrency that Rust o�ers. However, you still have the opt
your variables mutable. Let’s explore how and why Rust encourages y
immutability and why sometimes you might want to opt out.

When a variable is immutable, once a value is bound to a name, you c
value. To illustrate this, let’s generate a new project called
directory by using cargo new variables .

Then, in your new variables directory, open src/main.rs
following code that won’t compile just yet:

Filename: src/main.rs

Save and run the program using cargo run . You should receive an er
shown in this output:

This example shows how the compiler helps you �nd errors in your pr
though compiler errors can be frustrating, they only mean your progr
doing what you want it to do yet; they do not mean that you’re not a g
programmer! Experienced Rustaceans still get compiler errors.

The error indicates that the cause of the error is that you
cannot assign twice to immutable variable x

second value to the immutable x variable.

It’s important that we get compile-time errors when we attempt to cha
that we previously designated as immutable because this very situatio
bugs. If one part of our code operates on the assumption that a value
change and another part of our code changes that value, it’s possible
part of the code won’t do what it was designed to do. The cause of thi
can be di�cult to track down after the fact, especially when the secon
changes the value only sometimes.

In Rust, the compiler guarantees that when you state that a value won
really won’t change. That means that when you’re reading and writing
have to keep track of how and where a value might change. Your code
to reason through.

But mutability can be very useful. Variables are immutable only by def

fn main() {
let x = 5;
println!("The value of x is: {}", x);

 x = 6;
println!("The value of x is: {}", x);

}

error[E0384]: cannot assign twice to immutable variable `x`
 --> src/main.rs:4:5
 |
2 | let x = 5;
 | - first assignment to `x`
3 | println!("The value of x is: {}", x);
4 | x = 6;
 | ^^^^^ cannot assign twice to immutable variable

in Chapter 2, you can make them mutable by adding
name. In addition to allowing this value to change,
readers of the code by indicating that other parts of the code will be c
variable value.

For example, let’s change src/main.rs to the following:

Filename: src/main.rs

When we run the program now, we get this:

We’re allowed to change the value that x binds to from
some cases, you’ll want to make a variable mutable because it makes
convenient to write than if it had only immutable variables.

There are multiple trade-o�s to consider in addition to the prevention
example, in cases where you’re using large data structures, mutating a
place may be faster than copying and returning newly allocated instan
smaller data structures, creating new instances and writing in a more
programming style may be easier to think through, so lower performa
worthwhile penalty for gaining that clarity.

Di�erences Between Variables and Constants

Being unable to change the value of a variable might have reminded y
programming concept that most other languages have:
variables, constants are values that are bound to a name and are not
change, but there are a few di�erences between constants and variab

First, you aren’t allowed to use mut with constants. Constants aren’t ju
by default—they’re always immutable.

fn main() {
let mut x = 5;
println!("The value of x is: {}", x);

 x = 6;
println!("The value of x is: {}", x);

}

$ cargo run
 Compiling variables v0.1.0 (file:///projects/variables)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/variables`
The value of x is: 5
The value of x is: 6

You declare constants using the const keyword instead of the
type of the value must be annotated. We’re about to cover types and t
in the next section, “Data Types,” so don’t worry about the details righ
that you must always annotate the type.

Constants can be declared in any scope, including the global scope, w
them useful for values that many parts of code need to know about.

The last di�erence is that constants may be set only to a constant exp
result of a function call or any other value that could only be compute

Here’s an example of a constant declaration where the constant’s nam
MAX_POINTS and its value is set to 100,000. (Rust’s constant naming co

use all uppercase with underscores between words, and underscores
in numeric literals to improve readability):

Constants are valid for the entire time a program runs, within the scop
declared in, making them a useful choice for values in your application
multiple parts of the program might need to know about, such as the
number of points any player of a game is allowed to earn or the speed

Naming hardcoded values used throughout your program as constan
conveying the meaning of that value to future maintainers of the code
have only one place in your code you would need to change if the har
needed to be updated in the future.

Shadowing

As you saw in the “Comparing the Guess to the Secret Number” sectio
you can declare a new variable with the same name as a previous vari
new variable shadows the previous variable. Rustaceans say that the �
shadowed by the second, which means that the second variable’s value
appears when the variable is used. We can shadow a variable by using
variable’s name and repeating the use of the let

Filename: src/main.rs

const MAX_POINTS: u32 = 100_000;

This program �rst binds x to a value of 5 . Then it shadows
taking the original value and adding 1 so the value of
statement also shadows x , multiplying the previous value by
value of 12 . When we run this program, it will output the following:

Shadowing is di�erent than marking a variable as
time error if we accidentally try to reassign to this variable without usi
keyword. By using let , we can perform a few transformations on a v
the variable be immutable after those transformations have been com

The other di�erence between mut and shadowing is that because we
creating a new variable when we use the let keyword again, we can
of the value but reuse the same name. For example, say our program
show how many spaces they want between some text by inputting sp
but we really want to store that input as a number:

This construct is allowed because the �rst spaces
second spaces variable, which is a brand-new variable that happens
same name as the �rst one, is a number type. Shadowing thus spares
to come up with di�erent names, such as spaces_str
can reuse the simpler spaces name. However, if we try to use
here, we’ll get a compile-time error:

fn main() {
let x = 5;

let x = x + 1;

let x = x * 2;

println!("The value of x is: {}", x);
}

$ cargo run
 Compiling variables v0.1.0 (file:///projects/variables)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/variables`
The value of x is: 12

let spaces = " ";
let spaces = spaces.len();

let mut spaces = " ";
spaces = spaces.len();

The error says we’re not allowed to mutate a variable’s type:

Now that we’ve explored how variables work, let’s look at more data ty
have.

Data Types

Every value in Rust is of a certain data type, which tells Rust what kind
speci�ed so it knows how to work with that data. We’ll look at two dat
scalar and compound.

Keep in mind that Rust is a statically typed language, which means that
the types of all variables at compile time. The compiler can usually inf
want to use based on the value and how we use it. In cases when man
possible, such as when we converted a String to a numeric type usin
“Comparing the Guess to the Secret Number” section in Chapter 2, we
type annotation, like this:

If we don’t add the type annotation here, Rust will display the followin
means the compiler needs more information from us to know which t
use:

You’ll see di�erent type annotations for other data types.

error[E0308]: mismatched types
 --> src/main.rs:3:14
 |
3 | spaces = spaces.len();
 | ^^^^^^^^^^^^ expected &str, found usize
 |
 = note: expected type `&str`
 found type `usize`

let guess: u32 = "42".parse().expect("Not a number!"

error[E0282]: type annotations needed
 --> src/main.rs:2:9
 |
2 | let guess = "42".parse().expect("Not a number!");
 | ^^^^^
 | |
 | cannot infer type for `_`
 | consider giving `guess` a type

Scalar Types

A scalar type represents a single value. Rust has four primary scalar ty
�oating-point numbers, Booleans, and characters. You may recognize
other programming languages. Let’s jump into how they work in Rust.

Integer Types

An integer is a number without a fractional component. We used one i
Chapter 2, the u32 type. This type declaration indicates that the value
with should be an unsigned integer (signed integer types start with
that takes up 32 bits of space. Table 3-1 shows the built-in integer type
variant in the Signed and Unsigned columns (for example,
declare the type of an integer value.

Table 3-1: Integer Types in Rust

Length Signed

8-bit i8

16-bit i16

32-bit i32

64-bit i64

128-bit i128

arch isize

Each variant can be either signed or unsigned and has an explicit size.
unsigned refer to whether it’s possible for the number to be negative o
other words, whether the number needs to have a sign with it (signed
will only ever be positive and can therefore be represented without a
It’s like writing numbers on paper: when the sign matters, a number is
plus sign or a minus sign; however, when it’s safe to assume the numb
it’s shown with no sign. Signed numbers are stored using two’s comple
representation (if you’re unsure what this is, you can search for it onlin
explanation is outside the scope of this book).

Each signed variant can store numbers from -(2n - 1

the number of bits that variant uses. So an i8 can store numbers fro

which equals -128 to 127. Unsigned variants can store numbers from

u8 can store numbers from 0 to 28 - 1, which equals 0 to 255.

Additionally, the isize and usize types depend on the kind of comp

program is running on: 64 bits if you’re on a 64-bit architecture and 32
on a 32-bit architecture.

You can write integer literals in any of the forms shown in Table 3-2. N
number literals except the byte literal allow a type su�x, such as
visual separator, such as 1_000 .

Table 3-2: Integer Literals in Rust

Number literals

Decimal 98_222

Hex 0xff

Octal 0o77

Binary 0b1111_0000

Byte (u8 only) b'A'

So how do you know which type of integer to use? If you’re unsure, Ru
generally good choices, and integer types default to
fastest, even on 64-bit systems. The primary situation in which you’d u
usize is when indexing some sort of collection.

Integer Over�ow

Let's say that you have a u8 , which can hold values between zero and
happens if you try to change it to 256 ? This is called "integer over�ow
some interesting rules around this behavior. When compiling in debug
checks for this kind of issue and will cause your program to
Rust uses when a program exits with an error. We'll discuss panics mo

In release builds, Rust does not check for over�ow, and instead will do
called "two's complement wrapping." In short, 256
etc. Relying on over�ow is considered an error, even if this behavior h
want this behavior explicitly, the standard library has a type,
it explicitly.

Floating-Point Types

Rust also has two primitive types for �oating-point numbers
decimal points. Rust’s �oating-point types are f32
bits in size, respectively. The default type is f64
the same speed as f32 but is capable of more precision.

Here’s an example that shows �oating-point numbers in action:

Filename: src/main.rs

Floating-point numbers are represented according to the IEEE-754 sta
type is a single-precision �oat, and f64 has double precision.

Numeric Operations

Rust supports the basic mathematical operations you’d expect for all o
types: addition, subtraction, multiplication, division, and remainder. Th
code shows how you’d use each one in a let statement:

Filename: src/main.rs

Each expression in these statements uses a mathematical operator an
single value, which is then bound to a variable. Appendix B contains a
operators that Rust provides.

The Boolean Type

As in most other programming languages, a Boolean type in Rust has
values: true and false . The Boolean type in Rust is speci�ed using
example:

fn main() {
let x = 2.0; // f64

let y: f32 = 3.0; // f32
}

fn main() {
// addition
let sum = 5 + 10;

// subtraction
let difference = 95.5 - 4.3;

// multiplication
let product = 4 * 30;

// division
let quotient = 56.7 / 32.2;

// remainder
let remainder = 43 % 5;

}

Filename: src/main.rs

The main way to consume Boolean values is through conditionals, suc
expression. We’ll cover how if expressions work in Rust in the “Cont
section.

Booleans are one byte in size.

The Character Type

So far we’ve worked only with numbers, but Rust supports letters too.
type is the language’s most primitive alphabetic type, and the followin
one way to use it. (Note that the char literal is speci�ed with single qu
opposed to string literals, which use double quotes.)

Filename: src/main.rs

Rust’s char type represents a Unicode Scalar Value, which means it c
lot more than just ASCII. Accented letters; Chinese, Japanese, and Kore
emoji; and zero-width spaces are all valid char values in Rust. Unicod
range from U+0000 to U+D7FF and U+E000 to U+10FFFF
“character” isn’t really a concept in Unicode, so your human intuition f
“character” is may not match up with what a char
detail in “Strings” in Chapter 8.

Compound Types

Compound types can group multiple values into one type. Rust has two
compound types: tuples and arrays.

The Tuple Type

fn main() {
let t = true;

let f: bool = false; // with explicit type annotation
}

fn main() {
let c = 'z';
let z = 'ℤ';
let heart_eyed_cat = '😻';

}

A tuple is a general way of grouping together some number of other v
variety of types into one compound type. Tuples have a �xed length: o
they cannot grow or shrink in size.

We create a tuple by writing a comma-separated list of values inside p
Each position in the tuple has a type, and the types of the di�erent va
don’t have to be the same. We’ve added optional type annotations in t

Filename: src/main.rs

The variable tup binds to the entire tuple, because a tuple is consider
compound element. To get the individual values out of a tuple, we can
matching to destructure a tuple value, like this:

Filename: src/main.rs

This program �rst creates a tuple and binds it to the variable
pattern with let to take tup and turn it into three separate variables
This is called destructuring, because it breaks the single tuple into thre
the program prints the value of y , which is 6.4

In addition to destructuring through pattern matching, we can access
directly by using a period (.) followed by the index of the value we wa
For example:

Filename: src/main.rs

fn main() {
let tup: (i32, f64, u8) = (500, 6.4, 1

}

fn main() {
let tup = (500, 6.4, 1);

let (x, y, z) = tup;

println!("The value of y is: {}", y);
}

This program creates a tuple, x , and then makes new variables for ea
using their index. As with most programming languages, the �rst inde

The Array Type

Another way to have a collection of multiple values is with an
every element of an array must have the same type. Arrays in Rust are
arrays in some other languages because arrays in Rust have a �xed le

In Rust, the values going into an array are written as a comma-separat
square brackets:

Filename: src/main.rs

Arrays are useful when you want your data allocated on the stack rath
heap (we will discuss the stack and the heap more in Chapter 4), or wh
ensure you always have a �xed number of elements. An array isn’t as
vector type, though. A vector is a similar collection type provided by th
library that is allowed to grow or shrink in size. If you’re unsure wheth
array or a vector, you should probably use a vector. Chapter 8 discuss
more detail.

An example of when you might want to use an array rather than a vec
program that needs to know the names of the months of the year. It’s
that such a program will need to add or remove months, so you can u
because you know it will always contain 12 items:

fn main() {
let x: (i32, f64, u8) = (500, 6.4, 1);

let five_hundred = x.0;

let six_point_four = x.1;

let one = x.2;
}

fn main() {
let a = [1, 2, 3, 4, 5];

}

let months = ["January", "February", "March"
"July",

"August", "September", "October"

Arrays have an interesting type; it looks like this:

First, there's square brackets; they look like the syntax for creating an
there's two pieces of information, separated by a semicolon. The �rst
each element of the array. Since all elements have the same type, we
it once. After the semicolon, there's a number that indicates the length
Since an array has a �xed size, this number is always the same, even i
elements are modi�ed, it cannot grow or shrink.

Accessing Array Elements

An array is a single chunk of memory allocated on the stack. You can a
of an array using indexing, like this:

Filename: src/main.rs

In this example, the variable named first will get the value
value at index [0] in the array. The variable named
from index [1] in the array.

Invalid Array Element Access

What happens if you try to access an element of an array that is past t
array? Say you change the example to the following code, which will co
with an error when it runs:

Filename: src/main.rs

let a: [i32; 5] = [1, 2, 3, 4, 5];

fn main() {
let a = [1, 2, 3, 4, 5];

let first = a[0];
let second = a[1];

}

fn main() {
let a = [1, 2, 3, 4, 5];
let index = 10;

let element = a[index];

println!("The value of element is: {}"
}

Running this code using cargo run produces the following result:

The compilation didn’t produce any errors, but the program resulted i
error and didn’t exit successfully. When you attempt to access an elem
indexing, Rust will check that the index you’ve speci�ed is less than th
the index is greater than the length, Rust will panic.

This is the �rst example of Rust’s safety principles in action. In many lo
languages, this kind of check is not done, and when you provide an in
invalid memory can be accessed. Rust protects you against this kind o
immediately exiting instead of allowing the memory access and contin
discusses more of Rust’s error handling.

Functions

Functions are pervasive in Rust code. You’ve already seen one of the m
functions in the language: the main function, which is the entry point
programs. You’ve also seen the fn keyword, which allows you to decl
functions.

Rust code uses snake case as the conventional style for function and v
In snake case, all letters are lowercase and underscores separate wor
program that contains an example function de�nition:

Filename: src/main.rs

$ cargo run
 Compiling arrays v0.1.0 (file:///projects/arrays)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/arrays`
thread '<main>' panicked at 'index out of bounds: the len i
index is
 10', src/main.rs:6
note: Run with `RUST_BACKTRACE=1` for a backtrace.

fn main() {
println!("Hello, world!");

 another_function();
}

fn another_function() {
println!("Another function.");

}

Function de�nitions in Rust start with fn and have a set of parenthes
function name. The curly brackets tell the compiler where the function
and ends.

We can call any function we’ve de�ned by entering its name followed b
parentheses. Because another_function is de�ned in the program, it
from inside the main function. Note that we de�ned
main function in the source code; we could have de�ned it before as

doesn’t care where you de�ne your functions, only that they’re de�ne

Let’s start a new binary project named functions to explore functions f
the another_function example in src/main.rs and run it. You should s
output:

The lines execute in the order in which they appear in the
“Hello, world!” message prints, and then another_function
is printed.

Function Parameters

Functions can also be de�ned to have parameters
part of a function’s signature. When a function has parameters, you ca
with concrete values for those parameters. Technically, the concrete v
arguments, but in casual conversation, people tend to use the words
argument interchangeably for either the variables in a function’s de�n
concrete values passed in when you call a function.

The following rewritten version of another_function
like in Rust:

Filename: src/main.rs

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev [unoptimized + debuginfo] target(s) in 0.2
 Running `target/debug/functions`
Hello, world!
Another function.

Try running this program; you should get the following output:

The declaration of another_function has one parameter named
speci�ed as i32 . When 5 is passed to another_function
5 where the pair of curly brackets were in the format string.

In function signatures, you must declare the type of each parameter. T
deliberate decision in Rust’s design: requiring type annotations in func
means the compiler almost never needs you to use them elsewhere in
�gure out what you mean.

When you want a function to have multiple parameters, separate the
declarations with commas, like this:

Filename: src/main.rs

This example creates a function with two parameters, both of which a
The function then prints the values in both of its parameters. Note tha
parameters don’t all need to be the same type, they just happen to be
example.

Let’s try running this code. Replace the program currently in your
src/main.rs �le with the preceding example and run it using

fn main() {
 another_function(5);
}

fn another_function(x: i32) {
println!("The value of x is: {}", x);

}

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev [unoptimized + debuginfo] target(s) in 1.2
 Running `target/debug/functions`
The value of x is: 5

fn main() {
 another_function(5, 6);
}

fn another_function(x: i32, y: i32) {
println!("The value of x is: {}", x);
println!("The value of y is: {}", y);

}

Because we called the function with 5 as the value for
value for y , the two strings are printed with these values.

Function Bodies

Function bodies are made up of a series of statements optionally end
expression. So far, we’ve only covered functions without an ending ex
you have seen an expression as part of statements. Because Rust is an
based language, this is an important distinction to understand. Other
have the same distinctions, so let’s look at what statements and expre
how their di�erences a�ect the bodies of functions.

Statements and Expressions

We’ve actually already used statements and expressions.
that perform some action and do not return a value.
resulting value. Let’s look at some examples.

Creating a variable and assigning a value to it with the
Listing 3-1, let y = 6; is a statement:

Filename: src/main.rs

Listing 3-1: A main function declaration containing one statement

Function de�nitions are also statements; the entire preceding exampl
in itself.

Statements do not return values. Therefore, you can’t assign a
another variable, as the following code tries to do; you’ll get an error:

Filename: src/main.rs

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/functions`
The value of x is: 5
The value of y is: 6

fn main() {
let y = 6;

}

When you run this program, the error you’ll get looks like this:

The let y = 6 statement does not return a value, so there isn’t anyth
bind to. This is di�erent from what happens in other languages, such
where the assignment returns the value of the assignment. In those la
can write x = y = 6 and have both x and y have the value
in Rust.

Expressions evaluate to something and make up most of the rest of th
you’ll write in Rust. Consider a simple math operation, such as
expression that evaluates to the value 11 . Expressions can be part of
Listing 3-1, the 6 in the statement let y = 6; is an expression that e
value 6 . Calling a function is an expression. Calling a macro is an expr
block that we use to create new scopes, {} , is an expression, for exam

Filename: src/main.rs

This expression:

fn main() {
let x = (let y = 6);

}

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
error: expected expression, found statement (`let`)
 --> src/main.rs:2:14
 |
2 | let x = (let y = 6);
 | ^^^
 |
 = note: variable declaration using `let` is a statement

fn main() {
let x = 5;

let y = {
let x = 3;

 x + 1
 };

println!("The value of y is: {}", y);
}

is a block that, in this case, evaluates to 4 . That value gets bound to
let statement. Note the x + 1 line without a semicolon at the end,

most of the lines you’ve seen so far. Expressions do not include endin
you add a semicolon to the end of an expression, you turn it into a sta
will then not return a value. Keep this in mind as you explore function
and expressions next.

Functions with Return Values

Functions can return values to the code that calls them. We don’t nam
but we do declare their type after an arrow (->). In Rust, the return va
function is synonymous with the value of the �nal expression in the b
of a function. You can return early from a function by using the
specifying a value, but most functions return the last expression impli
example of a function that returns a value:

Filename: src/main.rs

There are no function calls, macros, or even let
just the number 5 by itself. That’s a perfectly valid function in Rust. N
function’s return type is speci�ed, too, as -> i32
should look like this:

The 5 in five is the function’s return value, which is why the return t

{
let x = 3;

 x + 1
}

fn five() -> i32 {
5

}

fn main() {
let x = five();

println!("The value of x is: {}", x);
}

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/functions`
The value of x is: 5

Let’s examine this in more detail. There are two important bits: �rst, th
let x = five(); shows that we’re using the return value of a functio

variable. Because the function five returns a 5
following:

Second, the five function has no parameters and de�nes the type of
value, but the body of the function is a lonely 5 with no semicolon be
expression whose value we want to return.

Let’s look at another example:

Filename: src/main.rs

Running this code will print The value of x is: 6
the end of the line containing x + 1 , changing it from an expression
we’ll get an error.

Filename: src/main.rs

Compiling this code produces an error, as follows:

let x = 5;

fn main() {
let x = plus_one(5);

println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 x + 1
}

fn main() {
let x = plus_one(5);

println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 x + 1;
}

The main error message, “mismatched types,” reveals the core issue w
The de�nition of the function plus_one says that it will return an
statements don’t evaluate to a value, which is expressed by
Therefore, nothing is returned, which contradicts the function de�nitio
an error. In this output, Rust provides a message to possibly help rect
suggests removing the semicolon, which would �x the error.

Comments

All programmers strive to make their code easy to understand, but so
explanation is warranted. In these cases, programmers leave notes, o
their source code that the compiler will ignore but people reading the
may �nd useful.

Here’s a simple comment:

In Rust, comments must start with two slashes and continue until the
For comments that extend beyond a single line, you’ll need to include
line, like this:

Comments can also be placed at the end of lines containing code:

Filename: src/main.rs

error[E0308]: mismatched types
 --> src/main.rs:7:28
 |
7 | fn plus_one(x: i32) -> i32 {
 | ____________________________^
8 | | x + 1;
 | | - help: consider removing this semicolon
9 | | }
 | |_^ expected i32, found ()
 |
 = note: expected type `i32`
 found type `()`

// Hello, world.

// So we’re doing something complicated here, long enough that
// multiple lines of comments to do it! Whew! Hopefully, this c
// explain what’s going on.

But you’ll more often see them used in this format, with the comment
line above the code it’s annotating:

Filename: src/main.rs

Rust also has another kind of comment, documentation comments, w
discuss in Chapter 14.

Control Flow

Deciding whether or not to run some code depending on if a condition
deciding to run some code repeatedly while a condition is true are bas
blocks in most programming languages. The most common construct
control the �ow of execution of Rust code are if

if Expressions

An if expression allows you to branch your code depending on cond
provide a condition and then state, “If this condition is met, run this bl
the condition is not met, do not run this block of code.”

Create a new project called branches in your projects
expression. In the src/main.rs �le, input the following:

Filename: src/main.rs

fn main() {
let lucky_number = 7; // I’m feeling lucky today.

}

fn main() {
// I’m feeling lucky today.
let lucky_number = 7;

}

All if expressions start with the keyword if , which is followed by a
this case, the condition checks whether or not the variable
than 5. The block of code we want to execute if the condition is true is
immediately after the condition inside curly brackets. Blocks of code a
the conditions in if expressions are sometimes called
match expressions that we discussed in the “Comparing the Guess to

Number” section of Chapter 2.

Optionally, we can also include an else expression, which we chose t
give the program an alternative block of code to execute should the co
evaluate to false. If you don’t provide an else expression and the con
the program will just skip the if block and move on to the next bit of

Try running this code; you should see the following output:

Let’s try changing the value of number to a value that makes the cond
see what happens:

Run the program again, and look at the output:

It’s also worth noting that the condition in this code
isn’t a bool , we’ll get an error. For example:

fn main() {
let number = 3;

if number < 5 {
println!("condition was true");

 } else {
println!("condition was false");

 }
}

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/branches`
condition was true

let number = 7;

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/branches`
condition was false

Filename: src/main.rs

The if condition evaluates to a value of 3 this time, and Rust throws

The error indicates that Rust expected a bool but got an integer. Unli
such as Ruby and JavaScript, Rust will not automatically try to convert
types to a Boolean. You must be explicit and always provide
condition. If we want the if code block to run only when a number is
for example, we can change the if expression to the following:

Filename: src/main.rs

Running this code will print number was something other than ze

Handling Multiple Conditions with else if

You can have multiple conditions by combining
expression. For example:

Filename: src/main.rs

fn main() {
let number = 3;

if number {
println!("number was three");

 }
}

error[E0308]: mismatched types
 --> src/main.rs:4:8
 |
4 | if number {
 | ^^^^^^ expected bool, found integral variable
 |
 = note: expected type `bool`
 found type `{integer}`

fn main() {
let number = 3;

if number != 0 {
println!("number was something other than zero"

 }
}

This program has four possible paths it can take. After running it, you
following output:

When this program executes, it checks each if expression in turn an
�rst body for which the condition holds true. Note that even though 6
we don’t see the output number is divisible by 2
number is not divisible by 4, 3, or 2 text from the

Rust only executes the block for the �rst true condition, and once it �n
doesn’t even check the rest.

Using too many else if expressions can clutter your code, so if you
one, you might want to refactor your code. Chapter 6 describes a pow
branching construct called match for these cases.

Using if in a let Statement

Because if is an expression, we can use it on the right side of a
Listing 3-2:

Filename: src/main.rs

fn main() {
let number = 6;

if number % 4 == 0 {
println!("number is divisible by 4"

 } else if number % 3 == 0 {
println!("number is divisible by 3"

 } else if number % 2 == 0 {
println!("number is divisible by 2"

 } else {
println!("number is not divisible by 4, 3, or 2"

 }
}

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/branches`
number is divisible by 3

Listing 3-2: Assigning the result of an if expression to a variable

The number variable will be bound to a value based on the outcome o
expression. Run this code to see what happens:

Remember that blocks of code evaluate to the last expression in them
by themselves are also expressions. In this case, the value of the whol
expression depends on which block of code executes. This means the
have the potential to be results from each arm of the
Listing 3-2, the results of both the if arm and the
the types are mismatched, as in the following example, we’ll get an err

Filename: src/main.rs

When we try to compile this code, we’ll get an error. The
value types that are incompatible, and Rust indicates exactly where to
problem in the program:

fn main() {
let condition = true;
let number = if condition {

5
 } else {

6
 };

println!("The value of number is: {}", number);
}

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/branches`
The value of number is: 5

fn main() {
let condition = true;

let number = if condition {
5

 } else {
"six"

 };

println!("The value of number is: {}", number);
}

The expression in the if block evaluates to an integer, and the expre
else block evaluates to a string. This won’t work because variables m

single type. Rust needs to know at compile time what type the
de�nitively, so it can verify at compile time that its type is valid everyw
number . Rust wouldn’t be able to do that if the type of

at runtime; the compiler would be more complex and would make few
about the code if it had to keep track of multiple hypothetical types fo

Repetition with Loops

It’s often useful to execute a block of code more than once. For this ta
provides several loops. A loop runs through the code inside the loop b
and then starts immediately back at the beginning. To experiment wit
make a new project called loops.

Rust has three kinds of loops: loop , while , and

Repeating Code with loop

The loop keyword tells Rust to execute a block of code over and over
or until you explicitly tell it to stop.

As an example, change the src/main.rs �le in your

Filename: src/main.rs

error[E0308]: if and else have incompatible types
 --> src/main.rs:4:18
 |
4 | let number = if condition {
 | __________________^
5 | | 5
6 | | } else {
7 | | "six"
8 | | };
 | |_____^ expected integral variable, found &str
 |
 = note: expected type `{integer}`
 found type `&str`

fn main() {
loop {

println!("again!");
 }
}

When we run this program, we’ll see again! printed over and over co
we stop the program manually. Most terminals support a keyboard sh
halt a program that is stuck in a continual loop. Give it a try:

The symbol ^C represents where you pressed ctrl-c
word again! printed after the ^C , depending on where the code was
when it received the halt signal.

Fortunately, Rust provides another, more reliable way to break out of
place the break keyword within the loop to tell the program when to
the loop. Recall that we did this in the guessing game in the “Quitting A
Guess” section of Chapter 2 to exit the program when the user won th
guessing the correct number.

Returning from loops

One of the uses of a loop is to retry an operation you know can fail, s
if a thread completed its job. However, you might need to pass the res
operation to the rest of your code. If you add it to the
stop the loop, it will be returned by the broken loop:

Conditional Loops with while

$ cargo run
 Compiling loops v0.1.0 (file:///projects/loops)
 Finished dev [unoptimized + debuginfo] target(s) in 0.2
 Running `target/debug/loops`
again!
again!
again!
again!
^Cagain!

fn main() {
let mut counter = 0;

let result = loop {
 counter += 1;

if counter == 10 {
break counter * 2;

 }
 };

assert_eq!(result, 20);
}

It’s often useful for a program to evaluate a condition within a loop. W
condition is true, the loop runs. When the condition ceases to be true,
calls break , stopping the loop. This loop type could be implemented u
combination of loop , if , else , and break ; you could try that now i
you’d like.

However, this pattern is so common that Rust has a built-in language
called a while loop. Listing 3-3 uses while : the program loops three
down each time, and then, after the loop, it prints another message an

Filename: src/main.rs

Listing 3-3: Using a while loop to run code while a condition holds tru

This construct eliminates a lot of nesting that would be necessary if yo
if , else , and break , and it’s clearer. While a condition holds true, th

otherwise, it exits the loop.

Looping Through a Collection with for

You could use the while construct to loop over the elements of a coll
an array. For example, let’s look at Listing 3-4:

Filename: src/main.rs

fn main() {
let mut number = 3;

while number != 0 {
println!("{}!", number);

 number = number - 1;
 }

println!("LIFTOFF!!!");
}

fn main() {
let a = [10, 20, 30, 40, 50];
let mut index = 0;

while index < 5 {
println!("the value is: {}", a[index]);

 index = index + 1;
 }
}

Listing 3-4: Looping through each element of a collection using a

Here, the code counts up through the elements in the array. It starts a
then loops until it reaches the �nal index in the array (that is, when
longer true). Running this code will print every element in the array:

All �ve array values appear in the terminal, as expected. Even though
reach a value of 5 at some point, the loop stops executing before tryi
sixth value from the array.

But this approach is error prone; we could cause the program to panic
length is incorrect. It’s also slow, because the compiler adds runtime c
the conditional check on every element on every iteration through the

As a more concise alternative, you can use a for
each item in a collection. A for loop looks like this code in Listing 3-5

Filename: src/main.rs

Listing 3-5: Looping through each element of a collection using a

When we run this code, we’ll see the same output as in Listing 3-4. Mo
we’ve now increased the safety of the code and eliminated the chance
might result from going beyond the end of the array or not going far e
missing some items.

For example, in the code in Listing 3-4, if you removed an item from th
forgot to update the condition to while index < 4
for loop, you wouldn’t need to remember to change any other code

$ cargo run
 Compiling loops v0.1.0 (file:///projects/loops)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/loops`
the value is: 10
the value is: 20
the value is: 30
the value is: 40
the value is: 50

fn main() {
let a = [10, 20, 30, 40, 50];

for element in a.iter() {
println!("the value is: {}", element);

 }
}

the number of values in the array.

The safety and conciseness of for loops make them the most commo
construct in Rust. Even in situations in which you want to run some co
number of times, as in the countdown example that used a
most Rustaceans would use a for loop. The way to do that would be
which is a type provided by the standard library that generates all num
sequence starting from one number and ending before another numb

Here’s what the countdown would look like using a
we’ve not yet talked about, rev , to reverse the range:

Filename: src/main.rs

This code is a bit nicer, isn’t it?

Summary

You made it! That was a sizable chapter: you learned about variables,
compound data types, functions, comments, if
to practice with the concepts discussed in this chapter, try building pro
the following:

Convert temperatures between Fahrenheit and Celsius.
Generate the nth Fibonacci number.
Print the lyrics to the Christmas carol “The Twelve Days of Christm
advantage of the repetition in the song.

When you’re ready to move on, we’ll talk about a concept in Rust that
commonly exist in other programming languages: ownership.

Understanding Ownership
Ownership is Rust’s most unique feature, and it enables Rust to make
guarantees without needing a garbage collector. Therefore, it’s import
understand how ownership works in Rust. In this chapter, we’ll talk ab

fn main() {
for number in (1..4).rev() {

println!("{}!", number);
 }

println!("LIFTOFF!!!");
}

as well as several related features: borrowing, slices, and how Rust lay
memory.

What Is Ownership?

Rust’s central feature is ownership. Although the feature is straightforw
it has deep implications for the rest of the language.

All programs have to manage the way they use a computer’s memory
Some languages have garbage collection that constantly looks for no l
memory as the program runs; in other languages, the programmer m
allocate and free the memory. Rust uses a third approach: memory is
through a system of ownership with a set of rules that the compiler ch
time. None of the ownership features slow down your program while

Because ownership is a new concept for many programmers, it does t
to get used to. The good news is that the more experienced you becom
and the rules of the ownership system, the more you’ll be able to natu
code that is safe and e�cient. Keep at it!

When you understand ownership, you’ll have a solid foundation for un
the features that make Rust unique. In this chapter, you’ll learn owner
through some examples that focus on a very common data structure:

The Stack and the Heap

In many programming languages, you don’t have to think about the
the heap very often. But in a systems programming language like R
a value is on the stack or the heap has more of an e�ect on how th
behaves and why you have to make certain decisions. Parts of own
described in relation to the stack and the heap later in this chapter,
brief explanation in preparation.

Both the stack and the heap are parts of memory that are available
to use at runtime, but they are structured in di�erent ways. The sta
values in the order it gets them and removes the values in the oppo
This is referred to as last in, �rst out. Think of a stack of plates: when
more plates, you put them on top of the pile, and when you need a
take one o� the top. Adding or removing plates from the middle or
wouldn’t work as well! Adding data is called pushing onto the stack

data is called popping o� the stack.

The stack is fast because of the way it accesses the data: it never ha
for a place to put new data or a place to get data from because tha
always the top. Another property that makes the stack fast is that a
stack must take up a known, �xed size.

Data with a size unknown at compile time or a size that might chan
stored on the heap instead. The heap is less organized: when you p
the heap, you ask for some amount of space. The operating system
empty spot somewhere in the heap that is big enough, marks it as b
and returns a pointer, which is the address of that location. This pro
allocating on the heap, sometimes abbreviated as just “allocating.” P
onto the stack is not considered allocating. Because the pointer is a
size, you can store the pointer on the stack, but when you want the
you have to follow the pointer.

Think of being seated at a restaurant. When you enter, you state th
people in your group, and the sta� �nds an empty table that �ts ev
leads you there. If someone in your group comes late, they can ask
been seated to �nd you.

Accessing data in the heap is slower than accessing data on the sta
you have to follow a pointer to get there. Contemporary processors
they jump around less in memory. Continuing the analogy, conside
restaurant taking orders from many tables. It’s most e�cient to get
orders at one table before moving on to the next table. Taking an o
table A, then an order from table B, then one from A again, and the
again would be a much slower process. By the same token, a proce
its job better if it works on data that’s close to other data (as it is on
rather than farther away (as it can be on the heap). Allocating a larg
space on the heap can also take time.

When your code calls a function, the values passed into the functio
potentially, pointers to data on the heap) and the function’s local va
pushed onto the stack. When the function is over, those values get
the stack.

Keeping track of what parts of code are using what data on the hea
the amount of duplicate data on the heap, and cleaning up unused
heap so you don’t run out of space are all problems that ownership
Once you understand ownership, you won’t need to think about the
the heap very often, but knowing that managing heap data is why o
exists can help explain why it works the way it does.

Ownership Rules

First, let’s take a look at the ownership rules. Keep these rules in mind
through the examples that illustrate them:

Each value in Rust has a variable that’s called its 1.
There can only be one owner at a time.2.
When the owner goes out of scope, the value will be dropped3.

Variable Scope

We’ve walked through an example of a Rust program already in Chapt
we’re past basic syntax, we won’t include all the
you’re following along, you’ll have to put the following examples inside
function manually. As a result, our examples will be a bit more concise
focus on the actual details rather than boilerplate code.

As a �rst example of ownership, we’ll look at the
the range within a program for which an item is valid. Let’s say we hav
looks like this:

The variable s refers to a string literal, where the value of the string i
into the text of our program. The variable is valid from the point at wh
until the end of the current scope. Listing 4-1 has comments annotatin
variable s is valid:

Listing 4-1: A variable and the scope in which it is valid

In other words, there are two important points in time here:

When s comes into scope, it is valid.
It remains valid until it goes out of scope.

let s = "hello";

{ // s is not valid here, it’s not yet dec
let s = "hello"; // s is valid from this point forward

// do stuff with s
} // this scope is now over, and s is no l

At this point, the relationship between scopes and when variables are
to that in other programming languages. Now we’ll build on top of this
by introducing the String type.

The String Type

To illustrate the rules of ownership, we need a data type that is more
the ones we covered in the “Data Types” section of Chapter 3. The typ
previously are all stored on the stack and popped o� the stack when t
over, but we want to look at data that is stored on the heap and explo
knows when to clean up that data.

We’ll use String as the example here and concentrate on the parts o
relate to ownership. These aspects also apply to other complex data t
by the standard library and that you create. We’ll discuss
Chapter 8.

We’ve already seen string literals, where a string value is hardcoded in
String literals are convenient, but they aren’t suitable for every situatio
may want to use text. One reason is that they’re immutable. Another i
string value can be known when we write our code: for example, what
take user input and store it? For these situations, Rust has a second st
String . This type is allocated on the heap and as such is able to store

text that is unknown to us at compile time. You can create a
literal using the from function, like so:

The double colon (::) is an operator that allows us to namespace thi
from function under the String type rather than using some sort of
string_from . We’ll discuss this syntax more in the “Method Syntax” s

Chapter 5 and when we talk about namespacing with modules in “Mo
in Chapter 7.

This kind of string can be mutated:

let s = String::from("hello");

let mut s = String::from("hello");

s.push_str(", world!"); // push_str() appends a literal to a St

println!("{}", s); // This will print `hello, world!`

So, what’s the di�erence here? Why can String
di�erence is how these two types deal with memory.

Memory and Allocation

In the case of a string literal, we know the contents at compile time, so
hardcoded directly into the �nal executable. This is why string literals
e�cient. But these properties only come from the string literal’s immu
Unfortunately, we can’t put a blob of memory into the binary for each
whose size is unknown at compile time and whose size might change
the program.

With the String type, in order to support a mutable, growable piece
to allocate an amount of memory on the heap, unknown at compile ti
contents. This means:

The memory must be requested from the operating system at ru
We need a way of returning this memory to the operating system
done with our String .

That �rst part is done by us: when we call String::from
the memory it needs. This is pretty much universal in programming la

However, the second part is di�erent. In languages with a
GC keeps track and cleans up memory that isn’t being used anymore,
need to think about it. Without a GC, it’s our responsibility to identify w
no longer being used and call code to explicitly return it, just as we did
Doing this correctly has historically been a di�cult programming prob
forget, we’ll waste memory. If we do it too early, we’ll have an invalid v
it twice, that’s a bug too. We need to pair exactly one
free .

Rust takes a di�erent path: the memory is automatically returned onc
that owns it goes out of scope. Here’s a version of our scope example
using a String instead of a string literal:

There is a natural point at which we can return the memory our

{
let s = String::from("hello"); // s is valid from this poin

// do stuff with s
} // this scope is now over, a

// longer valid

operating system: when s goes out of scope. When a variable goes o
calls a special function for us. This function is called
of String can put the code to return the memory. Rust calls
the closing } .

Note: In C++, this pattern of deallocating resources at the end of an
lifetime is sometimes called Resource Acquisition Is Initialization (RAII
function in Rust will be familiar to you if you’ve used RAII patterns.

This pattern has a profound impact on the way Rust code is written. It
simple right now, but the behavior of code can be unexpected in more
situations when we want to have multiple variables use the data we’ve
the heap. Let’s explore some of those situations now.

Ways Variables and Data Interact: Move

Multiple variables can interact with the same data in di�erent ways in
at an example using an integer in Listing 4-2:

Listing 4-2: Assigning the integer value of variable

We can probably guess what this is doing: “bind the value
of the value in x and bind it to y .” We now have two variables,
equal 5 . This is indeed what is happening, because integers are simp
known, �xed size, and these two 5 values are pushed onto the stack.

Now let’s look at the String version:

This looks very similar to the previous code, so we might assume that
would be the same: that is, the second line would make a copy of the
bind it to s2 . But this isn’t quite what happens.

Take a look at Figure 4-1 to see what is happening to
String is made up of three parts, shown on the left: a pointer to the

holds the contents of the string, a length, and a capacity. This group o

let x = 5;
let y = x;

let s1 = String::from("hello");
let s2 = s1;

on the stack. On the right is the memory on the heap that holds the co

s1

name value

ptr

len 5

capacity 5

index value

0 h

1 e

2 l

3 l

4 o

Figure 4-1: Representation in memory of a String
to s1

The length is how much memory, in bytes, the contents of the
using. The capacity is the total amount of memory, in bytes, that the
received from the operating system. The di�erence between length an
matters, but not in this context, so for now, it’s �ne to ignore the capa

When we assign s1 to s2 , the String data is copied, meaning we co
the length, and the capacity that are on the stack. We do not copy the
heap that the pointer refers to. In other words, the data representatio
looks like Figure 4-2.

s1

name value

ptr

len 5

capacity 5 index value

0 h

1 e

2 l

3 l

4 o

s2

name value

ptr

len 5

capacity 5

Figure 4-2: Representation in memory of the variable
pointer, length, and capacity of s1

The representation does not look like Figure 4-3, which is what memor

like if Rust instead copied the heap data as well. If Rust did this, the op
s2 = s1 could be very expensive in terms of runtime performance if

heap were large.

s2

name value

ptr

len 5

capacity 5

index value

0 h

1 e

2 l

3 l

4 o

s1

name value

ptr

len 5

capacity 5

index value

0 h

1 e

2 l

3 l

4 o

Figure 4-3: Another possibility for what s2 = s1
data as well

Earlier, we said that when a variable goes out of scope, Rust automati
drop function and cleans up the heap memory for that variable. But F

both data pointers pointing to the same location. This is a problem: w
go out of scope, they will both try to free the same memory. This is kn
free error and is one of the memory safety bugs we mentioned previo
memory twice can lead to memory corruption, which can potentially le
vulnerabilities.

To ensure memory safety, there’s one more detail to what happens in
Rust. Instead of trying to copy the allocated memory, Rust considers
be valid and, therefore, Rust doesn’t need to free anything when
scope. Check out what happens when you try to use
work:

let s1 = String::from("hello");
let s2 = s1;

println!("{}, world!", s1);

You’ll get an error like this because Rust prevents you from using the i
reference:

If you’ve heard the terms shallow copy and deep copy
languages, the concept of copying the pointer, length, and capacity wi
the data probably sounds like making a shallow copy. But because Ru
invalidates the �rst variable, instead of being called a shallow copy, it’s
move. Here we would read this by saying that s1
actually happens is shown in Figure 4-4.

s1

name value

ptr

len 5

capacity 5 index value

0 h

1 e

2 l

3 l

4 o

s2

name value

ptr

len 5

capacity 5

Figure 4-4: Representation in memory after s1 has been invalidated

That solves our problem! With only s2 valid, when it goes out of scop
free the memory, and we’re done.

In addition, there’s a design choice that’s implied by this: Rust will neve
create “deep” copies of your data. Therefore, any
to be inexpensive in terms of runtime performance.

error[E0382]: use of moved value: `s1`
 --> src/main.rs:5:28
 |
3 | let s2 = s1;
 | -- value moved here
4 |
5 | println!("{}, world!", s1);
 | ^^ value used here after mov
 |
 = note: move occurs because `s1` has type `std::string::S
does
 not implement the `Copy` trait

Ways Variables and Data Interact: Clone

If we do want to deeply copy the heap data of the
can use a common method called clone . We’ll discuss method syntax
but because methods are a common feature in many programming la
probably seen them before.

Here’s an example of the clone method in action:

This works just �ne and explicitly produces the behavior shown in Figu
the heap data does get copied.

When you see a call to clone , you know that some arbitrary code is b
and that code may be expensive. It’s a visual indicator that something
going on.

Stack-Only Data: Copy

There’s another wrinkle we haven’t talked about yet. This code using in
which was shown earlier in Listing 4-2, works and is valid:

But this code seems to contradict what we just learned: we don’t have
but x is still valid and wasn’t moved into y .

The reason is that types such as integers that have a known size at co
stored entirely on the stack, so copies of the actual values are quick to
means there’s no reason we would want to prevent
create the variable y . In other words, there’s no di�erence between d
shallow copying here, so calling clone wouldn’t do anything di�erent
shallow copying and we can leave it out.

Rust has a special annotation called the Copy trait that we can place o
integers that are stored on the stack (we’ll talk more about traits in Ch

let s1 = String::from("hello");
let s2 = s1.clone();

println!("s1 = {}, s2 = {}", s1, s2);

let x = 5;
let y = x;

println!("x = {}, y = {}", x, y);

type has the Copy trait, an older variable is still usable after assignme
let us annotate a type with the Copy trait if the type, or any of its part
implemented the Drop trait. If the type needs something special to ha
value goes out of scope and we add the Copy annotation to that type
compile time error. To learn about how to add the
“Derivable Traits” in Appendix C.

So what types are Copy ? You can check the documentation for the giv
sure, but as a general rule, any group of simple scalar values can be
nothing that requires allocation or is some form of resource is
of the types that are Copy :

All the integer types, such as u32 .
The Boolean type, bool , with values true
All the �oating point types, such as f64 .
The character type, char .
Tuples, but only if they contain types that are also
(i32, i32) is Copy , but (i32, String) is not.

Ownership and Functions

The semantics for passing a value to a function are similar to those fo
value to a variable. Passing a variable to a function will move or copy,
assignment does. Listing 4-3 has an example with some annotations s
variables go into and out of scope:

Filename: src/main.rs

Listing 4-3: Functions with ownership and scope annotated

If we tried to use s after the call to takes_ownership
time error. These static checks protect us from mistakes. Try adding c
that uses s and x to see where you can use them and where the ow
prevent you from doing so.

Return Values and Scope

Returning values can also transfer ownership. Listing 4-4 is an exampl
annotations to those in Listing 4-3:

Filename: src/main.rs

fn main() {
let s = String::from("hello"); // s comes into scope

 takes_ownership(s); // s's value moves into the
function...

// ... and so is no longer

let x = 5; // x comes into scope

 makes_copy(x); // x would move into the fu
// but i32 is Copy, so it’s

still
// use x afterward

} // Here, x goes out of scope, then s. But because s's value w
nothing

// special happens.

fn takes_ownership(some_string: String) {
println!("{}", some_string);

} // Here, some_string goes out of scope and `drop` is called.
// memory is freed.

fn makes_copy(some_integer: i32) { // some_integer comes into s
println!("{}", some_integer);

} // Here, some_integer goes out of scope. Nothing special happ

Listing 4-4: Transferring ownership of return values

The ownership of a variable follows the same pattern every time: assig
another variable moves it. When a variable that includes data on the h
scope, the value will be cleaned up by drop unless the data has been
owned by another variable.

Taking ownership and then returning ownership with every function is
What if we want to let a function use a value but not take ownership?
annoying that anything we pass in also needs to be passed back if we
again, in addition to any data resulting from the body of the function t

fn main() {
let s1 = gives_ownership(); // gives_ownership move

return
// value into s1

let s2 = String::from("hello"); // s2 comes into scope

let s3 = takes_and_gives_back(s2); // s2 is moved into
// takes_and_gives_back

also
// moves its return val

} // Here, s3 goes out of scope and is dropped. s2 goes out of
was

// moved, so nothing happens. s1 goes out of scope and is dro

fn gives_ownership() -> String {
its

function

let some_string = String::from("hello"
scope

 some_string
and

}

// takes_and_gives_back will take a String and return one.
fn takes_and_gives_back(a_string: String) ->
into

 a_string // a_string is returned and moves out to the call
function
}

want to return as well.

It’s possible to return multiple values using a tuple, as shown in Listing

Filename: src/main.rs

Listing 4-5: Returning ownership of parameters

But this is too much ceremony and a lot of work for a concept that sho
common. Luckily for us, Rust has a feature for this concept, called

References and Borrowing

The issue with the tuple code in Listing 4-5 is that we have to return th
the calling function so we can still use the String
because the String was moved into calculate_length

Here is how you would de�ne and use a calculate_length
reference to an object as a parameter instead of taking ownership of t

Filename: src/main.rs

fn main() {
let s1 = String::from("hello");

let (s2, len) = calculate_length(s1);

println!("The length of '{}' is {}.", s2, len);
}

fn calculate_length(s: String) -> (String,
let length = s.len(); // len() returns the length of a Stri

 (s, length)
}

First, notice that all the tuple code in the variable declaration and the
value is gone. Second, note that we pass &s1 into
de�nition, we take &String rather than String

These ampersands are references, and they allow you to refer to some
taking ownership of it. Figure 4-5 shows a diagram.

s

name value

ptr

s1

name value

ptr

len

capacity

Figure 4-5: A diagram of &String s pointing at

Note: The opposite of referencing by using &
accomplished with the dereference operator,
dereference operator in Chapter 8 and discuss details of dereferen
Chapter 15.

Let’s take a closer look at the function call here:

fn main() {
let s1 = String::from("hello");

let len = calculate_length(&s1);

println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize {
 s.len()
}

The &s1 syntax lets us create a reference that refers
own it. Because it does not own it, the value it points to will not be dro
reference goes out of scope.

Likewise, the signature of the function uses & to indicate that the type
parameter s is a reference. Let’s add some explanatory annotations:

The scope in which the variable s is valid is the same as any function
scope, but we don’t drop what the reference points to when it goes ou
because we don’t have ownership. When functions have references as
instead of the actual values, we won’t need to return the values in ord
ownership, because we never had ownership.

We call having references as function parameters
owns something, you can borrow it from them. When you’re done, yo
back.

So what happens if we try to modify something we’re borrowing? Try t
Listing 4-6. Spoiler alert: it doesn’t work!

Filename: src/main.rs

Listing 4-6: Attempting to modify a borrowed value

Here’s the error:

let s1 = String::from("hello");

let len = calculate_length(&s1);

fn calculate_length(s: &String) -> usize {
 s.len()
} // Here, s goes out of scope. But because it does not have ow
what

// it refers to, nothing happens.

fn main() {
let s = String::from("hello");

 change(&s);
}

fn change(some_string: &String) {
 some_string.push_str(", world");
}

Just as variables are immutable by default, so are references. We’re no
modify something we have a reference to.

Mutable References

We can �x the error in the code from Listing 4-6 with just a small twea

Filename: src/main.rs

First, we had to change s to be mut . Then we had to create a mutabl
&mut s and accept a mutable reference with some_string: &mut S

But mutable references have one big restriction: you can only have on
reference to a particular piece of data in a particular scope. This code

Filename: src/main.rs

Here’s the error:

error[E0596]: cannot borrow immutable borrowed content `*so
mutable
 --> error.rs:8:5
 |
7 | fn change(some_string: &String) {
 | ------- use `&mut String` here t
8 | some_string.push_str(", world");
 | ^^^^^^^^^^^ cannot borrow as mutable

fn main() {
let mut s = String::from("hello");

 change(&mut s);
}

fn change(some_string: &mut String) {
 some_string.push_str(", world");
}

let mut s = String::from("hello");

let r1 = &mut s;
let r2 = &mut s;

This restriction allows for mutation but in a very controlled fashion. It’
that new Rustaceans struggle with, because most languages let you m
you’d like.

The bene�t of having this restriction is that Rust can prevent data race
time. A data race is similar to a race condition and happens when thes
behaviors occur:

Two or more pointers access the same data at the same time.
At least one of the pointers is being used to write to the data.
There’s no mechanism being used to synchronize access to the d

Data races cause unde�ned behavior and can be di�cult to diagnose
you’re trying to track them down at runtime; Rust prevents this proble
happening because it won’t even compile code with data races!

As always, we can use curly brackets to create a new scope, allowing f
mutable references, just not simultaneous ones:

A similar rule exists for combining mutable and immutable references
results in an error:

error[E0499]: cannot borrow `s` as mutable more than once a
 --> borrow_twice.rs:5:19
 |
4 | let r1 = &mut s;
 | - first mutable borrow occurs here
5 | let r2 = &mut s;
 | ^ second mutable borrow occurs here
6 | }
 | - first borrow ends here

let mut s = String::from("hello");

{
let r1 = &mut s;

} // r1 goes out of scope here, so we can make a new reference
problems.

let r2 = &mut s;

let mut s = String::from("hello");

let r1 = &s; // no problem
let r2 = &s; // no problem
let r3 = &mut s; // BIG PROBLEM

Here’s the error:

Whew! We also cannot have a mutable reference while we have an im
Users of an immutable reference don’t expect the values to suddenly
from under them! However, multiple immutable references are okay b
who is just reading the data has the ability to a�ect anyone else’s read

Even though these errors may be frustrating at times, remember that
compiler pointing out a potential bug early (at compile time rather tha
and showing you exactly where the problem is. Then you don’t have to
why your data isn’t what you thought it was.

Dangling References

In languages with pointers, it’s easy to erroneously create a
that references a location in memory that may have been given to som
freeing some memory while preserving a pointer to that memory. In R
the compiler guarantees that references will never be dangling refere
a reference to some data, the compiler will ensure that the data will n
scope before the reference to the data does.

Let’s try to create a dangling reference, which Rust will prevent with a
error:

Filename: src/main.rs

error[E0502]: cannot borrow `s` as mutable because it is al
immutable
 --> borrow_thrice.rs:6:19
 |
4 | let r1 = &s; // no problem
 | - immutable borrow occurs here
5 | let r2 = &s; // no problem
6 | let r3 = &mut s; // BIG PROBLEM
 | ^ mutable borrow occurs here
7 | }
 | - immutable borrow ends here

Here’s the error:

This error message refers to a feature we haven’t covered yet:
lifetimes in detail in Chapter 10. But, if you disregard the parts about l
message does contain the key to why this code is a problem:

Let’s take a closer look at exactly what’s happening at each stage of ou

Because s is created inside dangle , when the code of
deallocated. But we tried to return a reference to it. That means this r
be pointing to an invalid String . That’s no good! Rust won’t let us do

The solution here is to return the String directly:

fn main() {
let reference_to_nothing = dangle();

}

fn dangle() -> &String {
let s = String::from("hello");

 &s
}

error[E0106]: missing lifetime specifier
 --> dangle.rs:5:16
 |
5 | fn dangle() -> &String {
 | ^ expected lifetime parameter
 |
 = help: this function's return type contains a borrowed v
is
 no value for it to be borrowed from
 = help: consider giving it a 'static lifetime

this function's return type contains a borrowed value, but
value
for it to be borrowed from.

fn dangle() -> &String { // dangle returns a reference to a Str

let s = String::from("hello"); // s is a new String

 &s // we return a reference to the String, s
} // Here, s goes out of scope, and is dropped. Its memory goes

// Danger!

This works without any problems. Ownership is moved out, and nothi
deallocated.

The Rules of References

Let’s recap what we’ve discussed about references:

At any given time, you can have either (but not both of) one muta
or any number of immutable references.
References must always be valid.

Next, we’ll look at a di�erent kind of reference: slices.

The Slice Type

Another data type that does not have ownership is the
contiguous sequence of elements in a collection rather than the whole

Here’s a small programming problem: write a function that takes a str
the �rst word it �nds in that string. If the function doesn’t �nd a space
the whole string must be one word, so the entire string should be retu

Let’s think about the signature of this function:

This function, first_word , has a &String as a parameter. We don’t w
so this is �ne. But what should we return? We don’t really have a way
part of a string. However, we could return the index of the end of the
that, as shown in Listing 4-7:

Filename: src/main.rs

fn no_dangle() -> String {
let s = String::from("hello");

 s
}

fn first_word(s: &String) -> ?

Listing 4-7: The first_word function that returns a byte index value in
parameter

Because we need to go through the String element by element and
value is a space, we’ll convert our String to an array of bytes using th
method:

Next, we create an iterator over the array of bytes using the

We’ll discuss iterators in more detail in Chapter 13. For now, know tha
method that returns each element in a collection and that
result of iter and returns each element as part of a tuple instead. Th
of the tuple returned from enumerate is the index, and the second ele
reference to the element. This is a bit more convenient than calculatin
ourselves.

Because the enumerate method returns a tuple, we can use patterns
that tuple, just like everywhere else in Rust. So in the
that has i for the index in the tuple and &item
Because we get a reference to the element from
the pattern.

Inside the for loop, we search for the byte that represents the space
byte literal syntax. If we �nd a space, we return the position. Otherwis
length of the string by using s.len() :

fn first_word(s: &String) -> usize {
let bytes = s.as_bytes();

for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {

return i;
 }
 }

 s.len()
}

let bytes = s.as_bytes();

for (i, &item) in bytes.iter().enumerate() {

We now have a way to �nd out the index of the end of the �rst word in
there’s a problem. We’re returning a usize on its own, but it’s only a m
number in the context of the &String . In other words, because it’s a s
from the String , there’s no guarantee that it will still be valid in the fu
the program in Listing 4-8 that uses the first_word

Filename: src/main.rs

Listing 4-8: Storing the result from calling the first_word
the String contents

This program compiles without any errors and would also do so if we
calling s.clear() . Because word isn’t connected to the state of
contains the value 5 . We could use that value 5
the �rst word out, but this would be a bug because the contents of
since we saved 5 in word .

Having to worry about the index in word getting out of sync with the d
tedious and error prone! Managing these indices is even more brittle
second_word function. Its signature would have to look like this:

Now we’re tracking a starting and an ending index, and we have even
that were calculated from data in a particular state but aren’t tied to th
We now have three unrelated variables �oating around that need to b

Luckily, Rust has a solution to this problem: string slices.

if item == b' ' {
return i;

 }
}
s.len()

fn main() {
let mut s = String::from("hello world"

let word = first_word(&s); // word will get the value 5

 s.clear(); // This empties the String, making it equal to "

// word still has the value 5 here, but there's no more str
// we could meaningfully use the value 5 with. word is now

invalid!
}

fn second_word(s: &String) -> (usize, usize

String Slices

A string slice is a reference to part of a String , and it looks like this:

This is similar to taking a reference to the whole
bit. Rather than a reference to the entire String
String . The start..end syntax is a range that begins at

but not including, end . If we wanted to include

The = means that we're including the last number, if that helps you re
di�erence between .. and ..= .

We can create slices using a range within brackets by specifying
[starting_index..ending_index] , where starting_index

slice and ending_index is one more than the last position in the slice
slice data structure stores the starting position and the length of the s
corresponds to ending_index minus starting_index
let world = &s[6..11]; , world would be a slice that contains a poi

byte of s and a length value of 5.

Figure 4-6 shows this in a diagram.

let s = String::from("hello world");

let hello = &s[0..5];
let world = &s[6..11];

let s = String::from("hello world");

let hello = &s[0..=4];
let world = &s[6..=10];

world

name value

ptr

len 5

index value

0 h

1 e

2 l

3 l

4 o

5

6 w

7 o

8 r

9 l

10 d

s

name value

ptr

len 11

capacity 11

Figure 4-6: String slice referring to part of a String

With Rust’s .. range syntax, if you want to start at the �rst index (zer
the value before the two periods. In other words, these are equal:

By the same token, if your slice includes the last byte of the
trailing number. That means these are equal:

You can also drop both values to take a slice of the entire string. So th

let s = String::from("hello");

let slice = &s[0..2];
let slice = &s[..2];

let s = String::from("hello");

let len = s.len();

let slice = &s[3..len];
let slice = &s[3..];

Note: String slice range indices must occur at valid UTF-8 character
If you attempt to create a string slice in the middle of a multibyte ch
program will exit with an error. For the purposes of introducing stri
are assuming ASCII only in this section; a more thorough discussion
handling is in the “Strings” section of Chapter 8.

With all this information in mind, let’s rewrite first_word
that signi�es “string slice” is written as &str :

Filename: src/main.rs

We get the index for the end of the word in the same way as we did in
looking for the �rst occurrence of a space. When we �nd a space, we r
slice using the start of the string and the index of the space as the star
indices.

Now when we call first_word , we get back a single value that is tied
underlying data. The value is made up of a reference to the starting po
and the number of elements in the slice.

Returning a slice would also work for a second_word

We now have a straightforward API that’s much harder to mess up, be

let s = String::from("hello");

let len = s.len();

let slice = &s[0..len];
let slice = &s[..];

fn first_word(s: &String) -> &str {
let bytes = s.as_bytes();

for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {

return &s[0..i];
 }
 }

 &s[..]
}

fn second_word(s: &String) -> &str {

compiler will ensure the references into the String
in the program in Listing 4-8, when we got the index to the end of the
then cleared the string so our index was invalid? That code was logica
didn’t show any immediate errors. The problems would show up later
trying to use the �rst word index with an emptied string. Slices make t
impossible and let us know we have a problem with our code much so
slice version of first_word will throw a compile time error:

Filename: src/main.rs

Here’s the compiler error:

Recall from the borrowing rules that if we have an immutable referen
we cannot also take a mutable reference. Because
String , it tries to take a mutable reference, which fails. Not only has

API easier to use, but it has also eliminated an entire class of errors at

String Literals Are Slices

Recall that we talked about string literals being stored inside the binar
know about slices, we can properly understand string literals:

The type of s here is &str : it’s a slice pointing to that speci�c point o

fn main() {
let mut s = String::from("hello world"

let word = first_word(&s);

 s.clear(); // Error!
}

error[E0502]: cannot borrow `s` as mutable because it is al
immutable
 --> src/main.rs:6:5
 |
4 | let word = first_word(&s);
 | - immutable borrow occurs he
5 |
6 | s.clear(); // Error!
 | ^ mutable borrow occurs here
7 | }
 | - immutable borrow ends here

let s = "Hello, world!";

This is also why string literals are immutable; &str

String Slices as Parameters

Knowing that you can take slices of literals and
improvement on first_word , and that’s its signature:

A more experienced Rustacean would write the following line instead
allows us to use the same function on both String

If we have a string slice, we can pass that directly. If we have a
slice of the entire String . De�ning a function to take a string slice ins
reference to a String makes our API more general and useful withou
functionality:

Filename: src/main.rs

Other Slices

String slices, as you might imagine, are speci�c to strings. But there’s a
slice type, too. Consider this array:

fn first_word(s: &String) -> &str {

fn first_word(s: &str) -> &str {

fn main() {
let my_string = String::from("hello world"

// first_word works on slices of `String`s
let word = first_word(&my_string[..]);

let my_string_literal = "hello world";

// first_word works on slices of string literals
let word = first_word(&my_string_literal[..]);

// Because string literals *are* string slices already,
// this works too, without the slice syntax!
let word = first_word(my_string_literal);

}

let a = [1, 2, 3, 4, 5];

Just as we might want to refer to a part of a string, we might want to r
an array. We’d do so like this:

This slice has the type &[i32] . It works the same way as string slices d
reference to the �rst element and a length. You’ll use this kind of slice
other collections. We’ll discuss these collections in detail when we talk
in Chapter 8.

Summary

The concepts of ownership, borrowing, and slices ensure memory saf
programs at compile time. The Rust language gives you control over y
usage in the same way as other systems programming languages, but
owner of data automatically clean up that data when the owner goes
means you don’t have to write and debug extra code to get this contro

Ownership a�ects how lots of other parts of Rust work, so we’ll talk ab
concepts further throughout the rest of the book. Let’s move on to Ch
look at grouping pieces of data together in a struct

Using Structs to Structure Related Data
A struct, or structure, is a custom data type that lets you name and pac
multiple related values that make up a meaningful group. If you’re fam
object-oriented language, a struct is like an object’s data attributes. In
we’ll compare and contrast tuples with structs, demonstrate how to u
discuss how to de�ne methods and associated functions to specify be
associated with a struct’s data. Structs and enums (discussed in Chapt
building blocks for creating new types in your program’s domain to ta
advantage of Rust’s compile time type checking.

De�ning and Instantiating Structs

Structs are similar to tuples, which were discussed in Chapter 3. Like t

let a = [1, 2, 3, 4, 5];

let slice = &a[1..3];

pieces of a struct can be di�erent types. Unlike with tuples, you’ll nam
data so it’s clear what the values mean. As a result of these names, str
�exible than tuples: you don’t have to rely on the order of the data to
access the values of an instance.

To de�ne a struct, we enter the keyword struct
struct’s name should describe the signi�cance of the pieces of data be
together. Then, inside curly brackets, we de�ne the names and types o
data, which we call �elds. For example, Listing 5-1 shows a struct that s
information about a user account:

Listing 5-1: A User struct de�nition

To use a struct after we’ve de�ned it, we create an
concrete values for each of the �elds. We create an instance by stating
the struct and then add curly brackets containing
are the names of the �elds and the values are the data we want to sto
�elds. We don’t have to specify the �elds in the same order in which w
them in the struct. In other words, the struct de�nition is like a genera
the type, and instances �ll in that template with particular data to crea
type. For example, we can declare a particular user as shown in Listing

Listing 5-2: Creating an instance of the User struct

To get a speci�c value from a struct, we can use dot notation. If we wa
user’s email address, we could use user1.email
value. If the instance is mutable, we can change a value by using the d
assigning into a particular �eld. Listing 5-3 shows how to change the v
email �eld of a mutable User instance:

struct User {
 username: String,
 email: String,
 sign_in_count: u64,
 active: bool,
}

let user1 = User {
 email: String::from("someone@example.com"
 username: String::from("someusername123"
 active: true,
 sign_in_count: 1,
};

Listing 5-3: Changing the value in the email �eld of a

Note that the entire instance must be mutable; Rust doesn’t allow us t
certain �elds as mutable.

As with any expression, we can construct a new instance of the struct
expression in the function body to implicitly return that new instance.
shows a build_user function that returns a User
username. The active �eld gets the value of true
value of 1 .

Listing 5-4: A build_user function that takes an email and username
User instance

It makes sense to name the function parameters with the same name
�elds, but having to repeat the email and username
bit tedious. If the struct had more �elds, repeating each name would g
annoying. Luckily, there’s a convenient shorthand!

Using the Field Init Shorthand when Variables and Fields H
Same Name

Because the parameter names and the struct �eld names are exactly
Listing 5-4, we can use the �eld init shorthand syntax to rewrite
behaves exactly the same but doesn’t have the repetition of

let mut user1 = User {
 email: String::from("someone@example.com"
 username: String::from("someusername123"
 active: true,
 sign_in_count: 1,
};

user1.email = String::from("anotheremail@example.com"

fn build_user(email: String, username: String
 User {
 email: email,
 username: username,
 active: true,
 sign_in_count: 1,
 }
}

shown in Listing 5-5.

Listing 5-5: A build_user function that uses �eld init shorthand becau
and username parameters have the same name as struct �elds

Here, we’re creating a new instance of the User
email . We want to set the email �eld’s value to the value in the

the build_user function. Because the email �eld and the
the same name, we only need to write email rather than

Creating Instances From Other Instances With Struct Upda

It’s often useful to create a new instance of a struct that uses most of
values but changes some. You’ll do this using struct update syntax

First, Listing 5-6 shows how we create a new User
update syntax. We set new values for email and
same values from user1 that we created in Listing 5-2:

Listing 5-6: Creating a new User instance using some of the values fro

Using struct update syntax, we can achieve the same e�ect with less c
in Listing 5-7. The syntax .. speci�es that the remaining �elds not ex
should have the same value as the �elds in the given instance.

fn build_user(email: String, username: String
 User {
 email,
 username,
 active: true,
 sign_in_count: 1,
 }
}

let user2 = User {
 email: String::from("another@example.com"
 username: String::from("anotherusername567"
 active: user1.active,
 sign_in_count: user1.sign_in_count,
};

Listing 5-7: Using struct update syntax to set new
User instance but use the rest of the values from the �elds of the ins
user1 variable

The code in Listing 5-7 also creates an instance in
email and username but has the same values for the

�elds from user1 .

Tuple Structs without Named Fields to Create Di�erent Typ

You can also de�ne structs that look similar to tuples, called
have the added meaning the struct name provides but don’t have nam
with their �elds; rather, they just have the types of the �elds. Tuple str
when you want to give the whole tuple a name and make the tuple be
than other tuples, and naming each �eld as in a regular struct would b
redundant.

To de�ne a tuple struct start with the struct keyword and the struct
by the types in the tuple. For example, here are de�nitions and usage
structs named Color and Point :

Note that the black and origin values are di�erent types, because
instances of di�erent tuple structs. Each struct you de�ne is its own ty
though the �elds within the struct have the same types. For example,
takes a parameter of type Color cannot take a
both types are made up of three i32 values. Otherwise, tuple struct i
behave like tuples: you can destructure them into their individual piec
a . followed by the index to access an individual value, and so on.

let user2 = User {
 email: String::from("another@example.com"
 username: String::from("anotherusername567"
 ..user1
};

struct Color(i32, i32, i32);
struct Point(i32, i32, i32);

let black = Color(0, 0, 0);
let origin = Point(0, 0, 0);

Unit-Like Structs Without Any Fields

You can also de�ne structs that don’t have any �elds! These are called
because they behave similarly to () , the unit type. Unit-like structs ca
situations in which you need to implement a trait on some type but do
data that you want to store in the type itself. We’ll discuss traits in Cha

Ownership of Struct Data

In the User struct de�nition in Listing 5-1, we used the owned
rather than the &str string slice type. This is a deliberate choice be
want instances of this struct to own all of its data and for that data
for as long as the entire struct is valid.

It’s possible for structs to store references to data owned by somet
to do so requires the use of lifetimes, a Rust feature that we’ll discus
10. Lifetimes ensure that the data referenced by a struct is valid for
the struct is. Let’s say you try to store a reference in a struct withou
lifetimes, like this, which won’t work:

Filename: src/main.rs

The compiler will complain that it needs lifetime speci�ers:

struct User {
 username: &str,
 email: &str,
 sign_in_count: u64,
 active: bool,
}

fn main() {
let user1 = User {

 email: "someone@example.com",
 username: "someusername123",
 active: true,
 sign_in_count: 1,
 };
}

In Chapter 10, we’ll discuss how to �x these errors so you can store
structs, but for now, we’ll �x errors like these using owned types lik
instead of references like &str .

An Example Program Using Structs

To understand when we might want to use structs, let’s write a progra
calculates the area of a rectangle. We’ll start with single variables, and
the program until we’re using structs instead.

Let’s make a new binary project with Cargo called
and height of a rectangle speci�ed in pixels and calculate the area of t
Listing 5-8 shows a short program with one way of doing exactly that i
src/main.rs:

Filename: src/main.rs

Listing 5-8: Calculating the area of a rectangle speci�ed by separate w
variables

error[E0106]: missing lifetime specifier
 -->
 |
2 | username: &str,
 | ^ expected lifetime parameter

error[E0106]: missing lifetime specifier
 -->
 |
3 | email: &str,
 | ^ expected lifetime parameter

fn main() {
let width1 = 30;
let height1 = 50;

println!(
"The area of the rectangle is {} square pixels."

 area(width1, height1)
);
}

fn area(width: u32, height: u32) -> u32 {
 width * height
}

Now, run this program using cargo run :

Even though Listing 5-8 works and �gures out the area of the rectangl
area function with each dimension, we can do better. The width and

related to each other because together they describe one rectangle.

The issue with this code is evident in the signature of

The area function is supposed to calculate the area of one rectangle,
function we wrote has two parameters. The parameters are related, b
expressed anywhere in our program. It would be more readable and m
manageable to group width and height together. We’ve already discus
might do that in “The Tuple Type” section of Chapter 3: by using tuples

Refactoring with Tuples

Listing 5-9 shows another version of our program that uses tuples:

Filename: src/main.rs

Listing 5-9: Specifying the width and height of the rectangle with a tup

In one way, this program is better. Tuples let us add a bit of structure,
passing just one argument. But in another way, this version is less clea
name their elements, so our calculation has become more confusing b
have to index into the parts of the tuple.

It doesn’t matter if we mix up width and height for the area calculation
to draw the rectangle on the screen, it would matter! We would have t

The area of the rectangle is 1500 square pixels.

fn area(width: u32, height: u32) -> u32 {

fn main() {
let rect1 = (30, 50);

println!(
"The area of the rectangle is {} square pixels."

 area(rect1)
);
}

fn area(dimensions: (u32, u32)) -> u32 {
 dimensions.0 * dimensions.1
}

that width is the tuple index 0 and height is the tuple index
worked on this code, they would have to �gure this out and keep it in
would be easy to forget or mix up these values and cause errors, beca
conveyed the meaning of our data in our code.

Refactoring with Structs: Adding More Meaning

We use structs to add meaning by labeling the data. We can transform
using into a data type with a name for the whole as well as names for
shown in Listing 5-10:

Filename: src/main.rs

Listing 5-10: De�ning a Rectangle struct

Here we’ve de�ned a struct and named it Rectangle
de�ned the �elds as width and height , both of which have type
we created a particular instance of Rectangle that has a width of 30 a
50.

Our area function is now de�ned with one parameter, which we’ve n
rectangle , whose type is an immutable borrow of a struct

mentioned in Chapter 4, we want to borrow the struct rather than tak
it. This way, main retains its ownership and can continue using
reason we use the & in the function signature and where we call the f

The area function accesses the width and height
Our function signature for area now says exactly what we mean: calc

struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
let rect1 = Rectangle { width: 30, height:

println!(
"The area of the rectangle is {} square pixels."

 area(&rect1)
);
}

fn area(rectangle: &Rectangle) -> u32 {
 rectangle.width * rectangle.height
}

of Rectangle , using its width and height �elds. This conveys that th
height are related to each other, and it gives descriptive names to the
than using the tuple index values of 0 and 1 . This is a win for clarity.

Adding Useful Functionality with Derived Traits

It’d be nice to be able to print an instance of Rectangle
program and see the values for all its �elds. Listing 5-11 tries using the
macro as we have used in previous chapters. This won’t work, howeve

Filename: src/main.rs

Listing 5-11: Attempting to print a Rectangle instance

When we run this code, we get an error with this core message:

The println! macro can do many kinds of formatting, and by default
tell println! to use formatting known as Display
user consumption. The primitive types we’ve seen so far implement
default, because there’s only one way you’d want to show a
type to a user. But with structs, the way println!
clear because there are more display possibilities: Do you want comm
you want to print the curly brackets? Should all the �elds be shown? D
ambiguity, Rust doesn’t try to guess what we want, and structs don’t h
implementation of Display .

If we continue reading the errors, we’ll �nd this helpful note:

struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
let rect1 = Rectangle { width: 30, height:

println!("rect1 is {}", rect1);
}

error[E0277]: the trait bound `Rectangle: std::fmt::Display
satisfied

`Rectangle` cannot be formatted with the default formatter;
`:?` instead if you are using a format string

Let’s try it! The println! macro call will now look like
println!("rect1 is {:?}", rect1); . Putting the speci�er

brackets tells println! we want to use an output format called
trait that enables us to print our struct in a way that is useful for deve
see its value while we’re debugging our code.

Run the code with this change. Drat! We still get an error:

But again, the compiler gives us a helpful note:

Rust does include functionality to print out debugging information, bu
explicitly opt in to make that functionality available for our struct. To d
the annotation #[derive(Debug)] just before the struct de�nition, as
Listing 5-12:

Filename: src/main.rs

Listing 5-12: Adding the annotation to derive the
Rectangle instance using debug formatting

Now when we run the program, we won’t get any errors, and we’ll see
output:

Nice! It’s not the prettiest output, but it shows the values of all the �eld
instance, which would de�nitely help during debugging. When we hav
it’s useful to have output that’s a bit easier to read; in those cases, we

error[E0277]: the trait bound `Rectangle: std::fmt::Debug`
satisfied

`Rectangle` cannot be formatted using `:?`; if it is define
crate, add `#[derive(Debug)]` or manually implement it

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
let rect1 = Rectangle { width: 30, height:

println!("rect1 is {:?}", rect1);
}

rect1 is Rectangle { width: 30, height: 50 }

instead of {:?} in the println! string. When we use the
example, the output will look like this:

Rust has provided a number of traits for us to use with the
can add useful behavior to our custom types. Those traits and their be
listed in Appendix C, “Derivable Traits.” We’ll cover how to implement
custom behavior as well as how to create your own traits in Chapter 1

Our area function is very speci�c: it only computes the area of rectan
be helpful to tie this behavior more closely to our
work with any other type. Let’s look at how we can continue to refacto
turning the area function into an area method

Method Syntax

Methods are similar to functions: they’re declared with the
name, they can have parameters and a return value, and they contain
is run when they’re called from somewhere else. However, methods a
from functions in that they’re de�ned within the context of a struct (or
trait object, which we cover in Chapters 6 and 17, respectively), and th
parameter is always self , which represents the instance of the struc
being called on.

De�ning Methods

Let’s change the area function that has a Rectangle
instead make an area method de�ned on the Rectangle
5-13:

Filename: src/main.rs

rect1 is Rectangle {
 width: 30,
 height: 50
}

Listing 5-13: De�ning an area method on the Rectangle

To de�ne the function within the context of Rectangle
(implementation) block. Then we move the area
brackets and change the �rst (and in this case, only) parameter to be
signature and everywhere within the body. In main
function and passed rect1 as an argument, we can instead use
the area method on our Rectangle instance. The method syntax go
instance: we add a dot followed by the method name, parentheses, an
arguments.

In the signature for area , we use &self instead of
Rust knows the type of self is Rectangle due to this method’s being
impl Rectangle context. Note that we still need to use the

we did in &Rectangle . Methods can take ownership of
immutably as we’ve done here, or borrow self
parameter.

We’ve chosen &self here for the same reason we used
version: we don’t want to take ownership, and we just want to read th
struct, not write to it. If we wanted to change the instance that we’ve c
method on as part of what the method does, we’d use
parameter. Having a method that takes ownership of the instance by
as the �rst parameter is rare; this technique is usually used when the
transforms self into something else and you want to prevent the cal
the original instance after the transformation.

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

impl Rectangle {
fn area(&self) -> u32 {

self.width * self.height
 }
}

fn main() {
let rect1 = Rectangle { width: 30, height:

println!(
"The area of the rectangle is {} square pixels."

 rect1.area()
);
}

The main bene�t of using methods instead of functions, in addition to
syntax and not having to repeat the type of self
organization. We’ve put all the things we can do with an instance of a
impl block rather than making future users of our code search for ca
Rectangle in various places in the library we provide.

Where’s the -> Operator?

In C and C++, two di�erent operators are used for calling methods:
you’re calling a method on the object directly and
method on a pointer to the object and need to dereference the poi
other words, if object is a pointer, object->something()
(*object).something() .

Rust doesn’t have an equivalent to the -> operator; instead, Rust h
called automatic referencing and dereferencing
places in Rust that has this behavior.

Here’s how it works: when you call a method with
automatically adds in & , &mut , or * so object
method. In other words, the following are the same:

The �rst one looks much cleaner. This automatic referencing behav
because methods have a clear receiver—the type of
and name of a method, Rust can �gure out de�nitively whether the
reading (&self), mutating (&mut self), or consuming (
makes borrowing implicit for method receivers is a big part of maki
ownership ergonomic in practice.

Methods with More Parameters

Let’s practice using methods by implementing a second method on th
struct. This time, we want an instance of Rectangle
Rectangle and return true if the second Rectangle

otherwise it should return false . That is, we want to be able to write
shown in Listing 5-14, once we’ve de�ned the can_hold

p1.distance(&p2);
(&p1).distance(&p2);

Filename: src/main.rs

Listing 5-14: Using the as-yet-unwritten can_hold

And the expected output would look like the following, because both d
rect2 are smaller than the dimensions of rect1

We know we want to de�ne a method, so it will be within the
The method name will be can_hold , and it will take an immutable bo
Rectangle as a parameter. We can tell what the type of the paramete

looking at the code that calls the method: rect1.can_hold(&rect2)
&rect2 , which is an immutable borrow to rect2

makes sense because we only need to read rect2
mean we’d need a mutable borrow), and we want
so we can use it again after calling the can_hold
can_hold will be a Boolean, and the implementation will check wheth

and height of self are both greater than the width and height of the
Rectangle , respectively. Let’s add the new can_hold

Listing 5-13, shown in Listing 5-15:

Filename: src/main.rs

Listing 5-15: Implementing the can_hold method on
Rectangle instance as a parameter

fn main() {
let rect1 = Rectangle { width: 30, height:
let rect2 = Rectangle { width: 10, height:
let rect3 = Rectangle { width: 60, height:

println!("Can rect1 hold rect2? {}", rect1.can_hold(&re
println!("Can rect1 hold rect3? {}", rect1.can_hold(&re

}

Can rect1 hold rect2? true
Can rect1 hold rect3? false

impl Rectangle {
fn area(&self) -> u32 {

self.width * self.height
 }

fn can_hold(&self, other: &Rectangle) ->
self.width > other.width && self.height > other.hei

 }
}

When we run this code with the main function in Listing 5-14, we’ll ge
output. Methods can take multiple parameters that we add to the sign
self parameter, and those parameters work just like parameters in f

Associated Functions

Another useful feature of impl blocks is that we’re allowed to de�ne
impl blocks that don’t take self as a parameter. These are called

functions because they’re associated with the struct. They’re still functi
methods, because they don’t have an instance of the struct to work w
already used the String::from associated function.

Associated functions are often used for constructors that will return a
the struct. For example, we could provide an associated function that
dimension parameter and use that as both width and height, thus ma
create a square Rectangle rather than having to specify the same val

Filename: src/main.rs

To call this associated function, we use the :: syntax with the struct n
let sq = Rectangle::square(3); is an example. This function is nam

struct: the :: syntax is used for both associated functions and names
by modules. We’ll discuss modules in Chapter 7.

Multiple impl Blocks

Each struct is allowed to have multiple impl blocks. For example, List
equivalent to the code shown in Listing 5-16, which has each method
block:

impl Rectangle {
fn square(size: u32) -> Rectangle {

 Rectangle { width: size, height: size }
 }
}

Listing 5-16: Rewriting Listing 5-15 using multiple

There’s no reason to separate these methods into multiple
is valid syntax. We’ll see a case in which multiple
where we discuss generic types and traits.

Summary

Structs let you create custom types that are meaningful for your doma
structs, you can keep associated pieces of data connected to each oth
each piece to make your code clear. Methods let you specify the beha
instances of your structs have, and associated functions let you name
functionality that is particular to your struct without having an instanc

But structs aren’t the only way you can create custom types: let’s turn
feature to add another tool to your toolbox.

Enums and Pattern Matching
In this chapter we’ll look at enumerations, also referred to as
to de�ne a type by enumerating its possible values. First, we’ll de�ne a
enum to show how an enum can encode meaning along with data. Ne
a particularly useful enum, called Option , which expresses that a valu
something or nothing. Then we’ll look at how pattern matching in the
expression makes it easy to run di�erent code for di�erent values of a
we’ll cover how the if let construct is another convenient and conc
available to you to handle enums in your code.

Enums are a feature in many languages, but their capabilities di�er in
Rust’s enums are most similar to algebraic data types

impl Rectangle {
fn area(&self) -> u32 {

self.width * self.height
 }
}

impl Rectangle {
fn can_hold(&self, other: &Rectangle) ->

self.width > other.width && self.height > other.hei
 }
}

F#, OCaml, and Haskell.

De�ning an Enum

Let’s look at a situation we might want to express in code and see why
useful and more appropriate than structs in this case. Say we need to
addresses. Currently, two major standards are used for IP addresses:
and version six. These are the only possibilities for an IP address that
will come across: we can enumerate all possible values, which is where
gets its name.

Any IP address can be either a version four or a version six address, b
the same time. That property of IP addresses makes the enum data st
appropriate, because enum values can only be one of the variants. Bo
and version six addresses are still fundamentally IP addresses, so they
treated as the same type when the code is handling situations that ap
of IP address.

We can express this concept in code by de�ning an
listing the possible kinds an IP address can be, V4
variants of the enum:

IpAddrKind is now a custom data type that we can use elsewhere in o

Enum Values

We can create instances of each of the two variants of

Note that the variants of the enum are namespaced under its identi�e
double colon to separate the two. The reason this is useful is that now
IpAddrKind::V4 and IpAddrKind::V6 are of the same type:

then, for instance, de�ne a function that takes any

enum IpAddrKind {
 V4,
 V6,
}

let four = IpAddrKind::V4;
let six = IpAddrKind::V6;

And we can call this function with either variant:

Using enums has even more advantages. Thinking more about our IP
the moment we don’t have a way to store the actual IP address
what kind it is. Given that you just learned about structs in Chapter 5,
this problem as shown in Listing 6-1:

Listing 6-1: Storing the data and IpAddrKind variant of an IP address

Here, we’ve de�ned a struct IpAddr that has two �elds: a
IpAddrKind (the enum we de�ned previously) and an

We have two instances of this struct. The �rst, home
as its kind with associated address data of 127.0.0.1
loopback , has the other variant of IpAddrKind as its

address ::1 associated with it. We’ve used a struct to bundle the
values together, so now the variant is associated with the value.

We can represent the same concept in a more concise way using just
than an enum inside a struct, by putting data directly into each enum
new de�nition of the IpAddr enum says that both

fn route(ip_type: IpAddrKind) { }

route(IpAddrKind::V4);
route(IpAddrKind::V6);

enum IpAddrKind {
 V4,
 V6,
}

struct IpAddr {
 kind: IpAddrKind,
 address: String,
}

let home = IpAddr {
 kind: IpAddrKind::V4,
 address: String::from("127.0.0.1"),
};

let loopback = IpAddr {
 kind: IpAddrKind::V6,
 address: String::from("::1"),
};

associated String values:

We attach data to each variant of the enum directly, so there is no nee
struct.

There’s another advantage to using an enum rather than a struct: eac
have di�erent types and amounts of associated data. Version four typ
will always have four numeric components that will have values betwe
we wanted to store V4 addresses as four u8 values but still express
as one String value, we wouldn’t be able to with a struct. Enums han
with ease:

We’ve shown several di�erent ways to de�ne data structures to store
and version six IP addresses. However, as it turns out, wanting to stor
and encode which kind they are is so common that
de�nition we can use! Let’s look at how the standard library de�nes
the exact enum and variants that we’ve de�ned and used, but it embe
data inside the variants in the form of two di�erent structs, which are
di�erently for each variant:

enum IpAddr {
 V4(String),
 V6(String),
}

let home = IpAddr::V4(String::from("127.0.0.1"

let loopback = IpAddr::V6(String::from("::1"

enum IpAddr {
 V4(u8, u8, u8, u8),
 V6(String),
}

let home = IpAddr::V4(127, 0, 0, 1);

let loopback = IpAddr::V6(String::from("::1"

This code illustrates that you can put any kind of data inside an enum
numeric types, or structs, for example. You can even include another
standard library types are often not much more complicated than wha
come up with.

Note that even though the standard library contains a de�nition for
still create and use our own de�nition without con�ict because we hav
the standard library’s de�nition into our scope. We’ll talk more about b
into scope in Chapter 7.

Let’s look at another example of an enum in Listing 6-2: this one has a
types embedded in its variants:

Listing 6-2: A Message enum whose variants each store di�erent amo
of values

This enum has four variants with di�erent types:

Quit has no data associated with it at all.
Move includes an anonymous struct inside it.
Write includes a single String .
ChangeColor includes three i32 values.

De�ning an enum with variants like the ones in Listing 6-2 is similar to
di�erent kinds of struct de�nitions, except the enum doesn’t use the
and all the variants are grouped together under the

struct Ipv4Addr {
// --snip--

}

struct Ipv6Addr {
// --snip--

}

enum IpAddr {
 V4(Ipv4Addr),
 V6(Ipv6Addr),
}

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}

structs could hold the same data that the preceding enum variants ho

But if we used the di�erent structs, which each have their own type, w
easily de�ne a function to take any of these kinds of messages as we c
Message enum de�ned in Listing 6-2, which is a single type.

There is one more similarity between enums and structs: just as we’re
methods on structs using impl , we’re also able to de�ne methods on
a method named call that we could de�ne on our

The body of the method would use self to get the value that we calle
on. In this example, we’ve created a variable m that has the value
Message::Write(String::from("hello")) , and that is what

of the call method when m.call() runs.

Let’s look at another enum in the standard library that is very common
Option .

The Option Enum and Its Advantages Over Null Values

In the previous section, we looked at how the IpAddr
system to encode more information than just the data into our progra
explores a case study of Option , which is another enum de�ned by th
library. The Option type is used in many places because it encodes th
scenario in which a value could be something or it could be nothing. E
concept in terms of the type system means the compiler can check wh

struct QuitMessage; // unit struct
struct MoveMessage {
 x: i32,
 y: i32,
}
struct WriteMessage(String); // tuple struct
struct ChangeColorMessage(i32, i32, i32);

impl Message {
fn call(&self) {

// method body would be defined here
 }
}

let m = Message::Write(String::from("hello"
m.call();

handled all the cases you should be handling; this functionality can pr
are extremely common in other programming languages.

Programming language design is often thought of in terms of which fe
include, but the features you exclude are important too. Rust doesn’t
feature that many other languages have. Null is a value that means th
there. In languages with null, variables can always be in one of two sta
null.

In his 2009 presentation “Null References: The Billion Dollar Mistake,”
inventor of null, has this to say:

I call it my billion-dollar mistake. At that time, I was designing the �r
comprehensive type system for references in an object-oriented lan
goal was to ensure that all use of references should be absolutely s
checking performed automatically by the compiler. But I couldn’t re
temptation to put in a null reference, simply because it was so easy
implement. This has led to innumerable errors, vulnerabilities, and
crashes, which have probably caused a billion dollars of pain and d
last forty years.

The problem with null values is that if you try to use a null value as a n
you’ll get an error of some kind. Because this null or not-null property
extremely easy to make this kind of error.

However, the concept that null is trying to express is still a useful one:
that is currently invalid or absent for some reason.

The problem isn’t really with the concept but with the particular imple
such, Rust does not have nulls, but it does have an enum that can enc
of a value being present or absent. This enum is
standard library as follows:

The Option<T> enum is so useful that it’s even included in the prelud
need to bring it into scope explicitly. In addition, so are its variants: yo
and None directly without the Option:: pre�x. The
regular enum, and Some(T) and None are still variants of type

enum Option<T> {
Some(T),
None,

}

The <T> syntax is a feature of Rust we haven’t talked about yet. It’s a
parameter, and we’ll cover generics in more detail in Chapter 10. For n
need to know is that <T> means the Some variant of the
piece of data of any type. Here are some examples of using
number types and string types:

If we use None rather than Some , we need to tell Rust what type of
have, because the compiler can’t infer the type that the
looking only at a None value.

When we have a Some value, we know that a value is present and the
within the Some . When we have a None value, in some sense, it mean
thing as null: we don’t have a valid value. So why is having
having null?

In short, because Option<T> and T (where T can be any type) are di
the compiler won’t let us use an Option<T> value as if it were de�nite
For example, this code won’t compile because it’s trying to add an
Option<i8> :

If we run this code, we get an error message like this:

Intense! In e�ect, this error message means that Rust doesn’t underst
an i8 and an Option<i8> , because they’re di�erent types. When we
a type like i8 in Rust, the compiler will ensure that we always have a
can proceed con�dently without having to check for null before using

let some_number = Some(5);
let some_string = Some("a string");

let absent_number: Option<i32> = None;

let x: i8 = 5;
let y: Option<i8> = Some(5);

let sum = x + y;

error[E0277]: the trait bound `i8: std::ops::Add<std::optio
is
not satisfied
 -->
 |
5 | let sum = x + y;
 | ^ no implementation for `i8 + std::opti
 |

when we have an Option<i8> (or whatever type of value we’re workin
have to worry about possibly not having a value, and the compiler will
handle that case before using the value.

In other words, you have to convert an Option<T>
operations with it. Generally, this helps catch one of the most commo
null: assuming that something isn’t null when it actually is.

Not having to worry about incorrectly assuming a not-null value helps
con�dent in your code. In order to have a value that can possibly be n
explicitly opt in by making the type of that value
value, you are required to explicitly handle the case when the value is
Everywhere that a value has a type that isn’t an
that the value isn’t null. This was a deliberate design decision for Rust
pervasiveness and increase the safety of Rust code.

So, how do you get the T value out of a Some variant when you have
Option<T> so you can use that value? The Option<T>

methods that are useful in a variety of situations; you can check them
documentation. Becoming familiar with the methods on
useful in your journey with Rust.

In general, in order to use an Option<T> value, you want to have code
handle each variant. You want some code that will run only when you
value, and this code is allowed to use the inner
you have a None value, and that code doesn’t have a
expression is a control �ow construct that does just this when used w
run di�erent code depending on which variant of the enum it has, and
use the data inside the matching value.

The match Control Flow Operator

Rust has an extremely powerful control �ow operator called
compare a value against a series of patterns and then execute code b
pattern matches. Patterns can be made up of literal values, variable n
and many other things; Chapter 18 covers all the di�erent kinds of pa
they do. The power of match comes from the expressiveness of the p
fact that the compiler con�rms that all possible cases are handled.

Think of a match expression as being like a coin-sorting machine: coin
track with variously sized holes along it, and each coin falls through th
encounters that it �ts into. In the same way, values go through each p

match , and at the �rst pattern the value “�ts,” the value falls into the a
block to be used during execution.

Because we just mentioned coins, let’s use them as an example using
write a function that can take an unknown United States coin and, in a
the counting machine, determine which coin it is and return its value i
shown here in Listing 6-3:

Listing 6-3: An enum and a match expression that has the variants of
patterns

Let’s break down the match in the value_in_cents
keyword followed by an expression, which in this case is the value
very similar to an expression used with if , but there’s a big di�erenc
expression needs to return a Boolean value, but here, it can be any ty
coin in this example is the Coin enum that we de�ned on line 1.

Next are the match arms. An arm has two parts: a pattern and some
arm here has a pattern that is the value Coin::Penny
separates the pattern and the code to run. The code in this case is jus
Each arm is separated from the next with a comma.

When the match expression executes, it compares the resulting value
pattern of each arm, in order. If a pattern matches the value, the code
that pattern is executed. If that pattern doesn’t match the value, execu
to the next arm, much as in a coin-sorting machine. We can have as m
need: in Listing 6-3, our match has four arms.

The code associated with each arm is an expression, and the resulting
expression in the matching arm is the value that gets returned for the

enum Coin {
 Penny,
 Nickel,
 Dime,
 Quarter,
}

fn value_in_cents(coin: Coin) -> u32 {
match coin {

 Coin::Penny => 1,
 Coin::Nickel => 5,
 Coin::Dime => 10,
 Coin::Quarter => 25,
 }
}

expression.

Curly brackets typically aren’t used if the match arm code is short, as i
where each arm just returns a value. If you want to run multiple lines
match arm, you can use curly brackets. For example, the following cod
“Lucky penny!” every time the method was called with a
return the last value of the block, 1 :

Patterns that Bind to Values

Another useful feature of match arms is that they can bind to the part
that match the pattern. This is how we can extract values out of enum

As an example, let’s change one of our enum variants to hold data ins
1999 through 2008, the United States minted quarters with di�erent d
of the 50 states on one side. No other coins got state designs, so only
this extra value. We can add this information to our
variant to include a UsState value stored inside it, which we’ve done
6-4:

fn value_in_cents(coin: Coin) -> u32 {
match coin {

 Coin::Penny => {
println!("Lucky penny!");
1

 },
 Coin::Nickel => 5,
 Coin::Dime => 10,
 Coin::Quarter => 25,
 }
}

#[derive(Debug)] // So we can inspect the state in a minute
enum UsState {
 Alabama,
 Alaska,

// --snip--
}

enum Coin {
 Penny,
 Nickel,
 Dime,
 Quarter(UsState),
}

Listing 6-4: A Coin enum in which the Quarter variant also holds a

Let’s imagine that a friend of ours is trying to collect all 50 state quarte
sort our loose change by coin type, we’ll also call out the name of the
with each quarter so if it’s one our friend doesn’t have, they can add it
collection.

In the match expression for this code, we add a variable called
that matches values of the variant Coin::Quarter
the state variable will bind to the value of that quarter’s state. Then
state in the code for that arm, like so:

If we were to call value_in_cents(Coin::Quarter(UsState::Alaska
be Coin::Quarter(UsState::Alaska) . When we compare that value w
match arms, none of them match until we reach
point, the binding for state will be the value UsState::Alaska
that binding in the println! expression, thus getting the inner state
Coin enum variant for Quarter .

Matching with Option<T>

In the previous section, we wanted to get the inner
when using Option<T> ; we can also handle Option<T>
the Coin enum! Instead of comparing coins, we’ll compare the varian
, but the way that the match expression works remains the same.

Let’s say we want to write a function that takes an
inside, adds 1 to that value. If there isn’t a value inside, the function sh
None value and not attempt to perform any operations.

This function is very easy to write, thanks to match

fn value_in_cents(coin: Coin) -> u32 {
match coin {

 Coin::Penny => 1,
 Coin::Nickel => 5,
 Coin::Dime => 10,
 Coin::Quarter(state) => {

println!("State quarter from {:?}!"
25

 },
 }
}

Listing 6-5: A function that uses a match expression on an

Let’s examine the �rst execution of plus_one in more detail. When w
plus_one(five) , the variable x in the body of
Some(5) . We then compare that against each match arm.

The Some(5) value doesn’t match the pattern None

Does Some(5) match Some(i) ? Why yes it does! We have the same v
binds to the value contained in Some , so i takes the value
arm is then executed, so we add 1 to the value of
with our total 6 inside.

Now let’s consider the second call of plus_one in Listing 6-5, where
enter the match and compare to the �rst arm.

It matches! There’s no value to add to, so the program stops and retur
value on the right side of => . Because the �rst arm matched, no othe
compared.

Combining match and enums is useful in many situations. You’ll see t
in Rust code: match against an enum, bind a variable to the data insid
execute code based on it. It’s a bit tricky at �rst, but once you get used
you had it in all languages. It’s consistently a user favorite.

Matches Are Exhaustive

fn plus_one(x: Option<i32>) -> Option<i32> {
match x {

None => None,
Some(i) => Some(i + 1),

 }
}

let five = Some(5);
let six = plus_one(five);
let none = plus_one(None);

None => None,

Some(i) => Some(i + 1),

None => None,

There’s one other aspect of match we need to discuss. Consider this v
plus_one function that has a bug and won’t compile:

We didn’t handle the None case, so this code will cause a bug. Luckily,
knows how to catch. If we try to compile this code, we’ll get this error:

Rust knows that we didn’t cover every possible case and even knows w
we forgot! Matches in Rust are exhaustive: we must exhaust every last
order for the code to be valid. Especially in the case of
prevents us from forgetting to explicitly handle the
assuming that we have a value when we might have null, thus making
dollar mistake discussed earlier.

The _ Placeholder

Rust also has a pattern we can use when we don’t want to list all possi
example, a u8 can have valid values of 0 through 255. If we only care
values 1, 3, 5, and 7, we don’t want to have to list out 0, 2, 4, 6, 8, 9 all t
255. Fortunately, we don’t have to: we can use the special pattern

The _ pattern will match any value. By putting it after our other arms
match all the possible cases that aren’t speci�ed before it. The
value, so nothing will happen in the _ case. As a result, we can say th

fn plus_one(x: Option<i32>) -> Option<i32> {
match x {

Some(i) => Some(i + 1),
 }
}

error[E0004]: non-exhaustive patterns: `None` not covered
 -->
 |
6 | match x {
 | ^ pattern `None` not covered

let some_u8_value = 0u8;
match some_u8_value {

1 => println!("one"),
3 => println!("three"),
5 => println!("five"),
7 => println!("seven"),

 _ => (),
}

nothing for all the possible values that we don’t list before the

However, the match expression can be a bit wordy in a situation in wh
care about one of the cases. For this situation, Rust provides

Concise Control Flow with if let

The if let syntax lets you combine if and let
values that match one pattern while ignoring the rest. Consider the pr
6-6 that matches on an Option<u8> value but only wants to execute c
is 3:

Listing 6-6: A match that only cares about executing code when the va

We want to do something with the Some(3) match but do nothing wit
Some<u8> value or the None value. To satisfy the
_ => () after processing just one variant, which is a lot of boilerplate

Instead, we could write this in a shorter way using
behaves the same as the match in Listing 6-6:

The syntax if let takes a pattern and an expression separated by an
the same way as a match , where the expression is given to the
pattern is its �rst arm.

Using if let means you have less typing, less indentation, and less b
However, you lose the exhaustive checking that
match and if let depends on what you’re doing in your particular s

whether gaining conciseness is an appropriate trade-o� for losing exh
checking.

In other words, you can think of if let as syntax sugar for a

let some_u8_value = Some(0u8);
match some_u8_value {

Some(3) => println!("three"),
 _ => (),
}

if let Some(3) = some_u8_value {
println!("three");

}

when the value matches one pattern and then ignores all other values

We can include an else with an if let . The block of code that goes
is the same as the block of code that would go with the
expression that is equivalent to the if let and
de�nition in Listing 6-4, where the Quarter variant also held a
wanted to count all non-quarter coins we see while also announcing t
quarters, we could do that with a match expression like this:

Or we could use an if let and else expression like this:

If you have a situation in which your program has logic that is too verb
using a match , remember that if let is in your Rust toolbox as well

Summary

We’ve now covered how to use enums to create custom types that can
of enumerated values. We’ve shown how the standard library’s
you use the type system to prevent errors. When enum values have d
you can use match or if let to extract and use those values, depen
many cases you need to handle.

Your Rust programs can now express concepts in your domain using s
enums. Creating custom types to use in your API ensures type safety:
will make certain your functions get only values of the type each funct

In order to provide a well-organized API to your users that is straightfo
and only exposes exactly what your users will need, let’s now turn to R

let mut count = 0;
match coin {
 Coin::Quarter(state) => println!("State quarter from {:
 _ => count += 1,
}

let mut count = 0;
if let Coin::Quarter(state) = coin {

println!("State quarter from {:?}!", state);
} else {
 count += 1;
}

Using Modules to Reuse and Organize
Code
When you start writing programs in Rust, your code might live solely in
function. As your code grows, you’ll eventually move functionality into
for reuse and better organization. By splitting your code into smaller c
make each chunk easier to understand on its own. But what happens
many functions? Rust has a module system that enables the reuse of
organized fashion.

In the same way that you extract lines of code into a function, you can
functions (and other code, like structs and enums) into di�erent modu
a namespace that contains de�nitions of functions or types, and you c
whether those de�nitions are visible outside their module (public) or n
Here’s an overview of how modules work:

The mod keyword declares a new module. Code within the modu
either immediately following this declaration within curly bracke
�le.
By default, functions, types, constants, and modules are private.
keyword makes an item public and therefore visible outside its n
The use keyword brings modules, or the de�nitions inside mod
so it’s easier to refer to them.

We’ll look at each of these parts to see how they �t into the whole.

mod and the Filesystem

We’ll start our module example by making a new project with Cargo, b
creating a binary crate, we’ll make a library crate: a project that other
into their projects as a dependency. For example, the
Chapter 2 is a library crate that we used as a dependency in the guess
project.

We’ll create a skeleton of a library that provides some general networ
functionality; we’ll concentrate on the organization of the modules an
we won’t worry about what code goes in the function bodies. We’ll cal
communicator . To create a library, pass the --lib

Notice that Cargo generated src/lib.rs instead of
the following:

Filename: src/lib.rs

Cargo creates an example test to help us get our library started. We’ll
and mod tests syntax in the “Using super to Access a Parent Module
in this chapter, but for now, leave this code at the bottom of

Because we don’t have a src/main.rs �le, there’s nothing for Cargo to e
cargo run command. Therefore, we’ll use the cargo build

our library crate’s code.

We’ll look at di�erent options for organizing your library’s code that w
a variety of situations, depending on the intent of the code.

Module De�nitions

For our communicator networking library, we’ll �rst de�ne a module n
that contains the de�nition of a function called
Rust starts with the mod keyword. Add this code to the beginning of th
above the test code:

Filename: src/lib.rs

After the mod keyword, we put the name of the module,
of code in curly brackets. Everything inside this block is inside the nam

$ cargo new communicator --lib
$ cd communicator

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

assert_eq!(2 + 2, 4);
 }
}

mod network {
fn connect() {

 }
}

network . In this case, we have a single function,
function from code outside the network module, we would need to s
module and use the namespace syntax :: like so:

We can also have multiple modules, side by side, in the same
example, to also have a client module that has a function named
add it as shown in Listing 7-1:

Filename: src/lib.rs

Listing 7-1: The network module and the client
src/lib.rs

Now we have a network::connect function and a
can have completely di�erent functionality, and the function names d
with each other because they’re in di�erent modules.

In this case, because we’re building a library, the �le that serves as the
building our library is src/lib.rs. However, in respect to creating module
nothing special about src/lib.rs. We could also create modules in
binary crate in the same way as we’re creating modules in
crate. In fact, we can put modules inside of modules, which can be use
modules grow to keep related functionality organized together and se
functionality apart. The way you choose to organize your code depend
think about the relationship between the parts of your code. For insta
code and its connect function might make more sense to users of ou
were inside the network namespace instead, as in Listing 7-2:

Filename: src/lib.rs

mod network {
fn connect() {

 }
}

mod client {
fn connect() {

 }
}

Listing 7-2: Moving the client module inside the

In your src/lib.rs �le, replace the existing mod network
with the ones in Listing 7-2, which have the client
network . The functions network::connect and

named connect , but they don’t con�ict with each other because they
namespaces.

In this way, modules form a hierarchy. The contents of
level, and the submodules are at lower levels. Here’s what the organiz
example in Listing 7-1 looks like when thought of as a hierarchy:

And here’s the hierarchy corresponding to the example in Listing 7-2:

The hierarchy shows that in Listing 7-2, client is a child of the
rather than a sibling. More complicated projects can have many modu
need to be organized logically in order for you to keep track of them. W
means in your project is up to you and depends on how you and your
think about your project’s domain. Use the techniques shown here to
side modules and nested modules in whatever structure you would lik

Moving Modules to Other Files

Modules form a hierarchical structure, much like another structure in
you’re used to: �lesystems! We can use Rust’s module system along w
to split up Rust projects so not everything lives in

mod network {
fn connect() {

 }

mod client {
fn connect() {

 }
 }
}

communicator
├── network
└── client

communicator
└── network
 └── client

example, let’s start with the code in Listing 7-3:

Filename: src/lib.rs

Listing 7-3: Three modules, client , network , and
src/lib.rs

The �le src/lib.rs has this module hierarchy:

If these modules had many functions, and those functions were becom
would be di�cult to scroll through this �le to �nd the code we wanted
Because the functions are nested inside one or more
inside the functions will start getting lengthy as well. These would be g
separate the client , network , and server modules from
into their own �les.

First, let’s replace the client module code with only the declaration o
module so that src/lib.rs looks like code shown in Listing 7-4:

Filename: src/lib.rs

mod client {
fn connect() {

 }
}

mod network {
fn connect() {

 }

mod server {
fn connect() {

 }
 }
}

communicator
├── client
└── network
 └── server

Listing 7-4: Extracting the contents of the client
in src/lib.rs

We’re still declaring the client module here, but by replacing the blo
semicolon, we’re telling Rust to look in another location for the code d
the scope of the client module. In other words, the line

Now we need to create the external �le with that module name. Creat
in your src/ directory and open it. Then enter the following, which is th
function in the client module that we removed in the previous step:

Filename: src/client.rs

Note that we don’t need a mod declaration in this �le because we alre
the client module with mod in src/lib.rs. This �le just provides the
client module. If we put a mod client here, we’d be giving the

own submodule named client !

Rust only knows to look in src/lib.rs by default. If we want to add more
project, we need to tell Rust in src/lib.rs to look in other �les; this is wh
needs to be de�ned in src/lib.rs and can’t be de�ned in

Now the project should compile successfully, although you’ll get a few
Remember to use cargo build instead of cargo run
crate rather than a binary crate:

mod client;

mod network {
fn connect() {

 }

mod server {
fn connect() {

 }
 }
}

mod client {
// contents of client.rs

}

fn connect() {
}

These warnings tell us that we have functions that are never used. Do
these warnings for now; we’ll address them later in this chapter in the
Visibility with pub ” section. The good news is that they’re just warning
built successfully!

Next, let’s extract the network module into its own �le using the same
src/lib.rs, delete the body of the network module and add a semicolon
declaration, like so:

Filename: src/lib.rs

Then create a new src/network.rs �le and enter the following:

Filename: src/network.rs

$ cargo build
 Compiling communicator v0.1.0 (file:///projects/communic
warning: function is never used: `connect`
 --> src/client.rs:1:1
 |
1 | / fn connect() {
2 | | }
 | |_^
 |
 = note: #[warn(dead_code)] on by default

warning: function is never used: `connect`
 --> src/lib.rs:4:5
 |
4 | / fn connect() {
5 | | }
 | |_____^

warning: function is never used: `connect`
 --> src/lib.rs:8:9
 |
8 | / fn connect() {
9 | | }
 | |_________^

mod client;

mod network;

Notice that we still have a mod declaration within this module �le; this
still want server to be a submodule of network

Run cargo build again. Success! We have one more module to extra
Because it’s a submodule—that is, a module within a module—our cu
extracting a module into a �le named after that module won’t work. W
so you can see the error. First, change src/network.rs
the server module’s contents:

Filename: src/network.rs

Then create a src/server.rs �le and enter the contents of the
extracted:

Filename: src/server.rs

When we try to cargo build , we’ll get the error shown in Listing 7-5:

fn connect() {
}

mod server {
fn connect() {

 }
}

fn connect() {
}

mod server;

fn connect() {
}

Listing 7-5: Error when trying to extract the server

The error says we cannot declare a new module at this locatio
to the mod server; line in src/network.rs. So src/network.rs
somehow: keep reading to understand why.

The note in the middle of Listing 7-5 is actually very helpful because it
something we haven’t yet talked about doing:

Instead of continuing to follow the same �le-naming pattern we used
can do what the note suggests:

Make a new directory named network, the parent module’s name1.
Move the src/network.rs �le into the new network
src/network/mod.rs.

2.

Move the submodule �le src/server.rs into the 3.

Here are commands to carry out these steps:

Now when we try to run cargo build , compilation will work (we’ll stil

$ cargo build
 Compiling communicator v0.1.0 (file:///projects/communic
error: cannot declare a new module at this location
 --> src/network.rs:4:5
 |
4 | mod server;
 | ^^^^^^
 |
note: maybe move this module `src/network.rs` to its own di
`src/network/mod.rs`
 --> src/network.rs:4:5
 |
4 | mod server;
 | ^^^^^^
note: ... or maybe `use` the module `server` instead of pos
redeclaring it
 --> src/network.rs:4:5
 |
4 | mod server;
 | ^^^^^^

note: maybe move this module `network` to its own directory
`network/mod.rs`

$ mkdir src/network
$ mv src/network.rs src/network/mod.rs
$ mv src/server.rs src/network

though). Our module layout still looks exactly the same as it did when
code in src/lib.rs in Listing 7-3:

The corresponding �le layout now looks like this:

So when we wanted to extract the network::server
change the src/network.rs �le to the src/network/mod.rs
network::server in the network directory in src/network/server.rs

just extract the network::server module into src/server.rs
wouldn’t be able to recognize that server was supposed to be a subm
network if the server.rs �le was in the src directory. To clarify Rust’s be

let’s consider a di�erent example with the following module hierarchy
de�nitions are in src/lib.rs:

In this example, we have three modules again: client
network::client . Following the same steps we did earlier for extract

into �les, we would create src/client.rs for the client
module, we would create src/network.rs. But we wouldn’t be able to ex
network::client module into a src/client.rs �le because that already

top-level client module! If we could put the code for
network::client modules in the src/client.rs �le, Rust wouldn’t have a

whether the code was for client or for network::client

Therefore, in order to extract a �le for the network::client
network module, we needed to create a directory for the

a src/network.rs �le. The code that is in the network
src/network/mod.rs �le, and the submodule network::client
src/network/client.rs �le. Now the top-level src/client.rs

communicator
├── client
└── network
 └── server

└── src
 ├── client.rs
 ├── lib.rs
 └── network
 ├── mod.rs
 └── server.rs

communicator
├── client
└── network
 └── client

belongs to the client module.

Rules of Module Filesystems

Let’s summarize the rules of modules with regard to �les:

If a module named foo has no submodules, you should put the
foo in a �le named foo.rs.

If a module named foo does have submodules, you should put
for foo in a �le named foo/mod.rs.

These rules apply recursively, so if a module named
bar and bar does not have submodules, you should have the follow

src directory:

The modules should be declared in their parent module’s �le using th

Next, we’ll talk about the pub keyword and get rid of those warnings!

Controlling Visibility with pub

We resolved the error messages shown in Listing 7-5 by moving the
network::server code into the src/network/mod.rs

respectively. At that point, cargo build was able to build our project,
warning messages about the client::connect ,
network::server::connect functions not being used.

So why are we receiving these warnings? After all, we’re building a libr
functions that are intended to be used by our users
own project, so it shouldn’t matter that these connect
point of creating them is that they will be used by another project, not

To understand why this program invokes these warnings, let’s try usin
communicator library from another project, calling it externally. To do

create a binary crate in the same directory as our library crate by mak
�le containing this code:

Filename: src/main.rs

└── foo
 ├── bar.rs (contains the declarations in `foo::bar`)
 └── mod.rs (contains the declarations in `foo`, includi

We use the extern crate command to bring the
scope. Our package now contains two crates. Cargo treats
of a binary crate, which is separate from the existing library crate who
src/lib.rs. This pattern is quite common for executable projects: most f
a library crate, and the binary crate uses that library crate. As a result,
can also use the library crate, and it’s a nice separation of concerns.

From the point of view of a crate outside the communicator
modules we’ve been creating are within a module that has the same n
crate, communicator . We call the top-level module of a crate the

Also note that even if we’re using an external crate within a submodul
the extern crate should go in our root module (so in
in our submodules, we can refer to items from external crates as if the
level modules.

Right now, our binary crate just calls our library’s
module. However, invoking cargo build will now give us an error aft

Ah ha! This error tells us that the client module is private, which is t
warnings. It’s also the �rst time we’ve run into the concepts of
context of Rust. The default state of all code in Rust is private: no one
to use the code. If you don’t use a private function within your program
program is the only code allowed to use that function, Rust will warn y
function has gone unused.

After you specify that a function such as client::connect
call to that function from your binary crate be allowed, but also the wa
function is unused will go away. Marking a function as public lets Rust
function will be used by code outside of your program. Rust considers
external usage that’s now possible as the function “being used.” Thus,
function is marked public, Rust will not require that it be used in your
will stop warning that the function is unused.

extern crate communicator;

fn main() {
 communicator::client::connect();
}

error[E0603]: module `client` is private
 --> src/main.rs:4:5
 |
4 | communicator::client::connect();
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Making a Function Public

To tell Rust to make a function public, we add the
declaration. We’ll focus on �xing the warning that indicates
gone unused for now, as well as the module `client` is private
binary crate. Modify src/lib.rs to make the client

Filename: src/lib.rs

The pub keyword is placed right before mod . Let’s try building again:

Hooray! We have a di�erent error! Yes, di�erent error messages are a
celebration. The new error shows function `connect` is private
src/client.rs to make client::connect public too:

Filename: src/client.rs

Now run cargo build again:

pub mod client;

mod network;

error[E0603]: function `connect` is private
 --> src/main.rs:4:5
 |
4 | communicator::client::connect();
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

pub fn connect() {
}

warning: function is never used: `connect`
 --> src/network/mod.rs:1:1
 |
1 | / fn connect() {
2 | | }
 | |_^
 |
 = note: #[warn(dead_code)] on by default

warning: function is never used: `connect`
 --> src/network/server.rs:1:1
 |
1 | / fn connect() {
2 | | }
 | |_^

The code compiled, and the warning that client::connect

Unused code warnings don’t always indicate that an item in your code
made public: if you didn’t want these functions to be part of your publ
code warnings could be alerting you to code you no longer need that
delete. They could also be alerting you to a bug if you had just acciden
all places within your library where this function is called.

But in this case, we do want the other two functions to be part of our c
API, so let’s mark them as pub as well to get rid of the remaining warn
src/network/mod.rs to look like the following:

Filename: src/network/mod.rs

Then compile the code:

Hmmm, we’re still getting an unused function warning, even though
network::connect is set to pub . The reason is that the function is pu

module, but the network module that the function resides in is not pu
working from the interior of the library out this time, whereas with
we worked from the outside in. We need to change
too, like so:

Filename: src/lib.rs

pub fn connect() {
}

mod server;

warning: function is never used: `connect`
 --> src/network/mod.rs:1:1
 |
1 | / pub fn connect() {
2 | | }
 | |_^
 |
 = note: #[warn(dead_code)] on by default

warning: function is never used: `connect`
 --> src/network/server.rs:1:1
 |
1 | / fn connect() {
2 | | }
 | |_^

Now when we compile, that warning is gone:

Only one warning is left—try to �x this one on your own!

Privacy Rules

Overall, these are the rules for item visibility:

If an item is public, it can be accessed through any of its parent m
If an item is private, it can be accessed only by its immediate par
any of the parent’s child modules.

Privacy Examples

Let’s look at a few more privacy examples to get some practice. Create
project and enter the code in Listing 7-6 into your new project’s

Filename: src/lib.rs

pub mod client;

pub mod network;

warning: function is never used: `connect`
 --> src/network/server.rs:1:1
 |
1 | / fn connect() {
2 | | }
 | |_^
 |
 = note: #[warn(dead_code)] on by default

Listing 7-6: Examples of private and public functions, some of which a

Before you try to compile this code, make a guess about which lines in
function will have errors. Then, try compiling the code to see whether
right—and read on for the discussion of the errors!

Looking at the Errors

The try_me function is in the root module of our project. The module
outermost is private, but the second privacy rule states that the

allowed to access the outermost module because
module, as is try_me .

The call to outermost::middle_function will work because
public and try_me is accessing middle_function
outermost . We determined in the previous paragraph that this modu

The call to outermost::middle_secret_function
Because middle_secret_function is private, the second rule applies.
module is neither the current module of middle_secret_function
nor is it a child module of the current module of

The module named inside is private and has no child modules, so it
only by its current module outermost . That means the
allowed to call outermost::inside::inner_function
outermost::inside::secret_function .

mod outermost {
pub fn middle_function() {}

fn middle_secret_function() {}

mod inside {
pub fn inner_function() {}

fn secret_function() {}
 }
}

fn try_me() {
 outermost::middle_function();
 outermost::middle_secret_function();
 outermost::inside::inner_function();
 outermost::inside::secret_function();
}

Fixing the Errors

Here are some suggestions for changing the code in an attempt to �x
Make a guess as to whether it will �x the errors before you try each on
compile the code to see whether or not you’re right, using the privacy
understand why. Feel free to design more experiments and try them o

What if the inside module were public?
What if outermost were public and inside
What if, in the body of inner_function , you called
::outermost::middle_secret_function()

mean that we want to refer to the modules starting from the roo

Next, let’s talk about bringing items into scope with the

Referring to Names in Di�erent Modules

We’ve covered how to call functions de�ned within a module using the
as part of the call, as in the call to the nested_modules
7-7:

Filename: src/main.rs

Listing 7-7: Calling a function by fully specifying its enclosing module’s

As you can see, referring to the fully quali�ed name can get quite leng
Rust has a keyword to make these calls more concise.

Bringing Names into Scope with the use

Rust’s use keyword shortens lengthy function calls by bringing the m

pub mod a {
pub mod series {

pub mod of {
pub fn nested_modules() {}

 }
 }
}

fn main() {
 a::series::of::nested_modules();
}

function you want to call into scope. Here’s an example of bringing the
a::series::of module into a binary crate’s root scope:

Filename: src/main.rs

The line use a::series::of; means that rather than using the full
path wherever we want to refer to the of module, we can use

The use keyword brings only what we’ve speci�ed into scope: it does
children of modules into scope. That’s why we still have to use
when we want to call the nested_modules function.

We could have chosen to bring the function into scope by instead spe
function in the use as follows:

Doing so allows us to exclude all the modules and reference the funct

Because enums also form a sort of namespace like modules, we can b
variants into scope with use as well. For any kind of
multiple items from one namespace into scope, you can list them usin
and commas in the last position, like so:

pub mod a {
pub mod series {

pub mod of {
pub fn nested_modules() {}

 }
 }
}

use a::series::of;

fn main() {
 of::nested_modules();
}

pub mod a {
pub mod series {

pub mod of {
pub fn nested_modules() {}

 }
 }
}

use a::series::of::nested_modules;

fn main() {
 nested_modules();
}

We’re still specifying the TrafficLight namespace for the
didn’t include Green in the use statement.

Nested groups in use declarations

If you have a complex module tree with many di�erent submodules a
import a few items from each one, it might be useful to group all the i
same declaration to keep your code clean and avoid repeating the bas
name.

The use declaration supports nesting to help you in those cases, both
imports and glob ones. For example this snippets imports
baz and Bar :

Bringing All Names into Scope with a Glob

To bring all the items in a namespace into scope at once, we can use t
which is called the glob operator. This example brings all the variants o
scope without having to list each speci�cally:

enum TrafficLight {
 Red,
 Yellow,
 Green,
}

use TrafficLight::{Red, Yellow};

fn main() {
let red = Red;
let yellow = Yellow;
let green = TrafficLight::Green;

}

use foo::{
 bar::{self, Foo},
 baz::{*, quux::Bar},
};

The * will bring into scope all the visible items in the
should use globs sparingly: they are convenient, but a glob might also
items than you expected and cause naming con�icts.

Using super to Access a Parent Module

As you saw at the beginning of this chapter, when you create a library
makes a tests module for you. Let’s go into more detail about that n
communicator project, open src/lib.rs:

Filename: src/lib.rs

Chapter 11 explains more about testing, but parts of this example sho
now: we have a module named tests that lives next to our other mo
contains one function named it_works . Even though there are specia
the tests module is just another module! So our module hierarchy lo

enum TrafficLight {
 Red,
 Yellow,
 Green,
}

use TrafficLight::*;

fn main() {
let red = Red;
let yellow = Yellow;
let green = Green;

}

pub mod client;

pub mod network;

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

assert_eq!(2 + 2, 4);
 }
}

Tests are for exercising the code within our library, so let’s try to call o
client::connect function from this it_works function, even though

checking any functionality right now. This won’t work yet:

Filename: src/lib.rs

Run the tests by invoking the cargo test command:

The compilation failed, but why? We don’t need to place
the function, as we did in src/main.rs, because we are de�nitely within
communicator library crate here. The reason is that paths are always

current module, which here is tests . The only exception is in a
where paths are relative to the crate root by default. Our
client module in its scope!

So how do we get back up one module in the module hierarchy to call
client::connect function in the tests module? In the

either use leading colons to let Rust know that we want to start from t
the whole path, like this:

Or, we can use super to move up one module in the hierarchy from o
module, like this:

communicator
├── client
├── network
 | └── client
└── tests

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

 client::connect();
 }
}

$ cargo test
 Compiling communicator v0.1.0 (file:///projects/communic
error[E0433]: failed to resolve. Use of undeclared type or
 --> src/lib.rs:9:9
 |
9 | client::connect();
 | ^^^^^^ Use of undeclared type or module `client

::client::connect();

These two options don’t look that di�erent in this example, but if you’
module hierarchy, starting from the root every time would make your
those cases, using super to get from the current module to sibling m
shortcut. Plus, if you’ve speci�ed the path from the root in many place
and then rearrange your modules by moving a subtree to another pla
needing to update the path in several places, which would be tedious.

It would also be annoying to have to type super::
seen the tool for that solution: use ! The super::
give to use so it is relative to the parent module instead of to the roo

For these reasons, in the tests module especially,
the best solution. So now our test looks like this:

Filename: src/lib.rs

When we run cargo test again, the test will pass, and the �rst part o
output will be the following:

Summary

Now you know some new techniques for organizing your code! Use th
to group related functionality together, keep �les from becoming too

super::client::connect();

#[cfg(test)]
mod tests {

use super::client;

#[test]
fn it_works() {

 client::connect();
 }
}

$ cargo test
 Compiling communicator v0.1.0 (file:///projects/communic
 Running target/debug/communicator-92007ddb5330fa5a

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

present a tidy public API to your library users.

Next, we’ll look at some collection data structures in the standard libra
use in your nice, neat code.

Common Collections
Rust’s standard library includes a number of very useful data structure
collections. Most other data types represent one speci�c value, but col
contain multiple values. Unlike the built-in array and tuple types, the d
collections point to is stored on the heap, which means the amount of
need to be known at compile time and can grow or shrink as the prog
kind of collection has di�erent capabilities and costs, and choosing an
one for your current situation is a skill you’ll develop over time. In this
discuss three collections that are used very often in Rust programs:

A vector allows you to store a variable number of values next to e
A string is a collection of characters. We’ve mentioned the
previously, but in this chapter we’ll talk about it in depth.
A hash map allows you to associate a value with a particular key.
implementation of the more general data structure called a

To learn about the other kinds of collections provided by the standard
documentation.

We’ll discuss how to create and update vectors, strings, and hash map
what makes each special.

Storing Lists of Values with Vectors

The �rst collection type we’ll look at is Vec<T> , also known as a
you to store more than one value in a single data structure that puts a
next to each other in memory. Vectors can only store values of the sam
are useful when you have a list of items, such as the lines of text in a �
of items in a shopping cart.

Creating a New Vector

To create a new, empty vector, we can call the Vec::new
8-1:

Listing 8-1: Creating a new, empty vector to hold values of type

Note that we added a type annotation here. Because we aren’t inserti
into this vector, Rust doesn’t know what kind of elements we intend to
an important point. Vectors are implemented using generics; we’ll cov
generics with your own types in Chapter 10. For now, know that the
provided by the standard library can hold any type, and when a speci�
speci�c type, the type is speci�ed within angle brackets. In Listing 8-1,
that the Vec<T> in v will hold elements of the

In more realistic code, Rust can often infer the type of value you want
you insert values, so you rarely need to do this type annotation. It’s m
create a Vec<T> that has initial values, and Rust provides the
convenience. The macro will create a new vector that holds the values
Listing 8-2 creates a new Vec<i32> that holds the values

Listing 8-2: Creating a new vector containing values

Because we’ve given initial i32 values, Rust can infer that the type of
and the type annotation isn’t necessary. Next, we’ll look at how to mod

Updating a Vector

To create a vector and then add elements to it, we can use the
shown in Listing 8-3:

Listing 8-3: Using the push method to add values to a vector

As with any variable, if we want to be able to change its value, we need
mutable using the mut keyword, as discussed in Chapter 3. The numb

let v: Vec<i32> = Vec::new();

let v = vec![1, 2, 3];

let mut v = Vec::new();

v.push(5);
v.push(6);
v.push(7);
v.push(8);

inside are all of type i32 , and Rust infers this from the data, so we do
Vec<i32> annotation.

Dropping a Vector Drops Its Elements

Like any other struct , a vector is freed when it goes out of scope, as
Listing 8-4:

Listing 8-4: Showing where the vector and its elements are dropped

When the vector gets dropped, all of its contents are also dropped, me
integers it holds will be cleaned up. This may seem like a straightforwa
can get a bit more complicated when you start to introduce reference
elements of the vector. Let’s tackle that next!

Reading Elements of Vectors

Now that you know how to create, update, and destroy vectors, knowi
their contents is a good next step. There are two ways to reference a v
vector. In the examples, we’ve annotated the types of the values that a
from these functions for extra clarity.

Listing 8-5 shows the method of accessing a value in a vector with ind

Listing 8-5: Using indexing syntax to access an item in a vector

Listing 8-6 shows the method of accessing a value in a vector, with the

{
let v = vec![1, 2, 3, 4];

// do stuff with v

} // <- v goes out of scope and is freed here

let v = vec![1, 2, 3, 4, 5];

let third: &i32 = &v[2];

Listing 8-6: Using the get method to access an item in a vector

Note two details here. First, we use the index value of
vectors are indexed by number, starting at zero. Second, the two ways
element are by using & and [] , which gives us a reference, or by usin
method with the index passed as an argument, which gives us an

Rust has two ways to reference an element so you can choose how th
behaves when you try to use an index value that the vector doesn’t ha
for. As an example, let’s see what a program will do if it has a vector th
elements and then tries to access an element at index 100, as shown i

Listing 8-7: Attempting to access the element at index 100 in a vector c
elements

When we run this code, the �rst [] method will cause the program to
it references a nonexistent element. This method is best used when y
program to crash if there’s an attempt to access an element past the e
vector.

When the get method is passed an index that is outside the vector, it
without panicking. You would use this method if accessing an element
range of the vector happens occasionally under normal circumstances
then have logic to handle having either Some(&element)
Chapter 6. For example, the index could be coming from a person ent
If they accidentally enter a number that’s too large and the program g
value, you could tell the user how many items are in the current vecto
another chance to enter a valid value. That would be more user-friend
the program due to a typo!

When the program has a valid reference, the borrow checker enforces

let v = vec![1, 2, 3, 4, 5];
let v_index = 2;

match v.get(v_index) {
Some(_) => { println!("Reachable element at index: {}"
None => { println!("Unreachable element at index: {}"

}

let v = vec![1, 2, 3, 4, 5];

let does_not_exist = &v[100];
let does_not_exist = v.get(100);

and borrowing rules (covered in Chapter 4) to ensure this reference an
references to the contents of the vector remain valid. Recall the rule th
can’t have mutable and immutable references in the same scope. Tha
Listing 8-8, where we hold an immutable reference to the �rst elemen
try to add an element to the end, which won’t work:

Listing 8-8: Attempting to add an element to a vector while holding a r
item

Compiling this code will result in this error:

The code in Listing 8-8 might look like it should work: why should a ref
�rst element care about what changes at the end of the vector? This e
the way vectors work: adding a new element onto the end of the vecto
allocating new memory and copying the old elements to the new spac
enough room to put all the elements next to each other where the vec
In that case, the reference to the �rst element would be pointing to de
memory. The borrowing rules prevent programs from ending up in th

Note: For more on the implementation details of the
Rustonomicon” at https://doc.rust-lang.org/stable/nomicon/vec.htm

Iterating over the Values in a Vector

If we want to access each element in a vector in turn, we can iterate th

let mut v = vec![1, 2, 3, 4, 5];

let first = &v[0];

v.push(6);

error[E0502]: cannot borrow `v` as mutable because it is al
immutable
 -->
 |
4 | let first = &v[0];
 | - immutable borrow occurs here
5 |
6 | v.push(6);
 | ^ mutable borrow occurs here
7 |
8 | }
 | - immutable borrow ends here

elements rather than use indexes to access one at a time. Listing 8-9 s
use a for loop to get immutable references to each element in a vect
values and print them:

Listing 8-9: Printing each element in a vector by iterating over the elem
for loop

We can also iterate over mutable references to each element in a mut
order to make changes to all the elements. The
to each element:

Listing 8-10: Iterating over mutable references to elements in a vector

To change the value that the mutable reference refers to, we have to u
dereference operator (*) to get to the value in
. We'll talk more about * in Chapter 15.

Using an Enum to Store Multiple Types

At the beginning of this chapter, we said that vectors can only store va
the same type. This can be inconvenient; there are de�nitely use case
store a list of items of di�erent types. Fortunately, the variants of an e
de�ned under the same enum type, so when we need to store elemen
type in a vector, we can de�ne and use an enum!

For example, say we want to get values from a row in a spreadsheet in
the columns in the row contain integers, some �oating-point numbers
strings. We can de�ne an enum whose variants will hold the di�erent
then all the enum variants will be considered the same type: that of th
we can create a vector that holds that enum and so, ultimately, holds
We’ve demonstrated this in Listing 8-11:

let v = vec![100, 32, 57];
for i in &v {

println!("{}", i);
}

let mut v = vec![100, 32, 57];
for i in &mut v {
 *i += 50;
}

Listing 8-11: De�ning an enum to store values of di�erent types in one

Rust needs to know what types will be in the vector at compile time so
exactly how much memory on the heap will be needed to store each e
secondary advantage is that we can be explicit about what types are a
vector. If Rust allowed a vector to hold any type, there would be a cha
more of the types would cause errors with the operations performed
of the vector. Using an enum plus a match expression means that Ru
compile time that every possible case is handled, as discussed in Chap

When you’re writing a program, if you don’t know the exhaustive set o
program will get at runtime to store in a vector, the enum technique w
Instead, you can use a trait object, which we’ll cover in Chapter 17.

Now that we’ve discussed some of the most common ways to use vec
review the API documentation for all the many useful methods de�ne
the standard library. For example, in addition to
returns the last element. Let’s move on to the next collection type:

Storing UTF-8 Encoded Text with Strings

We talked about strings in Chapter 4, but we’ll look at them in more de
Rustaceans commonly get stuck on strings due to a combination of th
Rust’s propensity for exposing possible errors, strings being a more co
structure than many programmers give them credit for, and UTF-8. Th
combine in a way that can seem di�cult when you’re coming from oth
programming languages.

It’s useful to discuss strings in the context of collections because string
implemented as a collection of bytes, plus some methods to provide u
functionality when those bytes are interpreted as text. In this section,

enum SpreadsheetCell {
 Int(i32),
 Float(f64),
 Text(String),
}

let row = vec![
 SpreadsheetCell::Int(3),
 SpreadsheetCell::Text(String::from("blue"
 SpreadsheetCell::Float(10.12),
];

the operations on String that every collection type has, such as crea
and reading. We’ll also discuss the ways in which
collections, namely how indexing into a String is complicated by the
between how people and computers interpret String

What Is a String?

We’ll �rst de�ne what we mean by the term string
core language, which is the string slice str that is usually seen in its b
&str . In Chapter 4, we talked about string slices, which are references

encoded string data stored elsewhere. String literals, for example, are
binary output of the program and are therefore string slices.

The String type, which is provided by Rust’s standard library rather t
the core language, is a growable, mutable, owned, UTF-8 encoded stri
Rustaceans refer to “strings” in Rust, they usually mean the
slice &str types, not just one of those types. Although this section is l
String , both types are used heavily in Rust’s standard library, and bo

string slices are UTF-8 encoded.

Rust’s standard library also includes a number of other string types, su
OsString , OsStr , CString , and CStr . Library crates can provide eve

for storing string data. See how those names all end in
owned and borrowed variants, just like the String
previously. These string types can store text in di�erent encodings or
in memory in a di�erent way, for example. We won’t discuss these oth
in this chapter; see their API documentation for more about how to us
when each is appropriate.

Creating a New String

Many of the same operations available with Vec<T>
well, starting with the new function to create a string, shown in Listing

Listing 8-11: Creating a new, empty String

This line creates a new empty string called s , which we can then load
Often, we’ll have some initial data that we want to start the string with

let mut s = String::new();

use the to_string method, which is available on any type that implem
Display trait, as string literals do. Listing 8-12 shows two examples:

Listing 8-12: Using the to_string method to create a

This code creates a string containing initial contents

We can also use the function String::from to create a
The code in Listing 8-13 is equivalent to the code from Listing 8-12 tha
to_string :

Listing 8-13: Using the String::from function to create a

Because strings are used for so many things, we can use many di�ere
for strings, providing us with a lot of options. Some of them can seem
they all have their place! In this case, String::from
thing, so which you choose is a matter of style.

Remember that strings are UTF-8 encoded, so we can include any pro
data in them, as shown in Listing 8-14:

Listing 8-14: Storing greetings in di�erent languages in strings

All of these are valid String values.

let data = "initial contents";

let s = data.to_string();

// the method also works on a literal directly:
let s = "initial contents".to_string();

let s = String::from("initial contents");

let hello = String::from(" عليكمالسلام ");
let hello = String::from("Dobrý den");
let hello = String::from("Hello");
let hello = String::from("שָׁלוֹם");
let hello = String::from("नम�ते");
let hello = String::from("こんにちは");
let hello = String::from("안녕하세요");
let hello = String::from("你好");
let hello = String::from("Olá");
let hello = String::from("Здравствуйте");
let hello = String::from("Hola");

Updating a String

A String can grow in size and its contents can change, just like the co
Vec<T> , if you push more data into it. In addition, you can convenient

operator or the format! macro to concatenate

Appending to a String with push_str and push

We can grow a String by using the push_str method to append a st
shown in Listing 8-15:

Listing 8-15: Appending a string slice to a String

After these two lines, s will contain foobar . The
slice because we don’t necessarily want to take ownership of the para
example, the code in Listing 8-16 shows that it would be unfortunate i
able to use s2 after appending its contents to s1

Listing 8-16: Using a string slice after appending its contents to a

If the push_str method took ownership of s2 , we wouldn’t be able t
on the last line. However, this code works as we’d expect!

The push method takes a single character as a parameter and adds it
Listing 8-17 shows code that adds the letter l to a

Listing 8-17: Adding one character to a String value using

As a result of this code, s will contain lol .

Concatenation with the + Operator or the format!

let mut s = String::from("foo");
s.push_str("bar");

let mut s1 = String::from("foo");
let s2 = "bar";
s1.push_str(s2);
println!("s2 is {}", s2);

let mut s = String::from("lo");
s.push('l');

Often, you’ll want to combine two existing strings. One way is to use th
as shown in Listing 8-18:

Listing 8-18: Using the + operator to combine two
value

The string s3 will contain Hello, world! as a result of this code. The
no longer valid after the addition and the reason we used a reference
with the signature of the method that gets called when we use the
operator uses the add method, whose signature looks something like

This isn’t the exact signature that’s in the standard library: in the stand
add is de�ned using generics. Here, we’re looking at the signature of

concrete types substituted for the generic ones, which is what happen
this method with String values. We’ll discuss generics in Chapter 10.
gives us the clues we need to understand the tricky bits of the

First, s2 has an & , meaning that we’re adding a
�rst string because of the s parameter in the add
to a String ; we can’t add two String values together. But wait—the
&String , not &str , as speci�ed in the second parameter to

Listing 8-18 compile?

The reason we’re able to use &s2 in the call to add
the &String argument into a &str . When we call the
coercion, which here turns &s2 into &s2[..] . We’ll discuss deref coer
depth in Chapter 15. Because add does not take ownership of the
will still be a valid String after this operation.

Second, we can see in the signature that add takes ownership of
self does not have an & . This means s1 in Listing 8-18 will be move

call and no longer be valid after that. So although
will copy both strings and create a new one, this statement actually ta
of s1 , appends a copy of the contents of s2 , and then returns owner
result. In other words, it looks like it’s making a lot of copies but isn’t; t
implementation is more e�cient than copying.

let s1 = String::from("Hello, ");
let s2 = String::from("world!");
let s3 = s1 + &s2; // Note s1 has been moved here and can no lo
used

fn add(self, s: &str) -> String {

If we need to concatenate multiple strings, the behavior of the
unwieldy:

At this point, s will be tic-tac-toe . With all of the
to see what’s going on. For more complicated string combining, we ca
format! macro:

This code also sets s to tic-tac-toe . The format!
println! , but instead of printing the output to the screen, it returns

the contents. The version of the code using format!
doesn’t take ownership of any of its parameters.

Indexing into Strings

In many other programming languages, accessing individual character
referencing them by index is a valid and common operation. However
access parts of a String using indexing syntax in Rust, you’ll get an e
the invalid code in Listing 8-19:

Listing 8-19: Attempting to use indexing syntax with a String

This code will result in the following error:

let s1 = String::from("tic");
let s2 = String::from("tac");
let s3 = String::from("toe");

let s = s1 + "-" + &s2 + "-" + &s3;

let s1 = String::from("tic");
let s2 = String::from("tac");
let s3 = String::from("toe");

let s = format!("{}-{}-{}", s1, s2, s3);

let s1 = String::from("hello");
let h = s1[0];

The error and the note tell the story: Rust strings don’t support indexi
To answer that question, we need to discuss how Rust stores strings in

Internal Representation

A String is a wrapper over a Vec<u8> . Let’s look at some of our prop
UTF-8 example strings from Listing 8-14. First, this one:

In this case, len will be 4, which means the vector storing the string “
long. Each of these letters takes 1 byte when encoded in UTF-8. But w
following line? (Note that this line begins with the capital Cyrillic letter
Arabic number 3.)

Asked how long the string is, you might say 12. However, Rust’s answe
the number of bytes it takes to encode “Здравствуйте
Unicode scalar value in that string takes 2 bytes of storage. Therefore,
the string’s bytes will not always correlate to a valid Unicode scalar val
demonstrate, consider this invalid Rust code:

What should the value of answer be? Should it be
in UTF-8, the �rst byte of З is 208 and the second is
be 208 , but 208 is not a valid character on its own. Returning
a user would want if they asked for the �rst letter of this string; howev
only data that Rust has at byte index 0. Users generally don’t want the
returned, even if the string contains only Latin letters: if

error[E0277]: the trait bound `std::string::String:
std::ops::Index<{integer}>` is not satisfied
 -->
 |
3 | let h = s1[0];
 | ^^^^^ the type `std::string::String` cannot
`{integer}`
 |
 = help: the trait `std::ops::Index<{integer}>` is not imp
`std::string::String`

let len = String::from("Hola").len();

let len = String::from("Здравствуйте").len();

let hello = "Здравствуйте";
let answer = &hello[0];

that returned the byte value, it would return 104
unexpected value and causing bugs that might not be discovered imm
doesn’t compile this code at all and prevents misunderstandings early
development process.

Bytes and Scalar Values and Grapheme Clusters! Oh My!

Another point about UTF-8 is that there are actually three relevant wa
strings from Rust’s perspective: as bytes, scalar values, and grapheme
closest thing to what we would call letters).

If we look at the Hindi word “नम�ते” written in the Devanagari script, it
vector of u8 values that looks like this:

That’s 18 bytes and is how computers ultimately store this data. If we
Unicode scalar values, which are what Rust’s char

There are six char values here, but the fourth and sixth are not letter
diacritics that don’t make sense on their own. Finally, if we look at them
clusters, we’d get what a person would call the four letters that make
word:

Rust provides di�erent ways of interpreting the raw string data that co
so that each program can choose the interpretation it needs, no matte
language the data is in.

A �nal reason Rust doesn’t allow us to index into a
indexing operations are expected to always take constant time (O(1)).
possible to guarantee that performance with a String
walk through the contents from the beginning to the index to determi
valid characters there were.

Slicing Strings

Indexing into a string is often a bad idea because it’s not clear what th

[224, 164, 168, 224, 164, 174, 224, 164, 184, 224, 165, 141
164,
224, 165, 135]

['न', 'म', 'स', '◌्', 'त', '◌े']

["न", "म", "स्", "ते"]

the string-indexing operation should be: a byte value, a character, a gr
cluster, or a string slice. Therefore, Rust asks you to be more speci�c i
to use indices to create string slices. To be more speci�c in your index
that you want a string slice, rather than indexing using
can use [] with a range to create a string slice containing particular b

Here, s will be a &str that contains the �rst 4 bytes of the string. Ear
mentioned that each of these characters was 2 bytes, which means

What would happen if we used &hello[0..1] ? The answer: Rust wou
runtime in the same way as if an invalid index were accessed in a vect

You should use ranges to create string slices with caution, because do
your program.

Methods for Iterating Over Strings

Fortunately, you can access elements in a string in other ways.

If you need to perform operations on individual Unicode scalar values
to do so is to use the chars method. Calling chars
returns six values of type char , and you can iterate over the result in
each element:

This code will print the following:

let hello = "Здравствуйте";

let s = &hello[0..4];

thread 'main' panicked at 'byte index 1 is not a char bound
inside 'З' (bytes 0..2) of `Здравствуйте`', src/libcore/str

for c in "नम�ते".chars() {
println!("{}", c);

}

The bytes method returns each raw byte, which might be appropriat
domain:

This code will print the 18 bytes that make up this

But be sure to remember that valid Unicode scalar values may be mad
than 1 byte.

Getting grapheme clusters from strings is complex, so this functionalit
provided by the standard library. Crates are available on
functionality you need.

Strings Are Not So Simple

To summarize, strings are complicated. Di�erent programming langua
di�erent choices about how to present this complexity to the program
chosen to make the correct handling of String data the default beha
programs, which means programmers have to put more thought into
data upfront. This trade-o� exposes more of the complexity of strings
apparent in other programming languages, but it prevents you from h
errors involving non-ASCII characters later in your development life cy

Let’s switch to something a bit less complex: hash maps!

न
म
स
◌्
त
◌े

for b in "नम�ते".bytes() {
println!("{}", b);

}

224
164
// --snip--
165
135

Storing Keys with Associated Values in Hash Maps

The last of our common collections is the hash map
mapping of keys of type K to values of type V . It does this via a
which determines how it places these keys and values into memory. M
programming languages support this kind of data structure, but they
di�erent name, such as hash, map, object, hash table, dictionary, or a
just to name a few.

Hash maps are useful when you want to look up data not by using an
can with vectors, but by using a key that can be of any type. For examp
you could keep track of each team’s score in a hash map in which each
name and the values are each team’s score. Given a team name, you c
score.

We’ll go over the basic API of hash maps in this section, but many mor
hiding in the functions de�ned on HashMap<K, V>
check the standard library documentation for more information.

Creating a New Hash Map

You can create an empty hash map with new and add elements with
Listing 8-20, we’re keeping track of the scores of two teams whose nam
and Yellow. The Blue team starts with 10 points, and the Yellow team

Listing 8-20: Creating a new hash map and inserting some keys and va

Note that we need to �rst use the HashMap from the collections port
standard library. Of our three common collections, this one is the leas
it’s not included in the features brought into scope automatically in th
maps also have less support from the standard library; there’s no buil
construct them, for example.

Just like vectors, hash maps store their data on the heap. This
type String and values of type i32 . Like vectors, hash maps are hom
of the keys must have the same type, and all of the values must have

use std::collections::HashMap;

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Yellow"), 50);

Another way of constructing a hash map is by using the
of tuples, where each tuple consists of a key and its value. The
gathers data into a number of collection types, including
had the team names and initial scores in two separate vectors, we cou
method to create a vector of tuples where “Blue” is paired with 10, and
we could use the collect method to turn that vector of tuples into a
shown in Listing 8-21:

Listing 8-21: Creating a hash map from a list of teams and a list of scor

The type annotation HashMap<_, _> is needed here because it’s poss
into many di�erent data structures and Rust doesn’t know which you
specify. For the parameters for the key and value types, however, we u
underscores, and Rust can infer the types that the hash map contains
types of the data in the vectors.

Hash Maps and Ownership

For types that implement the Copy trait, like i32
map. For owned values like String , the values will be moved and the
be the owner of those values, as demonstrated in Listing 8-22:

Listing 8-22: Showing that keys and values are owned by the hash map
inserted

use std::collections::HashMap;

let teams = vec![String::from("Blue"), String
let initial_scores = vec![10, 50];

let scores: HashMap<_, _> =
teams.iter().zip(initial_scores.iter()).collect();

use std::collections::HashMap;

let field_name = String::from("Favorite color"
let field_value = String::from("Blue");

let mut map = HashMap::new();
map.insert(field_name, field_value);
// field_name and field_value are invalid at this point, try us
and
// see what compiler error you get!

We aren’t able to use the variables field_name and
moved into the hash map with the call to insert

If we insert references to values into the hash map, the values won’t b
the hash map. The values that the references point to must be valid fo
long as the hash map is valid. We’ll talk more about these issues in the
References with Lifetimes” section in Chapter 10.

Accessing Values in a Hash Map

We can get a value out of the hash map by providing its key to the
shown in Listing 8-23:

Listing 8-23: Accessing the score for the Blue team stored in the hash

Here, score will have the value that’s associated with the Blue team,
will be Some(&10) . The result is wrapped in Some
Option<&V> ; if there’s no value for that key in the hash map,

The program will need to handle the Option in one of the ways that w
Chapter 6.

We can iterate over each key/value pair in a hash map in a similar man
with vectors, using a for loop:

use std::collections::HashMap;

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Yellow"), 50);

let team_name = String::from("Blue");
let score = scores.get(&team_name);

use std::collections::HashMap;

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Yellow"), 50);

for (key, value) in &scores {
println!("{}: {}", key, value);

}

This code will print each pair in an arbitrary order:

Updating a Hash Map

Although the number of keys and values is growable, each key can on
value associated with it at a time. When you want to change the data i
you have to decide how to handle the case when a key already has a v
You could replace the old value with the new value, completely disreg
value. You could keep the old value and ignore the new value, only ad
value if the key doesn’t already have a value. Or you could combine the
the new value. Let’s look at how to do each of these!

Overwriting a Value

If we insert a key and a value into a hash map and then insert that sam
di�erent value, the value associated with that key will be replaced. Eve
code in Listing 8-24 calls insert twice, the hash map will only contain
pair because we’re inserting the value for the Blue team’s key both tim

Listing 8-24: Replacing a value stored with a particular key

This code will print {"Blue": 25} . The original value of

Only Inserting a Value If the Key Has No Value

It’s common to check whether a particular key has a value and, if it do
value for it. Hash maps have a special API for this called
want to check as a parameter. The return value of the
called Entry that represents a value that might or might not exist. Le
to check whether the key for the Yellow team has a value associated w

Yellow: 50
Blue: 10

use std::collections::HashMap;

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Blue"), 25);

println!("{:?}", scores);

doesn’t, we want to insert the value 50, and the same for the Blue team
entry API, the code looks like Listing 8-25:

Listing 8-25: Using the entry method to only insert if the key does no
value

The or_insert method on Entry is de�ned to return a mutable refe
value for the corresponding Entry key if that key exists, and if not, in
parameter as the new value for this key and returns a mutable referen
value. This technique is much cleaner than writing the logic ourselves
plays more nicely with the borrow checker.

Running the code in Listing 8-25 will print {"Yellow": 50, "Blue":
to entry will insert the key for the Yellow team with the value
team doesn’t have a value already. The second call to
map because the Blue team already has the value

Updating a Value Based on the Old Value

Another common use case for hash maps is to look up a key’s value an
it based on the old value. For instance, Listing 8-26 shows code that co
times each word appears in some text. We use a hash map with the w
and increment the value to keep track of how many times we’ve seen
the �rst time we’ve seen a word, we’ll �rst insert the value

use std::collections::HashMap;

let mut scores = HashMap::new();
scores.insert(String::from("Blue"), 10);

scores.entry(String::from("Yellow")).or_insert(
scores.entry(String::from("Blue")).or_insert(

println!("{:?}", scores);

Listing 8-26: Counting occurrences of words using a hash map that sto
counts

This code will print {"world": 2, "hello": 1, "wonderful": 1}
method actually returns a mutable reference (&mut V
we store that mutable reference in the count variable, so in order to
value, we must �rst dereference count using the asterisk (
goes out of scope at the end of the for loop, so all of these changes a
allowed by the borrowing rules.

Hashing Functions

By default, HashMap uses a cryptographically secure hashing function
provide resistance to Denial of Service (DoS) attacks. This is not the fa
algorithm available, but the trade-o� for better security that comes wi
performance is worth it. If you pro�le your code and �nd that the defa
function is too slow for your purposes, you can switch to another func
specifying a di�erent hasher. A hasher is a type that implements the
trait. We’ll talk about traits and how to implement them in Chapter 10
necessarily have to implement your own hasher from scratch;
shared by other Rust users that provide hashers implementing many
hashing algorithms.

Summary

Vectors, strings, and hash maps will provide a large amount of functio
in programs when you need to store, access, and modify data. Here a
exercises you should now be equipped to solve:

use std::collections::HashMap;

let text = "hello world wonderful world";

let mut map = HashMap::new();

for word in text.split_whitespace() {
let count = map.entry(word).or_insert(

 *count += 1;
}

println!("{:?}", map);

Given a list of integers, use a vector and return the mean (the av
median (when sorted, the value in the middle position), and mod
that occurs most often; a hash map will be helpful here) of the lis
Convert strings to pig latin. The �rst consonant of each word is m
end of the word and “ay” is added, so “�rst” becomes “irst-fay.” W
with a vowel have “hay” added to the end instead (“apple” becom
Keep in mind the details about UTF-8 encoding!
Using a hash map and vectors, create a text interface to allow a u
employee names to a department in a company. For example, “A
Engineering” or “Add Amir to Sales.” Then let the user retrieve a l
in a department or all people in the company by department, so
alphabetically.

The standard library API documentation describes methods that vecto
hash maps have that will be helpful for these exercises!

We’re getting into more complex programs in which operations can fa
perfect time to discuss error handling. We’ll do that next!

Error Handling
Rust’s commitment to reliability extends to error handling. Errors are
software, so Rust has a number of features for handling situations in w
something goes wrong. In many cases, Rust requires you to acknowle
possibility of an error and take some action before your code will com
requirement makes your program more robust by ensuring that you’l
and handle them appropriately before you’ve deployed your code to p

Rust groups errors into two major categories: recoverable
For a recoverable error, such as a �le not found error, it’s reasonable t
problem to the user and retry the operation. Unrecoverable errors are
symptoms of bugs, like trying to access a location beyond the end of a

Most languages don’t distinguish between these two kinds of errors a
in the same way, using mechanisms such as exceptions. Rust doesn’t h
Instead, it has the type Result<T, E> for recoverable errors and the
that stops execution when the program encounters an unrecoverable
chapter covers calling panic! �rst and then talks about returning
values. Additionally, we’ll explore considerations when deciding wheth
recover from an error or to stop execution.

Unrecoverable Errors with panic!

Sometimes, bad things happen in your code, and there’s nothing you
In these cases, Rust has the panic! macro. When the
program will print a failure message, unwind and clean up the stack, a
This most commonly occurs when a bug of some kind has been detec
clear to the programmer how to handle the error.

Unwinding the Stack or Aborting in Response to a Panic

By default, when a panic occurs, the program starts
Rust walks back up the stack and cleans up the data from each func
encounters. But this walking back and cleanup is a lot of work. The
to immediately abort, which ends the program without cleaning up
that the program was using will then need to be cleaned up by the
system. If in your project you need to make the resulting binary as
possible, you can switch from unwinding to aborting upon a panic b
panic = 'abort' to the appropriate [profile]

For example, if you want to abort on panic in release mode, add thi

Let’s try calling panic! in a simple program:

Filename: src/main.rs

When you run the program, you’ll see something like this:

The call to panic! causes the error message contained in the last two
line shows our panic message and the place in our source code where

[profile.release]
panic = 'abort'

fn main() {
panic!("crash and burn");

}

$ cargo run
 Compiling panic v0.1.0 (file:///projects/panic)
 Finished dev [unoptimized + debuginfo] target(s) in 0.2
 Running `target/debug/panic`
thread 'main' panicked at 'crash and burn', src/main.rs:2:4
note: Run with `RUST_BACKTRACE=1` for a backtrace.

occurred: src/main.rs:2:4 indicates that it’s the second line, fourth char
src/main.rs �le.

In this case, the line indicated is part of our code, and if we go to that
panic! macro call. In other cases, the panic! call might be in code th

calls, and the �lename and line number reported by the error messag
someone else’s code where the panic! macro is called, not the line o
eventually led to the panic! call. We can use the backtrace of the fun
panic! call came from to �gure out the part of our code that is causin

We’ll discuss what a backtrace is in more detail next.

Using a panic! Backtrace

Let’s look at another example to see what it’s like when a
library because of a bug in our code instead of from our code calling t
directly. Listing 9-1 has some code that attempts to access an element
vector:

Filename: src/main.rs

Listing 9-1: Attempting to access an element beyond the end of a vect
cause a panic!

Here, we’re attempting to access the hundredth element of our vector
index 99 because indexing starts at zero), but it has only three elemen
situation, Rust will panic. Using [] is supposed to return an element,
an invalid index, there’s no element that Rust could return here that w

Other languages, like C, will attempt to give you exactly what you aske
situation, even though it isn’t what you want: you’ll get whatever is at t
memory that would correspond to that element in the vector, even th
memory doesn’t belong to the vector. This is called a
security vulnerabilities if an attacker is able to manipulate the index in
to read data they shouldn’t be allowed to that is stored after the array

To protect your program from this sort of vulnerability, if you try to re
at an index that doesn’t exist, Rust will stop execution and refuse to co
it and see:

fn main() {
let v = vec![1, 2, 3];

 v[99];
}

This error points at a �le we didn’t write, vec.rs. That’s the implementa
in the standard library. The code that gets run when we use
vec.rs, and that is where the panic! is actually happening.

The next note line tells us that we can set the RUST_BACKTRACE
to get a backtrace of exactly what happened to cause the error. A
all the functions that have been called to get to this point. Backtraces
they do in other languages: the key to reading the backtrace is to start
and read until you see �les you wrote. That’s the spot where the prob
The lines above the lines mentioning your �les are code that your cod
lines below are code that called your code. These lines might include c
standard library code, or crates that you’re using. Let’s try getting a ba
setting the RUST_BACKTRACE environment variable to any value except
shows output similar to what you’ll see:

$ cargo run
 Compiling panic v0.1.0 (file:///projects/panic)
 Finished dev [unoptimized + debuginfo] target(s) in 0.2
 Running `target/debug/panic`
thread 'main' panicked at 'index out of bounds: the len is
is
99', /checkout/src/liballoc/vec.rs:1555:10
note: Run with `RUST_BACKTRACE=1` for a backtrace.

Listing 9-2: The backtrace generated by a call to
environment variable RUST_BACKTRACE is set

That’s a lot of output! The exact output you see might be di�erent dep
operating system and Rust version. In order to get backtraces with thi
debug symbols must be enabled. Debug symbols are enabled by defa
cargo build or cargo run without the --release

In the output in Listing 9-2, line 11 of the backtrace points to the line in

$ RUST_BACKTRACE=1 cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/panic`
thread 'main' panicked at 'index out of bounds: the len is
is 99', /checkout/src/liballoc/vec.rs:1555:10
stack backtrace:
 0: std::sys::imp::backtrace::tracing::imp::unwind_backtr
 at /checkout/src/libstd/sys/unix/backtrace/tra
/gcc_s.rs:49
 1: std::sys_common::backtrace::_print
 at /checkout/src/libstd/sys_common/backtrace.r
 2: std::panicking::default_hook::{{closure}}
 at /checkout/src/libstd/sys_common/backtrace.r
 at /checkout/src/libstd/panicking.rs:381
 3: std::panicking::default_hook
 at /checkout/src/libstd/panicking.rs:397
 4: std::panicking::rust_panic_with_hook
 at /checkout/src/libstd/panicking.rs:611
 5: std::panicking::begin_panic
 at /checkout/src/libstd/panicking.rs:572
 6: std::panicking::begin_panic_fmt
 at /checkout/src/libstd/panicking.rs:522
 7: rust_begin_unwind
 at /checkout/src/libstd/panicking.rs:498
 8: core::panicking::panic_fmt
 at /checkout/src/libcore/panicking.rs:71
 9: core::panicking::panic_bounds_check
 at /checkout/src/libcore/panicking.rs:58
 10: <alloc::vec::Vec<T> as core::ops::index::Index<usize>
 at /checkout/src/liballoc/vec.rs:1555
 11: panic::main
 at src/main.rs:4
 12: __rust_maybe_catch_panic
 at /checkout/src/libpanic_unwind/lib.rs:99
 13: std::rt::lang_start
 at /checkout/src/libstd/panicking.rs:459
 at /checkout/src/libstd/panic.rs:361
 at /checkout/src/libstd/rt.rs:61
 14: main
 15: __libc_start_main
 16: <unknown>

that’s causing the problem: line 4 of src/main.rs. If we don’t want our p
panic, the location pointed to by the �rst line mentioning a �le we wro
should start investigating. In Listing 9-1, where we deliberately wrote c
panic in order to demonstrate how to use backtraces, the way to �x th
request an element at index 99 from a vector that only contains 3 item
code panics in the future, you’ll need to �gure out what action the cod
what values to cause the panic and what the code should do instead.

We’ll come back to panic! and when we should and should not use
handle error conditions in the “To panic! or Not to
chapter. Next, we’ll look at how to recover from an error using

Recoverable Errors with Result

Most errors aren’t serious enough to require the program to stop enti
Sometimes, when a function fails, it’s for a reason that you can easily i
respond to. For example, if you try to open a �le and that operation fa
�le doesn’t exist, you might want to create the �le instead of terminat

Recall from “Handling Potential Failure with the
Result enum is de�ned as having two variants,

The T and E are generic type parameters: we’ll discuss generics in m
Chapter 10. What you need to know right now is that
value that will be returned in a success case within the
the type of the error that will be returned in a failure case within the
Because Result has these generic type parameters, we can use the
the functions that the standard library has de�ned on it in many di�er
where the successful value and error value we want to return may di�

Let’s call a function that returns a Result value because the function
Listing 9-3 we try to open a �le:

Filename: src/main.rs

enum Result<T, E> {
Ok(T),
Err(E),

}

Listing 9-3: Opening a �le

How do we know File::open returns a Result
library API documentation, or we could ask the compiler! If we give
annotation that we know is not the return type of the function and the
the code, the compiler will tell us that the types don’t match. The erro
then tell us what the type of f is. Let’s try it! We know that the return
File::open isn’t of type u32 , so let’s change the

Attempting to compile now gives us the following output:

This tells us the return type of the File::open function is a
generic parameter T has been �lled in here with the type of the succe
std::fs::File , which is a �le handle. The type of
std::io::Error .

This return type means the call to File::open might succeed and ret
that we can read from or write to. The function call also might fail: for
�le might not exist, or we might not have permission to access the �le
File::open function needs to have a way to tell us whether it succee

and at the same time give us either the �le handle or error informatio
information is exactly what the Result enum conveys.

In the case where File::open succeeds, the value in the variable
instance of Ok that contains a �le handle. In the case where it fails, th
be an instance of Err that contains more information about the kind
happened.

use std::fs::File;

fn main() {
let f = File::open("hello.txt");

}

let f: u32 = File::open("hello.txt");

error[E0308]: mismatched types
 --> src/main.rs:4:18
 |
4 | let f: u32 = File::open("hello.txt");
 | ^^^^^^^^^^^^^^^^^^^^^^^ expected u32,
`std::result::Result`
 |
 = note: expected type `u32`
 found type `std::result::Result<std::fs::File,
std::io::Error>`

We need to add to the code in Listing 9-3 to take di�erent actions dep
value File::open returns. Listing 9-4 shows one way to handle the
basic tool, the match expression that we discussed in Chapter 6.

Filename: src/main.rs

Listing 9-4: Using a match expression to handle the
returned

Note that, like the Option enum, the Result enum and its variants h
imported in the prelude, so we don’t need to specify
Err variants in the match arms.

Here we tell Rust that when the result is Ok , return the inner
Ok variant, and we then assign that �le handle value to the variable
match , we can use the �le handle for reading or writing.

The other arm of the match handles the case where we get an
File::open . In this example, we’ve chosen to call the

named hello.txt in our current directory and we run this code, we’ll see
output from the panic! macro:

As usual, this output tells us exactly what has gone wrong.

Matching on Di�erent Errors

The code in Listing 9-4 will panic! no matter why
to do instead is take di�erent actions for di�erent failure reasons: if

use std::fs::File;

fn main() {
let f = File::open("hello.txt");

let f = match f {
Ok(file) => file,
Err(error) => {

panic!("There was a problem opening the file: {
 },
 };
}

thread 'main' panicked at 'There was a problem opening the
repr:
Os { code: 2, message: "No such file or directory" } }', sr

failed because the �le doesn’t exist, we want to create the �le and retu
to the new �le. If File::open failed for any other reason—for examp
didn’t have permission to open the �le—we still want the code to
way as it did in Listing 9-4. Look at Listing 9-5, which adds another arm

Filename: src/main.rs

Listing 9-5: Handling di�erent kinds of errors in di�erent ways

The type of the value that File::open returns inside the
which is a struct provided by the standard library. This struct has a me
we can call to get an io::ErrorKind value. The enum
the standard library and has variants representing the di�erent kinds
might result from an io operation. The variant we want to use is
ErrorKind::NotFound , which indicates the �le we’re trying to open do

So, we match on f , but we also then have an inner

The condition we want to check in the match guard is whether the val
error.kind() is the NotFound variant of the ErrorKind

create the �le with File::create . However, because
we need to add another inner match statement as well. When the �le
opened, a di�erent error message will be printed. The last arm of the
stays the same so the program panics on any error besides the missin

That's a lot of match ! match is very powerful, but also very much a pr
Chapter 13, we'll learn about closures. The Result<T, E>
that accept a closure, and are implemented as match

use std::fs::File;
use std::io::ErrorKind;

fn main() {
let f = File::open("hello.txt");

let f = match f {
Ok(file) => file,
Err(error) => match error.kind() {

 ErrorKind::NotFound => match File::create(
Ok(fc) => fc,
Err(e) => panic!("Tried to create file but

problem: {:?}", e),
 },
 other_error => panic!("There was a problem open
{:?}", other_error),
 },
 };
}

Rustacean might write this:

Come back to this example after you've read Chapter 13, and look up
map_err and unwrap_or_else methods do in the standard library do

There's many more of these methods that can clean up huge nested
dealing with errors. We'll be looking at some other strategies shortly!

Shortcuts for Panic on Error: unwrap and

Using match works well enough, but it can be a bit verbose and doesn
communicate intent well. The Result<T, E> type has many helper m
on it to do various tasks. One of those methods, called
that is implemented just like the match statement we wrote in Listing
Result value is the Ok variant, unwrap will return the value inside th
Result is the Err variant, unwrap will call the

example of unwrap in action:

Filename: src/main.rs

If we run this code without a hello.txt �le, we’ll see an error message fr
call that the unwrap method makes:

use std::fs::File;
use std::io::ErrorKind;

fn main() {
let f = File::open("hello.txt").map_err(|error| {

if error.kind() == ErrorKind::NotFound {
 File::create("hello.txt").unwrap_or_else(|error

panic!("Tried to create file but there was
{:?}", error);
 })
 } else {

panic!("There was a problem opening the file: {
 }
 });
}

use std::fs::File;

fn main() {
let f = File::open("hello.txt").unwrap();

}

Another method, expect , which is similar to unwrap
error message. Using expect instead of unwrap
can convey your intent and make tracking down the source of a panic
syntax of expect looks like this:

Filename: src/main.rs

We use expect in the same way as unwrap : to return the �le handle
panic! macro. The error message used by expect

parameter that we pass to expect , rather than the default
unwrap uses. Here’s what it looks like:

Because this error message starts with the text we speci�ed,
Failed to open hello.txt , it will be easier to �nd where in the code

message is coming from. If we use unwrap in multiple places, it can ta
�gure out exactly which unwrap is causing the panic because all
panic print the same message.

Propagating Errors

When you’re writing a function whose implementation calls something
instead of handling the error within this function, you can return the e
calling code so that it can decide what to do. This is known as
and gives more control to the calling code, where there might be more
logic that dictates how the error should be handled than what you hav
the context of your code.

For example, Listing 9-6 shows a function that reads a username from
doesn’t exist or can’t be read, this function will return those errors to t

thread 'main' panicked at 'called `Result::unwrap()` on an
Error {
repr: Os { code: 2, message: "No such file or directory" }
src/libcore/result.rs:906:4

use std::fs::File;

fn main() {
let f = File::open("hello.txt").expect(

}

thread 'main' panicked at 'Failed to open hello.txt: Error
code:
2, message: "No such file or directory" } }', src/libcore/r

called this function:

Filename: src/main.rs

Listing 9-6: A function that returns errors to the calling code using

This function can be written in a much shorter way, but we're going to
lot of it manually in order to explore error handling; at the end, we'll s
way. Let’s look at the return type of the function �rst:
This means the function is returning a value of the type
generic parameter T has been �lled in with the concrete type
generic type E has been �lled in with the concrete type
succeeds without any problems, the code that calls this function will r
value that holds a String —the username that this function read from
function encounters any problems, the code that calls this function wi
Err value that holds an instance of io::Error that contains more in

what the problems were. We chose io::Error as the return type of t
because that happens to be the type of the error value returned from
operations we’re calling in this function’s body that might fail: the
function and the read_to_string method.

The body of the function starts by calling the File::open
the Result value returned with a match similar to the
instead of calling panic! in the Err case, we return early from this fu
pass the error value from File::open back to the calling code as this
value. If File::open succeeds, we store the �le handle in the variable

use std::io;
use std::io::Read;
use std::fs::File;

fn read_username_from_file() -> Result<String
let f = File::open("hello.txt");

let mut f = match f {
Ok(file) => file,
Err(e) => return Err(e),

 };

let mut s = String::new();

match f.read_to_string(&mut s) {
Ok(_) => Ok(s),
Err(e) => Err(e),

 }
}

continue.

Then we create a new String in variable s and call the
the �le handle in f to read the contents of the �le into
method also returns a Result because it might fail, even though
succeeded. So we need another match to handle that
succeeds, then our function has succeeded, and we return the userna
that’s now in s wrapped in an Ok . If read_to_string
in the same way that we returned the error value in the
return value of File::open . However, we don’t need to explicitly say
because this is the last expression in the function.

The code that calls this code will then handle getting either an
a username or an Err value that contains an io::Error
calling code will do with those values. If the calling code gets an
call panic! and crash the program, use a default username, or look u
from somewhere other than a �le, for example. We don’t have enough
what the calling code is actually trying to do, so we propagate all the s
information upward for it to handle appropriately.

This pattern of propagating errors is so common in Rust that Rust pro
question mark operator ? to make this easier.

A Shortcut for Propagating Errors: the ? Operator

Listing 9-7 shows an implementation of read_username_from_file
functionality as it had in Listing 9-6, but this implementation uses the
operator:

Filename: src/main.rs

Listing 9-7: A function that returns errors to the calling code using

The ? placed after a Result value is de�ned to work in almost the sa

use std::io;
use std::io::Read;
use std::fs::File;

fn read_username_from_file() -> Result<String
let mut f = File::open("hello.txt")?;
let mut s = String::new();

 f.read_to_string(&mut s)?;
Ok(s)

}

match expressions we de�ned to handle the Result
of the Result is an Ok , the value inside the Ok
expression, and the program will continue. If the value is an
returned from the whole function as if we had used the
value gets propagated to the calling code.

There is a di�erence between what the match expression from Listing
error values taken by ? go through the from function, de�ned in the
the standard library, which is used to convert errors from one type int
When ? calls the from function, the error type received is converted
type de�ned in the return type of the current function. This is useful w
returns one error type to represent all the ways a function might fail, e
might fail for many di�erent reasons. As long as each error type imple
from function to de�ne how to convert itself to the returned error typ

of the conversion automatically.

In the context of Listing 9-7, the ? at the end of the
value inside an Ok to the variable f . If an error occurs,
whole function and give any Err value to the calling code. The same t
the ? at the end of the read_to_string call.

The ? operator eliminates a lot of boilerplate and makes this function
implementation simpler. We could even shorten this code further by c
calls immediately after the ? , as shown in Listing 9-8:

Filename: src/main.rs

Listing 9-8: Chaining method calls after ?

We’ve moved the creation of the new String in
that part hasn’t changed. Instead of creating a variable
read_to_string directly onto the result of File::open("hello.txt

a ? at the end of the read_to_string call, and we still return an

use std::io;
use std::io::Read;
use std::fs::File;

fn read_username_from_file() -> Result<String
let mut s = String::new();

 File::open("hello.txt")?.read_to_string(&

Ok(s)
}

the username in s when both File::open and
returning errors. The functionality is again the same as in Listing 9-6 a
this is just a di�erent, more ergonomic way to write it.

Speaking of di�erent ways to write this function, there's a way to mak
shorter:

Filename: src/main.rs

Listing 9-9: Using fs::read_to_string

Reading a �le into a string is a fairly common operation, and so Rust p
convenience function called fs::read_to_string
String , read the contents of the �le, and put the contents into that

then return it. Of course, this doesn't give us the opportunity to show
error handling, so we did it the hard way at �rst.

The ? Operator Can Only Be Used in Functions That Return

The ? operator can only be used in functions that have a return type
because it is de�ned to work in the same way as the
Listing 9-6. The part of the match that requires a return type of
return Err(e) , so the return type of the function must be a

compatible with this return .

Let’s look at what happens if we use ? in the main
return type of () :

When we compile this code, we get the following error message:

use std::io;
use std::io::Read;
use std::fs;

fn read_username_from_file() -> Result<String
 fs::read_to_string("hello.txt")
}

use std::fs::File;

fn main() {
let f = File::open("hello.txt")?;

}

This error points out that we’re only allowed to use
Result . In functions that don’t return Result , when you call other fu

return Result , you’ll need to use a match or one of the
the Result instead of using ? to potentially propagate the error to th

Now that we’ve discussed the details of calling panic!
return to the topic of how to decide which is appropriate to use in whi

To panic! or Not to panic!

So how do you decide when you should call panic!
Result ? When code panics, there’s no way to recover. You could call

error situation, whether there’s a possible way to recover or not, but t
making the decision on behalf of the code calling your code that a situ
unrecoverable. When you choose to return a Result
options rather than making the decision for it. The calling code could c
attempt to recover in a way that’s appropriate for its situation, or it co
an Err value in this case is unrecoverable, so it can call
recoverable error into an unrecoverable one. Therefore, returning
default choice when you’re de�ning a function that might fail.

In rare situations, it’s more appropriate to write code that panics inste
a Result . Let’s explore why it’s appropriate to panic in examples, pro
and tests. Then we’ll discuss situations in which the compiler can’t tell
impossible, but you as a human can. The chapter will conclude with so
guidelines on how to decide whether to panic in library code.

Examples, Prototype Code, and Tests

error[E0277]: the trait bound `(): std::ops::Try` is not sa
 --> src/main.rs:4:13
 |
4 | let f = File::open("hello.txt")?;
 | ------------------------
 | |
 | the `?` operator can only be used in a func
returns
 `Result` (or another type that implements `std::ops::Try`
 | in this macro invocation
 |
 = help: the trait `std::ops::Try` is not implemented for
 = note: required by `std::ops::Try::from_error`

When you’re writing an example to illustrate some concept, having rob
handling code in the example as well can make the example less clear
it’s understood that a call to a method like unwrap
placeholder for the way you’d want your application to handle errors,
based on what the rest of your code is doing.

Similarly, the unwrap and expect methods are very handy when prot
you’re ready to decide how to handle errors. They leave clear markers
for when you’re ready to make your program more robust.

If a method call fails in a test, you’d want the whole test to fail, even if
isn’t the functionality under test. Because panic!
calling unwrap or expect is exactly what should happen.

Cases in Which You Have More Information Than the Comp

It would also be appropriate to call unwrap when you have some othe
ensures the Result will have an Ok value, but the logic isn’t somethin
understands. You’ll still have a Result value that you need to handle:
operation you’re calling still has the possibility of failing in general, eve
logically impossible in your particular situation. If you can ensure by m
inspecting the code that you’ll never have an Err
call unwrap . Here’s an example:

We’re creating an IpAddr instance by parsing a hardcoded string. We
127.0.0.1 is a valid IP address, so it’s acceptable to use

having a hardcoded, valid string doesn’t change the return type of the
we still get a Result value, and the compiler will still make us handle
the Err variant is a possibility because the compiler isn’t smart enoug
this string is always a valid IP address. If the IP address string came fro
than being hardcoded into the program and therefore
we’d de�nitely want to handle the Result in a more robust way inste

Guidelines for Error Handling

It’s advisable to have your code panic when it’s possible that your cod
in a bad state. In this context, a bad state is when some assumption, g

use std::net::IpAddr;

let home: IpAddr = "127.0.0.1".parse().unwrap();

contract, or invariant has been broken, such as when invalid values, co
values, or missing values are passed to your code—plus one or more

The bad state is not something that’s expected
Your code after this point needs to rely on not being in this bad s
There’s not a good way to encode this information in the types y

If someone calls your code and passes in values that don’t make sense
choice might be to call panic! and alert the person using your library
their code so they can �x it during development. Similarly,
appropriate if you’re calling external code that is out of your control a
invalid state that you have no way of �xing.

However, when failure is expected, it is more appropriate to return a
make a panic! call. Examples include a parser being given malforme
HTTP request returning a status that indicates you have hit a rate limi
returning a Result indicates that failure is an expected possibility tha
code must decide how to handle.

When your code performs operations on values, your code should ver
are valid �rst and panic if the values aren’t valid. This is mostly for safe
attempting to operate on invalid data can expose your code to vulnera
the main reason the standard library will call panic!
memory access: trying to access memory that doesn’t belong to the cu
structure is a common security problem. Functions often have
behavior is only guaranteed if the inputs meet particular requirement
when the contract is violated makes sense because a contract violatio
indicates a caller-side bug and it’s not a kind of error you want the call
have to explicitly handle. In fact, there’s no reasonable way for calling
the calling programmers need to �x the code. Contracts for a function,
a violation will cause a panic, should be explained in the API documen
function.

However, having lots of error checks in all of your functions would be
annoying. Fortunately, you can use Rust’s type system (and thus the ty
compiler does) to do many of the checks for you. If your function has
as a parameter, you can proceed with your code’s logic knowing that t
already ensured you have a valid value. For example, if you have a typ
Option , your program expects to have something

doesn’t have to handle two cases for the Some and
one case for de�nitely having a value. Code trying to pass nothing to y
won’t even compile, so your function doesn’t have to check for that ca
Another example is using an unsigned integer type such as
parameter is never negative.

Let’s take the idea of using Rust’s type system to ensure we have a val
step further and look at creating a custom type for validation. Recall th
game in Chapter 2 in which our code asked the user to guess a numbe
and 100. We never validated that the user’s guess was between those
before checking it against our secret number; we only validated that t
positive. In this case, the consequences were not very dire: our output
or “Too low” would still be correct. But it would be a useful enhancem
user toward valid guesses and have di�erent behavior when a user gu
that’s out of range versus when a user types, for example, letters inste

One way to do this would be to parse the guess as an
allow potentially negative numbers, and then add a check for the num
range, like so:

The if expression checks whether our value is out of range, tells the
problem, and calls continue to start the next iteration of the loop and
another guess. After the if expression, we can proceed with the com
between guess and the secret number knowing that

However, this is not an ideal solution: if it was absolutely critical that t
operated on values between 1 and 100, and it had many functions wit
requirement, having a check like this in every function would be tedio
impact performance).

Instead, we can make a new type and put the validations in a function
instance of the type rather than repeating the validations everywhere
safe for functions to use the new type in their signatures and con�den
values they receive. Listing 9-9 shows one way to de�ne a
create an instance of Guess if the new function receives a value betw

loop {
// --snip--

let guess: i32 = match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue,

 };

if guess < 1 || guess > 100 {
println!("The secret number will be between 1 and 1
continue;

 }

match guess.cmp(&secret_number) {
// --snip--

}

Listing 9-10: A Guess type that will only continue with values between

First, we de�ne a struct named Guess that has a �eld named
. This is where the number will be stored.

Then we implement an associated function named
instances of Guess values. The new function is de�ned to have one p
named value of type i32 and to return a Guess
function tests value to make sure it’s between 1 and 100. If
test, we make a panic! call, which will alert the programmer who is w
calling code that they have a bug they need to �x, because creating a
value outside this range would violate the contract that

The conditions in which Guess::new might panic should be discussed
facing API documentation; we’ll cover documentation conventions ind
possibility of a panic! in the API documentation that you create in Ch
value does pass the test, we create a new Guess
value parameter and return the Guess .

Next, we implement a method named value that borrows
other parameters, and returns a i32 . This kind of method is sometim
getter, because its purpose is to get some data from its �elds and retu
method is necessary because the value �eld of the
important that the value �eld be private so code using the
allowed to set value directly: code outside the module
function to create an instance of Guess , thereby ensuring there’s no w

pub struct Guess {
 value: i32,
}

impl Guess {
pub fn new(value: i32) -> Guess {

if value < 1 || value > 100 {
panic!("Guess value must be between 1 and 100,

value);
 }

 Guess {
 value
 }
 }

pub fn value(&self) -> i32 {
self.value

 }
}

to have a value that hasn’t been checked by the conditions in the
function.

A function that has a parameter or returns only numbers between 1 a
then declare in its signature that it takes or returns a
wouldn’t need to do any additional checks in its body.

Summary

Rust’s error handling features are designed to help you write more ro
panic! macro signals that your program is in a state it can’t handle a

the process to stop instead of trying to proceed with invalid or incorre
Result enum uses Rust’s type system to indicate that operations mig

that your code could recover from. You can use
code that it needs to handle potential success or failure as well. Using
Result in the appropriate situations will make your code more reliab

inevitable problems.

Now that you’ve seen useful ways that the standard library uses gener
Option and Result enums, we’ll talk about how generics work and h

them in your code.

Generic Types, Traits, and Lifetimes
Every programming language has tools for e�ectively handling the du
concepts. In Rust, one such tool is generics. Generics are abstract stan
concrete types or other properties. When we’re writing code, we can e
behavior of generics or how they relate to other generics without kno
be in their place when compiling and running the code.

Similar to the way a function takes parameters with unknown values t
code on multiple concrete values, functions can take parameters of so
type instead of a concrete type, like i32 or String
generics in Chapter 6 with Option<T> , Chapter 8 with
and Chapter 9 with Result<T, E> . In this chapter, you’ll explore how
own types, functions, and methods with generics!

First, we’ll review how to extract a function to reduce code duplication
the same technique to make a generic function from two functions th
the types of their parameters. We’ll also explain how to use generic ty
and enum de�nitions.

Then you’ll learn how to use traits to de�ne behavior in a generic way.
combine traits with generic types to constrain a generic type to only th
have a particular behavior, as opposed to just any type.

Finally, we’ll discuss lifetimes, a variety of generics that give the compil
about how references relate to each other. Lifetimes allow us to borro
many situations while still enabling the compiler to check that the refe
valid.

Removing Duplication by Extracting a Function

Before diving into generics syntax, let’s �rst look at how to remove du
doesn’t involve generic types by extracting a function. Then we’ll apply
to extract a generic function! In the same way that you recognize dupl
extract into a function, you’ll start to recognize duplicated code that ca

Consider a short program that �nds the largest number in a list, as sh
10-1.

Filename: src/main.rs

Listing 10-1: Code to �nd the largest number in a list of numbers

This code stores a list of integers in the variable
number in the list in a variable named largest . Then it iterates throu
numbers in the list, and if the current number is greater than the num
largest , it replaces the number in that variable. However, if the curre

less than the largest number seen so far, the variable doesn’t change,
moves on to the next number in the list. After considering all the num
largest should hold the largest number, which in this case is 100.

fn main() {
let number_list = vec![34, 50, 25, 100

let mut largest = number_list[0];

for number in number_list {
if number > largest {

 largest = number;
 }
 }

println!("The largest number is {}", largest);
}

To �nd the largest number in two di�erent lists of numbers, we can d
code in Listing 10-1 and use the same logic at two di�erent places in t
shown in Listing 10-2.

Filename: src/main.rs

Listing 10-2: Code to �nd the largest number in two

Although this code works, duplicating code is tedious and error prone
to update the code in multiple places when we want to change it.

To eliminate this duplication, we can create an abstraction by de�ning
operates on any list of integers given to it in a parameter. This solution
code clearer and lets us express the concept of �nding the largest num
abstractly.

In Listing 10-3, we extracted the code that �nds the largest number in
named largest . Unlike the code in Listing 10-1, which can �nd the la
only one particular list, this program can �nd the largest number in tw

Filename: src/main.rs

fn main() {
let number_list = vec![34, 50, 25, 100

let mut largest = number_list[0];

for number in number_list {
if number > largest {

 largest = number;
 }
 }

println!("The largest number is {}", largest);

let number_list = vec![102, 34, 6000,

let mut largest = number_list[0];

for number in number_list {
if number > largest {

 largest = number;
 }
 }

println!("The largest number is {}", largest);
}

Listing 10-3: Abstracted code to �nd the largest number in two lists

The largest function has a parameter called list
slice of i32 values that we might pass into the function. As a result, w
function, the code runs on the speci�c values that we pass in.

In sum, here are the steps we took to change the code from Listing 10
10-3:

Identify duplicate code.1.
Extract the duplicate code into the body of the function and spec
and return values of that code in the function signature.

2.

Update the two instances of duplicated code to call the function 3.

Next, we’ll use these same steps with generics to reduce code duplica
ways. In the same way that the function body can operate on an abstr
instead of speci�c values, generics allow code to operate on abstract t

For example, say we had two functions: one that �nds the largest item
i32 values and one that �nds the largest item in a slice of

we eliminate that duplication? Let’s �nd out!

fn largest(list: &[i32]) -> i32 {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

 largest = item;
 }
 }

 largest
}

fn main() {
let number_list = vec![34, 50, 25, 100

let result = largest(&number_list);
println!("The largest number is {}", result);

let number_list = vec![102, 34, 6000,

let result = largest(&number_list);
println!("The largest number is {}", result);

}

Generic Data Types

We can use generics to create de�nitions for items like function signat
which we can then use with many di�erent concrete data types. Let’s
to de�ne functions, structs, enums, and methods using generics. Then
how generics a�ect code performance.

In Function De�nitions

When de�ning a function that uses generics, we place the generics in
the function where we would usually specify the data types of the par
return value. Doing so makes our code more �exible and provides mo
to callers of our function while preventing code duplication.

Continuing with our largest function, Listing 10-4 shows two functio
�nd the largest value in a slice.

Filename: src/main.rs

Listing 10-4: Two functions that di�er only in their names and the type
signatures

The largest_i32 function is the one we extracted in Listing 10-3 that
largest i32 in a slice. The largest_char function �nds the largest
The function bodies have the same code, so let’s eliminate the duplica
introducing a generic type parameter in a single function.

To parameterize the types in the new function we’ll de�ne, we need to
parameter, just as we do for the value parameters to a function. You c
identi�er as a type parameter name. But we’ll use
parameter names in Rust are short, often just a letter, and Rust’s type
convention is CamelCase. Short for “type,” T is the default choice of m
programmers.

fn largest_i32(list: &[i32]) -> i32 {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

 largest = item;
 }
 }

 largest
}

fn largest_char(list: &[char]) -> char {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

 largest = item;
 }
 }

 largest
}

fn main() {
let number_list = vec![34, 50, 25, 100

let result = largest_i32(&number_list);
println!("The largest number is {}", result);

let char_list = vec!['y', 'm', 'a', 'q'

let result = largest_char(&char_list);
println!("The largest char is {}", result);

}

When we use a parameter in the body of the function, we have to dec
parameter name in the signature so the compiler knows what that na
Similarly, when we use a type parameter name in a function signature
declare the type parameter name before we use it. To de�ne the gene
function, place type name declarations inside angle brackets,
of the function and the parameter list, like this:

We read this de�nition as: the function largest
function has one parameter named list , which is a slice of values of
largest function will return a value of the same type

Listing 10-5 shows the combined largest function de�nition using th
type in its signature. The listing also shows how we can call the functio
slice of i32 values or char values. Note that this code won’t compile
it later in this chapter.

Filename: src/main.rs

Listing 10-5: A de�nition of the largest function that uses generic typ
but doesn’t compile yet

If we compile this code right now, we’ll get this error:

fn largest<T>(list: &[T]) -> T {

fn largest<T>(list: &[T]) -> T {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

 largest = item;
 }
 }

 largest
}

fn main() {
let number_list = vec![34, 50, 25, 100

let result = largest(&number_list);
println!("The largest number is {}", result);

let char_list = vec!['y', 'm', 'a', 'q'

let result = largest(&char_list);
println!("The largest char is {}", result);

}

The note mentions std::cmp::PartialOrd , which is a
the next section. For now, this error states that the body of
all possible types that T could be. Because we want to compare value
the body, we can only use types whose values can be ordered. To ena
comparisons, the standard library has the std::cmp::PartialOrd
implement on types (see Appendix C for more on this trait). You’ll lear
that a generic type has a particular trait in the “Trait Bounds” section,
explore other ways of using generic type parameters.

In Struct De�nitions

We can also de�ne structs to use a generic type parameter in one or m
the <> syntax. Listing 10-6 shows how to de�ne a
coordinate values of any type.

Filename: src/main.rs

Listing 10-6: A Point<T> struct that holds x and

The syntax for using generics in struct de�nitions is similar to that use
de�nitions. First, we declare the name of the type parameter inside an
just after the name of the struct. Then we can use the generic type in
de�nition where we would otherwise specify concrete data types.

Note that because we’ve used only one generic type to de�ne
de�nition says that the Point<T> struct is generic over some type

error[E0369]: binary operation `>` cannot be applied to typ
 --> src/main.rs:5:12
 |
5 | if item > largest {
 | ^^^^^^^^^^^^^^
 |
 = note: an implementation of `std::cmp::PartialOrd` might
`T`

struct Point<T> {
 x: T,
 y: T,
}

fn main() {
let integer = Point { x: 5, y: 10 };
let float = Point { x: 1.0, y: 4.0 };

}

x and y are both that same type, whatever that type may be. If we cr
instance of a Point<T> that has values of di�erent types, as in Listing
won’t compile.

Filename: src/main.rs

Listing 10-7: The �elds x and y must be the same type because both
generic data type T .

In this example, when we assign the integer value 5 to
that the generic type T will be an integer for this instance of
we specify 4.0 for y , which we’ve de�ned to have the same type as
mismatch error like this:

To de�ne a Point struct where x and y are both generics but could
types, we can use multiple generic type parameters. For example, in L
can change the de�nition of Point to be generic over types
type T and y is of type U .

Filename: src/main.rs

struct Point<T> {
 x: T,
 y: T,
}

fn main() {
let wont_work = Point { x: 5, y: 4.0 };

}

error[E0308]: mismatched types
 --> src/main.rs:7:38
 |
7 | let wont_work = Point { x: 5, y: 4.0 };
 | ^^^ expected integ
found
floating-point variable
 |
 = note: expected type `{integer}`
 found type `{float}`

Listing 10-8: A Point<T, U> generic over two types so that
di�erent types

Now all the instances of Point shown are allowed! You can use as ma
parameters in a de�nition as you want, but using more than a few ma
hard to read. When you need lots of generic types in your code, it cou
your code needs restructuring into smaller pieces.

In Enum De�nitions

As we did with structs, we can de�ne enums to hold generic data type
variants. Let’s take another look at the Option<T>
provides, which we used in Chapter 6:

This de�nition should now make more sense to you. As you can see,
enum that is generic over type T and has two variants:
of type T , and a None variant that doesn’t hold any value. By using th
enum, we can express the abstract concept of having an optional valu
Option<T> is generic, we can use this abstraction no matter what the

optional value is.

Enums can use multiple generic types as well. The de�nition of the
we used in Chapter 9 is one example:

struct Point<T, U> {
 x: T,
 y: U,
}

fn main() {
let both_integer = Point { x: 5, y: 10
let both_float = Point { x: 1.0, y: 4.0
let integer_and_float = Point { x: 5, y:

}

enum Option<T> {
Some(T),
None,

}

The Result enum is generic over two types, T and
which holds a value of type T , and Err , which holds a value of type
de�nition makes it convenient to use the Result
operation that might succeed (return a value of some type
of some type E). In fact, this is what we used to open a �le in Listing 9
was �lled in with the type std::fs::File when the �le was opened s
E was �lled in with the type std::io::Error when there were proble

�le.

When you recognize situations in your code with multiple struct or en
that di�er only in the types of the values they hold, you can avoid dup
generic types instead.

In Method De�nitions

We can implement methods on structs and enums (as we did in Chap
generic types in their de�nitions, too. Listing 10-9 shows the
de�ned in Listing 10-6 with a method named x implemented on it.

Filename: src/main.rs

Listing 10-9: Implementing a method named x on the
return a reference to the x �eld of type T

enum Result<T, E> {
Ok(T),
Err(E),

}

struct Point<T> {
 x: T,
 y: T,
}

impl<T> Point<T> {
fn x(&self) -> &T {

 &self.x
 }
}

fn main() {
let p = Point { x: 5, y: 10 };

println!("p.x = {}", p.x());
}

Here, we’ve de�ned a method named x on Point<T>
data in the �eld x .

Note that we have to declare T just after impl so we can use it to spe
implementing methods on the type Point<T> . By declaring
impl , Rust can identify that the type in the angle brackets in

rather than a concrete type.

We could, for example, implement methods only on
than on Point<T> instances with any generic type. In Listing 10-10 we
concrete type f32 , meaning we don’t declare any types after

Listing 10-10: An impl block that only applies to a struct with a particu
type for the generic type parameter T

This code means the type Point<f32> will have a method named
distance_from_origin and other instances of

will not have this method de�ned. The method measures how far our
the point at coordinates (0.0, 0.0) and uses mathematical operations t
only for �oating point types.

Generic type parameters in a struct de�nition aren’t always the same
use in that struct’s method signatures. For example, Listing 10-11 de�
mixup on the Point<T, U> struct from Listing 10-8. The method take
Point as a parameter, which might have di�erent types than the

calling mixup on. The method creates a new Point
the self Point (of type T) and the y value from the passed-in

Filename: src/main.rs

impl Point<f32> {
fn distance_from_origin(&self) -> f32 {

 (self.x.powi(2) + self.y.powi(2)).sqrt()
 }
}

Listing 10-11: A method that uses di�erent generic types than its struc

In main , we’ve de�ned a Point that has an i32
y (with value 10.4). The p2 variable is a Point

(with value "Hello") and a char for y (with value
argument p2 gives us p3 , which will have an i32
The p3 variable will have a char for y , because
macro call will print p3.x = 5, p3.y = c .

The purpose of this example is to demonstrate a situation in which so
parameters are declared with impl and some are declared with the m
de�nition. Here, the generic parameters T and
they go with the struct de�nition. The generic parameters
fn mixup , because they’re only relevant to the method.

Performance of Code Using Generics

You might be wondering whether there is a runtime cost when you’re
type parameters. The good news is that Rust implements generics in s
your code doesn’t run any slower using generic types than it would wi
types.

Rust accomplishes this by performing monomorphization of the code

struct Point<T, U> {
 x: T,
 y: U,
}

impl<T, U> Point<T, U> {
fn mixup<V, W>(self, other: Point<V, W>) -> Point<T, W>

 Point {
 x: self.x,
 y: other.y,
 }
 }
}

fn main() {
let p1 = Point { x: 5, y: 10.4 };
let p2 = Point { x: "Hello", y: 'c'};

let p3 = p1.mixup(p2);

println!("p3.x = {}, p3.y = {}", p3.x, p3.y);
}

generics at compile time. Monomorphization is the process of turning g
into speci�c code by �lling in the concrete types that are used when co

In this process, the compiler does the opposite of the steps we used to
generic function in Listing 10-5: the compiler looks at all the places wh
code is called and generates code for the concrete types the generic c
with.

Let’s look at how this works with an example that uses the standard lib
Option<T> enum:

When Rust compiles this code, it performs monomorphization. During
the compiler reads the values that have been used in
identi�es two kinds of Option<T> : one is i32 and the other is
expands the generic de�nition of Option<T> into
thereby replacing the generic de�nition with the speci�c ones.

The monomorphized version of the code looks like the following. The
Option<T> is replaced with the speci�c de�nitions created by the com

Filename: src/main.rs

Because Rust compiles generic code into code that speci�es the type i
we pay no runtime cost for using generics. When the code runs, it per
would if we had duplicated each de�nition by hand. The process of
monomorphization makes Rust’s generics extremely e�cient at runtim

let integer = Some(5);
let float = Some(5.0);

enum Option_i32 {
Some(i32),
None,

}

enum Option_f64 {
Some(f64),
None,

}

fn main() {
let integer = Option_i32::Some(5);
let float = Option_f64::Some(5.0);

}

Traits: De�ning Shared Behavior

A trait tells the Rust compiler about functionality a particular type has
with other types. We can use traits to de�ne shared behavior in an ab
can use trait bounds to specify that a generic can be any type that has
behavior.

Note: Traits are similar to a feature often called
although with some di�erences.

De�ning a Trait

A type’s behavior consists of the methods we can call on that type. Di�
share the same behavior if we can call the same methods on all of tho
de�nitions are a way to group method signatures together to de�ne a
behaviors necessary to accomplish some purpose.

For example, let’s say we have multiple structs that hold various kinds
of text: a NewsArticle struct that holds a news story �led in a particu
a Tweet that can have at most 280 characters along with metadata th
whether it was a new tweet, a retweet, or a reply to another tweet.

We want to make a media aggregator library that can display summar
might be stored in a NewsArticle or Tweet instance. To do this, we n
from each type, and we need to request that summary by calling a
method on an instance. Listing 10-12 shows the de�nition of a
expresses this behavior.

Filename: src/lib.rs

Listing 10-12: A Summary trait that consists of the behavior provided b
method

Here, we declare a trait using the trait keyword and then the trait’s
Summary in this case. Inside the curly brackets, we declare the method

describe the behaviors of the types that implement this trait, which in
fn summarize(&self) -> String .

pub trait Summary {
fn summarize(&self) -> String;

}

After the method signature, instead of providing an implementation w
brackets, we use a semicolon. Each type implementing this trait must
custom behavior for the body of the method. The compiler will enforc
that has the Summary trait will have the method
signature exactly.

A trait can have multiple methods in its body: the method signatures a
per line and each line ends in a semicolon.

Implementing a Trait on a Type

Now that we’ve de�ned the desired behavior using the
implement it on the types in our media aggregator. Listing 10-13 show
implementation of the Summary trait on the NewsArticle
headline, the author, and the location to create the return value of
the Tweet struct, we de�ne summarize as the username followed by
of the tweet, assuming that tweet content is already limited to 280 cha

Filename: src/lib.rs

pub struct NewsArticle {
pub headline: String,
pub location: String,
pub author: String,
pub content: String,

}

impl Summary for NewsArticle {
fn summarize(&self) -> String {

format!("{}, by {} ({})", self.headline,
self.location)
 }
}

pub struct Tweet {
pub username: String,
pub content: String,
pub reply: bool,
pub retweet: bool,

}

impl Summary for Tweet {
fn summarize(&self) -> String {

format!("{}: {}", self.username, self
 }
}

Listing 10-13: Implementing the Summary trait on the

Implementing a trait on a type is similar to implementing regular meth
di�erence is that after impl , we put the trait name that we want to im
use the for keyword, and then specify the name of the type we want
the trait for. Within the impl block, we put the method signatures tha
de�nition has de�ned. Instead of adding a semicolon after each signa
curly brackets and �ll in the method body with the speci�c behavior th
methods of the trait to have for the particular type.

After implementing the trait, we can call the methods on instances of
and Tweet in the same way we call regular methods, like this:

This code prints
1 new tweet: horse_ebooks: of course, as you probably alrea

Note that because we de�ned the Summary trait and the
types in the same lib.rs in Listing 10-13, they’re all in the same scope. L
lib.rs is for a crate we’ve called aggregator and someone else wants t
crate’s functionality to implement the Summary trait on a struct de�ne
library’s scope. They would need to import the trait into their scope �r
do so by specifying use aggregator::Summary;
implement Summary for their type. The Summary
trait for another crate to implement it, which it is because we put the
before trait in Listing 10-12.

One restriction to note with trait implementations is that we can imple
a type only if either the trait or the type is local to our crate. For exam
implement standard library traits like Display on a custom type like
our aggregator crate functionality, because the type
aggregator crate. We can also implement Summary

crate, because the trait Summary is local to our

But we can’t implement external traits on external types. For example
implement the Display trait on Vec<T> within our

let tweet = Tweet {
 username: String::from("horse_ebooks"),
 content: String::from("of course, as you probably alrea
people"),
 reply: false,
 retweet: false,
};

println!("1 new tweet: {}", tweet.summarize());

Display and Vec<T> are de�ned in the standard library and aren’t lo
aggregator crate. This restriction is part of a property of programs ca

and more speci�cally the orphan rule, so named because the parent ty
present. This rule ensures that other people’s code can’t break your co
versa. Without the rule, two crates could implement the same trait for
and Rust wouldn’t know which implementation to use.

Default Implementations

Sometimes it’s useful to have default behavior for some or all of the m
trait instead of requiring implementations for all methods on every ty
implement the trait on a particular type, we can keep or override each
default behavior.

Listing 10-14 shows how to specify a default string for the
Summary trait instead of only de�ning the method signature, as we did

10-12.

Filename: src/lib.rs

Listing 10-14: De�nition of a Summary trait with a default implementat
summarize method

To use a default implementation to summarize instances of
de�ning a custom implementation, we specify an empty
impl Summary for NewsArticle {} .

Even though we’re no longer de�ning the summarize
directly, we’ve provided a default implementation and speci�ed that
implements the Summary trait. As a result, we can still call the
an instance of NewsArticle , like this:

pub trait Summary {
fn summarize(&self) -> String {

String::from("(Read more...)")
 }
}

This code prints New article available! (Read more...)

Creating a default implementation for summarize
anything about the implementation of Summary on
reason is that the syntax for overriding a default implementation is th
syntax for implementing a trait method that doesn’t have a default im

Default implementations can call other methods in the same trait, eve
methods don’t have a default implementation. In this way, a trait can p
useful functionality and only require implementors to specify a small p
example, we could de�ne the Summary trait to have a
whose implementation is required, and then de�ne a
default implementation that calls the summarize_author

To use this version of Summary , we only need to de�ne
implement the trait on a type:

After we de�ne summarize_author , we can call
struct, and the default implementation of summarize
summarize_author that we’ve provided. Because we’ve implemented
summarize_author , the Summary trait has given us the behavior of the

method without requiring us to write any more code.

let article = NewsArticle {
 headline: String::from("Penguins win the Stanley Cup Ch
 location: String::from("Pittsburgh, PA, USA"
 author: String::from("Iceburgh"),
 content: String::from("The Pittsburgh Penguins once aga
 hockey team in the NHL."),
};

println!("New article available! {}", article.summarize());

pub trait Summary {
fn summarize_author(&self) -> String;

fn summarize(&self) -> String {
format!("(Read more from {}...)",

 }
}

impl Summary for Tweet {
fn summarize_author(&self) -> String {

format!("@{}", self.username)
 }
}

This code prints 1 new tweet: (Read more from @horse_ebooks..

Note that it isn’t possible to call the default implementation from an o
implementation of that same method.

Traits as arguments

Now that you know how to de�ne traits and implement those traits on
explore how to use traits to accept arguments of many di�erent types

For example, in Listing 10-13, we implemented the
NewsArticle and Tweet . We can de�ne a function

method on its parameter item , which is of some type that implemen
trait. To do this, we can use the ' impl Trait ' syntax, like this:

In the body of notify , we can call any methods on
Summary trait, like summarize .

Trait Bounds

The impl Trait syntax works for short examples, but is syntax sugar
form. This is called a 'trait bound', and it looks like this:

This is equivalent to the example above, but is a bit more verbose. We
bounds with the declaration of the generic type parameter, after a col
angle brackets. Because of the trait bound on T

let tweet = Tweet {
 username: String::from("horse_ebooks"),
 content: String::from("of course, as you probably alrea
people"),
 reply: false,
 retweet: false,
};

println!("1 new tweet: {}", tweet.summarize());

pub fn notify(item: impl Summary) {
println!("Breaking news! {}", item.summarize());

}

pub fn notify<T: Summary>(item: T) {
println!("Breaking news! {}", item.summarize());

}

instance of NewsArticle or Tweet . Code that calls the function with a
like a String or an i32 , won’t compile, because those types don’t im
Summary .

When should you use this form over impl Trait
shorter examples, trait bounds are nice for more complex ones. For e
wanted to take two things that implement Summary

The version with the bound is a bit easier. In general, you should use w
makes your code the most understandable.

Multiple trait bounds with +

We can specify multiple trait bounds on a generic type using the
example, to use display formatting on the type T
summarize method, we can use T: Summary + Display

that implements Summary and Display . This can grow quite complex

where clauses for clearer code

However, there are downsides to using too many trait bounds. Each g
own trait bounds, so functions with multiple generic type parameters
trait bound information between a function’s name and its parameter
function signature hard to read. For this reason, Rust has alternate sy
specifying trait bounds inside a where clause after the function signat
of writing this:

we can use a where clause, like this:

This function’s signature is less cluttered in that the function name, pa
and return type are close together, similar to a function without lots o

pub fn notify(item1: impl Summary, item2:
pub fn notify<T: Summary>(item1: T, item2: T) {

fn some_function<T: Display + Clone, U: Clone
{

fn some_function<T, U>(t: T, u: U) -> i32
where T: Display + Clone,

 U: Clone + Debug
{

Returning Traits

We can use the impl Trait syntax in return position as well, to retur
that implements a trait:

This signature says, "I'm going to return something that implements th
trait, but I'm not going to tell you the exact type." In our case, we're re
, but the caller doesn't know that.

Why is this useful? In chapter 13, we're going to learn about two featu
heavily on traits: closures, and iterators. These features create types t
compiler knows, or types that are very, very long.
"this returns an Iterator " without needing to write out a really long

This only works if you have a single type that you're returning, howeve
this would not work:

fn returns_summarizable() -> impl Summary {
 Tweet {
 username: String::from("horse_ebooks"
 content: String::from("of course, as you probably a
people"),
 reply: false,
 retweet: false,
 }
}

fn returns_summarizable(switch: bool) -> impl
if switch {

 NewsArticle {
 headline: String::from("Penguins win the Stanle
Championship!"),
 location: String::from("Pittsburgh, PA, USA"
 author: String::from("Iceburgh"
 content: String::from("The Pittsburgh Penguins
the best
 hockey team in the NHL."),
 }
 } else {
 Tweet {
 username: String::from("horse_ebooks"
 content: String::from("of course, as you probab
know, people"),
 reply: false,
 retweet: false,
 }
 }
}

Here, we try to return either a NewsArticle or a
restrictions around how impl Trait works. To write this code, you'll h
until Chapter 17, "trait objects".

Fixing the largest Function with Trait Bounds

Now that you know how to specify the behavior you want to use using
type parameter’s bounds, let’s return to Listing 10-5 to �x the de�nitio
largest function that uses a generic type parameter! Last time we tr

code, we received this error:

In the body of largest we wanted to compare two values of type
greater than (>) operator. Because that operator is de�ned as a defau
the standard library trait std::cmp::PartialOrd
the trait bounds for T so the largest function can work on slices of
can compare. We don’t need to bring PartialOrd
prelude. Change the signature of largest to look like this:

This time when we compile the code, we get a di�erent set of errors:

error[E0369]: binary operation `>` cannot be applied to typ
 --> src/main.rs:5:12
 |
5 | if item > largest {
 | ^^^^^^^^^^^^^^
 |
 = note: an implementation of `std::cmp::PartialOrd` might
`T`

fn largest<T: PartialOrd>(list: &[T]) -> T {

The key line in this error is cannot move out of type [T], a non-
our non-generic versions of the largest function, we were only trying
largest i32 or char . As discussed in the “Stack-Only Data: Copy” sect
4, types like i32 and char that have a known size can be stored on t
implement the Copy trait. But when we made the
became possible for the list parameter to have types in it that don’t
Copy trait. Consequently, we wouldn’t be able to move the value out o

into the largest variable, resulting in this error.

To call this code with only those types that implement the
Copy to the trait bounds of T ! Listing 10-15 shows the complete code
largest function that will compile as long as the types of the values i

we pass into the function implement the PartialOrd
char do.

Filename: src/main.rs

error[E0508]: cannot move out of type `[T]`, a non-copy sli
 --> src/main.rs:2:23
 |
2 | let mut largest = list[0];
 | ^^^^^^^
 | |
 | cannot move out of here
 | help: consider using a reference
`&list[0]`

error[E0507]: cannot move out of borrowed content
 --> src/main.rs:4:9
 |
4 | for &item in list.iter() {
 | ^----
 | ||
 | |hint: to prevent move, use `ref item` or `ref
 | cannot move out of borrowed content

Listing 10-15: A working de�nition of the largest
type that implements the PartialOrd and Copy

If we don’t want to restrict the largest function to the types that imp
Copy trait, we could specify that T has the trait bound

we could clone each value in the slice when we want the
ownership. Using the clone function means we’re potentially making
allocations in the case of types that own heap data like
can be slow if we’re working with large amounts of data.

Another way we could implement largest is for the function to retur
a T value in the slice. If we change the return type to
changing the body of the function to return a reference, we wouldn’t n
or Copy trait bounds and we could avoid heap allocations. Try implem
alternate solutions on your own!

Using Trait Bounds to Conditionally Implement Methods

By using a trait bound with an impl block that uses generic type para
implement methods conditionally for types that implement the speci�
example, the type Pair<T> in Listing 10-16 always implements the
Pair<T> only implements the cmp_display method if its inner type

fn largest<T: PartialOrd + Copy>(list: &[T]) -> T {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

 largest = item;
 }
 }

 largest
}

fn main() {
let number_list = vec![34, 50, 25, 100

let result = largest(&number_list);
println!("The largest number is {}", result);

let char_list = vec!['y', 'm', 'a', 'q'

let result = largest(&char_list);
println!("The largest char is {}", result);

}

the PartialOrd trait that enables comparison and
printing.

Listing 10-16: Conditionally implement methods on a generic type dep
bounds

We can also conditionally implement a trait for any type that impleme
trait. Implementations of a trait on any type that satis�es the trait bou
blanket implementations and are extensively used in the Rust standard
example, the standard library implements the ToString
implements the Display trait. The impl block in the standard library
this code:

Because the standard library has this blanket implementation, we can
to_string method de�ned by the ToString trait on any type that im
Display trait. For example, we can turn integers into their correspon

values like this because integers implement Display

use std::fmt::Display;

struct Pair<T> {
 x: T,
 y: T,
}

impl<T> Pair<T> {
fn new(x: T, y: T) -> Self {

Self {
 x,
 y,
 }
 }
}

impl<T: Display + PartialOrd> Pair<T> {
fn cmp_display(&self) {

if self.x >= self.y {
println!("The largest member is x = {}"

 } else {
println!("The largest member is y = {}"

 }
 }
}

impl<T: Display> ToString for T {
// --snip--

}

Blanket implementations appear in the documentation for the trait in
“Implementors” section.

Traits and trait bounds let us write code that uses generic type param
duplication but also specify to the compiler that we want the generic t
particular behavior. The compiler can then use the trait bound inform
that all the concrete types used with our code provide the correct beh
dynamically typed languages, we would get an error at runtime if we c
on a type that the type didn’t implement. But Rust moves these errors
so we’re forced to �x the problems before our code is even able to run
we don’t have to write code that checks for behavior at runtime becau
already checked at compile time. Doing so improves performance with
give up the �exibility of generics.

Another kind of generic that we’ve already been using is called
ensuring that a type has the behavior we want, lifetimes ensure that r
valid as long as we need them to be. Let’s look at how lifetimes do tha

Validating References with Lifetimes

One detail we didn’t discuss in the “References and Borrowing” section
that every reference in Rust has a lifetime, which is the scope for which
is valid. Most of the time, lifetimes are implicit and inferred, just like m
types are inferred. We must annotate types when multiple types are p
similar way, we must annotate lifetimes when the lifetimes of referenc
related in a few di�erent ways. Rust requires us to annotate the relati
generic lifetime parameters to ensure the actual references used at ru
de�nitely be valid.

The concept of lifetimes is somewhat di�erent from tools in other pro
languages, arguably making lifetimes Rust’s most distinctive feature. A
won’t cover lifetimes in their entirety in this chapter, we’ll discuss com
might encounter lifetime syntax so you can become familiar with the c
the “Advanced Lifetimes” section in Chapter 19 for more detailed infor

Preventing Dangling References with Lifetimes

The main aim of lifetimes is to prevent dangling references, which cau

let s = 3.to_string();

reference data other than the data it’s intended to reference. Conside
Listing 10-17, which has an outer scope and an inner scope.

Listing 10-17: An attempt to use a reference whose value has gone ou

Note: The examples in Listings 10-17, 10-18, and 10-24 declare varia
giving them an initial value, so the variable name exists in the outer
�rst glance, this might appear to be in con�ict with Rust’s having no
However, if we try to use a variable before giving it a value, we’ll get
time error, which shows that Rust indeed does not allow null values

The outer scope declares a variable named r with no initial value, an
scope declares a variable named x with the initial value of 5. Inside th
we attempt to set the value of r as a reference to
we attempt to print the value in r . This code won’t compile because t
referring to has gone out of scope before we try to use it. Here is the e

The variable x doesn’t “live long enough.” The reason is that
when the inner scope ends on line 7. But r is still valid for the outer s
its scope is larger, we say that it “lives longer.” If Rust allowed this code
would be referencing memory that was deallocated when
anything we tried to do with r wouldn’t work correctly. So how does R
that this code is invalid? It uses a borrow checker.

{
let r;

 {
let x = 5;

 r = &x;
 }

println!("r: {}", r);
}

error[E0597]: `x` does not live long enough
 --> src/main.rs:7:5
 |
6 | r = &x;
 | - borrow occurs here
7 | }
 | ^ `x` dropped here while still borrowed
...
10 | }
 | - borrowed value needs to live until here

The Borrow Checker

The Rust compiler has a borrow checker that compares scopes to dete
all borrows are valid. Listing 10-18 shows the same code as Listing 10-
annotations showing the lifetimes of the variables.

Listing 10-18: Annotations of the lifetimes of r and
respectively

Here, we’ve annotated the lifetime of r with 'a
you can see, the inner 'b block is much smaller than the outer
compile time, Rust compares the size of the two lifetimes and sees tha
lifetime of 'a but that it refers to memory with a lifetime of
rejected because 'b is shorter than 'a : the subject of the reference
long as the reference.

Listing 10-19 �xes the code so it doesn’t have a dangling reference and
without any errors.

Listing 10-19: A valid reference because the data has a longer lifetime
reference

Here, x has the lifetime 'b , which in this case is larger than
reference x because Rust knows that the reference in
is valid.

{
let r; // ---------+-- 'a

// |
 { // |

let x = 5; // -+-- 'b |
 r = &x; // | |
 } // -+ |

// |
println!("r: {}", r); // |

} // ---------+

{
let x = 5; // ----------+-- 'b

// |
let r = &x; // --+-- 'a |

// | |
println!("r: {}", r); // | |

// --+ |
} // ----------+

Now that you know where the lifetimes of references are and how Ru
lifetimes to ensure references will always be valid, let’s explore generi
parameters and return values in the context of functions.

Generic Lifetimes in Functions

Let’s write a function that returns the longer of two string slices. This f
two string slices and return a string slice. After we’ve implemented the
function, the code in Listing 10-20 should print The longest strin

Filename: src/main.rs

Listing 10-20: A main function that calls the longest
two string slices

Note that we want the function to take string slices, which are referen
don’t want the longest function to take ownership of its parameters.
allow the function to accept slices of a String (the type stored in the
string1) as well as string literals (which is what variable

Refer to the “String Slices as Parameters” section in Chapter 4 for mor
about why the parameters we use in Listing 10-20 are the ones we wa

If we try to implement the longest function as shown in Listing 10-21
compile.

Filename: src/main.rs

Listing 10-21: An implementation of the longest
two string slices but does not yet compile

fn main() {
let string1 = String::from("abcd");
let string2 = "xyz";

let result = longest(string1.as_str(), string2);
println!("The longest string is {}", result);

}

fn longest(x: &str, y: &str) -> &str {
if x.len() > y.len() {

 x
 } else {
 y
 }
}

Instead, we get the following error that talks about lifetimes:

The help text reveals that the return type needs a generic lifetime par
because Rust can’t tell whether the reference being returned refers to
Actually, we don’t know either, because the if block in the body of th
returns a reference to x and the else block returns a reference to

When we’re de�ning this function, we don’t know the concrete values
passed into this function, so we don’t know whether the
will execute. We also don’t know the concrete lifetimes of the referenc
passed in, so we can’t look at the scopes as we did in Listings 10-18 an
determine whether the reference we return will always be valid. The b
can’t determine this either, because it doesn’t know how the lifetimes
relate to the lifetime of the return value. To �x this error, we’ll add gen
parameters that de�ne the relationship between the references so th
checker can perform its analysis.

Lifetime Annotation Syntax

Lifetime annotations don’t change how long any of the references live
functions can accept any type when the signature speci�es a generic t
functions can accept references with any lifetime by specifying a gene
parameter. Lifetime annotations describe the relationships of the lifet
references to each other without a�ecting the lifetimes.

Lifetime annotations have a slightly unusual syntax: the names of lifet
must start with an apostrophe (') and are usually all lowercase and v
generic types. Most people use the name 'a . We place lifetime param
annotations after the & of a reference, using a space to separate the
the reference’s type.

Here are some examples: a reference to an i32
reference to an i32 that has a lifetime parameter named
reference to an i32 that also has the lifetime 'a

error[E0106]: missing lifetime specifier
 --> src/main.rs:1:33
 |
1 | fn longest(x: &str, y: &str) -> &str {
 | ^ expected lifetime par
 |
 = help: this function's return type contains a borrowed v
signature does not say whether it is borrowed from `x` or `

One lifetime annotation by itself doesn’t have much meaning, because
annotations are meant to tell Rust how generic lifetime parameters of
references relate to each other. For example, let’s say we have a funct
parameter first that is a reference to an i32 with lifetime
has another parameter named second that is another reference to an
has the lifetime 'a . The lifetime annotations indicate that the referen
second must both live as long as that generic lifetime.

Lifetime Annotations in Function Signatures

Now let’s examine lifetime annotations in the context of the
with generic type parameters, we need to declare generic lifetime par
angle brackets between the function name and the parameter list. The
want to express in this signature is that all the references in the param
return value must have the same lifetime. We’ll name the lifetime
to each reference, as shown in Listing 10-22.

Filename: src/main.rs

Listing 10-22: The longest function de�nition specifying that all the r
signature must have the same lifetime 'a

This code should compile and produce the result we want when we us
main function in Listing 10-20.

The function signature now tells Rust that for some lifetime
two parameters, both of which are string slices that live at least as lon
. The function signature also tells Rust that the string slice returned fro
will live at least as long as lifetime 'a . These constraints are what we
enforce. Remember, when we specify the lifetime parameters in this f
signature, we’re not changing the lifetimes of any values passed in or

&i32 // a reference
&'a i32 // a reference with an explicit lifetime
&'a mut i32 // a mutable reference with an explicit lifetime

fn longest<'a>(x: &'a str, y: &'a str) -> &
if x.len() > y.len() {

 x
 } else {
 y
 }
}

Rather, we’re specifying that the borrow checker should reject any val
adhere to these constraints. Note that the longest
exactly how long x and y will live, only that some scope can be subs
that will satisfy this signature.

When annotating lifetimes in functions, the annotations go in the func
not in the function body. Rust can analyze the code within the function
help. However, when a function has references to or from code outsid
it becomes almost impossible for Rust to �gure out the lifetimes of th
return values on its own. The lifetimes might be di�erent each time th
called. This is why we need to annotate the lifetimes manually.

When we pass concrete references to longest , the concrete lifetime
substituted for 'a is the part of the scope of x that overlaps with the
other words, the generic lifetime 'a will get the concrete lifetime that
smaller of the lifetimes of x and y . Because we’ve annotated the ret
with the same lifetime parameter 'a , the returned reference will also
length of the smaller of the lifetimes of x and y

Let’s look at how the lifetime annotations restrict the
references that have di�erent concrete lifetimes. Listing 10-23 is a stra
example.

Filename: src/main.rs

Listing 10-23: Using the longest function with references to
di�erent concrete lifetimes

In this example, string1 is valid until the end of the outer scope,
until the end of the inner scope, and result references something th
the end of the inner scope. Run this code, and you’ll see that the borro
approves of this code; it will compile and print
The longest string is long string is long .

Next, let’s try an example that shows that the lifetime of the reference
must be the smaller lifetime of the two arguments. We’ll move the dec

fn main() {
let string1 = String::from("long string is long"

 {
let string2 = String::from("xyz");
let result = longest(string1.as_str(), string2.as_s
println!("The longest string is {}"

 }
}

result variable outside the inner scope but leave the assignment of
result variable inside the scope with string2

uses result outside the inner scope, after the inner scope has ended
Listing 10-24 will not compile.

Filename: src/main.rs

Listing 10-24: Attempting to use result after string2

When we try to compile this code, we’ll get this error:

The error shows that for result to be valid for the
would need to be valid until the end of the outer scope. Rust knows th
annotated the lifetimes of the function parameters and return values
lifetime parameter 'a .

As humans, we can look at this code and see that
and therefore result will contain a reference to
gone out of scope yet, a reference to string1 will still be valid for the
statement. However, the compiler can’t see that the reference is valid
We’ve told Rust that the lifetime of the reference returned by the
the same as the smaller of the lifetimes of the references passed in. T
borrow checker disallows the code in Listing 10-24 as possibly having
reference.

Try designing more experiments that vary the values and lifetimes of t

fn main() {
let string1 = String::from("long string is long"
let result;

 {
let string2 = String::from("xyz");

 result = longest(string1.as_str(), string2.as_str()
 }

println!("The longest string is {}", result);
}

error[E0597]: `string2` does not live long enough
 --> src/main.rs:15:5
 |
14 | result = longest(string1.as_str(), string2.as_
 | ------- bor
15 | }
 | ^ `string2` dropped here while still borrowed
16 | println!("The longest string is {}", result);
17 | }
 | - borrowed value needs to live until here

passed in to the longest function and how the returned reference is
hypotheses about whether or not your experiments will pass the borr
before you compile; then check to see if you’re right!

Thinking in Terms of Lifetimes

The way in which you need to specify lifetime parameters depends on
function is doing. For example, if we changed the implementation of t
function to always return the �rst parameter rather than the longest s
wouldn’t need to specify a lifetime on the y parameter. The following
compile:

Filename: src/main.rs

In this example, we’ve speci�ed a lifetime parameter
return type, but not for the parameter y , because the lifetime of
any relationship with the lifetime of x or the return value.

When returning a reference from a function, the lifetime parameter fo
type needs to match the lifetime parameter for one of the parameters
reference returned does not refer to one of the parameters, it must re
created within this function, which would be a dangling reference bec
will go out of scope at the end of the function. Consider this attempte
implementation of the longest function that won’t compile:

Filename: src/main.rs

Here, even though we’ve speci�ed a lifetime parameter
implementation will fail to compile because the return value lifetime is
the lifetime of the parameters at all. Here is the error message we get

fn longest<'a>(x: &'a str, y: &str) -> &'a
 x
}

fn longest<'a>(x: &str, y: &str) -> &'a str
let result = String::from("really long string"

 result.as_str()
}

The problem is that result goes out of scope and gets cleaned up at
longest function. We’re also trying to return a reference to

function. There is no way we can specify lifetime parameters that wou
dangling reference, and Rust won’t let us create a dangling reference.
best �x would be to return an owned data type rather than a referenc
function is then responsible for cleaning up the value.

Ultimately, lifetime syntax is about connecting the lifetimes of various
and return values of functions. Once they’re connected, Rust has enou
to allow memory-safe operations and disallow operations that would
pointers or otherwise violate memory safety.

Lifetime Annotations in Struct De�nitions

So far, we’ve only de�ned structs to hold owned types. It’s possible for
references, but in that case we would need to add a lifetime annotatio
reference in the struct’s de�nition. Listing 10-25 has a struct named
ImportantExcerpt that holds a string slice.

Filename: src/main.rs

error[E0597]: `result` does not live long enough
 --> src/main.rs:3:5
 |
3 | result.as_str()
 | ^^^^^^ does not live long enough
4 | }
 | - borrowed value only lives until here
 |
note: borrowed value must be valid for the lifetime 'a as d
function body at 1:1...
 --> src/main.rs:1:1
 |
1 | / fn longest<'a>(x: &str, y: &str) -> &'a str {
2 | | let result = String::from("really long string");
3 | | result.as_str()
4 | | }
 | |_^

Listing 10-25: A struct that holds a reference, so its de�nition needs a
annotation

This struct has one �eld, part , that holds a string slice, which is a refe
generic data types, we declare the name of the generic lifetime param
angle brackets after the name of the struct so we can use the lifetime
the body of the struct de�nition. This annotation means an instance o
ImportantExcerpt can’t outlive the reference it holds in its

The main function here creates an instance of the
holds a reference to the �rst sentence of the String
The data in novel exists before the ImportantExcerpt
addition, novel doesn’t go out of scope until after the
scope, so the reference in the ImportantExcerpt

Lifetime Elision

You’ve learned that every reference has a lifetime and that you need t
lifetime parameters for functions or structs that use references. Howe
4 we had a function in Listing 4-9, which is shown again in Listing 10-2
without lifetime annotations.

Filename: src/lib.rs

struct ImportantExcerpt<'a> {
 part: &'a str,
}

fn main() {
let novel = String::from("Call me Ishmael. Some years a
let first_sentence = novel.split('.')

 .next()
 .expect("Could not find a '.'");

let i = ImportantExcerpt { part: first_sentence };
}

Listing 10-26: A function we de�ned in Listing 4-9 that compiled witho
annotations, even though the parameter and return type are referenc

The reason this function compiles without lifetime annotations is histo
versions (pre-1.0) of Rust, this code wouldn’t have compiled because e
needed an explicit lifetime. At that time, the function signature would
written like this:

After writing a lot of Rust code, the Rust team found that Rust program
entering the same lifetime annotations over and over in particular situ
situations were predictable and followed a few deterministic patterns
programmed these patterns into the compiler’s code so the borrow ch
infer the lifetimes in these situations and wouldn’t need explicit annot

This piece of Rust history is relevant because it’s possible that more de
patterns will emerge and be added to the compiler. In the future, even
annotations might be required.

The patterns programmed into Rust’s analysis of references are called
elision rules. These aren’t rules for programmers to follow; they’re a se
cases that the compiler will consider, and if your code �ts these cases
to write the lifetimes explicitly.

The elision rules don’t provide full inference. If Rust deterministically a
but there is still ambiguity as to what lifetimes the references have, th
won’t guess what the lifetime of the remaining references should be. I
instead of guessing, the compiler will give you an error that you can re
the lifetime annotations that specify how the references relate to each

Lifetimes on function or method parameters are called
return values are called output lifetimes.

fn first_word(s: &str) -> &str {
let bytes = s.as_bytes();

for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {

return &s[0..i];
 }
 }

 &s[..]
}

fn first_word<'a>(s: &'a str) -> &'a str {

The compiler uses three rules to �gure out what lifetimes references h
aren’t explicit annotations. The �rst rule applies to input lifetimes, and
third rules apply to output lifetimes. If the compiler gets to the end of
and there are still references for which it can’t �gure out lifetimes, the
stop with an error.

The �rst rule is that each parameter that is a reference gets its own lif
parameter. In other words, a function with one parameter gets one lif
parameter: fn foo<'a>(x: &'a i32) ; a function with two parameters
separate lifetime parameters: fn foo<'a, 'b>(x: &'a i32, y: &'

The second rule is if there is exactly one input lifetime parameter, tha
assigned to all output lifetime parameters: fn foo<'a>(x: &'a i32

The third rule is if there are multiple input lifetime parameters, but on
&self or &mut self because this is a method, the lifetime of

output lifetime parameters. This third rule makes methods much nice
write because fewer symbols are necessary.

Let’s pretend we’re the compiler. We’ll apply these rules to �gure out w
lifetimes of the references in the signature of the
10-26 are. The signature starts without any lifetimes associated with t

Then the compiler applies the �rst rule, which speci�es that each para
own lifetime. We’ll call it 'a as usual, so now the signature is this:

The second rule applies because there is exactly one input lifetime. Th
speci�es that the lifetime of the one input parameter gets assigned to
lifetime, so the signature is now this:

Now all the references in this function signature have lifetimes, and th
continue its analysis without needing the programmer to annotate the
this function signature.

Let’s look at another example, this time using the
lifetime parameters when we started working with it in Listing 10-21:

fn first_word(s: &str) -> &str {

fn first_word<'a>(s: &'a str) -> &str {

fn first_word<'a>(s: &'a str) -> &'a str {

fn longest(x: &str, y: &str) -> &str {

Let’s apply the �rst rule: each parameter gets its own lifetime. This tim
parameters instead of one, so we have two lifetimes:

You can see that the second rule doesn’t apply because there is more
lifetime. The third rule doesn’t apply either, because
than a method, so none of the parameters are self
rules, we still haven’t �gured out what the return type’s lifetime is. Thi
an error trying to compile the code in Listing 10-21: the compiler work
lifetime elision rules but still couldn’t �gure out all the lifetimes of the
the signature.

Because the third rule really only applies in method signatures, we’ll lo
in that context next to see why the third rule means we don’t have to
lifetimes in method signatures very often.

Lifetime Annotations in Method De�nitions

When we implement methods on a struct with lifetimes, we use the sa
that of generic type parameters shown in Listing 10-11. Where we dec
lifetime parameters depends on whether they’re related to the struct
method parameters and return values.

Lifetime names for struct �elds always need to be declared after the
and then used after the struct’s name, because those lifetimes are par
type.

In method signatures inside the impl block, references might be tied
of references in the struct’s �elds, or they might be independent. In ad
lifetime elision rules often make it so that lifetime annotations aren’t n
method signatures. Let’s look at some examples using the struct nam
ImportantExcerpt that we de�ned in Listing 10-25.

First, we’ll use a method named level whose only parameter is a ref
and whose return value is an i32 , which is not a reference to anythin

fn longest<'a, 'b>(x: &'a str, y: &'b str) -> &

impl<'a> ImportantExcerpt<'a> {
fn level(&self) -> i32 {

3
 }
}

The lifetime parameter declaration after impl and use after the type
required, but we’re not required to annotate the lifetime of the refere
because of the �rst elision rule.

Here is an example where the third lifetime elision rule applies:

There are two input lifetimes, so Rust applies the �rst lifetime elision r
both &self and announcement their own lifetimes. Then, because on
parameters is &self , the return type gets the lifetime of
have been accounted for.

The Static Lifetime

One special lifetime we need to discuss is 'static
duration of the program. All string literals have the
annotate as follows:

The text of this string is stored directly in the binary of your program,
available. Therefore, the lifetime of all string literals is

You might see suggestions to use the 'static lifetime in error messa
specifying 'static as the lifetime for a reference, think about whethe
you have actually lives the entire lifetime of your program or not. You
whether you want it to live that long, even if it could. Most of the time
results from attempting to create a dangling reference or a mismatch
lifetimes. In such cases, the solution is �xing those problems, not spec
'static lifetime.

Generic Type Parameters, Trait Bounds, and
Lifetimes Together

impl<'a> ImportantExcerpt<'a> {
fn announce_and_return_part(&self, announcement: &

println!("Attention please: {}", announcement);
self.part

 }
}

let s: &'static str = "I have a static lifetime."

Let’s brie�y look at the syntax of specifying generic type parameters, t
lifetimes all in one function!

This is the longest function from Listing 10-22 that returns the longe
slices. But now it has an extra parameter named
can be �lled in by any type that implements the
where clause. This extra parameter will be printed before the function

lengths of the string slices, which is why the Display
Because lifetimes are a type of generic, the declarations of the lifetime
and the generic type parameter T go in the same list inside the angle
the function name.

Summary

We covered a lot in this chapter! Now that you know about generic typ
traits and trait bounds, and generic lifetime parameters, you’re ready
without repetition that works in many di�erent situations. Generic typ
let you apply the code to di�erent types. Traits and trait bounds ensur
though the types are generic, they’ll have the behavior the code needs
how to use lifetime annotations to ensure that this �exible code won’t
dangling references. And all of this analysis happens at compile time,
a�ect runtime performance!

Believe it or not, there is much more to learn on the topics we discuss
chapter: Chapter 17 discusses trait objects, which are another way to
Chapter 19 covers more complex scenarios involving lifetime annotati
some advanced type system features. But next, you’ll learn how to wri
so you can make sure your code is working the way it should.

use std::fmt::Display;

fn longest_with_an_announcement<'a, T>(x: &
&'a str

where T: Display
{

println!("Announcement! {}", ann);
if x.len() > y.len() {

 x
 } else {
 y
 }
}

Writing Automated Tests
In his 1972 essay “The Humble Programmer,” Edsger W. Dijkstra said t
testing can be a very e�ective way to show the presence of bugs, but i
inadequate for showing their absence.” That doesn’t mean we shouldn
much as we can!

Correctness in our programs is the extent to which our code does wha
do. Rust is designed with a high degree of concern about the correctn
programs, but correctness is complex and not easy to prove. Rust’s ty
shoulders a huge part of this burden, but the type system cannot catc
incorrectness. As such, Rust includes support for writing automated so
within the language.

As an example, say we write a function called add_two
number is passed to it. This function’s signature accepts an integer as
and returns an integer as a result. When we implement and compile t
Rust does all the type checking and borrow checking that you’ve learn
ensure that, for instance, we aren’t passing a String
this function. But Rust can’t check that this function will do precisely w
which is return the parameter plus 2 rather than, say, the parameter p
parameter minus 50! That’s where tests come in.

We can write tests that assert, for example, that when we pass
function, the returned value is 5 . We can run these tests whenever w
to our code to make sure any existing correct behavior has not change

Testing is a complex skill: although we can’t cover every detail about h
good tests in one chapter, we’ll discuss the mechanics of Rust’s testing
talk about the annotations and macros available to you when writing y
default behavior and options provided for running your tests, and how
tests into unit tests and integration tests.

How to Write Tests

Tests are Rust functions that verify that the non-test code is functionin
expected manner. The bodies of test functions typically perform these

Set up any needed data or state.1.
Run the code you want to test.2.
Assert the results are what you expect.3.

Let’s look at the features Rust provides speci�cally for writing tests tha
actions, which include the test attribute, a few macros, and the
attribute.

The Anatomy of a Test Function

At its simplest, a test in Rust is a function that’s annotated with the
Attributes are metadata about pieces of Rust code; one example is the
attribute we used with structs in Chapter 5. To change a function into
add #[test] on the line before fn . When you run your tests with the
command, Rust builds a test runner binary that runs the functions ann
test attribute and reports on whether each test function passes or fa

In Chapter 7, we saw that when we make a new library project with Ca
module with a test function in it is automatically generated for us. This
you start writing your tests so you don’t have to look up the exact stru
syntax of test functions every time you start a new project. You can ad
additional test functions and as many test modules as you want!

We’ll explore some aspects of how tests work by experimenting with t
generated for us without actually testing any code. Then we’ll write so
tests that call some code that we’ve written and assert that its behavio

Let’s create a new library project called adder :

The contents of the src/lib.rs �le in your adder library should look like

Filename: src/lib.rs

Listing 11-1: The test module and function generated automatically by

For now, let’s ignore the top two lines and focus on the function to see
Note the #[test] annotation before the fn line: this attribute indica

$ cargo new adder --lib
 Created library `adder` project
$ cd adder

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

assert_eq!(2 + 2, 4);
 }
}

function, so the test runner knows to treat this function as a test. We c
non-test functions in the tests module to help set up common scena
common operations, so we need to indicate which functions are tests
#[test] attribute.

The function body uses the assert_eq! macro to assert that 2 + 2 eq
assertion serves as an example of the format for a typical test. Let’s ru
this test passes.

The cargo test command runs all tests in our project, as shown in L

Listing 11-2: The output from running the automatically generated tes

Cargo compiled and ran the test. After the Compiling
is the line running 1 test . The next line shows the name of the gene
function, called it_works , and the result of running that test,
summary of running the tests appears next. The text
all the tests passed, and the portion that reads
number of tests that passed or failed.

Because we don’t have any tests we’ve marked as ignored, the summa
0 ignored . We also haven’t �ltered the tests being run, so the end of

shows 0 filtered out . We’ll talk about ignoring and �ltering out test
section, “Controlling How Tests Are Run.”

The 0 measured statistic is for benchmark tests that measure perform
Benchmark tests are, as of this writing, only available in nightly Rust. S
documentation about benchmark tests to learn more.

The next part of the test output, which starts with
of any documentation tests. We don’t have any documentation tests y

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.2
 Running target/debug/deps/adder-ce99bcc2479f4607

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;

compile any code examples that appear in our API documentation. Th
us keep our docs and our code in sync! We’ll discuss how to write docu
tests in the “Documentation Comments” section of Chapter 14. For no
the Doc-tests output.

Let’s change the name of our test to see how that changes the test ou
the it_works function to a di�erent name, such as

Filename: src/lib.rs

Then run cargo test again. The output now shows
it_works :

Let’s add another test, but this time we’ll make a test that fails! Tests f
something in the test function panics. Each test is run in a new thread
main thread sees that a test thread has died, the test is marked as fail
about the simplest way to cause a panic in Chapter 9, which is to call t
macro. Enter the new test, another , so your src/lib.rs

Filename: src/lib.rs

Listing 11-3: Adding a second test that will fail because we call the

#[cfg(test)]
mod tests {

#[test]
fn exploration() {

assert_eq!(2 + 2, 4);
 }
}

running 1 test
test tests::exploration ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

#[cfg(test)]
mod tests {

#[test]
fn exploration() {

assert_eq!(2 + 2, 4);
 }

#[test]
fn another() {

panic!("Make this test fail");
 }
}

Run the tests again using cargo test . The output should look like Lis
shows that our exploration test passed and another

Listing 11-4: Test results when one test passes and one test fails

Instead of ok , the line test tests::another shows
appear between the individual results and the summary: the �rst sect
detailed reason for each test failure. In this case,
panicked at 'Make this test fail' , which happened on line 10 in

The next section lists just the names of all the failing tests, which is us
are lots of tests and lots of detailed failing test output. We can use the
failing test to run just that test to more easily debug it; we’ll talk more
run tests in the “Controlling How Tests Are Run” section.

The summary line displays at the end: overall, our test result is
test pass and one test fail.

Now that you’ve seen what the test results look like in di�erent scenar
some macros other than panic! that are useful in tests.

Checking Results with the assert! Macro

The assert! macro, provided by the standard library, is useful when
ensure that some condition in a test evaluates to
an argument that evaluates to a Boolean. If the value is
and the test passes. If the value is false , the assert!
macro, which causes the test to fail. Using the assert!

running 2 tests
test tests::exploration ... ok
test tests::another ... FAILED

failures:

---- tests::another stdout ----
 thread 'tests::another' panicked at 'Make this test fai
src/lib.rs:10:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::another

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measu
out

error: test failed

code is functioning in the way we intend.

In Chapter 5, Listing 5-15, we used a Rectangle
which are repeated here in Listing 11-5. Let’s put this code in the
write some tests for it using the assert! macro.

Filename: src/lib.rs

Listing 11-5: Using the Rectangle struct and its

The can_hold method returns a Boolean, which means it’s a perfect u
assert! macro. In Listing 11-6, we write a test that exercises the

by creating a Rectangle instance that has a length of 8 and a width o
asserting that it can hold another Rectangle instance that has a leng
width of 1:

Filename: src/lib.rs

Listing 11-6: A test for can_hold that checks whether a larger rectang
hold a smaller rectangle

Note that we’ve added a new line inside the tests
tests module is a regular module that follows the usual visibility rule

#[derive(Debug)]
pub struct Rectangle {
 length: u32,
 width: u32,
}

impl Rectangle {
pub fn can_hold(&self, other: &Rectangle) ->

self.length > other.length && self
 }
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn larger_can_hold_smaller() {

let larger = Rectangle { length: 8
let smaller = Rectangle { length:

assert!(larger.can_hold(&smaller));
 }
}

Chapter 7 in the “Privacy Rules” section. Because the
module, we need to bring the code under test in the outer module int
the inner module. We use a glob here so anything we de�ne in the ou
available to this tests module.

We’ve named our test larger_can_hold_smaller
Rectangle instances that we need. Then we called the

the result of calling larger.can_hold(&smaller)
return true , so our test should pass. Let’s �nd out!

It does pass! Let’s add another test, this time asserting that a smaller r
hold a larger rectangle:

Filename: src/lib.rs

Because the correct result of the can_hold function in this case is
negate that result before we pass it to the assert!
pass if can_hold returns false :

running 1 test
test tests::larger_can_hold_smaller ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn larger_can_hold_smaller() {

// --snip--
 }

#[test]
fn smaller_cannot_hold_larger() {

let larger = Rectangle { length: 8
let smaller = Rectangle { length:

assert!(!smaller.can_hold(&larger));
 }
}

running 2 tests
test tests::smaller_cannot_hold_larger ... ok
test tests::larger_can_hold_smaller ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured;

Two tests that pass! Now let’s see what happens to our test results wh
introduce a bug in our code. Let’s change the implementation of the
method by replacing the greater-than sign with a less-than sign when
lengths:

Running the tests now produces the following:

Our tests caught the bug! Because larger.length
comparison of the lengths in can_hold now returns

Testing Equality with the assert_eq! and

A common way to test functionality is to compare the result of the cod
the value you expect the code to return to make sure they’re equal. Yo
using the assert! macro and passing it an expression using the
However, this is such a common test that the standard library provide
macros— assert_eq! and assert_ne! —to perform this test more co
These macros compare two arguments for equality or inequality, resp
also print the two values if the assertion fails, which makes it easier to
test failed; conversely, the assert! macro only indicates that it got a
the == expression, not the values that lead to the

// --snip--

impl Rectangle {
pub fn can_hold(&self, other: &Rectangle) ->

self.length < other.length && self
 }
}

running 2 tests
test tests::smaller_cannot_hold_larger ... ok
test tests::larger_can_hold_smaller ... FAILED

failures:

---- tests::larger_can_hold_smaller stdout ----
 thread 'tests::larger_can_hold_smaller' panicked at 'as
 larger.can_hold(&smaller)', src/lib.rs:22:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::larger_can_hold_smaller

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measu
out

In Listing 11-7, we write a function named add_two
returns the result. Then we test this function using the

Filename: src/lib.rs

Listing 11-7: Testing the function add_two using the

Let’s check that it passes!

The �rst argument we gave to the assert_eq! macro,
calling add_two(2) . The line for this test is test tests::it_adds_t
the ok text indicates that our test passed!

Let’s introduce a bug into our code to see what it looks like when a tes
assert_eq! fails. Change the implementation of the
3 :

Run the tests again:

pub fn add_two(a: i32) -> i32 {
 a + 2
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn it_adds_two() {

assert_eq!(4, add_two(2));
 }
}

running 1 test
test tests::it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

pub fn add_two(a: i32) -> i32 {
 a + 3
}

Our test caught the bug! The it_adds_two test failed, displaying the m
assertion failed: `(left == right)` and showing that

was 5 . This message is useful and helps us start debugging: it means
argument to assert_eq! was 4 but the right
add_two(2) , was 5 .

Note that in some languages and test frameworks, the parameters to
that assert two values are equal are called expected
which we specify the arguments matters. However, in Rust, they’re cal
right , and the order in which we specify the value we expect and the

code under test produces doesn’t matter. We could write the assertion
assert_eq!(add_two(2), 4) , which would result in a failure message
assertion failed: `(left == right)` and that

The assert_ne! macro will pass if the two values we give it are not eq
they’re equal. This macro is most useful for cases when we’re not sure
will be, but we know what the value de�nitely won’t
intend. For example, if we’re testing a function that is guaranteed to c
in some way, but the way in which the input is changed depends on th
week that we run our tests, the best thing to assert might be that the
function is not equal to the input.

Under the surface, the assert_eq! and assert_ne!
and != , respectively. When the assertions fail, these macros print the
using debug formatting, which means the values being compared mu
the PartialEq and Debug traits. All the primitive types and most of t
library types implement these traits. For structs and enums that you d
need to implement PartialEq to assert that values of those types are

running 1 test
test tests::it_adds_two ... FAILED

failures:

---- tests::it_adds_two stdout ----
 thread 'tests::it_adds_two' panicked at 'assertion
== right)`
 left: `4`,
 right: `5`', src/lib.rs:11:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::it_adds_two

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measu
out

equal. You’ll need to implement Debug to print the values when the a
Because both traits are derivable traits, as mentioned in Listing 5-12 in
is usually as straightforward as adding the #[derive(PartialEq, D
to your struct or enum de�nition. See Appendix C, “Derivable Traits,” f
about these and other derivable traits.

Adding Custom Failure Messages

You can also add a custom message to be printed with the failure mes
optional arguments to the assert! , assert_eq!
arguments speci�ed after the one required argument to
arguments to assert_eq! and assert_ne! are passed along to the
(discussed in Chapter 8 in the “Concatenation with the
Macro” section), so you can pass a format string that contains
values to go in those placeholders. Custom messages are useful to do
assertion means; when a test fails, you’ll have a better idea of what th
with the code.

For example, let’s say we have a function that greets people by name
test that the name we pass into the function appears in the output:

Filename: src/lib.rs

The requirements for this program haven’t been agreed upon yet, and
sure the Hello text at the beginning of the greeting will change. We d
want to have to update the test when the requirements change, so ins
checking for exact equality to the value returned from the
just assert that the output contains the text of the input parameter.

Let’s introduce a bug into this code by changing

pub fn greeting(name: &str) -> String {
format!("Hello {}!", name)

}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn greeting_contains_name() {

let result = greeting("Carol");
assert!(result.contains("Carol"));

 }
}

what this test failure looks like:

Running this test produces the following:

This result just indicates that the assertion failed and which line the as
more useful failure message in this case would print the value we got
greeting function. Let’s change the test function, giving it a custom fa

made from a format string with a placeholder �lled in with the actual
from the greeting function:

Now when we run the test, we’ll get a more informative error message

We can see the value we actually got in the test output, which would h
what happened instead of what we were expecting to happen.

pub fn greeting(name: &str) -> String {
String::from("Hello!")

}

running 1 test
test tests::greeting_contains_name ... FAILED

failures:

---- tests::greeting_contains_name stdout ----
 thread 'tests::greeting_contains_name' panicked at
failed:
result.contains("Carol")', src/lib.rs:12:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::greeting_contains_name

#[test]
fn greeting_contains_name() {

let result = greeting("Carol");
assert!(

 result.contains("Carol"),
"Greeting did not contain name, value was `{}`"

);
}

---- tests::greeting_contains_name stdout ----
 thread 'tests::greeting_contains_name' panicked at
not
contain name, value was `Hello!`', src/lib.rs:12:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

Checking for Panics with should_panic

In addition to checking that our code returns the correct values we ex
important to check that our code handles error conditions as we expe
consider the Guess type that we created in Chapter 9, Listing 9-9. Oth
uses Guess depends on the guarantee that Guess
between 1 and 100. We can write a test that ensures that attempting t
Guess instance with a value outside that range panics.

We do this by adding another attribute, should_panic
attribute makes a test pass if the code inside the function panics; the
the code inside the function doesn’t panic.

Listing 11-8 shows a test that checks that the error conditions of
when we expect them to:

Filename: src/lib.rs

Listing 11-8: Testing that a condition will cause a

We place the #[should_panic] attribute after the

pub struct Guess {
 value: i32,
}

impl Guess {
pub fn new(value: i32) -> Guess {

if value < 1 || value > 100 {
panic!("Guess value must be between 1 and 100,

value);
 }

 Guess {
 value
 }
 }
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
#[should_panic]
fn greater_than_100() {

 Guess::new(200);
 }
}

test function it applies to. Let’s look at the result when this test passes

Looks good! Now let’s introduce a bug in our code by removing the co
new function will panic if the value is greater than 100:

When we run the test in Listing 11-8, it will fail:

We don’t get a very helpful message in this case, but when we look at
function, we see that it’s annotated with #[should_panic]
that the code in the test function did not cause a panic.

Tests that use should_panic can be imprecise because they only indi
code has caused some panic. A should_panic test would pass even if
for a di�erent reason than the one we were expecting to happen. To m
should_panic tests more precise, we can add an optional

the should_panic attribute. The test harness will make sure that the
contains the provided text. For example, consider the modi�ed code f

running 1 test
test tests::greater_than_100 ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

// --snip--

impl Guess {
pub fn new(value: i32) -> Guess {

if value < 1 {
panic!("Guess value must be between 1 and 100,

value);
 }

 Guess {
 value
 }
 }
}

running 1 test
test tests::greater_than_100 ... FAILED

failures:

failures:
 tests::greater_than_100

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measu
out

Listing 11-9 where the new function panics with di�erent messages d
whether the value is too small or too large:

Filename: src/lib.rs

Listing 11-9: Testing that a condition will cause a
message

This test will pass because the value we put in the
expected parameter is a substring of the message that the

panics with. We could have speci�ed the entire panic message that we
in this case would be Guess value must be less than or equal t
What you choose to specify in the expected parameter for
how much of the panic message is unique or dynamic and how precis
test to be. In this case, a substring of the panic message is enough to e
code in the test function executes the else if value > 100

// --snip--

impl Guess {
pub fn new(value: i32) -> Guess {

if value < 1 {
panic!("Guess value must be greater than or equ

{}.",
 value);
 } else if value > 100 {

panic!("Guess value must be less than or equal
{}.",
 value);
 }

 Guess {
 value
 }
 }
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
#[should_panic(expected = "Guess value must be less than or

100")]
fn greater_than_100() {

 Guess::new(200);
 }
}

To see what happens when a should_panic test with an
let’s again introduce a bug into our code by swapping the bodies of th
and the else if value > 100 blocks:

This time when we run the should_panic test, it will fail:

The failure message indicates that this test did indeed panic as we exp
panic message did not include the expected string
'Guess value must be less than or equal to 100'

did get in this case was
Guess value must be greater than or equal to 1, got 200.

�guring out where our bug is!

Using Result<T, E> in tests

So far, we've written tests that panic when they fail. We can also write
Result<T, E> too! Here's that �rst example, but with results instead:

if value < 1 {
panic!("Guess value must be less than or equal to 100,

value);
} else if value > 100 {

panic!("Guess value must be greater than or equal to 1,
value);
}

running 1 test
test tests::greater_than_100 ... FAILED

failures:

---- tests::greater_than_100 stdout ----
 thread 'tests::greater_than_100' panicked at 'Guess
greater than or equal to 1, got 200.', src/lib.rs:11:12
note: Run with `RUST_BACKTRACE=1` for a backtrace.
note: Panic did not include expected string 'Guess value mu
or
equal to 100'

failures:
 tests::greater_than_100

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measu
out

Here, we've changed the it_works function to return a result. And in
than assert_eq! , we return Ok(()) for the success case, and an
inside for the failure case. As before, this test will fail or succeed, but i
based on panics, it will use the Result<T, E> to make that determina
this, you can't use #[should_panic] with one of these functions; you
be returning an Err instead!

Now that you know several ways to write tests, let’s look at what is hap
we run our tests and explore the di�erent options we can use with

Controlling How Tests Are Run

Just as cargo run compiles your code and then runs the resulting bin
cargo test compiles your code in test mode and runs the resulting t

can specify command line options to change the default behavior of
example, the default behavior of the binary produced by
tests in parallel and capture output generated during test runs, preven
from being displayed and making it easier to read the output related t
results.

Some command line options go to cargo test , and some go to the re
binary. To separate these two types of arguments, you list the argume
cargo test followed by the separator -- and then the ones that go

binary. Running cargo test --help displays the options you can use
cargo test , and running cargo test -- --help

after the separator -- .

Running Tests in Parallel or Consecutively

#[cfg(test)]
mod tests {

#[test]
fn it_works() -> Result<(), String> {

if 2 + 2 == 4 {
Ok(())

 } else {
Err(String::from("two plus two does not equal f

 }
 }
}

When you run multiple tests, by default they run in parallel using thre
the tests will �nish running faster so you can get feedback quicker on
your code is working. Because the tests are running at the same time,
tests don’t depend on each other or on any shared state, including a s
environment, such as the current working directory or environment va

For example, say each of your tests runs some code that creates a �le
test-output.txt and writes some data to that �le. Then each test reads t
�le and asserts that the �le contains a particular value, which is di�ere
Because the tests run at the same time, one test might overwrite the �
when another test writes and reads the �le. The second test will then
the code is incorrect but because the tests have interfered with each o
running in parallel. One solution is to make sure each test writes to a d
another solution is to run the tests one at a time.

If you don’t want to run the tests in parallel or if you want more �ne-g
over the number of threads used, you can send the
number of threads you want to use to the test binary. Take a look at t
example:

We set the number of test threads to 1 , telling the program not to us
parallelism. Running the tests using one thread will take longer than r
parallel, but the tests won’t interfere with each other if they share stat

Showing Function Output

By default, if a test passes, Rust’s test library captures anything printed
output. For example, if we call println! in a test and the test passes,
the println! output in the terminal; we’ll see only the line that indica
passed. If a test fails, we’ll see whatever was printed to standard outpu
of the failure message.

As an example, Listing 11-10 has a silly function that prints the value o
and returns 10, as well as a test that passes and a test that fails.

Filename: src/lib.rs

$ cargo test -- --test-threads=1

Listing 11-10: Tests for a function that calls println!

When we run these tests with cargo test , we’ll see the following out

Note that nowhere in this output do we see I got the value 4
printed when the test that passes runs. That output has been capture
from the test that failed, I got the value 8 , appears in the section o

fn prints_and_returns_10(a: i32) -> i32 {
println!("I got the value {}", a);
10

}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn this_test_will_pass() {

let value = prints_and_returns_10(
assert_eq!(10, value);

 }

#[test]
fn this_test_will_fail() {

let value = prints_and_returns_10(
assert_eq!(5, value);

 }
}

running 2 tests
test tests::this_test_will_pass ... ok
test tests::this_test_will_fail ... FAILED

failures:

---- tests::this_test_will_fail stdout ----
 I got the value 8
thread 'tests::this_test_will_fail' panicked at 'assertion
== right)`
 left: `5`,
 right: `10`', src/lib.rs:19:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::this_test_will_fail

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measu
out

summary output, which also shows the cause of the test failure.

If we want to see printed values for passing tests as well, we can disab
capture behavior by using the --nocapture �ag:

When we run the tests in Listing 11-10 again with the
following output:

Note that the output for the tests and the test results are interleaved;
that the tests are running in parallel, as we talked about in the previou
using the --test-threads=1 option and the --nocapture
output looks like then!

Running a Subset of Tests by Name

Sometimes, running a full test suite can take a long time. If you’re wor
a particular area, you might want to run only the tests pertaining to th
can choose which tests to run by passing cargo test
test(s) you want to run as an argument.

To demonstrate how to run a subset of tests, we’ll create three tests fo
function, as shown in Listing 11-11, and choose which ones to run:

Filename: src/lib.rs

$ cargo test -- --nocapture

running 2 tests
I got the value 4
I got the value 8
test tests::this_test_will_pass ... ok
thread 'tests::this_test_will_fail' panicked at 'assertion
== right)`
 left: `5`,
 right: `10`', src/lib.rs:19:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.
test tests::this_test_will_fail ... FAILED

failures:

failures:
 tests::this_test_will_fail

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measu
out

Listing 11-11: Three tests with three di�erent names

If we run the tests without passing any arguments, as we saw earlier,
run in parallel:

Running Single Tests

We can pass the name of any test function to cargo test

pub fn add_two(a: i32) -> i32 {
 a + 2
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn add_two_and_two() {

assert_eq!(4, add_two(2));
 }

#[test]
fn add_three_and_two() {

assert_eq!(5, add_two(3));
 }

#[test]
fn one_hundred() {

assert_eq!(102, add_two(100));
 }
}

running 3 tests
test tests::add_two_and_two ... ok
test tests::add_three_and_two ... ok
test tests::one_hundred ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured;

$ cargo test one_hundred
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running target/debug/deps/adder-06a75b4a1f2515e9

running 1 test
test tests::one_hundred ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

Only the test with the name one_hundred ran; the other two tests did
name. The test output lets us know we had more tests than what this
by displaying 2 filtered out at the end of the summary line.

We can’t specify the names of multiple tests in this way; only the �rst v
cargo test will be used. But there is a way to run multiple tests.

Filtering to Run Multiple Tests

We can specify part of a test name, and any test whose name matches
be run. For example, because two of our tests’ names contain
two by running cargo test add :

This command ran all tests with add in the name and �ltered out the
one_hundred . Also note that the module in which tests appear becom

test’s name, so we can run all the tests in a module by �ltering on the

Ignoring Some Tests Unless Speci�cally Requested

Sometimes a few speci�c tests can be very time-consuming to execute
want to exclude them during most runs of cargo test
arguments all tests you do want to run, you can instead annotate the
tests using the ignore attribute to exclude them, as shown here:

Filename: src/lib.rs

$ cargo test add
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running target/debug/deps/adder-06a75b4a1f2515e9

running 2 tests
test tests::add_two_and_two ... ok
test tests::add_three_and_two ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured;

After #[test] we add the #[ignore] line to the test we want to exclu
we run our tests, it_works runs, but expensive_test

The expensive_test function is listed as ignored
tests, we can use cargo test -- --ignored :

By controlling which tests run, you can make sure your
fast. When you’re at a point where it makes sense to check the results
tests and you have time to wait for the results, you can run
cargo test -- --ignored instead.

Test Organization

As mentioned at the start of the chapter, testing is a complex disciplin

#[test]
fn it_works() {

assert_eq!(2 + 2, 4);
}

#[test]
#[ignore]
fn expensive_test() {

// code that takes an hour to run
}

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.2
 Running target/debug/deps/adder-ce99bcc2479f4607

running 2 tests
test expensive_test ... ignored
test it_works ... ok

test result: ok. 1 passed; 0 failed; 1 ignored; 0 measured;

$ cargo test -- --ignored
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running target/debug/deps/adder-ce99bcc2479f4607

running 1 test
test expensive_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

people use di�erent terminology and organization. The Rust commun
tests in terms of two main categories: unit tests and
small and more focused, testing one module in isolation at a time, and
private interfaces. Integration tests are entirely external to your librar
code in the same way any other external code would, using only the p
and potentially exercising multiple modules per test.

Writing both kinds of tests is important to ensure that the pieces of yo
doing what you expect them to separately and together.

Unit Tests

The purpose of unit tests is to test each unit of code in isolation from
code to quickly pinpoint where code is and isn’t working as expected.
tests in the src directory in each �le with the code that they’re testing.
is to create a module named tests in each �le to contain the test fun
annotate the module with cfg(test) .

The Tests Module and #[cfg(test)]

The #[cfg(test)] annotation on the tests module tells Rust to comp
test code only when you run cargo test , not when you run
compile time when you only want to build the library and saves space
compiled artifact because the tests are not included. You’ll see that be
integration tests go in a di�erent directory, they don’t need the
annotation. However, because unit tests go in the same �les as the co
#[cfg(test)] to specify that they shouldn’t be included in the compi

Recall that when we generated the new adder project in the �rst sect
chapter, Cargo generated this code for us:

Filename: src/lib.rs

This code is the automatically generated test module. The attribute
con�guration and tells Rust that the following item should only be inclu

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

assert_eq!(2 + 2, 4);
 }
}

certain con�guration option. In this case, the con�guration option is
provided by Rust for compiling and running tests. By using the
compiles our test code only if we actively run the tests with
any helper functions that might be within this module, in addition to t
annotated with #[test] .

Testing Private Functions

There’s debate within the testing community about whether or not pr
should be tested directly, and other languages make it di�cult or imp
private functions. Regardless of which testing ideology you adhere to,
rules do allow you to test private functions. Consider the code in Listin
the private function internal_adder :

Filename: src/lib.rs

Listing 11-12: Testing a private function

Note that the internal_adder function is not marked as
just Rust code and the tests module is just another module, you can
internal_adder in a test just �ne. If you don’t think private functions

tested, there’s nothing in Rust that will compel you to do so.

Integration Tests

In Rust, integration tests are entirely external to your library. They use

pub fn add_two(a: i32) -> i32 {
 internal_adder(a, 2)
}

fn internal_adder(a: i32, b: i32) -> i32 {
 a + b
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn internal() {

assert_eq!(4, internal_adder(2, 2));
 }
}

the same way any other code would, which means they can only call f
are part of your library’s public API. Their purpose is to test whether m
your library work together correctly. Units of code that work correctly
could have problems when integrated, so test coverage of the integra
important as well. To create integration tests, you �rst need a

The tests Directory

We create a tests directory at the top level of our project directory, nex
knows to look for integration test �les in this directory. We can then m
test �les as we want to in this directory, and Cargo will compile each o
individual crate.

Let’s create an integration test. With the code in Listing 11-12 still in th
make a tests directory, create a new �le named tests/integration_test.rs
code in Listing 11-13:

Filename: tests/integration_test.rs

Listing 11-13: An integration test of a function in the

We’ve added extern crate adder at the top of the code, which we di
unit tests. The reason is that each test in the tests
we need to import our library into each of them.

We don’t need to annotate any code in tests/integration_test.rs
Cargo treats the tests directory specially and compiles �les in this di
when we run cargo test . Run cargo test now:

extern crate adder;

#[test]
fn it_adds_two() {

assert_eq!(4, adder::add_two(2));
}

The three sections of output include the unit tests, the integration tes
tests. The �rst section for the unit tests is the same as we’ve been see
each unit test (one named internal that we added in Listing 11-12) a
summary line for the unit tests.

The integration tests section starts with the line
Running target/debug/deps/integration_test-ce99bcc2479f4607

end of your output will be di�erent). Next, there is a line for each test
integration test and a summary line for the results of the integration t
the Doc-tests adder section starts.

Similarly to how adding more unit test functions adds more result line
tests section, adding more test functions to the integration test �le ad
lines to this integration test �le’s section. Each integration test �le has
so if we add more �les in the tests directory, there will be more integra
sections.

We can still run a particular integration test function by specifying the
name as an argument to cargo test . To run all the tests in a particul
test �le, use the --test argument of cargo test

$ cargo test
 Compiling adder v0.1.0 (file:///projects/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running target/debug/deps/adder-abcabcabc

running 1 test
test tests::internal ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

 Running target/debug/deps/integration_test-ce99bcc2479

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;

This command runs only the tests in the tests/integration_test.rs

Submodules in Integration Tests

As you add more integration tests, you might want to make more than
tests directory to help organize them; for example, you can group the
the functionality they’re testing. As mentioned earlier, each �le in the
compiled as its own separate crate.

Treating each integration test �le as its own crate is useful to create se
that are more like the way end users will be using your crate. Howeve
�les in the tests directory don’t share the same behavior as �les in
learned in Chapter 7 regarding how to separate code into modules an

The di�erent behavior of �les in the tests directory is most noticeable
a set of helper functions that would be useful in multiple integration t
try to follow the steps in the “Moving Modules to Other Files” section o
extract them into a common module. For example, if we create
place a function named setup in it, we can add some code to
call from multiple test functions in multiple test �les:

Filename: tests/common.rs

When we run the tests again, we’ll see a new section in the test outpu
common.rs �le, even though this �le doesn’t contain any test functions
the setup function from anywhere:

$ cargo test --test integration_test
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running target/debug/integration_test-952a27e0126bb565

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

pub fn setup() {
// setup code specific to your library's tests would go her

}

Having common appear in the test results with running 0 tests
what we wanted. We just wanted to share some code with the other in
�les.

To avoid having common appear in the test output, instead of creating
tests/common.rs, we’ll create tests/common/mod.rs
Filesystems” section of Chapter 7, we used the naming convention
module_name/mod.rs for �les of modules that have submodules. We d
submodules for common here, but naming the �le this way tells Rust n
common module as an integration test �le. When we move the

into tests/common/mod.rs and delete the tests/common.rs
output will no longer appear. Files in subdirectories of the
compiled as separate crates or have sections in the test output.

After we’ve created tests/common/mod.rs, we can use it from any of th
test �les as a module. Here’s an example of calling the
it_adds_two test in tests/integration_test.rs:

Filename: tests/integration_test.rs

running 1 test
test tests::internal ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

 Running target/debug/deps/common-b8b07b6f1be2db70

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;

 Running target/debug/deps/integration_test-d993c68b431

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

 Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;

Note that the mod common; declaration is the same as the module dec
demonstrated in Listing 7-4. Then in the test function, we can call the
common::setup() function.

Integration Tests for Binary Crates

If our project is a binary crate that only contains a
src/lib.rs �le, we can’t create integration tests in the
extern crate to import functions de�ned in the

expose functions that other crates can call and use; binary crates are
on their own.

This is one of the reasons Rust projects that provide a binary have a st
src/main.rs �le that calls logic that lives in the src/lib.rs
integration tests can test the library crate by using
important functionality. If the important functionality works, the small
code in the src/main.rs �le will work as well, and that small amount of
need to be tested.

Summary

Rust’s testing features provide a way to specify how code should funct
continues to work as you expect, even as you make changes. Unit test
di�erent parts of a library separately and can test private implementa
Integration tests check that many parts of the library work together co
they use the library’s public API to test the code in the same way exter
use it. Even though Rust’s type system and ownership rules help preve
of bugs, tests are still important to reduce logic bugs having to do with
is expected to behave.

Let’s combine the knowledge you learned in this chapter and in previo
work on a project!

extern crate adder;

mod common;

#[test]
fn it_adds_two() {
 common::setup();

assert_eq!(4, adder::add_two(2));
}

An I/O Project: Building a Command
Line Program
This chapter is a recap of the many skills you’ve learned so far and an
few more standard library features. We’ll build a command line tool th
with �le and command line input/output to practice some of the Rust
now have under your belt.

Rust’s speed, safety, single binary output, and cross-platform support
language for creating command line tools, so for our project, we’ll ma
version of the classic command line tool grep (g
and print). In the simplest use case, grep searches a speci�ed �le for
string. To do so, grep takes as its arguments a �lename and a string.
the �le, �nds lines in that �le that contain the string argument, and pr

Along the way, we’ll show how to make our command line tool use fea
terminal that many command line tools use. We’ll read the value of an
variable to allow the user to con�gure the behavior of our tool. We’ll a
standard error console stream (stderr) instead of standard output (
example, the user can redirect successful output to a �le while still see
messages onscreen.

One Rust community member, Andrew Gallant, has already created a
very fast version of grep , called ripgrep . By comparison, our version
fairly simple, but this chapter will give you some of the background kn
need to understand a real-world project such as

Our grep project will combine a number of concepts you’ve learned s

Organizing code (using what you learned in modules, Chapter 7)
Using vectors and strings (collections, Chapter 8)
Handling errors (Chapter 9)
Using traits and lifetimes where appropriate (Chapter 10)
Writing tests (Chapter 11)

We’ll also brie�y introduce closures, iterators, and trait objects, which
and 17 will cover in detail.

Accepting Command Line Arguments

Let’s create a new project with, as always, cargo new

to distinguish it from the grep tool that you might already have on yo

The �rst task is to make minigrep accept its two command line argum
�lename and a string to search for. That is, we want to be able to run
with cargo run , a string to search for, and a path to a �le to search in

Right now, the program generated by cargo new
it. Some existing libraries on Crates.io can help with writing a program
command line arguments, but because you’re just learning this conce
implement this capability ourselves.

Reading the Argument Values

To enable minigrep to read the values of command line arguments w
we’ll need a function provided in Rust’s standard library, which is
This function returns an iterator of the command line arguments that
minigrep . We haven’t discussed iterators yet (we’ll cover them fully in

but for now, you only need to know two details about iterators: iterato
series of values, and we can call the collect method on an iterator to
collection, such as a vector, containing all the elements the iterator pr

Use the code in Listing 12-1 to allow your minigrep
line arguments passed to it and then collect the values into a vector:

Filename: src/main.rs

Listing 12-1: Collecting the command line arguments into a vector and

First, we bring the std::env module into scope with a
its args function. Notice that the std::env::args
modules. As we discussed in Chapter 7, in cases where the desired fun

$ cargo new minigrep
 Created binary (application) `minigrep` project
$ cd minigrep

$ cargo run searchstring example-filename.txt

use std::env;

fn main() {
let args: Vec<String> = env::args().collect();
println!("{:?}", args);

}

in more than one module, it’s conventional to bring the parent modul
rather than the function. By doing so, we can easily use other function
std::env . It’s also less ambiguous than adding

the function with just args , because args might easily be mistaken f
that’s de�ned in the current module.

The args Function and Invalid Unicode

Note that std::env::args will panic if any argument contains inva
your program needs to accept arguments containing invalid Unicod
std::env::args_os instead. That function returns an iterator that
OsString values instead of String values. We’ve chosen to use
std::env::args here for simplicity, because

platform and are more complex to work with than

On the �rst line of main , we call env::args , and we immediately use
turn the iterator into a vector containing all the values produced by th
can use the collect function to create many kinds of collections, so w
annotate the type of args to specify that we want a vector of strings.
very rarely need to annotate types in Rust, collect
need to annotate because Rust isn’t able to infer the kind of collection

Finally, we print the vector using the debug formatter,
�rst with no arguments and then with two arguments:

Notice that the �rst value in the vector is "target/debug/minigrep"
name of our binary. This matches the behavior of the arguments list in
programs use the name by which they were invoked in their execution
convenient to have access to the program name in case you want to p
messages or change behavior of the program based on what comman
used to invoke the program. But for the purposes of this chapter, we’l
save only the two arguments we need.

$ cargo run
--snip--
["target/debug/minigrep"]

$ cargo run needle haystack
--snip--
["target/debug/minigrep", "needle", "haystack"]

Saving the Argument Values in Variables

Printing the value of the vector of arguments illustrated that the progr
access the values speci�ed as command line arguments. Now we nee
values of the two arguments in variables so we can use the values thr
rest of the program. We do that in Listing 12-2:

Filename: src/main.rs

Listing 12-2: Creating variables to hold the query argument and �lenam

As we saw when we printed the vector, the program’s name takes up
the vector at args[0] , so we’re starting at index
takes is the string we’re searching for, so we put a reference to the �rs
the variable query . The second argument will be the �lename, so we
to the second argument in the variable filename

We temporarily print the values of these variables to prove that the co
as we intend. Let’s run this program again with the arguments
:

Great, the program is working! The values of the arguments we need a
into the right variables. Later we’ll add some error handling to deal wi
potential erroneous situations, such as when the user provides no arg
now, we’ll ignore that situation and work on adding �le-reading capab

use std::env;

fn main() {
let args: Vec<String> = env::args().collect();

let query = &args[1];
let filename = &args[2];

println!("Searching for {}", query);
println!("In file {}", filename);

}

$ cargo run test sample.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/minigrep test sample.txt`
Searching for test
In file sample.txt

Reading a File

Now we’ll add functionality to read the �le that is speci�ed in the
line argument. First, we need a sample �le to test it with: the best kind
make sure minigrep is working is one with a small amount of text ov
with some repeated words. Listing 12-3 has an Emily Dickinson poem
well! Create a �le called poem.txt at the root level of your project, and
“I’m Nobody! Who are you?”

Filename: poem.txt

Listing 12-3: A poem by Emily Dickinson makes a good test case

With the text in place, edit src/main.rs and add code to open the �le, a
Listing 12-4:

Filename: src/main.rs

Listing 12-4: Reading the contents of the �le speci�ed by the second a

First, we add another use statement to bring in a relevant part of the
library: we need std::fs to handle �les.

In main , we’ve added a new statement: fs::read_to_string
open that �le, and then produce a new String with its contents.

I’m nobody! Who are you?
Are you nobody, too?
Then there’s a pair of us — don’t tell!
They’d banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

use std::env;
use std::fs;

fn main() {
// --snip--
println!("In file {}", filename);

let contents = fs::read_to_string(filename)
 .expect("Something went wrong reading the file"

println!("With text:\n{}", contents);
}

After that line, we’ve again added a temporary println!
value of contents after the �le is read, so we can check that the prog
so far.

Let’s run this code with any string as the �rst command line argument
haven’t implemented the searching part yet) and the
argument:

Great! The code read and then printed the contents of the �le. But the
�aws. The main function has multiple responsibilities: generally, func
and easier to maintain if each function is responsible for only one idea
problem is that we’re not handling errors as well as we could. The pro
small, so these �aws aren’t a big problem, but as the program grows,
to �x them cleanly. It’s good practice to begin refactoring early on whe
program, because it’s much easier to refactor smaller amounts of cod
next.

Refactoring to Improve Modularity and Error
Handling

To improve our program, we’ll �x four problems that have to do with t
structure and how it’s handling potential errors.

First, our main function now performs two tasks: it parses arguments
�les. For such a small function, this isn’t a major problem. However, if
grow our program inside main , the number of separate tasks the
handles will increase. As a function gains responsibilities, it becomes m

$ cargo run the poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/minigrep the poem.txt`
Searching for the
In file poem.txt
With text:
I’m nobody! Who are you?
Are you nobody, too?
Then there’s a pair of us — don’t tell!
They’d banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

reason about, harder to test, and harder to change without breaking o
It’s best to separate functionality so each function is responsible for o

This issue also ties into the second problem: although
con�guration variables to our program, variables like
the program’s logic. The longer main becomes, the more variables we
into scope; the more variables we have in scope, the harder it will be t
the purpose of each. It’s best to group the con�guration variables into
to make their purpose clear.

The third problem is that we’ve used expect to print an error messag
the �le fails, but the error message just prints something went wro
can fail in a number of ways: for example, the �le could be missing, or
have permission to open it. Right now, regardless of the situation, we’
something went wrong error message, which wouldn't give the user a

Fourth, we use expect repeatedly to handle di�erent errors, and if th
program without specifying enough arguments, they’ll get an
error from Rust that doesn’t clearly explain the problem. It would be b
error-handling code were in one place so future maintainers had only
consult in the code if the error-handling logic needed to change. Havin
handling code in one place will also ensure that we’re printing messag
meaningful to our end users.

Let’s address these four problems by refactoring our project.

Separation of Concerns for Binary Projects

The organizational problem of allocating responsibility for multiple tas
function is common to many binary projects. As a result, the Rust com
developed a process to use as a guideline for splitting the separate co
binary program when main starts getting large. The process has the f

Split your program into a main.rs and a lib.rs
lib.rs.

As long as your command line parsing logic is small, it can remai

When the command line parsing logic starts getting complicated
main.rs and move it to lib.rs.

The responsibilities that remain in the main
be limited to the following:

Calling the command line parsing logic with the argument v
Setting up any other con�guration
Calling a run function in lib.rs
Handling the error if run returns an error

This pattern is about separating concerns: main.rs
lib.rs handles all the logic of the task at hand. Because you can’t test th
function directly, this structure lets you test all of your program’s logic
into functions in lib.rs. The only code that remains in
verify its correctness by reading it. Let’s rework our program by follow

Extracting the Argument Parser

We’ll extract the functionality for parsing arguments into a function th
to prepare for moving the command line parsing logic to
the new start of main that calls a new function
src/main.rs for the moment.

Filename: src/main.rs

Listing 12-5: Extracting a parse_config function from

We’re still collecting the command line arguments into a vector, but in
assigning the argument value at index 1 to the variable
value at index 2 to the variable filename within the
whole vector to the parse_config function. The
the logic that determines which argument goes in which variable and
values back to main . We still create the query and
main no longer has the responsibility of determining how the comma

arguments and variables correspond.

fn main() {
let args: Vec<String> = env::args().collect();

let (query, filename) = parse_config(&args);

// --snip--
}

fn parse_config(args: &[String]) -> (&str, &
let query = &args[1];
let filename = &args[2];

 (query, filename)
}

This rework may seem like overkill for our small program, but we’re re
small, incremental steps. After making this change, run the program a
that the argument parsing still works. It’s good to check your progress
identify the cause of problems when they occur.

Grouping Con�guration Values

We can take another small step to improve the
moment, we’re returning a tuple, but then we immediately break that
individual parts again. This is a sign that perhaps we don’t have the rig
yet.

Another indicator that shows there’s room for improvement is the
parse_config , which implies that the two values we return are relate

part of one con�guration value. We’re not currently conveying this me
structure of the data other than by grouping the two values into a tup
the two values into one struct and give each of the struct �elds a mea
Doing so will make it easier for future maintainers of this code to und
di�erent values relate to each other and what their purpose is.

Note: Some people call this anti-pattern of using primitive values w
complex type would be more appropriate primitive obsession

Listing 12-6 shows the addition of a struct named
named query and filename . We’ve also changed the
return an instance of the Config struct and updated
rather than having separate variables:

Filename: src/main.rs

Listing 12-6: Refactoring parse_config to return an instance of a

The signature of parse_config now indicates that it returns a
body of parse_config , where we used to return string slices that refe
values in args , we now de�ne Config to contain owned
variable in main is the owner of the argument values and is only lettin
parse_config function borrow them, which means we’d violate Rust’s

rules if Config tried to take ownership of the values in

We could manage the String data in a number of di�erent ways, but
though somewhat ine�cient, route is to call the
will make a full copy of the data for the Config instance to own, whic
time and memory than storing a reference to the string data. Howeve
data also makes our code very straightforward because we don’t have
lifetimes of the references; in this circumstance, giving up a little perfo
simplicity is a worthwhile trade-o�.

The Trade-O�s of Using clone

fn main() {
let args: Vec<String> = env::args().collect();

let config = parse_config(&args);

println!("Searching for {}", config.query);
println!("In file {}", config.filename);

let contents = fs::read_to_string(config.filename)
 .expect("Something went wrong reading the file"

// --snip--
}

struct Config {
 query: String,
 filename: String,
}

fn parse_config(args: &[String]) -> Config {
let query = args[1].clone();
let filename = args[2].clone();

 Config { query, filename }
}

There’s a tendency among many Rustaceans to avoid using
ownership problems because of its runtime cost. In Chapter 13, you
to use more e�cient methods in this type of situation. But for now,
copy a few strings to continue making progress because you’ll mak
copies only once and your �lename and query string are very small
have a working program that’s a bit ine�cient than to try to hypero
on your �rst pass. As you become more experienced with Rust, it’ll
start with the most e�cient solution, but for now, it’s perfectly acce
clone .

We’ve updated main so it places the instance of
into a variable named config , and we updated the code that previou
separate query and filename variables so it now uses the �elds on t
struct instead.

Now our code more clearly conveys that query and
their purpose is to con�gure how the program will work. Any code tha
values knows to �nd them in the config instance in the �elds named
purpose.

Creating a Constructor for Config

So far, we’ve extracted the logic responsible for parsing the command
from main and placed it in the parse_config function. Doing so help
that the query and filename values were related and that relationsh
conveyed in our code. We then added a Config
of query and filename and to be able to return the values’ names as
names from the parse_config function.

So now that the purpose of the parse_config function is to create a
instance, we can change parse_config from a plain function to a fun
new that is associated with the Config struct. Making this change wil

more idiomatic. We can create instances of types in the standard libra
String , by calling String::new . Similarly, by changing

function associated with Config , we’ll be able to create instances of
calling Config::new . Listing 12-7 shows the changes we need to make

Filename: src/main.rs

Listing 12-7: Changing parse_config into Config::new

We’ve updated main where we were calling parse_config
Config::new . We’ve changed the name of parse_config

an impl block, which associates the new function with
code again to make sure it works.

Fixing the Error Handling

Now we’ll work on �xing our error handling. Recall that attempting to
values in the args vector at index 1 or index 2
the vector contains fewer than three items. Try running the program w
arguments; it will look like this:

The line index out of bounds: the len is 1 but the index is 1
message intended for programmers. It won’t help our end users unde
happened and what they should do instead. Let’s �x that now.

Improving the Error Message

fn main() {
let args: Vec<String> = env::args().collect();

let config = Config::new(&args);

// --snip--
}

// --snip--

impl Config {
fn new(args: &[String]) -> Config {

let query = args[1].clone();
let filename = args[2].clone();

 Config { query, filename }
 }
}

$ cargo run
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/minigrep`
thread 'main' panicked at 'index out of bounds: the len is
but the index is 1', src/main.rs:29:21
note: Run with `RUST_BACKTRACE=1` for a backtrace.

In Listing 12-8, we add a check in the new function that will verify that
enough before accessing index 1 and 2 . If the slice isn’t long enough
panics and displays a better error message than the

Filename: src/main.rs

Listing 12-8: Adding a check for the number of arguments

This code is similar to the Guess::new function we wrote in Listing 9-9
called panic! when the value argument was out of the range of vali
Instead of checking for a range of values here, we’re checking that the
is at least 3 and the rest of the function can operate under the assum
condition has been met. If args has fewer than three items, this cond
true, and we call the panic! macro to end the program immediately.

With these extra few lines of code in new , let’s run the program witho
arguments again to see what the error looks like now:

This output is better: we now have a reasonable error message. Howe
have extraneous information we don’t want to give to our users. Perh
technique we used in Listing 9-9 isn’t the best to use here: a call to
appropriate for a programming problem rather than a usage problem
Chapter 9. Instead, we can use the other technique you learned about
9—returning a Result that indicates either success or an error.

Returning a Result from new Instead of Calling

We can instead return a Result value that will contain a
successful case and will describe the problem in the error case. When
communicating to main , we can use the Result
Then we can change main to convert an Err variant into a more prac

// --snip--
fn new(args: &[String]) -> Config {

if args.len() < 3 {
panic!("not enough arguments");

 }
// --snip--

$ cargo run
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/minigrep`
thread 'main' panicked at 'not enough arguments', src/main.
note: Run with `RUST_BACKTRACE=1` for a backtrace.

our users without the surrounding text about thread 'main'
that a call to panic! causes.

Listing 12-9 shows the changes we need to make to the return value o
and the body of the function needed to return a
until we update main as well, which we’ll do in the next listing.

Filename: src/main.rs

Listing 12-9: Returning a Result from Config::new

Our new function now returns a Result with a
and a &'static str in the error case. Recall from “The Static Lifetime
Chapter 10 that &'static str is the type of string literals, which is ou
message type for now.

We’ve made two changes in the body of the new
when the user doesn’t pass enough arguments, we now return an
we’ve wrapped the Config return value in an Ok
conform to its new type signature.

Returning an Err value from Config::new allows the
Result value returned from the new function and exit the process m

the error case.

Calling Config::new and Handling Errors

To handle the error case and print a user-friendly message, we need t
to handle the Result being returned by Config::new
We’ll also take the responsibility of exiting the command line tool with
error code from panic! and implement it by hand. A nonzero exit sta
convention to signal to the process that called our program that the p
with an error state.

impl Config {
fn new(args: &[String]) -> Result<Config, &

if args.len() < 3 {
return Err("not enough arguments"

 }

let query = args[1].clone();
let filename = args[2].clone();

Ok(Config { query, filename })
 }
}

Filename: src/main.rs

Listing 12-10: Exiting with an error code if creating a new

In this listing, we’ve used a method we haven’t covered before:
which is de�ned on Result<T, E> by the standard library. Using
allows us to de�ne some custom, non- panic! error handling. If the
value, this method’s behavior is similar to unwrap
wrapping. However, if the value is an Err value, this method calls the
closure, which is an anonymous function we de�ne and pass as an arg
unwrap_or_else . We’ll cover closures in more detail in Chapter 13. Fo

need to know that unwrap_or_else will pass the inner value of the
case is the static string not enough arguments that we added in Listin
closure in the argument err that appears between the vertical pipes.
closure can then use the err value when it runs.

We’ve added a new use line to import process
in the closure that will be run in the error case is only two lines: we pr
value and then call process::exit . The process::exit
program immediately and return the number that was passed as the
This is similar to the panic! -based handling we used in Listing 12-8, b
get all the extra output. Let’s try it:

Great! This output is much friendlier for our users.

Extracting Logic from main

use std::process;

fn main() {
let args: Vec<String> = env::args().collect();

let config = Config::new(&args).unwrap_or_else(|err| {
println!("Problem parsing arguments: {}"

 process::exit(1);
 });

// --snip--

$ cargo run
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.4
 Running `target/debug/minigrep`
Problem parsing arguments: not enough arguments

Now that we’ve �nished refactoring the con�guration parsing, let’s tur
program’s logic. As we stated in “Separation of Concerns for Binary Pr
extract a function named run that will hold all the logic currently in th
function that isn’t involved with setting up con�guration or handling e
we’re done, main will be concise and easy to verify by inspection, and
write tests for all the other logic.

Listing 12-11 shows the extracted run function. For now, we’re just m
incremental improvement of extracting the function. We’re still de�nin
in src/main.rs.

Filename: src/main.rs

Listing 12-11: Extracting a run function containing the rest of the prog

The run function now contains all the remaining logic from
reading the �le. The run function takes the Config

Returning Errors from the run Function

With the remaining program logic separated into the
the error handling, as we did with Config::new in Listing 12-9. Instea
program to panic by calling expect , the run function will return a
when something goes wrong. This will let us further consolidate into
around handling errors in a user-friendly way. Listing 12-12 shows the
need to make to the signature and body of run

Filename: src/main.rs

fn main() {
// --snip--

println!("Searching for {}", config.query);
println!("In file {}", config.filename);

 run(config);
}

fn run(config: Config) {
let contents = fs::read_to_string(config.filename)

 .expect("something went wrong reading the file"

println!("With text:\n{}", contents);
}

// --snip--

Listing 12-12: Changing the run function to return

We’ve made three signi�cant changes here. First, we changed the retu
run function to Result<(), Box<dyn Error>> . This function previou

unit type, () , and we keep that as the value returned in the

For the error type, we used the trait object Box<dyn Error>

std::error::Error into scope with a use statement at the top). We’
objects in Chapter 17. For now, just know that Box<dyn Error>
will return a type that implements the Error trait, but we don’t have t
particular type the return value will be. This gives us �exibility to retur
that may be of di�erent types in di�erent error cases. This is what the
it's short for "dynamic."

Second, we’ve removed the call to expect in favor of
Chapter 9. Rather than panic! on an error, ? will return the error va
current function for the caller to handle.

Third, the run function now returns an Ok value in the success case.
the run function’s success type as () in the signature, which means
wrap the unit type value in the Ok value. This Ok(())
at �rst, but using () like this is the idiomatic way to indicate that we’r
for its side e�ects only; it doesn’t return a value we need.

When you run this code, it will compile but will display a warning:

Rust tells us that our code ignored the Result value and the
indicate that an error occurred. But we’re not checking to see whether

use std::error::Error;

// --snip--

fn run(config: Config) -> Result<(), Box<dyn Error>> {
let contents = fs::read_to_string(config.filename)?;

println!("With text:\n{}", contents);

Ok(())
}

warning: unused `std::result::Result` which must be used
 --> src/main.rs:18:5
 |
18 | run(config);
 | ^^^^^^^^^^^^
= note: #[warn(unused_must_use)] on by default

was an error, and the compiler reminds us that we probably meant to
error handling code here! Let’s rectify that problem now.

Handling Errors Returned from run in main

We’ll check for errors and handle them using a technique similar to on
Config::new in Listing 12-10, but with a slight di�erence:

Filename: src/main.rs

We use if let rather than unwrap_or_else to check whether
value and call process::exit(1) if it does. The
that we want to unwrap in the same way that Config::new
instance. Because run returns () in the success case, we only care a
an error, so we don’t need unwrap_or_else to return the unwrapped
would only be () .

The bodies of the if let and the unwrap_or_else
cases: we print the error and exit.

Splitting Code into a Library Crate

Our minigrep project is looking good so far! Now we’ll split the
put some code into the src/lib.rs �le so we can test it and have a
fewer responsibilities.

Let’s move all the code that isn’t the main function from

The run function de�nition
The relevant use statements
The de�nition of Config

fn main() {
// --snip--

println!("Searching for {}", config.query);
println!("In file {}", config.filename);

if let Err(e) = run(config) {
println!("Application error: {}", e);

 process::exit(1);
 }
}

The Config::new function de�nition

The contents of src/lib.rs should have the signatures shown in Listing 1
omitted the bodies of the functions for brevity). Note that this won’t co
modify src/main.rs in the listing after this one.

Filename: src/lib.rs

Listing 12-13: Moving Config and run into src/lib.rs

We’ve made liberal use of the pub keyword: on
method, and on the run function. We now have a library crate that ha
that we can test!

Now we need to bring the code we moved to src/lib.rs
crate in src/main.rs, as shown in Listing 12-14:

Filename: src/main.rs

use std::error::Error;
use std::fs;

pub struct Config {
pub query: String,
pub filename: String,

}

impl Config {
pub fn new(args: &[String]) -> Result<Config, &

// --snip--
 }
}

pub fn run(config: Config) -> Result<(), Box
// --snip--

}

extern crate minigrep;

use std::env;
use std::process;

use minigrep::Config;

fn main() {
// --snip--
if let Err(e) = minigrep::run(config) {

// --snip--
 }
}

Listing 12-14: Bringing the minigrep crate into the scope of

To bring the library crate into the binary crate, we use
we add a use minigrep::Config line to bring the
pre�x the run function with our crate name. Now all the functionality
connected and should work. Run the program with
everything works correctly.

Whew! That was a lot of work, but we’ve set ourselves up for success i
Now it’s much easier to handle errors, and we’ve made the code more
Almost all of our work will be done in src/lib.rs from here on out.

Let’s take advantage of this newfound modularity by doing something
have been di�cult with the old code but is easy with the new code: we
tests!

Developing the Library’s Functionality with Test-
Driven Development

Now that we’ve extracted the logic into src/lib.rs and left the argument
error handling in src/main.rs, it’s much easier to write tests for the cor
of our code. We can call functions directly with various arguments and
values without having to call our binary from the command line. Feel f
some tests for the functionality in the Config::new

In this section, we’ll add the searching logic to the
Test-driven development (TDD) process. This software development te
follows these steps:

Write a test that fails and run it to make sure it fails for the reaso1.
Write or modify just enough code to make the new test pass.2.
Refactor the code you just added or changed and make sure the
to pass.

3.

Repeat from step 1!4.

This process is just one of many ways to write software, but TDD can h
design as well. Writing the test before you write the code that makes t
helps to maintain high test coverage throughout the process.

We’ll test drive the implementation of the functionality that will actual
searching for the query string in the �le contents and produce a list of
match the query. We’ll add this functionality in a function called

Writing a Failing Test

Because we don’t need them anymore, let’s remove the
src/lib.rs and src/main.rs that we used to check the program’s behavior
src/lib.rs, we’ll add a tests module with a test function, as we did in C
test function speci�es the behavior we want the
query and the text to search for the query in, and it will return only th
text that contain the query. Listing 12-15 shows this test, which won’t

Filename: src/lib.rs

Listing 12-15: Creating a failing test for the search

This test searches for the string "duct" . The text we’re searching is th
one of which contains "duct" . We assert that the value returned from
function contains only the line we expect.

We aren’t able to run this test and watch it fail because the test doesn
the search function doesn’t exist yet! So now we’ll add just enough co
test to compile and run by adding a de�nition of the
returns an empty vector, as shown in Listing 12-16. Then the test shou
fail because an empty vector doesn’t match a vector containing the lin
"safe, fast, productive."

Filename: src/lib.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn one_result() {

let query = "duct";
let contents = "\

Rust:
safe, fast, productive.
Pick three.";

assert_eq!(
vec!["safe, fast, productive."

 search(query, contents)
);
 }
}

Listing 12-16: De�ning just enough of the search

Notice that we need an explicit lifetime 'a de�ned in the signature of
used with the contents argument and the return value. Recall in Cha
lifetime parameters specify which argument lifetime is connected to th
the return value. In this case, we indicate that the returned vector sho
string slices that reference slices of the argument
argument query).

In other words, we tell Rust that the data returned by the
long as the data passed into the search function in the
important! The data referenced by a slice needs to be valid for the refe
valid; if the compiler assumes we’re making string slices of
contents , it will do its safety checking incorrectly.

If we forget the lifetime annotations and try to compile this function, w
error:

Rust can’t possibly know which of the two arguments we need, so we
Because contents is the argument that contains all of our text and w
the parts of that text that match, we know contents
connected to the return value using the lifetime syntax.

Other programming languages don’t require you to connect argumen
values in the signature. So although this might seem strange, it will ge
time. You might want to compare this example with the “Validating Re
Lifetimes” section in Chapter 10.

Now let’s run the test:

fn search<'a>(query: &str, contents: &'a str
vec![]

}

error[E0106]: missing lifetime specifier
 --> src/lib.rs:5:51
 |
5 | fn search(query: &str, contents: &str) -> Vec<&str> {
 | ^ exp
parameter
 |
 = help: this function's return type contains a borrowed v
 signature does not say whether it is borrowed from `query

Great, the test fails, exactly as we expected. Let’s get the test to pass!

Writing Code to Pass the Test

Currently, our test is failing because we always return an empty vecto
implement search , our program needs to follow these steps:

Iterate through each line of the contents.
Check whether the line contains our query string.
If it does, add it to the list of values we’re returning.
If it doesn’t, do nothing.
Return the list of results that match.

Let’s work through each step, starting with iterating through lines.

Iterating Through Lines with the lines Method

Rust has a helpful method to handle line-by-line iteration of strings, co
named lines , that works as shown in Listing 12-17. Note this won’t c

$ cargo test
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
--warnings--
 Finished dev [unoptimized + debuginfo] target(s) in 0.4
 Running target/debug/deps/minigrep-abcabcabc

running 1 test
test tests::one_result ... FAILED

failures:

---- tests::one_result stdout ----
 thread 'tests::one_result' panicked at 'assertion f
==
right)`
left: `["safe, fast, productive."]`,
right: `[]`)', src/lib.rs:48:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
 tests::one_result

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measu
out

error: test failed, to rerun pass '--lib'

Filename: src/lib.rs

Listing 12-17: Iterating through each line in contents

The lines method returns an iterator. We’ll talk about iterators in de
13, but recall that you saw this way of using an iterator in Listing 3-5, w
for loop with an iterator to run some code on each item in a collectio

Searching Each Line for the Query

Next, we’ll check whether the current line contains our query string. Fo
strings have a helpful method named contains
contains method in the search function, as shown in Listing 12-18.

won’t compile yet:

Filename: src/lib.rs

Listing 12-18: Adding functionality to see whether the line contains the
query

Storing Matching Lines

We also need a way to store the lines that contain our query string. Fo
make a mutable vector before the for loop and call the
line in the vector. After the for loop, we return the vector, as show

12-19:

Filename: src/lib.rs

fn search<'a>(query: &str, contents: &'a str
for line in contents.lines() {

// do something with line
 }
}

fn search<'a>(query: &str, contents: &'a str
for line in contents.lines() {

if line.contains(query) {
// do something with line

 }
 }
}

Listing 12-19: Storing the lines that match so we can return them

Now the search function should return only the lines that contain
test should pass. Let’s run the test:

Our test passed, so we know it works!

At this point, we could consider opportunities for refactoring the impl
the search function while keeping the tests passing to maintain the sa
functionality. The code in the search function isn’t too bad, but it does
advantage of some useful features of iterators. We’ll return to this exa
Chapter 13, where we’ll explore iterators in detail, and look at how to

Using the search Function in the run Function

Now that the search function is working and tested, we need to call
our run function. We need to pass the config.query
run reads from the �le to the search function. Then

returned from search :

Filename: src/lib.rs

fn search<'a>(query: &str, contents: &'a str
let mut results = Vec::new();

for line in contents.lines() {
if line.contains(query) {

 results.push(line);
 }
 }

 results
}

$ cargo test
--snip--
running 1 test
test tests::one_result ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

We’re still using a for loop to return each line from

Now the entire program should work! Let’s try it out, �rst with a word
return exactly one line from the Emily Dickinson poem, “frog”:

Cool! Now let’s try a word that will match multiple lines, like “body”:

And �nally, let’s make sure that we don’t get any lines when we search
isn’t anywhere in the poem, such as “monomorphization”:

Excellent! We’ve built our own mini version of a classic tool and learne
how to structure applications. We’ve also learned a bit about �le input
lifetimes, testing, and command line parsing.

To round out this project, we’ll brie�y demonstrate how to work with e
variables and how to print to standard error, both of which are useful
writing command line programs.

pub fn run(config: Config) -> Result<(), Box
let contents = fs::read_to_string(config.filename)?;

for line in search(&config.query, &contents) {
println!("{}", line);

 }

Ok(())
}

$ cargo run frog poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.3
 Running `target/debug/minigrep frog poem.txt`
How public, like a frog

$ cargo run body poem.txt
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/minigrep body poem.txt`
I’m nobody! Who are you?
Are you nobody, too?
How dreary to be somebody!

$ cargo run monomorphization poem.txt
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/minigrep monomorphization poem.t

Working with Environment Variables

We’ll improve minigrep by adding an extra feature: an option for case
searching that the user can turn on via an environment variable. We c
feature a command line option and require that users enter it each tim
to apply, but instead we’ll use an environment variable. Doing so allow
set the environment variable once and have all their searches be case
that terminal session.

Writing a Failing Test for the Case-Insensitive

We want to add a new search_case_insensitive
environment variable is on. We’ll continue to follow the TDD process, s
is again to write a failing test. We’ll add a new test for the new
search_case_insensitive function and rename our old test from
case_sensitive to clarify the di�erences between the two tests, as sh

12-20:

Filename: src/lib.rs

Listing 12-20: Adding a new failing test for the case-insensitive functio
add

Note that we’ve edited the old test’s contents too. We’ve added a new
text "Duct tape." using a capital D that shouldn’t match the query “d
searching in a case-sensitive manner. Changing the old test in this way
that we don’t accidentally break the case-sensitive search functionality
already implemented. This test should pass now and should continue
work on the case-insensitive search.

The new test for the case-insensitive search uses
search_case_insensitive function we’re about to add, the query

match the line containing "Rust:" with a capital R and match the line

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn case_sensitive() {

let query = "duct";
let contents = "\

Rust:
safe, fast, productive.
Pick three.
Duct tape.";

assert_eq!(
vec!["safe, fast, productive."

 search(query, contents)
);
 }

#[test]
fn case_insensitive() {

let query = "rUsT";
let contents = "\

Rust:
safe, fast, productive.
Pick three.
Trust me.";

assert_eq!(
vec!["Rust:", "Trust me."],

 search_case_insensitive(query, contents)
);
 }
}

even though both have di�erent casing than the query. This is our fail
will fail to compile because we haven’t yet de�ned the
function. Feel free to add a skeleton implementation that always retur
vector, similar to the way we did for the search
test compile and fail.

Implementing the search_case_insensitive

The search_case_insensitive function, shown in Listing 12-21, will b
same as the search function. The only di�erence is that we’ll lowerca
and each line so whatever the case of the input arguments, they’ll b
when we check whether the line contains the query.

Filename: src/lib.rs

Listing 12-21: De�ning the search_case_insensitive
and the line before comparing them

First, we lowercase the query string and store it in a shadowed variab
same name. Calling to_lowercase on the query is necessary so no m
the user’s query is "rust" , "RUST" , "Rust" , or
were "rust" and be insensitive to the case.

Note that query is now a String rather than a string slice, because c
to_lowercase creates new data rather than referencing existing data

is "rUsT" , as an example: that string slice doesn’t contain a lowercase
to use, so we have to allocate a new String containing
query as an argument to the contains method now, we need to add

because the signature of contains is de�ned to take a string slice.

fn search_case_insensitive<'a>(query: &str
str> {

let query = query.to_lowercase();
let mut results = Vec::new();

for line in contents.lines() {
if line.to_lowercase().contains(&query) {

 results.push(line);
 }
 }

 results
}

Next, we add a call to to_lowercase on each line
contains query to lowercase all characters. Now that we’ve converted
query to lowercase, we’ll �nd matches no matter what the case of the

Let’s see if this implementation passes the tests:

Great! They passed. Now, let’s call the new search_case_insensiti
the run function. First, we’ll add a con�guration option to the
between case-sensitive and case-insensitive search. Adding this �eld w
compiler errors since we aren’t initializing this �eld anywhere yet:

Filename: src/lib.rs

Note that we added the case_sensitive �eld that holds a Boolean. N
the run function to check the case_sensitive �eld’s value and use t
whether to call the search function or the search_case_insensiti
shown in Listing 12-22. Note this still won’t compile yet:

Filename: src/lib.rs

running 2 tests
test tests::case_insensitive ... ok
test tests::case_sensitive ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured;

pub struct Config {
pub query: String,
pub filename: String,
pub case_sensitive: bool,

}

Listing 12-22: Calling either search or search_case_insensitive
in config.case_sensitive

Finally, we need to check for the environment variable. The functions
environment variables are in the env module in the standard library,
bring that module into scope with a use std::env;
we’ll use the var method from the env module to check for an envir
named CASE_INSENSITIVE , as shown in Listing 12-23:

Filename: src/lib.rs

Listing 12-23: Checking for an environment variable named

pub fn run(config: Config) -> Result<(), Box
let contents = fs::read_to_string(config.filename)?;

let results = if config.case_sensitive {
 search(&config.query, &contents)
 } else {
 search_case_insensitive(&config.query, &contents)
 };

for line in results {
println!("{}", line);

 }

Ok(())
}

use std::env;

// --snip--

impl Config {
pub fn new(args: &[String]) -> Result<Config, &

if args.len() < 3 {
return Err("not enough arguments"

 }

let query = args[1].clone();
let filename = args[2].clone();

let case_sensitive = env::var("CASE_INSENSITIVE"

Ok(Config { query, filename, case_sensitive })
 }
}

Here, we create a new variable case_sensitive
env::var function and pass it the name of the

variable. The env::var method returns a Result
variant that contains the value of the environment variable if the envir
variable is set. It will return the Err variant if the environment variabl

We’re using the is_err method on the Result
therefore unset, which means it should do a case-sensitive search. If th
CASE_INSENSITIVE environment variable is set to anything,

and the program will perform a case-insensitive search. We don’t care
of the environment variable, just whether it’s set or unset, so we’re ch
rather than using unwrap , expect , or any of the other methods we’ve
Result .

We pass the value in the case_sensitive variable to the
function can read that value and decide whether to call
search_case_insensitive , as we implemented in Listing 12-22.

Let’s give it a try! First, we’ll run our program without the environment
and with the query to , which should match any line that contains the
lowercase:

Looks like that still works! Now, let’s run the program with
1 but with the same query to .

If you’re using PowerShell, you will need to set the environment variab
program in two commands rather than one:

We should get lines that contain “to” that might have uppercase letter

$ cargo run to poem.txt
 Compiling minigrep v0.1.0 (file:///projects/minigrep)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/minigrep to poem.txt`
Are you nobody, too?
How dreary to be somebody!

$ $env:CASE_INSENSITIVE=1
$ cargo run to poem.txt

Excellent, we also got lines containing “To”! Our
insensitive searching controlled by an environment variable. Now you
manage options set using either command line arguments or environ

Some programs allow arguments and environment variables for the s
con�guration. In those cases, the programs decide that one or the oth
precedence. For another exercise on your own, try controlling case ins
through either a command line argument or an environment variable
whether the command line argument or the environment variable sho
precedence if the program is run with one set to case sensitive and on
insensitive.

The std::env module contains many more useful features for dealin
environment variables: check out its documentation to see what is ava

Writing Error Messages to Standard Error Instead o
Standard Output

At the moment, we’re writing all of our output to the terminal using th
function. Most terminals provide two kinds of output:
general information and standard error (stderr
enables users to choose to direct the successful output of a program t
print error messages to the screen.

The println! function is only capable of printing to standard output,
use something else to print to standard error.

Checking Where Errors Are Written

First, let’s observe how the content printed by minigrep
standard output, including any error messages we want to write to sta
instead. We’ll do that by redirecting the standard output stream to a �
intentionally causing an error. We won’t redirect the standard error st

$ CASE_INSENSITIVE=1 cargo run to poem.txt
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/minigrep to poem.txt`
Are you nobody, too?
How dreary to be somebody!
To tell your name the livelong day
To an admiring bog!

content sent to standard error will continue to display on the screen.

Command line programs are expected to send error messages to the
stream so we can still see error messages on the screen even if we red
standard output stream to a �le. Our program is not currently well-be
about to see that it saves the error message output to a �le instead!

The way to demonstrate this behavior is by running the program with
�lename, output.txt, that we want to redirect the standard output stre
pass any arguments, which should cause an error:

The > syntax tells the shell to write the contents of standard output t
instead of the screen. We didn’t see the error message we were expec
the screen, so that means it must have ended up in the �le. This is wh
contains:

Yup, our error message is being printed to standard output. It’s much
error messages like this to be printed to standard error so only data fr
run ends up in the �le. We’ll change that.

Printing Errors to Standard Error

We’ll use the code in Listing 12-24 to change how error messages are
Because of the refactoring we did earlier in this chapter, all the code t
messages is in one function, main . The standard library provides the
macro that prints to the standard error stream, so let’s change the two
were calling println! to print errors to use eprintln!

Filename: src/main.rs

$ cargo run > output.txt

Problem parsing arguments: not enough arguments

Listing 12-24: Writing error messages to standard error instead of stan
using eprintln!

After changing println! to eprintln! , let’s run the program again in
without any arguments and redirecting standard output with

Now we see the error onscreen and output.txt contains nothing, which
we expect of command line programs.

Let’s run the program again with arguments that don’t cause an error
standard output to a �le, like so:

We won’t see any output to the terminal, and output.txt

Filename: output.txt

This demonstrates that we’re now using standard output for successfu
standard error for error output as appropriate.

Summary

This chapter recapped some of the major concepts you’ve learned so

fn main() {
let args: Vec<String> = env::args().collect();

let config = Config::new(&args).unwrap_or_else(|err| {
 eprintln!("Problem parsing arguments: {}"
 process::exit(1);
 });

if let Err(e) = minigrep::run(config) {
 eprintln!("Application error: {}", e);

 process::exit(1);
 }
}

$ cargo run > output.txt
Problem parsing arguments: not enough arguments

$ cargo run to poem.txt > output.txt

Are you nobody, too?
How dreary to be somebody!

how to perform common I/O operations in Rust. By using command li
�les, environment variables, and the eprintln!
prepared to write command line applications. By using the concepts in
chapters, your code will be well organized, store data e�ectively in the
data structures, handle errors nicely, and be well tested.

Next, we’ll explore some Rust features that were in�uenced by functio
closures and iterators.

Functional Language Features: Iterators
and Closures
Rust’s design has taken inspiration from many existing languages and
one signi�cant in�uence is functional programming
often includes using functions as values by passing them in argument
them from other functions, assigning them to variables for later execu
forth.

In this chapter, we won’t debate the issue of what functional program
but will instead discuss some features of Rust that are similar to featu
languages often referred to as functional.

More speci�cally, we’ll cover:

Closures, a function-like construct you can store in a variable
Iterators, a way of processing a series of elements
How to use these two features to improve the I/O project in Cha
The performance of these two features (Spoiler alert: they’re fast
might think!)

Other Rust features, such as pattern matching and enums, which we’v
other chapters, are in�uenced by the functional style as well. Masterin
iterators is an important part of writing idiomatic, fast Rust code, so w
entire chapter to them.

Closures: Anonymous Functions that Can Capture
Their Environment

Rust’s closures are anonymous functions you can save in a variable or
arguments to other functions. You can create the closure in one place

the closure to evaluate it in a di�erent context. Unlike functions, closu
values from the scope in which they’re called. We’ll demonstrate how
features allow for code reuse and behavior customization.

Creating an Abstraction of Behavior with Closures

Let’s work on an example of a situation in which it’s useful to store a c
executed later. Along the way, we’ll talk about the syntax of closures, t
and traits.

Consider this hypothetical situation: we work at a startup that’s makin
generate custom exercise workout plans. The backend is written in Ru
algorithm that generates the workout plan takes into account many fa
the app user’s age, body mass index, exercise preferences, recent wor
intensity number they specify. The actual algorithm used isn’t importa
example; what’s important is that this calculation takes a few seconds
this algorithm only when we need to and only call it once so we don’t m
wait more than necessary.

We’ll simulate calling this hypothetical algorithm with the function
simulated_expensive_calculation shown in Listing 13-1, which will p
calculating slowly... , wait for two seconds, and then return whate

passed in:

Filename: src/main.rs

Listing 13-1: A function to stand in for a hypothetical calculation that t
seconds to run

Next is the main function, which contains the parts of the workout ap
this example. This function represents the code that the app will call w
for a workout plan. Because the interaction with the app’s frontend isn
the use of closures, we’ll hardcode values representing inputs to our p
print the outputs.

use std::thread;
use std::time::Duration;

fn simulated_expensive_calculation(intensity:
println!("calculating slowly...");

 thread::sleep(Duration::from_secs(2));
 intensity
}

The required inputs are these:

An intensity number from the user, which is speci�ed when they
workout to indicate whether they want a low-intensity workout o
intensity workout
A random number that will generate some variety in the workou

The output will be the recommended workout plan. Listing 13-2 show
function we’ll use:

Filename: src/main.rs

Listing 13-2: A main function with hardcoded values to simulate user
random number generation

We’ve hardcoded the variable simulated_user_specified_value
variable simulated_random_number as 7 for simplicity’s sake; in an act
we’d get the intensity number from the app frontend, and we’d use th
generate a random number, as we did in the Guessing Game example
The main function calls a generate_workout function with the simula
values.

Now that we have the context, let’s get to the algorithm. The function
generate_workout in Listing 13-3 contains the business logic of the ap

most concerned with in this example. The rest of the code changes in
will be made to this function.

Filename: src/main.rs

fn main() {
let simulated_user_specified_value = 10
let simulated_random_number = 7;

 generate_workout(
 simulated_user_specified_value,
 simulated_random_number
);
}

Listing 13-3: The business logic that prints the workout plans based on
calls to the simulated_expensive_calculation function

The code in Listing 13-3 has multiple calls to the slow calculation funct
if block calls simulated_expensive_calculation
else doesn’t call it at all, and the code inside the second

The desired behavior of the generate_workout function is to �rst che
user wants a low-intensity workout (indicated by a number less than 2
intensity workout (a number of 25 or greater).

Low-intensity workout plans will recommend a number of push-ups a
on the complex algorithm we’re simulating.

If the user wants a high-intensity workout, there’s some additional log
the random number generated by the app happens to be 3, the app w
a break and hydration. If not, the user will get a number of minutes of
on the complex algorithm.

This code works the way the business wants it to now, but let’s say the
team decides that we need to make some changes to the way we call
simulated_expensive_calculation function in the future. To simplify

when those changes happen, we want to refactor this code so it calls t
simulated_expensive_calculation function only once. We also want

where we’re currently unnecessarily calling the function twice without

fn generate_workout(intensity: u32, random_number:
if intensity < 25 {

println!(
"Today, do {} pushups!",

 simulated_expensive_calculation(intensity)
);

println!(
"Next, do {} situps!",

 simulated_expensive_calculation(intensity)
);
 } else {

if random_number == 3 {
println!("Take a break today! Remember to stay

 } else {
println!(

"Today, run for {} minutes!"
 simulated_expensive_calculation(intensity)
);
 }
 }
}

other calls to that function in the process. That is, we don’t want to cal
isn’t needed, and we still want to call it only once.

Refactoring Using Functions

We could restructure the workout program in many ways. First, we’ll t
duplicated call to the simulated_expensive_calculation
shown in Listing 13-4:

Filename: src/main.rs

Listing 13-4: Extracting the calls to simulated_expensive_calculat
and storing the result in the expensive_result variable

This change uni�es all the calls to simulated_expensive_calculati
problem of the �rst if block unnecessarily calling the function twice.
we’re now calling this function and waiting for the result in all cases, w
the inner if block that doesn’t use the result value at all.

We want to de�ne code in one place in our program, but only
we actually need the result. This is a use case for closures!

fn generate_workout(intensity: u32, random_number:
let expensive_result =

 simulated_expensive_calculation(intensity);

if intensity < 25 {
println!(

"Today, do {} pushups!",
 expensive_result
);

println!(
"Next, do {} situps!",

 expensive_result
);
 } else {

if random_number == 3 {
println!("Take a break today! Remember to stay

 } else {
println!(

"Today, run for {} minutes!"
 expensive_result
);
 }
 }
}

Refactoring with Closures to Store Code

Instead of always calling the simulated_expensive_calculation
if blocks, we can de�ne a closure and store the

storing the result of the function call, as shown in Listing 13-5. We can
the whole body of simulated_expensive_calculation
introducing here:

Filename: src/main.rs

Listing 13-5: De�ning a closure and storing it in the

The closure de�nition comes after the = to assign it to the variable
expensive_closure . To de�ne a closure, we start with a pair of vertica

inside which we specify the parameters to the closure; this syntax was
because of its similarity to closure de�nitions in Smalltalk and Ruby. T
one parameter named num : if we had more than one parameter, we w
them with commas, like |param1, param2| .

After the parameters, we place curly brackets that hold the body of th
—these are optional if the closure body is a single expression. The end
after the curly brackets, needs a semicolon to complete the
returned from the last line in the closure body (
the closure when it’s called, because that line doesn’t end in a semicol
function bodies.

Note that this let statement means expensive_closure
anonymous function, not the resulting value of calling the anonymous
that we’re using a closure because we want to de�ne the code to call a
store that code, and call it at a later point; the code we want to call is n
expensive_closure .

With the closure de�ned, we can change the code in the
to execute the code and get the resulting value. We call a closure like w
function: we specify the variable name that holds the closure de�nitio
with parentheses containing the argument values we want to use, as s
13-6:

Filename: src/main.rs

let expensive_closure = |num| {
println!("calculating slowly...");

 thread::sleep(Duration::from_secs(2));
 num
};

Listing 13-6: Calling the expensive_closure we’ve de�ned

Now the expensive calculation is called in only one place, and we’re on
that code where we need the results.

However, we’ve reintroduced one of the problems from Listing 13-3: w
the closure twice in the �rst if block, which will call the expensive co
make the user wait twice as long as they need to. We could �x this pro
creating a variable local to that if block to hold the result of calling th
closures provide us with another solution. We’ll talk about that solutio
�rst let’s talk about why there aren’t type annotations in the closure d
traits involved with closures.

Closure Type Inference and Annotation

Closures don’t require you to annotate the types of the parameters or
value like fn functions do. Type annotations are required on function
they’re part of an explicit interface exposed to your users. De�ning thi

fn generate_workout(intensity: u32, random_number:
let expensive_closure = |num| {

println!("calculating slowly...");
 thread::sleep(Duration::from_secs(
 num
 };

if intensity < 25 {
println!(

"Today, do {} pushups!",
 expensive_closure(intensity)
);

println!(
"Next, do {} situps!",

 expensive_closure(intensity)
);
 } else {

if random_number == 3 {
println!("Take a break today! Remember to stay

 } else {
println!(

"Today, run for {} minutes!"
 expensive_closure(intensity)
);
 }
 }
}

rigidly is important for ensuring that everyone agrees on what types o
function uses and returns. But closures aren’t used in an exposed inte
they’re stored in variables and used without naming them and exposi
users of our library.

Closures are usually short and relevant only within a narrow context r
any arbitrary scenario. Within these limited contexts, the compiler is r
infer the types of the parameters and the return type, similar to how i
the types of most variables.

Making programmers annotate the types in these small, anonymous f
be annoying and largely redundant with the information the compiler
available.

As with variables, we can add type annotations if we want to increase
clarity at the cost of being more verbose than is strictly necessary. Ann
types for the closure we de�ned in Listing 13-5 would look like the de�
Listing 13-7:

Filename: src/main.rs

Listing 13-7: Adding optional type annotations of the parameter and r
types in the closure

With type annotations added, the syntax of closures looks more simila
of functions. The following is a vertical comparison of the syntax for th
function that adds 1 to its parameter and a closure that has the same
added some spaces to line up the relevant parts. This illustrates how c
similar to function syntax except for the use of pipes and the amount
optional:

The �rst line shows a function de�nition, and the second line shows a
closure de�nition. The third line removes the type annotations from th
de�nition, and the fourth line removes the brackets, which are option

let expensive_closure = |num: u32| -> u32 {
println!("calculating slowly...");

 thread::sleep(Duration::from_secs(2));
 num
};

fn add_one_v1 (x: u32) -> u32 { x + 1 }
let add_one_v2 = |x: u32| -> u32 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| x + 1 ;

closure body has only one expression. These are all valid de�nitions th
the same behavior when they’re called.

Closure de�nitions will have one concrete type inferred for each of the
and for their return value. For instance, Listing 13-8 shows the de�niti
closure that just returns the value it receives as a parameter. This clos
useful except for the purposes of this example. Note that we haven’t a
annotations to the de�nition: if we then try to call the closure twice, us
as an argument the �rst time and a u32 the second time, we’ll get an

Filename: src/main.rs

Listing 13-8: Attempting to call a closure whose types are inferred with
types

The compiler gives us this error:

The �rst time we call example_closure with the
the type of x and the return type of the closure to be
locked in to the closure in example_closure , and we get a type error i
di�erent type with the same closure.

Storing Closures Using Generic Parameters and the

Let’s return to our workout generation app. In Listing 13-6, our code w
the expensive calculation closure more times than it needed to. One o
this issue is to save the result of the expensive closure in a variable fo
the variable in each place we need the result, instead of calling the clo
However, this method could result in a lot of repeated code.

let example_closure = |x| x;

let s = example_closure(String::from("hello"
let n = example_closure(5);

error[E0308]: mismatched types
 --> src/main.rs
 |
 | let n = example_closure(5);
 | ^ expected struct `std::string:
 integral variable
 |
 = note: expected type `std::string::String`
 found type `{integer}`

Fortunately, another solution is available to us. We can create a struct
the closure and the resulting value of calling the closure. The struct wi
closure only if we need the resulting value, and it will cache the resulti
rest of our code doesn’t have to be responsible for saving and reusing
may know this pattern as memoization or lazy evaluation

To make a struct that holds a closure, we need to specify the type of th
because a struct de�nition needs to know the types of each of its �eld
instance has its own unique anonymous type: that is, even if two closu
same signature, their types are still considered di�erent. To de�ne str
function parameters that use closures, we use generics and trait boun
discussed in Chapter 10.

The Fn traits are provided by the standard library. All closures implem
one of the traits: Fn , FnMut , or FnOnce . We’ll discuss the di�erence b
traits in the “Capturing the Environment with Closures” section; in this
can use the Fn trait.

We add types to the Fn trait bound to represent the types of the para
return values the closures must have to match this trait bound. In this
closure has a parameter of type u32 and returns a
specify is Fn(u32) -> u32 .

Listing 13-9 shows the de�nition of the Cacher struct that holds a clo
optional result value:

Filename: src/main.rs

Listing 13-9: De�ning a Cacher struct that holds a closure in
optional result in value

The Cacher struct has a calculation �eld of the generic type
on T specify that it’s a closure by using the Fn trait. Any closure we w
the calculation �eld must have one u32 parameter (speci�ed withi
parentheses after Fn) and must return a u32 (speci�ed after the

Note: Functions can implement all three of the

struct Cacher<T>
where T: Fn(u32) -> u32

{
 calculation: T,
 value: Option<u32>,
}

do doesn’t require capturing a value from the environment, we can
function rather than a closure where we need something that imple
Fn trait.

The value �eld is of type Option<u32> . Before we execute the closur
None . When code using a Cacher asks for the result

execute the closure at that time and store the result within a
value �eld. Then if the code asks for the result of the closure again, i

executing the closure again, the Cacher will return the result held in t
variant.

The logic around the value �eld we’ve just described is de�ned in Lis

Filename: src/main.rs

Listing 13-10: The caching logic of Cacher

We want Cacher to manage the struct �elds’ values rather than lettin
code potentially change the values in these �elds directly, so these �e

The Cacher::new function takes a generic parameter
having the same trait bound as the Cacher struct. Then
Cacher instance that holds the closure speci�ed in the
None value in the value �eld, because we haven’t executed the closu

impl<T> Cacher<T>
where T: Fn(u32) -> u32

{
fn new(calculation: T) -> Cacher<T> {

 Cacher {
 calculation,
 value: None,
 }
 }

fn value(&mut self, arg: u32) -> u32 {
match self.value {

Some(v) => v,
None => {

let v = (self.calculation)(arg);
self.value = Some(v);

 v
 },
 }
 }
}

When the calling code needs the result of evaluating the closure, inste
closure directly, it will call the value method. This method checks wh
already have a resulting value in self.value in a
within the Some without executing the closure again.

If self.value is None , the code calls the closure stored in
the result in self.value for future use, and returns the value as well.

Listing 13-11 shows how we can use this Cacher
generate_workout from Listing 13-6:

Filename: src/main.rs

Listing 13-11: Using Cacher in the generate_workout
caching logic

Instead of saving the closure in a variable directly, we save a new insta
that holds the closure. Then, in each place we want the result, we call
method on the Cacher instance. We can call the
want, or not call it at all, and the expensive calculation will be run a ma

fn generate_workout(intensity: u32, random_number:
let mut expensive_result = Cacher::new(|num| {

println!("calculating slowly...");
 thread::sleep(Duration::from_secs(
 num
 });

if intensity < 25 {
println!(

"Today, do {} pushups!",
 expensive_result.value(intensity)
);

println!(
"Next, do {} situps!",

 expensive_result.value(intensity)
);
 } else {

if random_number == 3 {
println!("Take a break today! Remember to stay

 } else {
println!(

"Today, run for {} minutes!"
 expensive_result.value(intensity)
);
 }
 }
}

Try running this program with the main function from Listing 13-2. Ch
in the simulated_user_specified_value and simulated_random_n
verify that in all the cases in the various if and
calculating slowly... appears only once and only when needed. T

takes care of the logic necessary to ensure we aren’t calling the expen
more than we need to so generate_workout can focus on the busines

Limitations of the Cacher Implementation

Caching values is a generally useful behavior that we might want to us
of our code with di�erent closures. However, there are two problems
implementation of Cacher that would make reusing it in di�erent con

The �rst problem is that a Cacher instance assumes it will always get
for the parameter arg to the value method. That is, this test of

This test creates a new Cacher instance with a closure that returns th
into it. We call the value method on this Cacher
and then an arg value of 2, and we expect the call to
should return 2.

Run this test with the Cacher implementation in Listing 13-9 and Listi
the test will fail on the assert_eq! with this message:

The problem is that the �rst time we called c.value
saved Some(1) in self.value . Thereafter, no matter what we pass in
method, it will always return 1.

Try modifying Cacher to hold a hash map rather than a single value. T

#[test]
fn call_with_different_values() {

let mut c = Cacher::new(|a| a);

let v1 = c.value(1);
let v2 = c.value(2);

assert_eq!(v2, 2);
}

thread 'call_with_different_values' panicked at 'assertion
== right)`
 left: `1`,
 right: `2`', src/main.rs

hash map will be the arg values that are passed in, and the values of
will be the result of calling the closure on that key. Instead of looking a
self.value directly has a Some or a None value, the
arg in the hash map and return the value if it’s present. If it’s not pres
Cacher will call the closure and save the resulting value in the hash m

with its arg value.

The second problem with the current Cacher implementation is that
closures that take one parameter of type u32 and return a
cache the results of closures that take a string slice and return
example. To �x this issue, try introducing more generic parameters to
�exibility of the Cacher functionality.

Capturing the Environment with Closures

In the workout generator example, we only used closures as inline ano
functions. However, closures have an additional capability that functio
they can capture their environment and access variables from the sco
they’re de�ned.

Listing 13-12 has an example of a closure stored in the
the x variable from the closure’s surrounding environment:

Filename: src/main.rs

Listing 13-12: Example of a closure that refers to a variable in its enclo

Here, even though x is not one of the parameters of
closure is allowed to use the x variable that’s de�ned in the same sco
equal_to_x is de�ned in.

We can’t do the same with functions; if we try with the following exam
won’t compile:

Filename: src/main.rs

fn main() {
let x = 4;

let equal_to_x = |z| z == x;

let y = 4;

assert!(equal_to_x(y));
}

We get an error:

The compiler even reminds us that this only works with closures!

When a closure captures a value from its environment, it uses memor
values for use in the closure body. This use of memory is overhead th
to pay in more common cases where we want to execute code that do
environment. Because functions are never allowed to capture their en
de�ning and using functions will never incur this overhead.

Closures can capture values from their environment in three ways, wh
to the three ways a function can take a parameter: taking ownership,
mutably, and borrowing immutably. These are encoded in the three
follows:

FnOnce consumes the variables it captures from its enclosing sc
the closure’s environment. To consume the captured variables, th
take ownership of these variables and move them into the closu
de�ned. The Once part of the name represents the fact that the
take ownership of the same variables more than once, so it can b
once.
FnMut can change the environment because it mutably borrows
Fn borrows values from the environment immutably.

When you create a closure, Rust infers which trait to use based on how
uses the values from the environment. All closures implement
can all be called at least once. Closures that don’t move the captured v
implement FnMut , and closures that don’t need mutable access to the
variables also implement Fn . In Listing 13-12, the

fn main() {
let x = 4;

fn equal_to_x(z: i32) -> bool { z == x }

let y = 4;

assert!(equal_to_x(y));
}

error[E0434]: can't capture dynamic environment in a fn ite
...
} closure form instead
 --> src/main.rs
 |
4 | fn equal_to_x(z: i32) -> bool { z == x }
 | ^

immutably (so equal_to_x has the Fn trait) because the body of the
needs to read the value in x .

If you want to force the closure to take ownership of the values it uses
environment, you can use the move keyword before the parameter lis
technique is mostly useful when passing a closure to a new thread to
so it’s owned by the new thread.

We’ll have more examples of move closures in Chapter 16 when we ta
concurrency. For now, here’s the code from Listing 13-12 with the
added to the closure de�nition and using vectors instead of integers, b
integers can be copied rather than moved; note that this code will not

Filename: src/main.rs

We receive the following error:

The x value is moved into the closure when the closure is de�ned, be
the move keyword. The closure then has ownership of
use x anymore in the println! statement. Removing
example.

Most of the time when specifying one of the Fn

fn main() {
let x = vec![1, 2, 3];

let equal_to_x = move |z| z == x;

println!("can't use x here: {:?}", x);

let y = vec![1, 2, 3];

assert!(equal_to_x(y));
}

error[E0382]: use of moved value: `x`
 --> src/main.rs:6:40
 |
4 | let equal_to_x = move |z| z == x;
 | -------- value moved (into closure
5 |
6 | println!("can't use x here: {:?}", x);
 | ^ value used her
 |
 = note: move occurs because `x` has type `std::vec::Vec<i
does not
 implement the `Copy` trait

and the compiler will tell you if you need FnMut
the closure body.

To illustrate situations where closures that can capture their environm
as function parameters, let’s move on to our next topic: iterators.

Processing a Series of Items with Iterators

The iterator pattern allows you to perform some task on a sequence o
An iterator is responsible for the logic of iterating over each item and
when the sequence has �nished. When you use iterators, you don’t ha
reimplement that logic yourself.

In Rust, iterators are lazy, meaning they have no e�ect until you call m
consume the iterator to use it up. For example, the code in Listing 13-
iterator over the items in the vector v1 by calling the
This code by itself doesn’t do anything useful.

Listing 13-13: Creating an iterator

Once we’ve created an iterator, we can use it in a variety of ways. In Li
Chapter 3, we used iterators with for loops to execute some code on
although we glossed over what the call to iter did until now.

The example in Listing 13-14 separates the creation of the iterator fro
iterator in the for loop. The iterator is stored in the
iteration takes place at that time. When the for
v1_iter , each element in the iterator is used in one iteration of the lo

prints out each value.

let v1 = vec![1, 2, 3];

let v1_iter = v1.iter();

let v1 = vec![1, 2, 3];

let v1_iter = v1.iter();

for val in v1_iter {
println!("Got: {}", val);

}

Listing 13-14: Using an iterator in a for loop

In languages that don’t have iterators provided by their standard libra
likely write this same functionality by starting a variable at index 0, usi
to index into the vector to get a value, and incrementing the variable v
until it reached the total number of items in the vector.

Iterators handle all that logic for you, cutting down on repetitive code
potentially mess up. Iterators give you more �exibility to use the same
many di�erent kinds of sequences, not just data structures you can in
vectors. Let’s examine how iterators do that.

The Iterator Trait and the next Method

All iterators implement a trait named Iterator that is de�ned in the
library. The de�nition of the trait looks like this:

Notice this de�nition uses some new syntax: type Item
de�ning an associated type with this trait. We’ll talk about associated ty
Chapter 19. For now, all you need to know is that this code says imple
Iterator trait requires that you also de�ne an

used in the return type of the next method. In other words, the
the type returned from the iterator.

The Iterator trait only requires implementors to de�ne one method
method, which returns one item of the iterator at a time wrapped in
iteration is over, returns None .

We can call the next method on iterators directly; Listing 13-15 demo
values are returned from repeated calls to next
vector:

Filename: src/lib.rs

trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;

// methods with default implementations elided
}

Listing 13-15: Calling the next method on an iterator

Note that we needed to make v1_iter mutable: calling the
iterator changes internal state that the iterator uses to keep track of w
sequence. In other words, this code consumes, or uses up, the iterator
next eats up an item from the iterator. We didn’t need to make

when we used a for loop because the loop took ownership of
mutable behind the scenes.

Also note that the values we get from the calls to
the values in the vector. The iter method produces an iterator over
references. If we want to create an iterator that takes ownership of
owned values, we can call into_iter instead of
over mutable references, we can call iter_mut instead of

Methods that Consume the Iterator

The Iterator trait has a number of di�erent methods with default im
provided by the standard library; you can �nd out about these metho
the standard library API documentation for the
methods call the next method in their de�nition, which is why you’re
implement the next method when implementing the

Methods that call next are called consuming adaptors
the iterator. One example is the sum method, which takes ownership
and iterates through the items by repeatedly calling
iterator. As it iterates through, it adds each item to a running total and
total when iteration is complete. Listing 13-16 has a test illustrating a u
method:

Filename: src/lib.rs

#[test]
fn iterator_demonstration() {

let v1 = vec![1, 2, 3];

let mut v1_iter = v1.iter();

assert_eq!(v1_iter.next(), Some(&1));
assert_eq!(v1_iter.next(), Some(&2));
assert_eq!(v1_iter.next(), Some(&3));
assert_eq!(v1_iter.next(), None);

}

Listing 13-16: Calling the sum method to get the total of all items in th

We aren’t allowed to use v1_iter after the call to
of the iterator we call it on.

Methods that Produce Other Iterators

Other methods de�ned on the Iterator trait, known as
to change iterators into di�erent kinds of iterators. You can chain mul
iterator adaptors to perform complex actions in a readable way. But b
iterators are lazy, you have to call one of the consuming adaptor meth
results from calls to iterator adaptors.

Listing 13-17 shows an example of calling the iterator adaptor method
takes a closure to call on each item to produce a new iterator. The clo
creates a new iterator in which each item from the vector has been in
However, this code produces a warning:

Filename: src/main.rs

Listing 13-17: Calling the iterator adaptor map to create a new iterator

The warning we get is this:

#[test]
fn iterator_sum() {

let v1 = vec![1, 2, 3];

let v1_iter = v1.iter();

let total: i32 = v1_iter.sum();

assert_eq!(total, 6);
}

let v1: Vec<i32> = vec![1, 2, 3];

v1.iter().map(|x| x + 1);

The code in Listing 13-17 doesn’t do anything; the closure we’ve speci�
called. The warning reminds us why: iterator adaptors are lazy, and we
consume the iterator here.

To �x this and consume the iterator, we’ll use the
Chapter 12 with env::args in Listing 12-1. This method consumes the
collects the resulting values into a collection data type.

In Listing 13-18, we collect the results of iterating over the iterator tha
from the call to map into a vector. This vector will end up containing e
the original vector incremented by 1.

Filename: src/main.rs

Listing 13-18: Calling the map method to create a new iterator and the
collect method to consume the new iterator and create a vector

Because map takes a closure, we can specify any operation we want to
each item. This is a great example of how closures let you customize s
while reusing the iteration behavior that the Iterator

Using Closures that Capture Their Environment

Now that we’ve introduced iterators, we can demonstrate a common
that capture their environment by using the filter
method on an iterator takes a closure that takes each item from the it
returns a Boolean. If the closure returns true , the value will be includ
iterator produced by filter . If the closure returns

warning: unused `std::iter::Map` which must be used: iterat
lazy
and do nothing unless consumed
 --> src/main.rs:4:5
 |
4 | v1.iter().map(|x| x + 1);
 | ^^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: #[warn(unused_must_use)] on by default

let v1: Vec<i32> = vec![1, 2, 3];

let v2: Vec<_> = v1.iter().map(|x| x + 1).collect();

assert_eq!(v2, vec![2, 3, 4]);

included in the resulting iterator.

In Listing 13-19, we use filter with a closure that captures the
from its environment to iterate over a collection of
return only shoes that are the speci�ed size.

Filename: src/lib.rs

Listing 13-19: Using the filter method with a closure that captures

The shoes_in_my_size function takes ownership of a vector of shoes
as parameters. It returns a vector containing only shoes of the speci�e

In the body of shoes_in_my_size , we call into_iter
ownership of the vector. Then we call filter to adapt that iterator in
iterator that only contains elements for which the closure returns

The closure captures the shoe_size parameter from the environmen

#[derive(PartialEq, Debug)]
struct Shoe {
 size: u32,
 style: String,
}

fn shoes_in_my_size(shoes: Vec<Shoe>, shoe_size:
 shoes.into_iter()
 .filter(|s| s.size == shoe_size)
 .collect()
}

#[test]
fn filters_by_size() {

let shoes = vec![
 Shoe { size: 10, style: String::from(
 Shoe { size: 13, style: String::from(
 Shoe { size: 10, style: String::from(
];

let in_my_size = shoes_in_my_size(shoes,

assert_eq!(
 in_my_size,

vec![
 Shoe { size: 10, style: String
 Shoe { size: 10, style: String
]
);
}

the value with each shoe’s size, keeping only shoes of the size speci�e
collect gathers the values returned by the adapted iterator into a ve

returned by the function.

The test shows that when we call shoes_in_my_size
have the same size as the value we speci�ed.

Creating Our Own Iterators with the Iterator

We’ve shown that you can create an iterator by calling
iter_mut on a vector. You can create iterators from the other collecti

standard library, such as hash map. You can also create iterators that
want by implementing the Iterator trait on your own types. As prev
mentioned, the only method you’re required to provide a de�nition fo
method. Once you’ve done that, you can use all other methods that ha
implementations provided by the Iterator trait!

To demonstrate, let’s create an iterator that will only ever count from
create a struct to hold some values. Then we’ll make this struct into an
implementing the Iterator trait and using the values in that implem

Listing 13-20 has the de�nition of the Counter struct and an associate
to create instances of Counter :

Filename: src/lib.rs

Listing 13-20: De�ning the Counter struct and a
of Counter with an initial value of 0 for count

The Counter struct has one �eld named count
keep track of where we are in the process of iterating from 1 to 5. The
private because we want the implementation of
new function enforces the behavior of always starting new instances w

in the count �eld.

struct Counter {
 count: u32,
}

impl Counter {
fn new() -> Counter {

 Counter { count: 0 }
 }
}

Next, we’ll implement the Iterator trait for our
of the next method to specify what we want to happen when this iter
shown in Listing 13-21:

Filename: src/lib.rs

Listing 13-21: Implementing the Iterator trait on our

We set the associated Item type for our iterator to
return u32 values. Again, don’t worry about associated types yet, we’l
Chapter 19.

We want our iterator to add 1 to the current state, so we initialized
would return 1 �rst. If the value of count is less than 6,
value wrapped in Some , but if count is 6 or higher, our iterator will re

Using Our Counter Iterator’s next Method

Once we’ve implemented the Iterator trait, we have an iterator! List
a test demonstrating that we can use the iterator functionality of our
by calling the next method on it directly, just as we did with the iterat
a vector in Listing 13-15.

Filename: src/lib.rs

impl Iterator for Counter {
type Item = u32;

fn next(&mut self) -> Option<Self::Item> {
self.count += 1;

if self.count < 6 {
Some(self.count)

 } else {
None

 }
 }
}

Listing 13-22: Testing the functionality of the next

This test creates a new Counter instance in the
next repeatedly, verifying that we have implemented the behavior w

iterator to have: returning the values from 1 to 5.

Using Other Iterator Trait Methods

We implemented the Iterator trait by de�ning the
use any Iterator trait method’s default implementations as de�ned
library, because they all use the next method’s functionality.

For example, if for some reason we wanted to take the values produce
instance of Counter , pair them with values produced by another
after skipping the �rst value, multiply each pair together, keep only th
are divisible by 3, and add all the resulting values together, we could d
in the test in Listing 13-23:

Filename: src/lib.rs

Listing 13-23: Using a variety of Iterator trait methods on our

Note that zip produces only four pairs; the theoretical �fth pair
produced because zip returns None when either of its input iterator

#[test]
fn calling_next_directly() {

let mut counter = Counter::new();

assert_eq!(counter.next(), Some(1));
assert_eq!(counter.next(), Some(2));
assert_eq!(counter.next(), Some(3));
assert_eq!(counter.next(), Some(4));
assert_eq!(counter.next(), Some(5));
assert_eq!(counter.next(), None);

}

#[test]
fn using_other_iterator_trait_methods() {

let sum: u32 = Counter::new().zip(Counter::new().skip(
 .map(|(a, b)| a * b)
 .filter(|x| x %
 .sum();

assert_eq!(18, sum);
}

All of these method calls are possible because we speci�ed how the
works, and the standard library provides default implementations for
that call next .

Improving Our I/O Project

With this new knowledge about iterators, we can improve the I/O proj
12 by using iterators to make places in the code clearer and more con
at how iterators can improve our implementation of the
the search function.

Removing a clone Using an Iterator

In Listing 12-6, we added code that took a slice of
instance of the Config struct by indexing into the slice and cloning th
allowing the Config struct to own those values. In Listing 13-24, we’ve
the implementation of the Config::new function as it was in Listing 1

Filename: src/lib.rs

Listing 13-24: Reproduction of the Config::new

At the time, we said not to worry about the ine�cient
remove them in the future. Well, that time is now!

We needed clone here because we have a slice with
parameter args , but the new function doesn’t own
Config instance, we had to clone the values from the

impl Config {
pub fn new(args: &[String]) -> Result<Config, &

if args.len() < 3 {
return Err("not enough arguments"

 }

let query = args[1].clone();
let filename = args[2].clone();

let case_sensitive = env::var("CASE_INSENSITIVE"

Ok(Config { query, filename, case_sensitive })
 }
}

Config so the Config instance can own its values.

With our new knowledge about iterators, we can change the
ownership of an iterator as its argument instead of borrowing a slice.
iterator functionality instead of the code that checks the length of the
indexes into speci�c locations. This will clarify what the
because the iterator will access the values.

Once Config::new takes ownership of the iterator and stops using in
operations that borrow, we can move the String
Config rather than calling clone and making a new allocation.

Using the Returned Iterator Directly

Open your I/O project’s src/main.rs �le, which should look like this:

Filename: src/main.rs

We’ll change the start of the main function that we had in Listing 12-2
in Listing 13-25. This won’t compile until we update

Filename: src/main.rs

Listing 13-25: Passing the return value of env::args

The env::args function returns an iterator! Rather than collecting the
into a vector and then passing a slice to Config::new

fn main() {
let args: Vec<String> = env::args().collect();

let config = Config::new(&args).unwrap_or_else(|err| {
 eprintln!("Problem parsing arguments: {}"
 process::exit(1);
 });

// --snip--
}

fn main() {
let config = Config::new(env::args()).unwrap_or_else(|e

 eprintln!("Problem parsing arguments: {}"
 process::exit(1);
 });

// --snip--
}

of the iterator returned from env::args to Config::new

Next, we need to update the de�nition of Config::new
�le, let’s change the signature of Config::new to look like Listing 13-2
won’t compile because we need to update the function body.

Filename: src/lib.rs

Listing 13-26: Updating the signature of Config::new

The standard library documentation for the env::args
of the iterator it returns is std::env::Args . We’ve updated the signat
Config::new function so the parameter args has the type

of &[String] . Because we’re taking ownership of
by iterating over it, we can add the mut keyword into the speci�cation
parameter to make it mutable.

Using Iterator Trait Methods Instead of Indexing

Next, we’ll �x the body of Config::new . The standard library docume
mentions that std::env::Args implements the
call the next method on it! Listing 13-27 updates the code from Listin
the next method:

Filename: src/lib.rs

impl Config {
pub fn new(mut args: std::env::Args) ->

// --snip--

Listing 13-27: Changing the body of Config::new

Remember that the �rst value in the return value of
program. We want to ignore that and get to the next value, so �rst we
do nothing with the return value. Second, we call
put in the query �eld of Config . If next returns a
the value. If it returns None , it means not enough arguments were giv
return early with an Err value. We do the same thing for the

Making Code Clearer with Iterator Adaptors

We can also take advantage of iterators in the search
which is reproduced here in Listing 13-28 as it was in Listing 12-19:

Filename: src/lib.rs

impl Config {
pub fn new(mut args: std::env::Args) ->

 args.next();

let query = match args.next() {
Some(arg) => arg,
None => return Err("Didn't get a query string"

 };

let filename = match args.next() {
Some(arg) => arg,
None => return Err("Didn't get a file name"

 };

let case_sensitive = env::var("CASE_INSENSITIVE"

Ok(Config { query, filename, case_sensitive })
 }
}

pub fn search<'a>(query: &str, contents: &
let mut results = Vec::new();

for line in contents.lines() {
if line.contains(query) {

 results.push(line);
 }
 }

 results
}

Listing 13-28: The implementation of the search

We can write this code in a more concise way using iterator adaptor m
so also lets us avoid having a mutable intermediate
programming style prefers to minimize the amount of mutable state t
clearer. Removing the mutable state might enable a future enhancem
searching happen in parallel, because we wouldn’t have to manage co
to the results vector. Listing 13-29 shows this change:

Filename: src/lib.rs

Listing 13-29: Using iterator adaptor methods in the implementation o
function

Recall that the purpose of the search function is to return all lines in
contain the query . Similar to the filter example in Listing 13-19, th
filter adaptor to keep only the lines that line.contains(query)

We then collect the matching lines into another vector with
Feel free to make the same change to use iterator methods in the
search_case_insensitive function as well.

The next logical question is which style you should choose in your own
the original implementation in Listing 13-28 or the version using iterat
13-29. Most Rust programmers prefer to use the iterator style. It’s a bi
the hang of at �rst, but once you get a feel for the various iterator ada
they do, iterators can be easier to understand. Instead of �ddling with
of looping and building new vectors, the code focuses on the high-leve
the loop. This abstracts away some of the commonplace code so it’s e
concepts that are unique to this code, such as the �ltering condition e
the iterator must pass.

But are the two implementations truly equivalent? The intuitive assum
that the more low-level loop will be faster. Let’s talk about performanc

Comparing Performance: Loops vs. Iterators

To determine whether to use loops or iterators, you need to know wh

pub fn search<'a>(query: &str, contents: &
 contents.lines()
 .filter(|line| line.contains(query))
 .collect()
}

our search functions is faster: the version with an explicit
with iterators.

We ran a benchmark by loading the entire contents of
Holmes by Sir Arthur Conan Doyle into a String
contents. Here are the results of the benchmark on the version of
for loop and the version using iterators:

The iterator version was slightly faster! We won’t explain the benchma
because the point is not to prove that the two versions are equivalent
general sense of how these two implementations compare performan

For a more comprehensive benchmark, you should check using variou
various sizes as the contents , di�erent words and words of di�erent
query , and all kinds of other variations. The point is this: iterators, alt

level abstraction, get compiled down to roughly the same code as if yo
lower-level code yourself. Iterators are one of Rust’s
we mean using the abstraction imposes no additional runtime overhe
analogous to how Bjarne Stroustrup, the original designer and implem
de�nes zero-overhead in “Foundations of C++” (2012):

In general, C++ implementations obey the zero-overhead principle:
don’t use, you don’t pay for. And further: What you do use, you cou
code any better.

As another example, the following code is taken from an audio decod
algorithm uses the linear prediction mathematical operation to estima
based on a linear function of the previous samples. This code uses an
to do some math on three variables in scope: a
coefficients , and an amount by which to shift data in

the variables within this example but not given them any values; altho
doesn’t have much meaning outside of its context, it’s still a concise, re
example of how Rust translates high-level ideas to low-level code.

test bench_search_for ... bench: 19,620,300 ns/iter (+/-
test bench_search_iter ... bench: 19,234,900 ns/iter (+/-

To calculate the value of prediction , this code iterates through each
in coefficients and uses the zip method to pair the coe�cient valu
previous 12 values in buffer . Then, for each pair, we multiply the valu
sum all the results, and shift the bits in the sum

Calculations in applications like audio decoders often prioritize perfor
highly. Here, we’re creating an iterator, using two adaptors, and then c
value. What assembly code would this Rust code compile to? Well, as o
compiles down to the same assembly you’d write by hand. There’s no
corresponding to the iteration over the values in
there are 12 iterations, so it “unrolls” the loop. Unrolling
removes the overhead of the loop controlling code and instead gener
code for each iteration of the loop.

All of the coe�cients get stored in registers, which means accessing th
fast. There are no bounds checks on the array access at runtime. All th
optimizations that Rust is able to apply make the resulting code extrem
Now that you know this, you can use iterators and closures without fe
code seem like it’s higher level but don’t impose a runtime performan
doing so.

Summary

Closures and iterators are Rust features inspired by functional progra
language ideas. They contribute to Rust’s capability to clearly express
at low-level performance. The implementations of closures and iterato
runtime performance is not a�ected. This is part of Rust’s goal to striv
zero-cost abstractions.

Now that we’ve improved the expressiveness of our I/O project, let’s lo
more features of cargo that will help us share the project with the wo

let buffer: &mut [i32];
let coefficients: [i64; 12];
let qlp_shift: i16;

for i in 12..buffer.len() {
let prediction = coefficients.iter()

 .zip(&buffer[i -
 .map(|(&c, &s)| c * s
 .sum::<i64

let delta = buffer[i];
 buffer[i] = prediction as i32 + delta;
}

More About Cargo and Crates.io
So far we’ve used only the most basic features of Cargo to build, run, a
code, but it can do a lot more. In this chapter, we’ll discuss some of its
advanced features to show you how to do the following:

Customize your build through release pro�les
Publish libraries on crates.io
Organize large projects with workspaces
Install binaries from crates.io
Extend Cargo using custom commands

Cargo can do even more than what we cover in this chapter, so for a f
of all its features, see its documentation.

Customizing Builds with Release Pro�les

In Rust, release pro�les are prede�ned and customizable pro�les with
con�gurations that allow a programmer to have more control over va
for compiling code. Each pro�le is con�gured independently of the oth

Cargo has two main pro�les: the dev pro�le Cargo uses when you run
and the release pro�le Cargo uses when you run
pro�le is de�ned with good defaults for development, and the
good defaults for release builds.

These pro�le names might be familiar from the output of your builds:

The dev and release shown in this build output indicate that the co
di�erent pro�les.

Cargo has default settings for each of the pro�les that apply when the
[profile.*] sections in the project’s Cargo.toml

sections for any pro�le you want to customize, you can override any s
default settings. For example, here are the default values for the
for the dev and release pro�les:

$ cargo build
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
$ cargo build --release
 Finished release [optimized] target(s) in 0.0 secs

Filename: Cargo.toml

The opt-level setting controls the number of optimizations Rust will
code, with a range of 0 to 3. Applying more optimizations extends com
if you’re in development and compiling your code often, you'll want fa
even if the resulting code runs slower. That is the reason the default
dev is 0 . When you’re ready to release your code, it’s best to spend m

compiling. You’ll only compile in release mode once, but you'll run the
program many times, so release mode trades longer compile time for
faster. That is why the default opt-level for the

You can override any default setting by adding a di�erent value for it i
For example, if we want to use optimization level 1 in the developmen
add these two lines to our project’s Cargo.toml �le:

Filename: Cargo.toml

This code overrides the default setting of 0 . Now when we run
will use the defaults for the dev pro�le plus our customization to
Because we set opt-level to 1 , Cargo will apply more optimizations
default, but not as many as in a release build.

For the full list of con�guration options and defaults for each pro�le, s
documentation.

Publishing a Crate to Crates.io

We’ve used packages from crates.io as dependencies of our project, b
share your code with other people by publishing your own packages.
registry at crates.io distributes the source code of your packages, so it
code that is open source.

Rust and Cargo have features that help make your published package
people to use and to �nd in the �rst place. We’ll talk about some of th

[profile.dev]
opt-level = 0

[profile.release]
opt-level = 3

[profile.dev]
opt-level = 1

next and then explain how to publish a package.

Making Useful Documentation Comments

Accurately documenting your packages will help other users know how
use them, so it’s worth investing the time to write documentation. In C
discussed how to comment Rust code using two slashes,
particular kind of comment for documentation, known conveniently a
documentation comment, that will generate HTML documentation. The
the contents of documentation comments for public API items intende
programmers interested in knowing how to use your crate as opposed
crate is implemented.

Documentation comments use three slashes, ///
Markdown notation for formatting the text. Place documentation com
before the item they’re documenting. Listing 14-1 shows documentati
for an add_one function in a crate named my_crate

Filename: src/lib.rs

Listing 14-1: A documentation comment for a function

Here, we give a description of what the add_one
the heading Examples , and then provide code that demonstrates how
add_one function. We can generate the HTML documentation from th

documentation comment by running cargo doc
tool distributed with Rust and puts the generated HTML documentatio
target/doc directory.

For convenience, running cargo doc --open will build the HTML for y
crate’s documentation (as well as the documentation for all of your cr
dependencies) and open the result in a web browser. Navigate to the

/// Adds one to the number given.
///
/// # Examples
///
/// ```
/// let five = 5;
///
/// assert_eq!(6, my_crate::add_one(5));
/// ```
pub fn add_one(x: i32) -> i32 {
 x + 1
}

function and you’ll see how the text in the documentation comments
shown in Figure 14-1:

Figure 14-1: HTML documentation for the add_one

Commonly Used Sections

We used the # Examples Markdown heading in Listing 14-1 to create
HTML with the title “Examples.” Here are some other sections that cra
commonly use in their documentation:

Panics: The scenarios in which the function being documented c
Callers of the function who don’t want their programs to panic sh
they don’t call the function in these situations.
Errors: If the function returns a Result , describing the kinds of
might occur and what conditions might cause those errors to be
be helpful to callers so they can write code to handle the di�eren
errors in di�erent ways.
Safety: If the function is unsafe to call (we discuss unsafety in C
there should be a section explaining why the function is unsafe a
invariants that the function expects callers to uphold.

Most documentation comments don’t need all of these sections, but t
checklist to remind you of the aspects of your code that people calling
be interested in knowing about.

Documentation Comments as Tests

Adding example code blocks in your documentation comments can he
how to use your library, and doing so has an additional bonus: runnin
will run the code examples in your documentation as tests! Nothing is
documentation with examples. But nothing is worse than examples th
because the code has changed since the documentation was written.
cargo test with the documentation for the add_one

will see a section in the test results like this:

Now if we change either the function or the example so the
example panics and run cargo test again, we’ll see that the doc test
example and the code are out of sync with each other!

Commenting Contained Items

Another style of doc comment, //! , adds documentation to the item
the comments rather than adding documentation to the items followi
comments. We typically use these doc comments inside the crate root
convention) or inside a module to document the crate or the module

For example, if we want to add documentation that describes the purp
my_crate crate that contains the add_one function, we can add docu

comments that start with //! to the beginning of the
14-2:

Filename: src/lib.rs

Listing 14-2: Documentation for the my_crate crate as a whole

Notice there isn’t any code after the last line that begins with

 Doc-tests my_crate

running 1 test
test src/lib.rs - add_one (line 5) ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

//! # My Crate
//!
//! `my_crate` is a collection of utilities to make performing
//! calculations more convenient.

/// Adds one to the number given.
// --snip--

started the comments with //! instead of /// , we’re documenting th
contains this comment rather than an item that follows this comment
the item that contains this comment is the src/lib.rs
comments describe the entire crate.

When we run cargo doc --open , these comments will display on the
the documentation for my_crate above the list of public items in the
in Figure 14-2:

Figure 14-2: Rendered documentation for my_crate
describing the crate as a whole

Documentation comments within items are useful for describing crate
especially. Use them to explain the overall purpose of the container to
users understand the crate's organization.

Exporting a Convenient Public API with

In Chapter 7, we covered how to organize our code into modules usin
keyword, how to make items public using the pub
into a scope with the use keyword. However, the structure that make
while you’re developing a crate might not be very convenient for your
might want to organize your structs in a hierarchy containing multiple
people who want to use a type you’ve de�ned deep in the hierarchy m
trouble �nding out that type exists. They might also be annoyed at ha
use my_crate::some_module::another_module::UsefulType;

my_crate::UsefulType; .

The structure of your public API is a major consideration when publish

People who use your crate are less familiar with the structure than yo
have di�culty �nding the pieces they want to use if your crate has a la
hierarchy.

The good news is that if the structure isn’t convenient for others to use
library, you don’t have to rearrange your internal organization: instead
export items to make a public structure that’s di�erent from your priv
using pub use . Re-exporting takes a public item in one location and m
another location, as if it were de�ned in the other location instead.

For example, say we made a library named art
this library are two modules: a kinds module containing two enums n
PrimaryColor and SecondaryColor and a utils

named mix , as shown in Listing 14-3:

Filename: src/lib.rs

Listing 14-3: An art library with items organized into

//! # Art
//!
//! A library for modeling artistic concepts.

pub mod kinds {
/// The primary colors according to the RYB color model.
pub enum PrimaryColor {

 Red,
 Yellow,
 Blue,
 }

/// The secondary colors according to the RYB color model.
pub enum SecondaryColor {

 Orange,
 Green,
 Purple,
 }
}

pub mod utils {
use kinds::*;

/// Combines two primary colors in equal amounts to create
/// a secondary color.
pub fn mix(c1: PrimaryColor, c2: PrimaryColor) -> Secon

// --snip--
 }
}

Figure 14-3 shows what the front page of the documentation for this c
by cargo doc would look like:

Figure 14-3: Front page of the documentation for
modules

Note that the PrimaryColor and SecondaryColor
page, nor is the mix function. We have to click

Another crate that depends on this library would need
the items from art , specifying the module structure that’s currently d
14-4 shows an example of a crate that uses the
the art crate:

Filename: src/main.rs

Listing 14-4: A crate using the art crate’s items with its internal struct

The author of the code in Listing 14-4, which uses the
that PrimaryColor is in the kinds module and

extern crate art;

use art::kinds::PrimaryColor;
use art::utils::mix;

fn main() {
let red = PrimaryColor::Red;
let yellow = PrimaryColor::Yellow;

 mix(red, yellow);
}

module structure of the art crate is more relevant to developers wor
art crate than to developers using the art crate. The internal struct

organizes parts of the crate into the kinds module and the
contain any useful information for someone trying to understand how
crate. Instead, the art crate’s module structure causes confusion bec
developers have to �gure out where to look, and the structure is incon
because developers must specify the module names in the

To remove the internal organization from the public API, we can modi
code in Listing 14-3 to add pub use statements to re-export the items
level, as shown in Listing 14-5:

Filename: src/lib.rs

Listing 14-5: Adding pub use statements to re-export items

The API documentation that cargo doc generates for this crate will n
re-exports on the front page, as shown in Figure 14-4, making the
SecondaryColor types and the mix function easier to �nd.

//! # Art
//!
//! A library for modeling artistic concepts.

pub use kinds::PrimaryColor;
pub use kinds::SecondaryColor;
pub use utils::mix;

pub mod kinds {
// --snip--

}

pub mod utils {
// --snip--

}

Figure 14-4: The front page of the documentation for

The art crate users can still see and use the internal structure from L
demonstrated in Listing 14-4, or they can use the more convenient str
14-5, as shown in Listing 14-6:

Filename: src/main.rs

Listing 14-6: A program using the re-exported items from the

In cases where there are many nested modules, re-exporting the type
level with pub use can make a signi�cant di�erence in the experience
use the crate.

Creating a useful public API structure is more of an art than a science,
iterate to �nd the API that works best for your users. Choosing

extern crate art;

use art::PrimaryColor;
use art::mix;

fn main() {
// --snip--

}

�exibility in how you structure your crate internally and decouples tha
structure from what you present to your users. Look at some of the co
you’ve installed to see if their internal structure di�ers from their pub

Setting Up a Crates.io Account

Before you can publish any crates, you need to create an account on
an API token. To do so, visit the home page at crates.io
account. (The GitHub account is currently a requirement, but the site m
other ways of creating an account in the future.) Once you’re logged in
account settings at https://crates.io/me/ and retrieve your API key. The
cargo login command with your API key, like this:

This command will inform Cargo of your API token and store it locally
/credentials. Note that this token is a secret: do not share it with anyon
share it with anyone for any reason, you should revoke it and generat
on crates.io.

Adding Metadata to a New Crate

Now that you have an account, let’s say you have a crate you want to p
publishing, you’ll need to add some metadata to your crate by adding
[package] section of the crate’s Cargo.toml �le.

Your crate will need a unique name. While you’re working on a crate lo
name a crate whatever you’d like. However, crate names on
a �rst-come, �rst-served basis. Once a crate name is taken, no one els
crate with that name. Search for the name you want to use on the site
whether it has been used. If it hasn’t, edit the name in the
[package] to use the name for publishing, like so:

Filename: Cargo.toml

Even if you’ve chosen a unique name, when you run
crate at this point, you’ll get a warning and then an error:

$ cargo login abcdefghijklmnopqrstuvwxyz012345

[package]
name = "guessing_game"

The reason is that you’re missing some crucial information: a descript
are required so people will know what your crate does and under wha
can use it. To rectify this error, you need to include this information in
�le.

Add a description that is just a sentence or two, because it will appear
in search results. For the license �eld, you need to give a
Linux Foundation’s Software Package Data Exchange (SPDX)
can use for this value. For example, to specify that you’ve licensed you
the MIT License, add the MIT identi�er:

Filename: Cargo.toml

If you want to use a license that doesn’t appear in the SPDX, you need
text of that license in a �le, include the �le in your project, and then us
license-file to specify the name of that �le instead of using the

Guidance on which license is appropriate for your project is beyond th
book. Many people in the Rust community license their projects in the
Rust by using a dual license of MIT OR Apache-2.0
you can also specify multiple license identi�ers separated by
licenses for your project.

With a unique name, the version, the author details that
created the crate, your description, and a license added, the
project that is ready to publish might look like this:

Filename: Cargo.toml

$ cargo publish
 Updating registry `https://github.com/rust-lang/crates.
warning: manifest has no description, license, license-file
documentation,
homepage or repository.
--snip--
error: api errors: missing or empty metadata fields: descri

[package]
name = "guessing_game"
license = "MIT"

Cargo’s documentation describes other metadata you can specify to e
can discover and use your crate more easily.

Publishing to Crates.io

Now that you’ve created an account, saved your API token, chosen a n
crate, and speci�ed the required metadata, you’re ready to publish! Pu
uploads a speci�c version to crates.io for others to use.

Be careful when publishing a crate because a publish is
never be overwritten, and the code cannot be deleted. One major goa
to act as a permanent archive of code so that builds of all projects tha
crates from crates.io will continue to work. Allowing version deletions
ful�lling that goal impossible. However, there is no limit to the numbe
versions you can publish.

Run the cargo publish command again. It should succeed now:

Congratulations! You’ve now shared your code with the Rust commun
can easily add your crate as a dependency of their project.

Publishing a New Version of an Existing Crate

When you’ve made changes to your crate and are ready to release a n
change the version value speci�ed in your Cargo.toml

[package]
name = "guessing_game"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]
description = "A fun game where you guess what number the c
chosen."
license = "MIT OR Apache-2.0"

[dependencies]

$ cargo publish
 Updating registry `https://github.com/rust-lang/crates.io-
Packaging guessing_game v0.1.0 (file:///projects/guessing_g
Verifying guessing_game v0.1.0 (file:///projects/guessing_g
Compiling guessing_game v0.1.0
(file:///projects/guessing_game/target/package/guessing_gam
 Finished dev [unoptimized + debuginfo] target(s) in 0.19 s
Uploading guessing_game v0.1.0 (file:///projects/guessing_g

Semantic Versioning rules to decide what an appropriate next version
based on the kinds of changes you’ve made. Then run
new version.

Removing Versions from Crates.io with

Although you can’t remove previous versions of a crate, you can preve
projects from adding them as a new dependency. This is useful when
is broken for one reason or another. In such situations, Cargo support
crate version.

Yanking a version prevents new projects from starting to depend on t
while allowing all existing projects that depend on it to continue to do
depend on that version. Essentially, a yank means that all projects wit
will not break, and any future Cargo.lock �les generated will not use th
version.

To yank a version of a crate, run cargo yank and specify which versio
yank:

By adding --undo to the command, you can also undo a yank and allo
start depending on a version again:

A yank does not delete any code. For example, the yank feature is not
deleting accidentally uploaded secrets. If that happens, you must rese
immediately.

Cargo Workspaces

In Chapter 12, we built a package that included a binary crate and a lib
your project develops, you might �nd that the library crate continues
and you want to split up your package further into multiple library cra
situation, Cargo o�ers a feature called workspaces
related packages that are developed in tandem.

Creating a Workspace

$ cargo yank --vers 1.0.1

$ cargo yank --vers 1.0.1 --undo

A workspace is a set of packages that share the same
Let’s make a project using a workspace—we’ll use trivial code so we ca
on the structure of the workspace. There are multiple ways to structur
we’re going to show one common way. We’ll have a workspace contain
and two libraries. The binary, which will provide the main functionality
the two libraries. One library will provide an add_one
an add_two function. These three crates will be part of the same work
start by creating a new directory for the workspace:

Next, in the add directory, we create the Cargo.toml
workspace. This �le won’t have a [package] section or the metadata
other Cargo.toml �les. Instead, it will start with a
us to add members to the workspace by specifying the path to our bin
this case, that path is adder:

Filename: Cargo.toml

Next, we’ll create the adder binary crate by running
directory:

At this point, we can build the workspace by running
add directory should look like this:

The workspace has one target directory at the top level for the compile
be placed into; the adder crate doesn’t have its own
to run cargo build from inside the adder directory, the compiled art

$ mkdir add
$ cd add

[workspace]

members = [
 "adder",
]

$ cargo new adder
 Created binary (application) `adder` project

├── Cargo.lock
├── Cargo.toml
├── adder
│ ├── Cargo.toml
│ └── src
│ └── main.rs
└── target

end up in add/target rather than add/adder/target
directory in a workspace like this because the crates in a workspace ar
depend on each other. If each crate had its own
have to recompile each of the other crates in the workspace to have th
own target directory. By sharing one target directory, the crates can av
rebuilding.

Creating the Second Crate in the Workspace

Next, let’s create another member crate in the workspace and call it
the top-level Cargo.toml to specify the add-one path in the

Filename: Cargo.toml

Then generate a new library crate named add-one

Your add directory should now have these directories and �les:

In the add-one/src/lib.rs �le, let’s add an add_one

Filename: add-one/src/lib.rs

[workspace]

members = [
 "adder",
 "add-one",
]

$ cargo new add-one --lib
 Created library `add-one` project

├── Cargo.lock
├── Cargo.toml
├── add-one
│ ├── Cargo.toml
│ └── src
│ └── lib.rs
├── adder
│ ├── Cargo.toml
│ └── src
│ └── main.rs
└── target

Now that we have a library crate in the workspace, we can have the bi
adder depend on the library crate add-one . First, we’ll need to add a

dependency on add-one to adder/Cargo.toml.

Filename: adder/Cargo.toml

Cargo doesn’t assume that crates in a workspace will depend on each
need to be explicit about the dependency relationships between the c

Next, let’s use the add_one function from the add-one
Open the adder/src/main.rs �le and add an extern crate
new add-one library crate into scope. Then change the
add_one function, as in Listing 14-7:

Filename: adder/src/main.rs

Listing 14-7: Using the add-one library crate from the

Let’s build the workspace by running cargo build

To run the binary crate from the add directory, we need to specify whi
the workspace we want to use by using the -p argument and the pac
cargo run :

pub fn add_one(x: i32) -> i32 {
 x + 1
}

[dependencies]

add-one = { path = "../add-one" }

extern crate add_one;

fn main() {
let num = 10;
println!("Hello, world! {} plus one is {}!"

add_one::add_one(num));
}

$ cargo build
 Compiling add-one v0.1.0 (file:///projects/add/add-one)
 Compiling adder v0.1.0 (file:///projects/add/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.6

This runs the code in adder/src/main.rs, which depends on the

Depending on an External Crate in a Workspace

Notice that the workspace has only one Cargo.lock
workspace rather than having a Cargo.lock in each crate’s directory. Th
all crates are using the same version of all dependencies. If we add th
the adder/Cargo.toml and add-one/Cargo.toml �les, Cargo will resolve b
one version of rand and record that in the one
workspace use the same dependencies means the crates in the works
be compatible with each other. Let’s add the rand
section in the add-one/Cargo.toml �le to be able to use the
crate:

Filename: add-one/Cargo.toml

We can now add extern crate rand; to the add-one/src/lib.rs
whole workspace by running cargo build in the
compile the rand crate:

The top-level Cargo.lock now contains information about the depende
on rand . However, even though rand is used somewhere in the wor
use it in other crates in the workspace unless we add
well. For example, if we add extern crate rand;
adder crate, we’ll get an error:

$ cargo run -p adder
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running `target/debug/adder`
Hello, world! 10 plus one is 11!

[dependencies]

rand = "0.3.14"

$ cargo build
 Updating registry `https://github.com/rust-lang/crates.
 Downloading rand v0.3.14
 --snip--
 Compiling rand v0.3.14
 Compiling add-one v0.1.0 (file:///projects/add/add-one)
 Compiling adder v0.1.0 (file:///projects/add/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 10.

To �x this, edit the Cargo.toml �le for the adder crate and indicate tha
dependency for that crate as well. Building the adder
of dependencies for adder in Cargo.lock, but no additional copies of
downloaded. Cargo has ensured that every crate in the workspace usi
crate will be using the same version. Using the same version of
workspace saves space because we won’t have multiple copies and en
crates in the workspace will be compatible with each other.

Adding a Test to a Workspace

For another enhancement, let’s add a test of the
the add_one crate:

Filename: add-one/src/lib.rs

Now run cargo test in the top-level add directory:

$ cargo build
 Compiling adder v0.1.0 (file:///projects/add/adder)
error: use of unstable library feature 'rand': use `rand` f
(see
issue #27703)
 --> adder/src/main.rs:1:1
 |
1 | extern crate rand;

pub fn add_one(x: i32) -> i32 {
 x + 1
}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn it_works() {

assert_eq!(3, add_one(2));
 }
}

The �rst section of the output shows that the it_works
passed. The next section shows that zero tests were found in the
then the last section shows zero documentation tests were found in th
crate. Running cargo test in a workspace structured like this one wi
for all the crates in the workspace.

We can also run tests for one particular crate in a workspace from the
directory by using the -p �ag and specifying the name of the crate we

This output shows cargo test only ran the tests for the
run the adder crate tests.

$ cargo test
 Compiling add-one v0.1.0 (file:///projects/add/add-one)
 Compiling adder v0.1.0 (file:///projects/add/adder)
 Finished dev [unoptimized + debuginfo] target(s) in 0.2
 Running target/debug/deps/add_one-f0253159197f7841

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

 Running target/debug/deps/adder-f88af9d2cc175a5e

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;

 Doc-tests add-one

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;

$ cargo test -p add-one
 Finished dev [unoptimized + debuginfo] target(s) in 0.0
 Running target/debug/deps/add_one-b3235fea9a156f74

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured;

 Doc-tests add-one

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;

If you publish the crates in the workspace to https://crates.io/
workspace will need to be published separately. The
not have an --all �ag or a -p �ag, so you must change to each crat
run cargo publish on each crate in the workspace to publish the cra

For additional practice, add an add-two crate to this workspace in a s
the add-one crate!

As your project grows, consider using a workspace: it’s easier to under
individual components than one big blob of code. Furthermore, keepi
a workspace can make coordination between them easier if they are o
the same time.

Installing Binaries from Crates.io with

The cargo install command allows you to install and use binary cra
isn’t intended to replace system packages; it’s meant to be a convenie
developers to install tools that others have shared on
only install packages that have binary targets. A
that is created if the crate has a src/main.rs �le or another �le speci�ed
opposed to a library target that isn’t runnable on its own but is suitabl
within other programs. Usually, crates have information in the
whether a crate is a library, has a binary target, or both.

All binaries installed with cargo install are stored in the installation
folder. If you installed Rust using rustup.rs and don’t have any custom
this directory will be $HOME/.cargo/bin. Ensure that directory is in your
able to run programs you’ve installed with cargo install

For example, in Chapter 12 we mentioned that there’s a Rust impleme
grep tool called ripgrep for searching �les. If we want to install

run the following:

The last line of the output shows the location and the name of the ins
which in the case of ripgrep is rg . As long as the installation directo

$ cargo install ripgrep
Updating registry `https://github.com/rust-lang/crates.io-i
 Downloading ripgrep v0.3.2
 --snip--
 Compiling ripgrep v0.3.2
 Finished release [optimized + debuginfo] target(s) in 9
 Installing ~/.cargo/bin/rg

$PATH , as mentioned previously, you can then run
faster, rustier tool for searching �les!

Extending Cargo with Custom Commands

Cargo is designed so you can extend it with new subcommands witho
modify Cargo. If a binary in your $PATH is named
if it was a Cargo subcommand by running cargo something
this are also listed when you run cargo --list
install extensions and then run them just like the built-in Cargo tools i
convenient bene�t of Cargo’s design!

Summary

Sharing code with Cargo and crates.io is part of what makes the Rust e
useful for many di�erent tasks. Rust’s standard library is small and sta
are easy to share, use, and improve on a timeline di�erent from that o
Don’t be shy about sharing code that’s useful to you on
be useful to someone else as well!

Smart Pointers
A pointer is a general concept for a variable that contains an address i
address refers to, or “points at,” some other data. The most common
in Rust is a reference, which you learned about in Chapter 4. Referenc
by the & symbol and borrow the value they point to. They don’t have
capabilities other than referring to data. Also, they don’t have any ove
the kind of pointer we use most often.

Smart pointers, on the other hand, are data structures that not only ac
but also have additional metadata and capabilities. The concept of sm
isn’t unique to Rust: smart pointers originated in C++ and exist in othe
well. In Rust, the di�erent smart pointers de�ned in the standard libra
functionality beyond that provided by references. One example that w
this chapter is the reference counting smart pointer type. This pointer e
have multiple owners of data by keeping track of the number of owne
owners remain, cleaning up the data.

In Rust, which uses the concept of ownership and borrowing, an addit

between references and smart pointers is that references are pointer
borrow data; in contrast, in many cases, smart pointers

We’ve already encountered a few smart pointers in this book, such as
Vec<T> in Chapter 8, although we didn’t call them smart pointers at th

these types count as smart pointers because they own some memory
to manipulate it. They also have metadata (such as their capacity) and
capabilities or guarantees (such as with String ensuring its data will
UTF-8).

Smart pointers are usually implemented using structs. The characteris
distinguishes a smart pointer from an ordinary struct is that smart po
implement the Deref and Drop traits. The Deref
smart pointer struct to behave like a reference so you can write code
either references or smart pointers. The Drop trait allows you to cust
that is run when an instance of the smart pointer goes out of scope. In
we’ll discuss both traits and demonstrate why they’re important to sm

Given that the smart pointer pattern is a general design pattern used
Rust, this chapter won’t cover every existing smart pointer. Many libra
own smart pointers, and you can even write your own. We’ll cover the
smart pointers in the standard library:

Box<T> for allocating values on the heap
Rc<T> , a reference counting type that enables multiple ownersh
Ref<T> and RefMut<T> , accessed through

the borrowing rules at runtime instead of compile time

In addition, we’ll cover the interior mutability pattern where an immuta
exposes an API for mutating an interior value. We’ll also discuss
they can leak memory and how to prevent them.

Let’s dive in!

Using Box<T> to Point to Data on the Heap

The most straightforward smart pointer is a box
allow you to store data on the heap rather than the stack. What remai
is the pointer to the heap data. Refer to Chapter 4 to review the di�er
the stack and the heap.

Boxes don’t have performance overhead, other than storing their data
instead of on the stack. But they don’t have many extra capabilities eit

them most often in these situations:

When you have a type whose size can’t be known at compile tim
to use a value of that type in a context that requires an exact size
When you have a large amount of data and you want to transfer
ensure the data won’t be copied when you do so
When you want to own a value and you care only that it’s a type
a particular trait rather than being of a speci�c type

We’ll demonstrate the �rst situation in the “Enabling Recursive Types w
section. In the second case, transferring ownership of a large amount
a long time because the data is copied around on the stack. To improv
in this situation, we can store the large amount of data on the heap in
only the small amount of pointer data is copied around on the stack, w
references stays in one place on the heap. The third case is known as
and Chapter 17 devotes an entire section, “Using Trait Objects That Al
Di�erent Types,” just to that topic. So what you learn here you’ll apply
Chapter 17!

Using a Box<T> to Store Data on the Heap

Before we discuss this use case for Box<T> , we’ll cover the syntax and
with values stored within a Box<T> .

Listing 15-1 shows how to use a box to store an

Filename: src/main.rs

Listing 15-1: Storing an i32 value on the heap using a box

We de�ne the variable b to have the value of a
is allocated on the heap. This program will print
the data in the box similar to how we would if this data were on the st
owned value, when a box goes out of scope, as
deallocated. The deallocation happens for the box (stored on the stac
it points to (stored on the heap).

Putting a single value on the heap isn’t very useful, so you won’t use b
themselves in this way very often. Having values like a single

fn main() {
let b = Box::new(5);
println!("b = {}", b);

}

they’re stored by default, is more appropriate in the majority of situat
at a case where boxes allow us to de�ne types that we wouldn’t be all
didn’t have boxes.

Enabling Recursive Types with Boxes

At compile time, Rust needs to know how much space a type takes up
whose size can’t be known at compile time is a recursive type
as part of itself another value of the same type. Because this nesting o
theoretically continue in�nitely, Rust doesn’t know how much space a
recursive type needs. However, boxes have a known size, so by inserti
recursive type de�nition, you can have recursive types.

Let’s explore the cons list, which is a data type common in functional p
languages, as an example of a recursive type. The cons list type we’ll d
straightforward except for the recursion; therefore, the concepts in th
work with will be useful any time you get into more complex situation
recursive types.

More Information About the Cons List

A cons list is a data structure that comes from the Lisp programming la
dialects. In Lisp, the cons function (short for “construct function”) con
pair from its two arguments, which usually are a single value and anot
pairs containing pairs form a list.

The cons function concept has made its way into more general functio
programming jargon: “to cons x onto y” informally means to construct
container instance by putting the element x at the start of this new co
followed by the container y.

Each item in a cons list contains two elements: the value of the curren
next item. The last item in the list contains only a value called
item. A cons list is produced by recursively calling the
name to denote the base case of the recursion is
as the “null” or “nil” concept in Chapter 6, which is an invalid or absent

Although functional programming languages use cons lists frequently
isn’t a commonly used data structure in Rust. Most of the time when y
items in Rust, Vec<T> is a better choice to use. Other, more complex r
types are useful in various situations, but by starting with the cons list
how boxes let us de�ne a recursive data type without much distractio

Listing 15-2 contains an enum de�nition for a cons list. Note that this
compile yet because the List type doesn’t have a known size, which
demonstrate.

Filename: src/main.rs

Listing 15-2: The �rst attempt at de�ning an enum to represent a cons
structure of i32 values

Note: We’re implementing a cons list that holds only
purposes of this example. We could have implemented it using gen
discussed in Chapter 10, to de�ne a cons list type that could store v
type.

Using the List type to store the list 1, 2, 3 would look like the cod

Filename: src/main.rs

Listing 15-3: Using the List enum to store the list

The �rst Cons value holds 1 and another List
Cons value that holds 2 and another List value. This

value that holds 3 and a List value, which is �nally
that signals the end of the list.

If we try to compile the code in Listing 15-3, we get the error shown in

enum List {
 Cons(i32, List),
 Nil,
}

use List::{Cons, Nil};

fn main() {
let list = Cons(1, Cons(2, Cons(3, Nil)));

}

Listing 15-4: The error we get when attempting to de�ne a recursive e

The error shows this type “has in�nite size.” The reason is that we’ve d
with a variant that is recursive: it holds another value of itself directly.
can’t �gure out how much space it needs to store a
we get this error a bit. First, let’s look at how Rust decides how much s
store a value of a non-recursive type.

Computing the Size of a Non-Recursive Type

Recall the Message enum we de�ned in Listing 6-2 when we discussed
de�nitions in Chapter 6:

To determine how much space to allocate for a
each of the variants to see which variant needs the most space. Rust s
Message::Quit doesn’t need any space, Message::Move

store two i32 values, and so forth. Because only one variant will be u
space a Message value will need is the space it would take to store the
variants.

Contrast this with what happens when Rust tries to determine how m
recursive type like the List enum in Listing 15-2 needs. The compiler
looking at the Cons variant, which holds a value of type
List . Therefore, Cons needs an amount of space equal to the size of

the size of a List . To �gure out how much memory the
compiler looks at the variants, starting with the

error[E0072]: recursive type `List` has infinite size
 --> src/main.rs:1:1
 |
1 | enum List {
 | ^^^^^^^^^ recursive type has infinite size
2 | Cons(i32, List),
 | ----- recursive without indirection
 |
 = help: insert indirection (e.g., a `Box`, `Rc`, or `&`)
to
 make `List` representable

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}

a value of type i32 and a value of type List , and this process contin
shown in Figure 15-1.

Cons

i32

Cons

i32

Cons

i32

Cons

i32
Cons

i32 ∞

Figure 15-1: An in�nite List consisting of in�nite

Using Box<T> to Get a Recursive Type with a Known Size

Rust can’t �gure out how much space to allocate for recursively de�ne
compiler gives the error in Listing 15-4. But the error does include this
suggestion:

In this suggestion, “indirection” means that instead of storing a value d
change the data structure to store the value indirectly by storing a poi
value instead.

Because a Box<T> is a pointer, Rust always knows how much space a
a pointer’s size doesn’t change based on the amount of data it’s pointi
means we can put a Box<T> inside the Cons variant instead of anoth
directly. The Box<T> will point to the next List
than inside the Cons variant. Conceptually, we still have a list, created
“holding” other lists, but this implementation is now more like placing
to one another rather than inside one another.

We can change the de�nition of the List enum in Listing 15-2 and th
List in Listing 15-3 to the code in Listing 15-5, which will compile:

Filename: src/main.rs

 = help: insert indirection (e.g., a `Box`, `Rc`, or `&`)
to
 make `List` representable

Listing 15-5: De�nition of List that uses Box<T>

The Cons variant will need the size of an i32 plus the space to store
pointer data. The Nil variant stores no values, so it needs less space
variant. We now know that any List value will take up the size of an
size of a box’s pointer data. By using a box, we’ve broken the in�nite, r
so the compiler can �gure out the size it needs to store a
shows what the Cons variant looks like now.

Cons

i32
Box

usize

Figure 15-2: A List that is not in�nitely sized because

Boxes provide only the indirection and heap allocation; they don’t hav
special capabilities, like those we’ll see with the other smart pointer ty
don’t have any performance overhead that these special capabilities in
can be useful in cases like the cons list where the indirection is the on
need. We’ll look at more use cases for boxes in Chapter 17, too.

enum List {
 Cons(i32, Box<List>),
 Nil,
}

use List::{Cons, Nil};

fn main() {
let list = Cons(1,

Box::new(Cons(2,
Box::new(Cons(3,

Box::new(Nil))))));
}

The Box<T> type is a smart pointer because it implements the
allows Box<T> values to be treated like references. When a
scope, the heap data that the box is pointing to is cleaned up as well b
Drop trait implementation. Let’s explore these two traits in more deta

traits will be even more important to the functionality provided by the
pointer types we’ll discuss in the rest of this chapter.

Treating Smart Pointers Like Regular References w
the Deref Trait

Implementing the Deref trait allows you to customize the behavior o
operator, * (as opposed to the multiplication or glob operator). By im
Deref in such a way that a smart pointer can be treated like a regular

can write code that operates on references and use that code with sm
too.

Let’s �rst look at how the dereference operator works with regular ref
we’ll try to de�ne a custom type that behaves like
dereference operator doesn’t work like a reference on our newly de�n
explore how implementing the Deref trait makes it possible for smar
work in a similar way as references. Then we’ll look at Rust’s
how it lets us work with either references or smart pointers.

There's one big di�erence between the MyBox<T>
the real Box<T> : our version will not store its data on the heap. We
this example on Deref , and so where the data is actually stored is
important than the pointer-like behavior.

Following the Pointer to the Value with the Dereference Op

A regular reference is a type of pointer, and one way to think of a poin
arrow to a value stored somewhere else. In Listing 15-6, we create a re
i32 value and then use the dereference operator to follow the refere

Filename: src/main.rs

Listing 15-6: Using the dereference operator to follow a reference to a

The variable x holds an i32 value, 5 . We set y
assert that x is equal to 5 . However, if we want to make an assertion
value in y , we have to use *y to follow the reference to the value it’s
(hence dereference). Once we dereference y , we have access to the in
pointing to that we can compare with 5 .

If we tried to write assert_eq!(5, y); instead, we would get this com

Comparing a number and a reference to a number isn’t allowed becau
di�erent types. We must use the dereference operator to follow the re
value it’s pointing to.

Using Box<T> Like a Reference

We can rewrite the code in Listing 15-6 to use a
dereference operator will work as shown in Listing 15-7:

Filename: src/main.rs

fn main() {
let x = 5;
let y = &x;

assert_eq!(5, x);
assert_eq!(5, *y);

}

error[E0277]: the trait bound `{integer}: std::cmp::Partial
is
not satisfied
 --> src/main.rs:6:5
 |
6 | assert_eq!(5, y);
 | ^^^^^^^^^^^^^^^^^ can't compare `{integer}` with `&
 |
 = help: the trait `std::cmp::PartialEq<&{integer}>` is no
for
 `{integer}`

Listing 15-7: Using the dereference operator on a

The only di�erence between Listing 15-7 and Listing 15-6 is that here w
an instance of a box pointing to the value in x rather than a reference
value of x . In the last assertion, we can use the dereference operator
box’s pointer in the same way that we did when
explore what is special about Box<T> that enables us to use the deref
operator by de�ning our own box type.

De�ning Our Own Smart Pointer

Let’s build a smart pointer similar to the Box<T>
library to experience how smart pointers behave di�erently than refe
default. Then we’ll look at how to add the ability to use the dereferenc

The Box<T> type is ultimately de�ned as a tuple struct with one eleme
15-8 de�nes a MyBox<T> type in the same way. We’ll also de�ne a
match the new function de�ned on Box<T> .

Filename: src/main.rs

Listing 15-8: De�ning a MyBox<T> type

We de�ne a struct named MyBox and declare a generic parameter
want our type to hold values of any type. The MyBox
element of type T . The MyBox::new function takes one parameter of
returns a MyBox instance that holds the value passed in.

fn main() {
let x = 5;
let y = Box::new(x);

assert_eq!(5, x);
assert_eq!(5, *y);

}

struct MyBox<T>(T);

impl<T> MyBox<T> {
fn new(x: T) -> MyBox<T> {

 MyBox(x)
 }
}

Let’s try adding the main function in Listing 15-7 to Listing 15-8 and ch
the MyBox<T> type we’ve de�ned instead of Box<T>
compile because Rust doesn’t know how to dereference

Filename: src/main.rs

Listing 15-9: Attempting to use MyBox<T> in the same way we used re
Box<T>

Here’s the resulting compilation error:

Our MyBox<T> type can’t be dereferenced because we haven’t implem
ability on our type. To enable dereferencing with the
Deref trait.

Treating a Type Like a Reference by Implementing the

As discussed in Chapter 10, to implement a trait, we need to provide i
for the trait’s required methods. The Deref trait, provided by the stan
requires us to implement one method named deref
a reference to the inner data. Listing 15-10 contains an implementatio
add to the de�nition of MyBox :

Filename: src/main.rs

fn main() {
let x = 5;
let y = MyBox::new(x);

assert_eq!(5, x);
assert_eq!(5, *y);

}

error[E0614]: type `MyBox<{integer}>` cannot be dereference
 --> src/main.rs:14:19
 |
14 | assert_eq!(5, *y);
 | ^^

Listing 15-10: Implementing Deref on MyBox<T>

The type Target = T; syntax de�nes an associated type for the
Associated types are a slightly di�erent way of declaring a generic par
don’t need to worry about them for now; we’ll cover them in more det
19.

We �ll in the body of the deref method with &self.0
to the value we want to access with the * operator. The
that calls * on the MyBox<T> value now compiles, and the assertions

Without the Deref trait, the compiler can only dereference
method gives the compiler the ability to take a value of any type that i
Deref and call the deref method to get a & reference that it knows

dereference.

When we entered *y in Listing 15-9, behind the scenes Rust actually r

Rust substitutes the * operator with a call to the
dereference so we don’t have to think about whether or not we need
deref method. This Rust feature lets us write code that functions ide

we have a regular reference or a type that implements

The reason the deref method returns a reference to a value, and tha
dereference outside the parentheses in *(y.deref())
ownership system. If the deref method returned the value directly in
reference to the value, the value would be moved out of
ownership of the inner value inside MyBox<T> in this case or in most c
use the dereference operator.

Note that the * operator is replaced with a call to the
to the * operator just once, each time we use a
substitution of the * operator does not recurse in�nitely, we end up

use std::ops::Deref;

impl<T> Deref for MyBox<T> {
type Target = T;

fn deref(&self) -> &T {
 &self.0
 }
}

*(y.deref())

type i32 , which matches the 5 in assert_eq! in Listing 15-9.

Implicit Deref Coercions with Functions and Methods

Deref coercion is a convenience that Rust performs on arguments to fu
methods. Deref coercion converts a reference to a type that implemen
reference to a type that Deref can convert the original type into. Dere
happens automatically when we pass a reference to a particular type’s
argument to a function or method that doesn’t match the parameter t
function or method de�nition. A sequence of calls to the
type we provided into the type the parameter needs.

Deref coercion was added to Rust so that programmers writing functi
calls don’t need to add as many explicit references and dereferences w
The deref coercion feature also lets us write more code that can work
references or smart pointers.

To see deref coercion in action, let’s use the MyBox<T>
as well as the implementation of Deref that we added in Listing 15-10
shows the de�nition of a function that has a string slice parameter:

Filename: src/main.rs

Listing 15-11: A hello function that has the parameter

We can call the hello function with a string slice as an argument, suc
hello("Rust"); for example. Deref coercion makes it possible to call

reference to a value of type MyBox<String> , as shown in Listing 15-12

Filename: src/main.rs

Listing 15-12: Calling hello with a reference to a
because of deref coercion

Here we’re calling the hello function with the argument

fn hello(name: &str) {
println!("Hello, {}!", name);

}

fn main() {
let m = MyBox::new(String::from("Rust"

 hello(&m);
}

a MyBox<String> value. Because we implemented the
Listing 15-10, Rust can turn &MyBox<String> into
standard library provides an implementation of
string slice, and this is in the API documentation for
turn the &String into &str , which matches the

If Rust didn’t implement deref coercion, we would have to write the co
15-13 instead of the code in Listing 15-12 to call
&MyBox<String> .

Filename: src/main.rs

Listing 15-13: The code we would have to write if Rust didn’t have dere

The (*m) dereferences the MyBox<String> into a
take a string slice of the String that is equal to the whole string to m
signature of hello . The code without deref coercions is harder to rea
understand with all of these symbols involved. Deref coercion allows R
these conversions for us automatically.

When the Deref trait is de�ned for the types involved, Rust will analy
use Deref::deref as many times as necessary to get a reference to m
parameter’s type. The number of times that Deref::deref
resolved at compile time, so there is no runtime penalty for taking adv
coercion!

How Deref Coercion Interacts with Mutability

Similar to how you use the Deref trait to override the
references, you can use the DerefMut trait to override the
references.

Rust does deref coercion when it �nds types and trait implementation

From &T to &U when T: Deref<Target=U>
From &mut T to &mut U when T: DerefMut<Target=U>
From &mut T to &U when T: Deref<Target=U>

The �rst two cases are the same except for mutability. The �rst case s

fn main() {
let m = MyBox::new(String::from("Rust"

 hello(&(*m)[..]);
}

have a &T , and T implements Deref to some type
transparently. The second case states that the same deref coercion ha
mutable references.

The third case is trickier: Rust will also coerce a mutable reference to a
one. But the reverse is not possible: immutable references will never c
mutable references. Because of the borrowing rules, if you have a mu
that mutable reference must be the only reference to that data (other
program wouldn’t compile). Converting one mutable reference to one
reference will never break the borrowing rules. Converting an immuta
a mutable reference would require that there is only one immutable r
data, and the borrowing rules don’t guarantee that. Therefore, Rust ca
assumption that converting an immutable reference to a mutable refe
possible.

Running Code on Cleanup with the

The second trait important to the smart pointer pattern is
customize what happens when a value is about to go out of scope. Yo
an implementation for the Drop trait on any type, and the code you s
used to release resources like �les or network connections. We’re intr
the context of smart pointers because the functionality of the
always used when implementing a smart pointer. For example,
Drop to deallocate the space on the heap that the box points to.

In some languages, the programmer must call code to free memory o
every time they �nish using an instance of a smart pointer. If they forg
might become overloaded and crash. In Rust, you can specify that a p
code be run whenever a value goes out of scope, and the compiler wil
code automatically. As a result, you don’t need to be careful about pla
code everywhere in a program that an instance of a particular type is
you still won’t leak resources!

Specify the code to run when a value goes out of scope by implement
trait. The Drop trait requires you to implement one method named
mutable reference to self . To see when Rust calls
println! statements for now.

Listing 15-14 shows a CustomSmartPointer struct whose only custom
that it will print Dropping CustomSmartPointer!
scope. This example demonstrates when Rust runs the

Filename: src/main.rs

Listing 15-14: A CustomSmartPointer struct that implements the
would put our cleanup code

The Drop trait is included in the prelude, so we don’t need to import i
implement the Drop trait on CustomSmartPointer
for the drop method that calls println! . The body of the
you would place any logic that you wanted to run when an instance of
out of scope. We’re printing some text here to demonstrate when Rus

In main , we create two instances of CustomSmartPointer
CustomSmartPointers created. . At the end of
CustomSmartPointer will go out of scope, and Rust will call the code w
drop method, printing our �nal message. Note that we didn’t need to

method explicitly.

When we run this program, we’ll see the following output:

Rust automatically called drop for us when our instances went out of
the code we speci�ed. Variables are dropped in the reverse order of t
d was dropped before c . This example gives you a visual guide to ho

method works; usually you would specify the cleanup code that your t
run rather than a print message.

struct CustomSmartPointer {
 data: String,
}

impl Drop for CustomSmartPointer {
fn drop(&mut self) {

println!("Dropping CustomSmartPointer with data `{}
self.data);
 }
}

fn main() {
let c = CustomSmartPointer { data: String
let d = CustomSmartPointer { data: String
println!("CustomSmartPointers created."

}

CustomSmartPointers created.
Dropping CustomSmartPointer with data `other stuff`!
Dropping CustomSmartPointer with data `my stuff`!

Dropping a Value Early with std::mem::drop

Unfortunately, it’s not straightforward to disable the automatic
Disabling drop isn’t usually necessary; the whole point of the
taken care of automatically. Occasionally, however, you might want to
value early. One example is when using smart pointers that manage lo
want to force the drop method that releases the lock to run so other
same scope can acquire the lock. Rust doesn’t let you call the
method manually; instead you have to call the std::mem::drop
the standard library if you want to force a value to be dropped before
scope.

If we try to call the Drop trait’s drop method manually by modifying t
function from Listing 15-14, as shown in Listing 15-15, we’ll get a comp

Filename: src/main.rs

Listing 15-15: Attempting to call the drop method from the
clean up early

When we try to compile this code, we’ll get this error:

This error message states that we’re not allowed to explicitly call
message uses the term destructor, which is the general programming
function that cleans up an instance. A destructor is analogous to a
creates an instance. The drop function in Rust is one particular destru

Rust doesn’t let us call drop explicitly because Rust would still automa
drop on the value at the end of main . This would be a

would be trying to clean up the same value twice.

We can’t disable the automatic insertion of drop
we can’t call the drop method explicitly. So, if we need to force a valu

fn main() {
let c = CustomSmartPointer { data: String
println!("CustomSmartPointer created."

 c.drop();
println!("CustomSmartPointer dropped before the end of

}

error[E0040]: explicit use of destructor method
 --> src/main.rs:14:7
 |
14 | c.drop();
 | ^^^^ explicit destructor calls not allowed

up early, we can use the std::mem::drop function.

The std::mem::drop function is di�erent than the
We call it by passing the value we want to force to be dropped early as
The function is in the prelude, so we can modify
drop function, as shown in Listing 15-16:

Filename: src/main.rs

Listing 15-16: Calling std::mem::drop to explicitly drop a value before
scope

Running this code will print the following:

The text Dropping CustomSmartPointer with data `some data`!
the CustomSmartPointer created. and
CustomSmartPointer dropped before the end of main.

method code is called to drop c at that point.

You can use code speci�ed in a Drop trait implementation in many w
cleanup convenient and safe: for instance, you could use it to create y
memory allocator! With the Drop trait and Rust’s ownership system, y
to remember to clean up because Rust does it automatically.

You also don’t have to worry about problems resulting from accidenta
values still in use: the ownership system that makes sure references a
also ensures that drop gets called only once when the value is no lon

Now that we’ve examined Box<T> and some of the characteristics of s
let’s look at a few other smart pointers de�ned in the standard library

Rc<T> , the Reference Counted Smart Pointer

fn main() {
let c = CustomSmartPointer { data: String
println!("CustomSmartPointer created."
drop(c);
println!("CustomSmartPointer dropped before the end of

}

CustomSmartPointer created.
Dropping CustomSmartPointer with data `some data`!
CustomSmartPointer dropped before the end of main.

In the majority of cases, ownership is clear: you know exactly which va
given value. However, there are cases when a single value might have
owners. For example, in graph data structures, multiple edges might p
same node, and that node is conceptually owned by all of the edges th
node shouldn’t be cleaned up unless it doesn’t have any edges pointin

To enable multiple ownership, Rust has a type called
for reference counting. The Rc<T> type keeps track of the number of re
value which determines whether or not a value is still in use. If there a
references to a value, the value can be cleaned up without any referen
invalid.

Imagine Rc<T> as a TV in a family room. When one person enters to w
turn it on. Others can come into the room and watch the TV. When the
leaves the room, they turn o� the TV because it’s no longer being used
turns o� the TV while others are still watching it, there would be uproa
remaining TV watchers!

We use the Rc<T> type when we want to allocate some data on the h
parts of our program to read and we can’t determine at compile time
�nish using the data last. If we knew which part would �nish last, we c
that part the data’s owner, and the normal ownership rules enforced a
would take e�ect.

Note that Rc<T> is only for use in single-threaded scenarios. When we
concurrency in Chapter 16, we’ll cover how to do reference counting in
programs.

Using Rc<T> to Share Data

Let’s return to our cons list example in Listing 15-5. Recall that we de�
Box<T> . This time, we’ll create two lists that both share ownership of

Conceptually, this looks similar to Figure 15-3:

b 3

5a 10

c 4

Figure 15-3: Two lists, b and c , sharing ownership of a third list,

We’ll create list a that contains 5 and then 10. Then we’ll make two m
starts with 3 and c that starts with 4. Both b and
�rst a list containing 5 and 10. In other words, both lists will share the
containing 5 and 10.

Trying to implement this scenario using our de�nition of
work, as shown in Listing 15-17:

Filename: src/main.rs

Listing 15-17: Demonstrating we’re not allowed to have two lists using
to share ownership of a third list

When we compile this code, we get this error:

The Cons variants own the data they hold, so when we create the
into b and b owns a . Then, when we try to use
allowed to because a has been moved.

We could change the de�nition of Cons to hold references instead, bu

enum List {
 Cons(i32, Box<List>),
 Nil,
}

use List::{Cons, Nil};

fn main() {
let a = Cons(5,

Box::new(Cons(10,
Box::new(Nil))));

let b = Cons(3, Box::new(a));
let c = Cons(4, Box::new(a));

}

error[E0382]: use of moved value: `a`
 --> src/main.rs:13:30
 |
12 | let b = Cons(3, Box::new(a));
 | - value moved here
13 | let c = Cons(4, Box::new(a));
 | ^ value used here after m
 |
 = note: move occurs because `a` has type `List`, which d
implement
 the `Copy` trait

would have to specify lifetime parameters. By specifying lifetime para
would be specifying that every element in the list will live at least as lo
list. The borrow checker wouldn’t let us compile
example, because the temporary Nil value would be dropped before
reference to it.

Instead, we’ll change our de�nition of List to use
shown in Listing 15-18. Each Cons variant will now hold a value and a
pointing to a List . When we create b , instead of taking ownership o
the Rc<List> that a is holding, thereby increasing the number of ref
one to two and letting a and b share ownership of the data in that
also clone a when creating c , increasing the number of references fr
three. Every time we call Rc::clone , the reference count to the data w
Rc<List> will increase, and the data won’t be cleaned up unless there

references to it.

Filename: src/main.rs

Listing 15-18: A de�nition of List that uses Rc<T>

We need to add a use statement to bring Rc<T>
prelude. In main , we create the list holding 5 and 10 and store it in a n
in a . Then when we create b and c , we call the
reference to the Rc<List> in a as an argument.

We could have called a.clone() rather than Rc::clone(&a)
to use Rc::clone in this case. The implementation of
deep copy of all the data like most types’ implementations of
Rc::clone only increments the reference count, which doesn’t take m

copies of data can take a lot of time. By using Rc::clone
can visually distinguish between the deep-copy kinds of clones and th
clones that increase the reference count. When looking for performan

enum List {
 Cons(i32, Rc<List>),
 Nil,
}

use List::{Cons, Nil};
use std::rc::Rc;

fn main() {
let a = Rc::new(Cons(5, Rc::new(Cons(10
let b = Cons(3, Rc::clone(&a));
let c = Cons(4, Rc::clone(&a));

}

the code, we only need to consider the deep-copy clones and can disr
Rc::clone .

Cloning an Rc<T> Increases the Reference Count

Let’s change our working example in Listing 15-18 so we can see the r
changing as we create and drop references to the

In Listing 15-19, we’ll change main so it has an inner scope around list
can see how the reference count changes when

Filename: src/main.rs

Listing 15-19: Printing the reference count

At each point in the program where the reference count changes, we
reference count, which we can get by calling the
function is named strong_count rather than count
has a weak_count ; we’ll see what weak_count is used for in the “Preve
Reference Cycles” section.

This code prints the following:

We can see that the Rc<List> in a has an initial reference count of 1
we call clone , the count goes up by 1. When c goes out of scope, the
down by 1. We don’t have to call a function to decrease the reference
have to call Rc::clone to increase the reference count: the implemen
Drop trait decreases the reference count automatically when an

fn main() {
let a = Rc::new(Cons(5, Rc::new(Cons(10
println!("count after creating a = {}"
let b = Cons(3, Rc::clone(&a));
println!("count after creating b = {}"

 {
let c = Cons(4, Rc::clone(&a));
println!("count after creating c = {}"

 }
println!("count after c goes out of scope = {}"

Rc::strong_count(&a));
}

count after creating a = 1
count after creating b = 2
count after creating c = 3
count after c goes out of scope = 2

out of scope.

What we can’t see in this example is that when b
end of main , the count is then 0, and the Rc<List>
point. Using Rc<T> allows a single value to have multiple owners, and
ensures that the value remains valid as long as any of the owners still

Via immutable references, Rc<T> allows you to share data between m
your program for reading only. If Rc<T> allowed you to have multiple
references too, you might violate one of the borrowing rules discussed
multiple mutable borrows to the same place can cause data races and
inconsistencies. But being able to mutate data is very useful! In the ne
discuss the interior mutability pattern and the RefCell<T>
conjunction with an Rc<T> to work with this immutability restriction.

RefCell<T> and the Interior Mutability Pattern

Interior mutability is a design pattern in Rust that allows you to mutate
when there are immutable references to that data; normally, this actio
by the borrowing rules. To mutate data, the pattern uses
structure to bend Rust’s usual rules that govern mutation and borrow
yet covered unsafe code; we will in Chapter 19. We can use types that
mutability pattern when we can ensure that the borrowing rules will b
runtime, even though the compiler can’t guarantee that. The
then wrapped in a safe API, and the outer type is still immutable.

Let’s explore this concept by looking at the RefCell<T>
mutability pattern.

Enforcing Borrowing Rules at Runtime with

Unlike Rc<T> , the RefCell<T> type represents single ownership over
holds. So, what makes RefCell<T> di�erent from a type like
borrowing rules you learned in Chapter 4:

At any given time, you can have either (but not both of) one muta
or any number of immutable references.
References must always be valid.

With references and Box<T> , the borrowing rules’ invariants are enfor
time. With RefCell<T> , these invariants are enforced

you break these rules, you’ll get a compiler error. With
rules, your program will panic and exit.

The advantages of checking the borrowing rules at compile time are th
be caught sooner in the development process, and there is no impact
performance because all the analysis is completed beforehand. For th
checking the borrowing rules at compile time is the best choice in the
cases, which is why this is Rust’s default.

The advantage of checking the borrowing rules at runtime instead is t
memory-safe scenarios are then allowed, whereas they are disallowed
compile-time checks. Static analysis, like the Rust compiler, is inherent
Some properties of code are impossible to detect by analyzing the cod
famous example is the Halting Problem, which is beyond the scope of
an interesting topic to research.

Because some analysis is impossible, if the Rust compiler can’t be sure
complies with the ownership rules, it might reject a correct program; i
conservative. If Rust accepted an incorrect program, users wouldn’t be
the guarantees Rust makes. However, if Rust rejects a correct program
programmer will be inconvenienced, but nothing catastrophic can occ
RefCell<T> type is useful when you’re sure your code follows the bor

but the compiler is unable to understand and guarantee that.

Similar to Rc<T> , RefCell<T> is only for use in single-threaded scena
give you a compile-time error if you try using it in a multithreaded con
about how to get the functionality of RefCell<T>
Chapter 16.

Here is a recap of the reasons to choose Box<T>

Rc<T> enables multiple owners of the same data;
have single owners.
Box<T> allows immutable or mutable borrows checked at comp

allows only immutable borrows checked at compile time;
immutable or mutable borrows checked at runtime.
Because RefCell<T> allows mutable borrows checked at runtim
mutate the value inside the RefCell<T> even when the
immutable.

Mutating the value inside an immutable value is the
look at a situation in which interior mutability is useful and examine h

Interior Mutability: A Mutable Borrow to an Immutable Va

A consequence of the borrowing rules is that when you have an immu
can’t borrow it mutably. For example, this code won’t compile:

If you tried to compile this code, you’d get the following error:

However, there are situations in which it would be useful for a value to
in its methods but appear immutable to other code. Code outside the
methods would not be able to mutate the value. Using
the ability to have interior mutability. But RefCell<T>
borrowing rules completely: the borrow checker in the compiler allow
mutability, and the borrowing rules are checked at runtime instead. If
rules, you’ll get a panic! instead of a compiler error.

Let’s work through a practical example where we can use
immutable value and see why that is useful.

A Use Case for Interior Mutability: Mock Objects

A test double is the general programming concept for a type used in pl
type during testing. Mock objects are speci�c types of test doubles that
happens during a test so you can assert that the correct actions took p

Rust doesn’t have objects in the same sense as other languages have
Rust doesn’t have mock object functionality built into the standard libr
other languages do. However, you can de�nitely create a struct that w
same purposes as a mock object.

Here’s the scenario we’ll test: we’ll create a library that tracks a value a
maximum value and sends messages based on how close to the maxi
current value is. This library could be used to keep track of a user’s qu
number of API calls they’re allowed to make, for example.

Our library will only provide the functionality of tracking how close to

fn main() {
let x = 5;
let y = &mut x;

}

error[E0596]: cannot borrow immutable local variable `x` as
 --> src/main.rs:3:18
 |
2 | let x = 5;
 | - consider changing this to `mut x`
3 | let y = &mut x;
 | ^ cannot borrow mutably

value is and what the messages should be at what times. Applications
library will be expected to provide the mechanism for sending the me
application could put a message in the application, send an email, sen
message, or something else. The library doesn’t need to know that de
is something that implements a trait we’ll provide called
shows the library code:

Filename: src/lib.rs

Listing 15-20: A library to keep track of how close a value is to a maxim
warn when the value is at certain levels

pub trait Messenger {
fn send(&self, msg: &str);

}

pub struct LimitTracker<'a, T: 'a + Messenger> {
 messenger: &'a T,
 value: usize,
 max: usize,
}

impl<'a, T> LimitTracker<'a, T>
where T: Messenger {
pub fn new(messenger: &T, max: usize) -> LimitTracker<T

 LimitTracker {
 messenger,
 value: 0,
 max,
 }
 }

pub fn set_value(&mut self, value: usize
self.value = value;

let percentage_of_max = self.value

if percentage_of_max >= 0.75 && percentage_of_max <
self.messenger.send("Warning: You've used up ov

quota!");
 } else if percentage_of_max >= 0.9

self.messenger.send("Urgent warning: You've use
of your quota!");
 } else if percentage_of_max >= 1.0

self.messenger.send("Error: You are over your q
 }
 }
}

One important part of this code is that the Messenger
send that takes an immutable reference to self

the interface our mock object needs to have. The other important par
to test the behavior of the set_value method on the
what we pass in for the value parameter, but set_value
us to make assertions on. We want to be able to say that if we create a
with something that implements the Messenger
when we pass di�erent numbers for value , the messenger is told to
appropriate messages.

We need a mock object that, instead of sending an email or text mess
call send , will only keep track of the messages it’s told to send. We ca
instance of the mock object, create a LimitTracker
the set_value method on LimitTracker , and then check that the m
the messages we expect. Listing 15-21 shows an attempt to implemen
to do just that, but the borrow checker won’t allow it:

Filename: src/lib.rs

Listing 15-21: An attempt to implement a MockMessenger
borrow checker

This test code de�nes a MockMessenger struct that has a
Vec of String values to keep track of the messages it’s told to send.

an associated function new to make it convenient to create new
values that start with an empty list of messages. We then implement t
trait for MockMessenger so we can give a MockMessenger
de�nition of the send method, we take the message passed in as a pa
store it in the MockMessenger list of sent_messages

In the test, we’re testing what happens when the
to something that is more than 75 percent of the
MockMessenger , which will start with an empty list of messages. Then
LimitTracker and give it a reference to the new

100. We call the set_value method on the LimitTracker

#[cfg(test)]
mod tests {

use super::*;

struct MockMessenger {
 sent_messages: Vec<String>,
 }

impl MockMessenger {
fn new() -> MockMessenger {

 MockMessenger { sent_messages:
 }
 }

impl Messenger for MockMessenger {
fn send(&self, message: &str) {

self.sent_messages.push(String
 }
 }

#[test]
fn it_sends_an_over_75_percent_warning_message

let mock_messenger = MockMessenger::new();
let mut limit_tracker = LimitTracker::new(&mock_mes

 limit_tracker.set_value(80);

assert_eq!(mock_messenger.sent_messages.len(),
 }
}

more than 75 percent of 100. Then we assert that the list of messages
MockMessenger is keeping track of should now have one message in i

However, there’s one problem with this test, as shown here:

We can’t modify the MockMessenger to keep track of the messages, be
method takes an immutable reference to self . We also can’t take the
from the error text to use &mut self instead, because then the signa
wouldn’t match the signature in the Messenger trait de�nition (feel fre
what error message you get).

This is a situation in which interior mutability can help! We’ll store the
within a RefCell<T> , and then the send message will be able to mod
sent_messages to store the messages we’ve seen. Listing 15-22 show

looks like:

Filename: src/lib.rs

error[E0596]: cannot borrow immutable field `self.sent_mess
mutable
 --> src/lib.rs:52:13
 |
51 | fn send(&self, message: &str) {
 | ----- use `&mut self` here to make mut
52 | self.sent_messages.push(String::from(messa
 | ^^^^^^^^^^^^^^^^^^ cannot mutably borrow i

Listing 15-22: Using RefCell<T> to mutate an inner value while the ou
considered immutable

The sent_messages �eld is now of type RefCell<Vec<String>>
Vec<String> . In the new function, we create a new

around the empty vector.

For the implementation of the send method, the �rst parameter is st
borrow of self , which matches the trait de�nition. We call
RefCell<Vec<String>> in self.sent_messages

value inside the RefCell<Vec<String>> , which is the vector. Then we
on the mutable reference to the vector to keep track of the messages
test.

The last change we have to make is in the assertion: to see how many
inner vector, we call borrow on the RefCell<Vec<String>>
reference to the vector.

Now that you’ve seen how to use RefCell<T> , let’s dig into how it wor

#[cfg(test)]
mod tests {

use super::*;
use std::cell::RefCell;

struct MockMessenger {
 sent_messages: RefCell<Vec<String>>,
 }

impl MockMessenger {
fn new() -> MockMessenger {

 MockMessenger { sent_messages: RefCell::new(
 }
 }

impl Messenger for MockMessenger {
fn send(&self, message: &str) {

self.sent_messages.borrow_mut().push(
 }
 }

#[test]
fn it_sends_an_over_75_percent_warning_message

// --snip--

assert_eq!(mock_messenger.sent_messages.borrow().le
 }
}

Keeping Track of Borrows at Runtime with RefCell<T>

When creating immutable and mutable references, we use the
respectively. With RefCell<T> , we use the borrow
are part of the safe API that belongs to RefCell<T>
smart pointer type Ref<T> , and borrow_mut returns the smart pointe
RefMut<T> . Both types implement Deref , so we can treat them like r

references.

The RefCell<T> keeps track of how many Ref<T>
are currently active. Every time we call borrow , the
how many immutable borrows are active. When a
the count of immutable borrows goes down by one. Just like the comp
borrowing rules, RefCell<T> lets us have many immutable borrows o
borrow at any point in time.

If we try to violate these rules, rather than getting a compiler error as
references, the implementation of RefCell<T> will panic at runtime. L
shows a modi�cation of the implementation of
deliberately trying to create two mutable borrows active for the same
illustrate that RefCell<T> prevents us from doing this at runtime.

Filename: src/lib.rs

Listing 15-23: Creating two mutable references in the same scope to s
RefCell<T> will panic

We create a variable one_borrow for the RefMut<T>
borrow_mut . Then we create another mutable borrow in the same wa
two_borrow . This makes two mutable references in the same scope, w

allowed. When we run the tests for our library, the code in Listing 15-2
without any errors, but the test will fail:

impl Messenger for MockMessenger {
fn send(&self, message: &str) {

let mut one_borrow = self.sent_messages.borrow_mut(
let mut two_borrow = self.sent_messages.borrow_mut(

 one_borrow.push(String::from(message));
 two_borrow.push(String::from(message));
 }
}

Notice that the code panicked with the message
. This is how RefCell<T> handles violations of the borrowing rules at

Catching borrowing errors at runtime rather than compile time means
�nd a mistake in your code later in the development process and poss
your code was deployed to production. Also, your code would incur a
performance penalty as a result of keeping track of the borrows at run
than compile time. However, using RefCell<T> makes it possible to w
object that can modify itself to keep track of the messages it has seen
using it in a context where only immutable values are allowed. You ca
RefCell<T> despite its trade-o�s to get more functionality than regul

provide.

Having Multiple Owners of Mutable Data by Combining
RefCell<T>

A common way to use RefCell<T> is in combination with
lets you have multiple owners of some data, but it only gives immutab
data. If you have an Rc<T> that holds a RefCell<T>
have multiple owners and that you can mutate!

For example, recall the cons list example in Listing 15-18 where we us
allow multiple lists to share ownership of another list. Because
immutable values, we can’t change any of the values in the list once w
them. Let’s add in RefCell<T> to gain the ability to change the values
Listing 15-24 shows that by using a RefCell<T> in the
the value stored in all the lists:

Filename: src/main.rs

---- tests::it_sends_an_over_75_percent_warning_message std
 thread 'tests::it_sends_an_over_75_percent_warning_mess
at
'already borrowed: BorrowMutError', src/libcore/result.rs:9
note: Run with `RUST_BACKTRACE=1` for a backtrace.

Listing 15-24: Using Rc<RefCell<i32>> to create a

We create a value that is an instance of Rc<RefCell<i32>>
named value so we can access it directly later. Then we create a
Cons variant that holds value . We need to clone

ownership of the inner 5 value rather than transferring ownership fro
or having a borrow from value .

We wrap the list a in an Rc<T> so when we create lists
to a , which is what we did in Listing 15-18.

After we’ve created the lists in a , b , and c , we add 10 to the value in
this by calling borrow_mut on value , which uses the automatic deref
we discussed in Chapter 5 (see the section “Where’s the
dereference the Rc<T> to the inner RefCell<T>
returns a RefMut<T> smart pointer, and we use the dereference oper
change the inner value.

When we print a , b , and c , we can see that they all have the modi�e
rather than 5:

#[derive(Debug)]
enum List {
 Cons(Rc<RefCell<i32>>, Rc<List>),
 Nil,
}

use List::{Cons, Nil};
use std::rc::Rc;
use std::cell::RefCell;

fn main() {
let value = Rc::new(RefCell::new(5));

let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));

let b = Cons(Rc::new(RefCell::new(6)), Rc::clone(&a));
let c = Cons(Rc::new(RefCell::new(10)), Rc::clone(&a));

 *value.borrow_mut() += 10;

println!("a after = {:?}", a);
println!("b after = {:?}", b);
println!("c after = {:?}", c);

}

This technique is pretty neat! By using RefCell<T>
List value. But we can use the methods on RefCell<T>

interior mutability so we can modify our data when we need to. The ru
of the borrowing rules protect us from data races, and it’s sometimes
bit of speed for this �exibility in our data structures.

The standard library has other types that provide interior mutability, s
, which is similar except that instead of giving references to the inner v
is copied in and out of the Cell<T> . There’s also
mutability that’s safe to use across threads; we’ll discuss its use in Cha
out the standard library docs for more details on the di�erences betw
types.

Reference Cycles Can Leak Memory

Rust’s memory safety guarantees make it di�cult, but not impossible,
create memory that is never cleaned up (known as a
memory leaks entirely is not one of Rust’s guarantees in the same way
disallowing data races at compile time is, meaning memory leaks are m
Rust. We can see that Rust allows memory leaks by using
possible to create references where items refer to each other in a cycl
memory leaks because the reference count of each item in the cycle w
0, and the values will never be dropped.

Creating a Reference Cycle

Let’s look at how a reference cycle might happen and how to prevent
the de�nition of the List enum and a tail method in Listing 15-25:

Filename: src/main.rs

a after = Cons(RefCell { value: 15 }, Nil)
b after = Cons(RefCell { value: 6 }, Cons(RefCell { value:
c after = Cons(RefCell { value: 10 }, Cons(RefCell { value:

Listing 15-25: A cons list de�nition that holds a RefCell<T>
Cons variant is referring to

We’re using another variation of the List de�nition in Listing 15-25. T
element in the Cons variant is now RefCell<Rc<List>>
having the ability to modify the i32 value as we did in Listing 15-24, w
modify which List value a Cons variant is pointing to. We’re also add
method to make it convenient for us to access the second item if we h
variant.

In Listing 15-26, we’re adding a main function that uses the de�nition
15-25. This code creates a list in a and a list in b
modi�es the list in a to point to b , creating a reference cycle. There a
statements along the way to show what the reference counts are at va
this process.

Filename: src/main.rs

use std::rc::Rc;
use std::cell::RefCell;
use List::{Cons, Nil};

#[derive(Debug)]
enum List {
 Cons(i32, RefCell<Rc<List>>),
 Nil,
}

impl List {
fn tail(&self) -> Option<&RefCell<Rc<List>>> {

match self {
 Cons(_, item) => Some(item),
 Nil => None,
 }
 }
}

Listing 15-26: Creating a reference cycle of two

We create an Rc<List> instance holding a List
initial list of 5, Nil . We then create an Rc<List>
value in the variable b that contains the value 10 and points to the lis

We modify a so it points to b instead of Nil , creating a cycle. We do
the tail method to get a reference to the RefCell<Rc<List>>
the variable link . Then we use the borrow_mut
to change the value inside from an Rc<List> that holds a
in b .

When we run this code, keeping the last println!
we’ll get this output:

The reference count of the Rc<List> instances in both
change the list in a to point to b . At the end of

fn main() {
let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));

println!("a initial rc count = {}", Rc::strong_count(&a
println!("a next item = {:?}", a.tail());

let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));

println!("a rc count after b creation = {}"
println!("b initial rc count = {}", Rc::strong_count(&b
println!("b next item = {:?}", b.tail());

if let Some(link) = a.tail() {
 *link.borrow_mut() = Rc::clone(&b);
 }

println!("b rc count after changing a = {}"
println!("a rc count after changing a = {}"

// Uncomment the next line to see that we have a cycle;
// it will overflow the stack
// println!("a next item = {:?}", a.tail());

}

a initial rc count = 1
a next item = Some(RefCell { value: Nil })
a rc count after b creation = 2
b initial rc count = 1
b next item = Some(RefCell { value: Cons(5, RefCell { value
b rc count after changing a = 2
a rc count after changing a = 2

which will decrease the count in each of the Rc<List>

However, because a is still referencing the Rc<List>
has a count of 1 rather than 0, so the memory the
be dropped. The memory will just sit there with a count of 1, forever. T
reference cycle, we’ve created a diagram in Figure 15-4.

a

10

Figure 15-4: A reference cycle of lists a and b pointing to each other

If you uncomment the last println! and run the program, Rust will t
cycle with a pointing to b pointing to a and so forth until it over�ow

In this case, right after we create the reference cycle, the program end
consequences of this cycle aren’t very dire. However, if a more comple
allocated lots of memory in a cycle and held onto it for a long time, the
would use more memory than it needed and might overwhelm the sy
to run out of available memory.

Creating reference cycles is not easily done, but it’s not impossible eith
RefCell<T> values that contain Rc<T> values or similar nested comb

types with interior mutability and reference counting, you must ensur

create cycles; you can’t rely on Rust to catch them. Creating a referenc
be a logic bug in your program that you should use automated tests, c
and other software development practices to minimize.

Another solution for avoiding reference cycles is reorganizing your da
that some references express ownership and some references don’t.
can have cycles made up of some ownership relationships and some n
relationships, and only the ownership relationships a�ect whether or
be dropped. In Listing 15-25, we always want Cons
reorganizing the data structure isn’t possible. Let’s look at an example
made up of parent nodes and child nodes to see when non-ownership
are an appropriate way to prevent reference cycles.

Preventing Reference Cycles: Turning an

So far, we’ve demonstrated that calling Rc::clone
Rc<T> instance, and an Rc<T> instance is only cleaned up if its

You can also create a weak reference to the value within an
Rc::downgrade and passing a reference to the

, you get a smart pointer of type Weak<T> . Instead of increasing the
the Rc<T> instance by 1, calling Rc::downgrade
Rc<T> type uses weak_count to keep track of how many

similar to strong_count . The di�erence is the weak_count
the Rc<T> instance to be cleaned up.

Strong references are how you can share ownership of an
references don’t express an ownership relationship. They won’t cause
cycle because any cycle involving some weak references will be broken
strong reference count of values involved is 0.

Because the value that Weak<T> references might have been dropped
with the value that a Weak<T> is pointing to, you must make sure the
Do this by calling the upgrade method on a Weak<T>
Option<Rc<T>> . You’ll get a result of Some if the

yet and a result of None if the Rc<T> value has been dropped. Becau
returns an Option<T> , Rust will ensure that the
handled, and there won’t be an invalid pointer.

As an example, rather than using a list whose items know only about t
we’ll create a tree whose items know about their children items
items.

Creating a Tree Data Structure: a Node with Child Nodes

To start, we’ll build a tree with nodes that know about their child node
struct named Node that holds its own i32 value as well as references
Node values:

Filename: src/main.rs

We want a Node to own its children, and we want to share that owner
variables so we can access each Node in the tree directly. To do this, w
Vec<T> items to be values of type Rc<Node> . We also want to modify

are children of another node, so we have a RefCell<T>
Vec<Rc<Node>> .

Next, we’ll use our struct de�nition and create one
the value 3 and no children, and another instance named
and leaf as one of its children, as shown in Listing 15-27:

Filename: src/main.rs

Listing 15-27: Creating a leaf node with no children and a
as one of its children

We clone the Rc<Node> in leaf and store that in
leaf now has two owners: leaf and branch . We can get from

use std::rc::Rc;
use std::cell::RefCell;

#[derive(Debug)]
struct Node {
 value: i32,
 children: RefCell<Vec<Rc<Node>>>,
}

fn main() {
let leaf = Rc::new(Node {

 value: 3,
 children: RefCell::new(vec![]),
 });

let branch = Rc::new(Node {
 value: 5,
 children: RefCell::new(vec![Rc::clone(&leaf)]),
 });
}

through branch.children , but there’s no way to get from
reason is that leaf has no reference to branch
want leaf to know that branch is its parent. We’ll do that next.

Adding a Reference from a Child to Its Parent

To make the child node aware of its parent, we need to add a
Node struct de�nition. The trouble is in deciding what the type of

We know it can’t contain an Rc<T> , because that would create a refer
leaf.parent pointing to branch and branch.children

would cause their strong_count values to never be 0.

Thinking about the relationships another way, a parent node should o
if a parent node is dropped, its child nodes should be dropped as well
child should not own its parent: if we drop a child node, the parent sh
This is a case for weak references!

So instead of Rc<T> , we’ll make the type of parent
RefCell<Weak<Node>> . Now our Node struct de�nition looks like this:

Filename: src/main.rs

A node will be able to refer to its parent node but doesn’t own its pare
15-28, we update main to use this new de�nition so the
refer to its parent, branch :

Filename: src/main.rs

use std::rc::{Rc, Weak};
use std::cell::RefCell;

#[derive(Debug)]
struct Node {
 value: i32,
 parent: RefCell<Weak<Node>>,
 children: RefCell<Vec<Rc<Node>>>,
}

Listing 15-28: A leaf node with a weak reference to its parent node

Creating the leaf node looks similar to how creating the
15-27 with the exception of the parent �eld: leaf
create a new, empty Weak<Node> reference instance.

At this point, when we try to get a reference to the parent of
upgrade method, we get a None value. We see this in the output from
println! statement:

When we create the branch node, it will also have a new
the parent �eld, because branch doesn’t have a parent node. We sti
one of the children of branch . Once we have the
modify leaf to give it a Weak<Node> reference to its parent. We use t
method on the RefCell<Weak<Node>> in the parent
the Rc::downgrade function to create a Weak<Node>
Rc<Node> in branch.

When we print the parent of leaf again, this time we’ll get a
branch : now leaf can access its parent! When we print

cycle that eventually ended in a stack over�ow like we had in Listing 1
Weak<Node> references are printed as (Weak) :

fn main() {
let leaf = Rc::new(Node {

 value: 3,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![]),
 });

println!("leaf parent = {:?}", leaf.parent.borrow().upg

let branch = Rc::new(Node {
 value: 5,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![Rc::clone(&leaf)]),
 });

 *leaf.parent.borrow_mut() = Rc::downgrade(&branch);

println!("leaf parent = {:?}", leaf.parent.borrow().upg
}

leaf parent = None

The lack of in�nite output indicates that this code didn’t create a refer
can also tell this by looking at the values we get from calling
Rc::weak_count .

Visualizing Changes to strong_count and weak_count

Let’s look at how the strong_count and weak_count
instances change by creating a new inner scope and moving the creat
into that scope. By doing so, we can see what happens when
then dropped when it goes out of scope. The modi�cations are shown
15-29:

Filename: src/main.rs

leaf parent = Some(Node { value: 5, parent: RefCell { value
children: RefCell { value: [Node { value: 3, parent: RefCel
(Weak) },
children: RefCell { value: [] } }] } })

Listing 15-29: Creating branch in an inner scope and examining stron
reference counts

After leaf is created, its Rc<Node> has a strong count of 1 and a wea
the inner scope, we create branch and associate it with
we print the counts, the Rc<Node> in branch will have a strong count
count of 1 (for leaf.parent pointing to branch

fn main() {
let leaf = Rc::new(Node {

 value: 3,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![]),
 });

println!(
"leaf strong = {}, weak = {}",

 Rc::strong_count(&leaf),
 Rc::weak_count(&leaf),
);

 {
let branch = Rc::new(Node {

 value: 5,
 parent: RefCell::new(Weak::new()),
 children: RefCell::new(vec![Rc::clone(&leaf)]),
 });

 *leaf.parent.borrow_mut() = Rc::downgrade(&branch);

println!(
"branch strong = {}, weak = {}"

 Rc::strong_count(&branch),
 Rc::weak_count(&branch),
);

println!(
"leaf strong = {}, weak = {}",

 Rc::strong_count(&leaf),
 Rc::weak_count(&leaf),
);
 }

println!("leaf parent = {:?}", leaf.parent.borrow().upg
println!(

"leaf strong = {}, weak = {}",
 Rc::strong_count(&leaf),
 Rc::weak_count(&leaf),
);
}

the counts in leaf , we’ll see it will have a strong count of 2, because
a clone of the Rc<Node> of leaf stored in branch.children
weak count of 0.

When the inner scope ends, branch goes out of scope and the strong
Rc<Node> decreases to 0, so its Node is dropped. The weak count of 1
leaf.parent has no bearing on whether or not

memory leaks!

If we try to access the parent of leaf after the end of the scope, we’ll
At the end of the program, the Rc<Node> in leaf
count of 0, because the variable leaf is now the only reference to the
again.

All of the logic that manages the counts and value dropping is built int
Weak<T> and their implementations of the Drop

relationship from a child to its parent should be a
of Node , you’re able to have parent nodes point to child nodes and vic
creating a reference cycle and memory leaks.

Summary

This chapter covered how to use smart pointers to make di�erent gua
trade-o�s than those Rust makes by default with regular references. T
has a known size and points to data allocated on the heap. The
track of the number of references to data on the heap so that data ca
owners. The RefCell<T> type with its interior mutability gives us a typ
use when we need an immutable type but need to change an inner va
it also enforces the borrowing rules at runtime instead of at compile t

Also discussed were the Deref and Drop traits, which enable a lot of
functionality of smart pointers. We explored reference cycles that can
leaks and how to prevent them using Weak<T> .

If this chapter has piqued your interest and you want to implement yo
pointers, check out “The Rustonomicon” for more useful information.

Next, we’ll talk about concurrency in Rust. You’ll even learn about a few
pointers.

Fearless Concurrency

Handling concurrent programming safely and e�ciently is another of
goals. Concurrent programming, where di�erent parts of a program ex
independently, and parallel programming, where di�erent parts of a p
at the same time, are becoming increasingly important as more comp
advantage of their multiple processors. Historically, programming in t
has been di�cult and error prone: Rust hopes to change that.

Initially, the Rust team thought that ensuring memory safety and prev
concurrency problems were two separate challenges to be solved with
methods. Over time, the team discovered that the ownership and type
powerful set of tools to help manage memory safety
leveraging ownership and type checking, many concurrency errors are
errors in Rust rather than runtime errors. Therefore, rather than maki
lots of time trying to reproduce the exact circumstances under which
concurrency bug occurs, incorrect code will refuse to compile and pre
explaining the problem. As a result, you can �x your code while you’re
rather than potentially after it has been shipped to production. We’ve
aspect of Rust fearless concurrency. Fearless concurrency allows you to
is free of subtle bugs and is easy to refactor without introducing new b

Note: For simplicity’s sake, we’ll refer to many of the problems as
rather than being more precise by saying concurrent and/or parallel
were about concurrency and/or parallelism, we’d be more speci�c.
chapter, please mentally substitute concurrent and/or parallel
concurrent.

Many languages are dogmatic about the solutions they o�er for hand
problems. For example, Erlang has elegant functionality for message-p
concurrency but has only obscure ways to share state between thread
only a subset of possible solutions is a reasonable strategy for higher-
because a higher-level language promises bene�ts from giving up som
gain abstractions. However, lower-level languages are expected to pro
solution with the best performance in any given situation and have fe
over the hardware. Therefore, Rust o�ers a variety of tools for modeli
whatever way is appropriate for your situation and requirements.

Here are the topics we’ll cover in this chapter:

How to create threads to run multiple pieces of code at the same
Message-passing concurrency, where channels send messages be
Shared-state concurrency, where multiple threads have access to
data
The Sync and Send traits, which extend Rust’s concurrency gua

de�ned types as well as types provided by the standard library

Using Threads to Run Code Simultaneously

In most current operating systems, an executed program’s code is run
and the operating system manages multiple processes at once. Within
you can also have independent parts that run simultaneously. The fea
these independent parts are called threads.

Splitting the computation in your program into multiple threads can im
performance because the program does multiple tasks at the same tim
adds complexity. Because threads can run simultaneously, there’s no
guarantee about the order in which parts of your code on di�erent th
This can lead to problems, such as:

Race conditions, where threads are accessing data or resources
inconsistent order
Deadlocks, where two threads are waiting for each other to �nis
resource the other thread has, preventing both threads from con
Bugs that happen only in certain situations and are hard to repro
reliably

Rust attempts to mitigate the negative e�ects of using threads, but pr
multithreaded context still takes careful thought and requires a code s
di�erent from that in programs running in a single thread.

Programming languages implement threads in a few di�erent ways. M
systems provide an API for creating new threads. This model where a
the operating system APIs to create threads is sometimes called
operating system thread per one language thread.

Many programming languages provide their own special implementat
Programming language-provided threads are known as
that use these green threads will execute them in the context of a di�
operating system threads. For this reason, the green-threaded model
model: there are M green threads per N operating system threads, w
are not necessarily the same number.

Each model has its own advantages and trade-o�s, and the trade-o� m
to Rust is runtime support. Runtime is a confusing term and can have d
meanings in di�erent contexts.

In this context, by runtime we mean code that is included by the langu

binary. This code can be large or small depending on the language, bu
assembly language will have some amount of runtime code. For that r
colloquially when people say a language has “no runtime,” they often
runtime.” Smaller runtimes have fewer features but have the advanta
smaller binaries, which make it easier to combine the language with o
in more contexts. Although many languages are okay with increasing
in exchange for more features, Rust needs to have nearly no runtime
compromise on being able to call into C to maintain performance.

The green-threading M:N model requires a larger language runtime to
threads. As such, the Rust standard library only provides an implemen
threading. Because Rust is such a low-level language, there are crates
M:N threading if you would rather trade overhead for aspects such as
over which threads run when and lower costs of context switching, for

Now that we’ve de�ned threads in Rust, let’s explore how to use the th
API provided by the standard library.

Creating a New Thread with spawn

To create a new thread, we call the thread::spawn
talked about closures in Chapter 13) containing the code we want to r
thread. The example in Listing 16-1 prints some text from a main thre
text from a new thread:

Filename: src/main.rs

Listing 16-1: Creating a new thread to print one thing while the main t
something else

use std::thread;
use std::time::Duration;

fn main() {
 thread::spawn(|| {

for i in 1..10 {
println!("hi number {} from the spawned thread!

 thread::sleep(Duration::from_millis(
 }
 });

for i in 1..5 {
println!("hi number {} from the main thread!"

 thread::sleep(Duration::from_millis(
 }
}

Note that with this function, the new thread will be stopped when the
ends, whether or not it has �nished running. The output from this pro
a little di�erent every time, but it will look similar to the following:

The calls to thread::sleep force a thread to stop its execution for a s
allowing a di�erent thread to run. The threads will probably take turn
guaranteed: it depends on how your operating system schedules the
run, the main thread printed �rst, even though the print statement fro
thread appears �rst in the code. And even though we told the spawne
print until i is 9, it only got to 5 before the main thread shut down.

If you run this code and only see output from the main thread, or don
overlap, try increasing the numbers in the ranges to create more oppo
operating system to switch between the threads.

Waiting for All Threads to Finish Using

The code in Listing 16-1 not only stops the spawned thread premature
time due to the main thread ending, but also can't guarantee that the
thread will get to run at all. The reason is that there is no guarantee on
which threads run!

We can �x the problem of the spawned thread not getting to run, or n
completely, by saving the return value of thread::spawn
type of thread::spawn is JoinHandle . A JoinHandle
we call the join method on it, will wait for its thread to �nish. Listing
to use the JoinHandle of the thread we created in Listing 16-1 and ca
sure the spawned thread �nishes before main exits:

Filename: src/main.rs

hi number 1 from the main thread!
hi number 1 from the spawned thread!
hi number 2 from the main thread!
hi number 2 from the spawned thread!
hi number 3 from the main thread!
hi number 3 from the spawned thread!
hi number 4 from the main thread!
hi number 4 from the spawned thread!
hi number 5 from the spawned thread!

Listing 16-2: Saving a JoinHandle from thread::spawn
run to completion

Calling join on the handle blocks the thread currently running until t
represented by the handle terminates. Blocking a thread means that th
prevented from performing work or exiting. Because we’ve put the ca
the main thread’s for loop, running Listing 16-2 should produce outp
this:

The two threads continue alternating, but the main thread waits beca
handle.join() and does not end until the spawned thread is �nished

But let’s see what happens when we instead move
loop in main , like this:

Filename: src/main.rs

use std::thread;
use std::time::Duration;

fn main() {
let handle = thread::spawn(|| {

for i in 1..10 {
println!("hi number {} from the spawned thread!

 thread::sleep(Duration::from_millis(
 }
 });

for i in 1..5 {
println!("hi number {} from the main thread!"

 thread::sleep(Duration::from_millis(
 }

 handle.join().unwrap();
}

hi number 1 from the main thread!
hi number 2 from the main thread!
hi number 1 from the spawned thread!
hi number 3 from the main thread!
hi number 2 from the spawned thread!
hi number 4 from the main thread!
hi number 3 from the spawned thread!
hi number 4 from the spawned thread!
hi number 5 from the spawned thread!
hi number 6 from the spawned thread!
hi number 7 from the spawned thread!
hi number 8 from the spawned thread!
hi number 9 from the spawned thread!

The main thread will wait for the spawned thread to �nish and then ru
so the output won’t be interleaved anymore, as shown here:

Small details, such as where join is called, can a�ect whether or not
run at the same time.

Using move Closures with Threads

The move closure is often used alongside thread::spawn
use data from one thread in another thread.

In Chapter 13, we mentioned we can use the move
of a closure to force the closure to take ownership of the values it use
environment. This technique is especially useful when creating new th

use std::thread;
use std::time::Duration;

fn main() {
let handle = thread::spawn(|| {

for i in 1..10 {
println!("hi number {} from the spawned thread!

 thread::sleep(Duration::from_millis(
 }
 });

 handle.join().unwrap();

for i in 1..5 {
println!("hi number {} from the main thread!"

 thread::sleep(Duration::from_millis(
 }
}

hi number 1 from the spawned thread!
hi number 2 from the spawned thread!
hi number 3 from the spawned thread!
hi number 4 from the spawned thread!
hi number 5 from the spawned thread!
hi number 6 from the spawned thread!
hi number 7 from the spawned thread!
hi number 8 from the spawned thread!
hi number 9 from the spawned thread!
hi number 1 from the main thread!
hi number 2 from the main thread!
hi number 3 from the main thread!
hi number 4 from the main thread!

to transfer ownership of values from one thread to another.

Notice in Listing 16-1 that the closure we pass to
we’re not using any data from the main thread in the spawned thread
data from the main thread in the spawned thread, the spawned threa
capture the values it needs. Listing 16-3 shows an attempt to create a
main thread and use it in the spawned thread. However, this won’t ye
see in a moment.

Filename: src/main.rs

Listing 16-3: Attempting to use a vector created by the main thread in

The closure uses v , so it will capture v and make it part of the closur
environment. Because thread::spawn runs this closure in a new thre
be able to access v inside that new thread. But when we compile this
get the following error:

Rust infers how to capture v , and because println!
the closure tries to borrow v . However, there’s a problem: Rust can’t

use std::thread;

fn main() {
let v = vec![1, 2, 3];

let handle = thread::spawn(|| {
println!("Here's a vector: {:?}", v);

 });

 handle.join().unwrap();
}

error[E0373]: closure may outlive the current function, but
`v`,
which is owned by the current function
 --> src/main.rs:6:32
 |
6 | let handle = thread::spawn(|| {
 | ^^ may outlive borrowed
7 | println!("Here's a vector: {:?}", v);
 | - `v` is borr
 |
help: to force the closure to take ownership of `v` (and an
referenced
variables), use the `move` keyword
 |
6 | let handle = thread::spawn(move || {
 | ^^^^^^^

the spawned thread will run, so it doesn’t know if the reference to
valid.

Listing 16-4 provides a scenario that’s more likely to have a reference
be valid:

Filename: src/main.rs

Listing 16-4: A thread with a closure that attempts to capture a referen
main thread that drops v

If we were allowed to run this code, there’s a possibility the spawned t
immediately put in the background without running at all. The spawne
reference to v inside, but the main thread immediately drops
function we discussed in Chapter 15. Then, when the spawned thread
execute, v is no longer valid, so a reference to it is also invalid. Oh no

To �x the compiler error in Listing 16-3, we can use the error message

By adding the move keyword before the closure, we force the closure
ownership of the values it’s using rather than allowing Rust to infer th
borrow the values. The modi�cation to Listing 16-3 shown in Listing 16
and run as we intend:

Filename: src/main.rs

use std::thread;

fn main() {
let v = vec![1, 2, 3];

let handle = thread::spawn(|| {
println!("Here's a vector: {:?}", v);

 });

drop(v); // oh no!

 handle.join().unwrap();
}

help: to force the closure to take ownership of `v` (and an
referenced
variables), use the `move` keyword
 |
6 | let handle = thread::spawn(move || {
 | ^^^^^^^

Listing 16-5: Using the move keyword to force a closure to take owner
values it uses

What would happen to the code in Listing 16-4 where the main thread
we use a move closure? Would move �x that case? Unfortunately, no;
di�erent error because what Listing 16-4 is trying to do isn’t allowed fo
reason. If we added move to the closure, we would move
environment, and we could no longer call drop on it in the main threa
get this compiler error instead:

Rust’s ownership rules have saved us again! We got an error from the
16-3 because Rust was being conservative and only borrowing
which meant the main thread could theoretically invalidate the spawn
reference. By telling Rust to move ownership of
guaranteeing Rust that the main thread won’t use
16-4 in the same way, we’re then violating the ownership rules when w
in the main thread. The move keyword overrides Rust’s conservative d
borrowing; it doesn’t let us violate the ownership rules.

With a basic understanding of threads and the thread API, let’s look at
with threads.

use std::thread;

fn main() {
let v = vec![1, 2, 3];

let handle = thread::spawn(move || {
println!("Here's a vector: {:?}", v);

 });

 handle.join().unwrap();
}

error[E0382]: use of moved value: `v`
 --> src/main.rs:10:10
 |
6 | let handle = thread::spawn(move || {
 | ------- value moved (in
here
...
10 | drop(v); // oh no!
 | ^ value used here after move
 |
 = note: move occurs because `v` has type `std::vec::Vec<
does
 not implement the `Copy` trait

Using Message Passing to Transfer Data Between
Threads

One increasingly popular approach to ensuring safe concurrency is
where threads or actors communicate by sending each other message
data. Here’s the idea in a slogan from the Go language documentation
communicate by sharing memory; instead, share memory by commun

One major tool Rust has for accomplishing message-sending concurre
channel, a programming concept that Rust’s standard library provides
implementation of. You can imagine a channel in programming as bei
channel of water, such as a stream or a river. If you put something like
or boat into a stream, it will travel downstream to the end of the wate

A channel in programming has two halves: a transmitter and a receive
transmitter half is the upstream location where you put rubber ducks
and the receiver half is where the rubber duck ends up downstream. O
code calls methods on the transmitter with the data you want to send
part checks the receiving end for arriving messages. A channel is said
either the transmitter or receiver half is dropped.

Here, we’ll work up to a program that has one thread to generate valu
them down a channel, and another thread that will receive the values
out. We’ll be sending simple values between threads using a channel t
feature. Once you’re familiar with the technique, you could use chann
implement a chat system or a system where many threads perform p
calculation and send the parts to one thread that aggregates the resu

First, in Listing 16-6, we’ll create a channel but not do anything with it.
won’t compile yet because Rust can’t tell what type of values we want
channel.

Filename: src/main.rs

Listing 16-6: Creating a channel and assigning the two halves to

We create a new channel using the mpsc::channel
producer, single consumer. In short, the way Rust’s standard library imp
channels means a channel can have multiple sending

use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

}

only one receiving end that consumes those values. Imagine multiple s
together into one big river: everything sent down any of the streams w
one river at the end. We’ll start with a single producer for now, but we
producers when we get this example working.

The mpsc::channel function returns a tuple, the �rst element of whic
end and the second element is the receiving end. The abbreviations
traditionally used in many �elds for transmitter and
our variables as such to indicate each end. We’re using a
pattern that destructures the tuples; we’ll discuss the use of patterns i
statements and destructuring in Chapter 18. Using a
convenient approach to extract the pieces of the tuple returned by

Let’s move the transmitting end into a spawned thread and have it sen
the spawned thread is communicating with the main thread, as shown
This is like putting a rubber duck in the river upstream or sending a ch
from one thread to another.

Filename: src/main.rs

Listing 16-7: Moving tx to a spawned thread and sending “hi”

Again, we’re using thread::spawn to create a new thread and then us
move tx into the closure so the spawned thread owns
needs to own the transmitting end of the channel to be able to send m
through the channel.

The transmitting end has a send method that takes the value we wan
send method returns a Result<T, E> type, so if the receiving end ha

dropped and there’s nowhere to send a value, the send operation will
In this example, we’re calling unwrap to panic in case of an error. But
application, we would handle it properly: return to Chapter 9 to review
proper error handling.

use std::thread;
use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
let val = String::from("hi");

 tx.send(val).unwrap();
 });
}

In Listing 16-8, we’ll get the value from the receiving end of the channe
thread. This is like retrieving the rubber duck from the water at the en
like getting a chat message.

Filename: src/main.rs

Listing 16-8: Receiving the value “hi” in the main thread and printing it

The receiving end of a channel has two useful methods:
using recv , short for receive, which will block the main thread’s execu
until a value is sent down the channel. Once a value is sent,
Result<T, E> . When the sending end of the channel closes,

error to signal that no more values will be coming.

The try_recv method doesn’t block, but will instead return a
immediately: an Ok value holding a message if one is available and an
there aren’t any messages this time. Using try_recv
work to do while waiting for messages: we could write a loop that calls
every so often, handles a message if one is available, and otherwise d
for a little while until checking again.

We’ve used recv in this example for simplicity; we don’t have any oth
main thread to do other than wait for messages, so blocking the main
appropriate.

When we run the code in Listing 16-8, we’ll see the value printed from
thread:

Perfect!

use std::thread;
use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
let val = String::from("hi");

 tx.send(val).unwrap();
 });

let received = rx.recv().unwrap();
println!("Got: {}", received);

}

Got: hi

Channels and Ownership Transference

The ownership rules play a vital role in message sending because they
safe, concurrent code. Preventing errors in concurrent programming i
of thinking about ownership throughout your Rust programs. Let’s do
to show how channels and ownership work together to prevent probl
use a val value in the spawned thread after we’ve sent it down the ch
compiling the code in Listing 16-9 to see why this code isn't allowed:

Filename: src/main.rs

Listing 16-9: Attempting to use val after we’ve sent it down the chann

Here, we try to print val after we’ve sent it down the channel via
this would be a bad idea: once the value has been sent to another thr
could modify or drop it before we try to use the value again. Potential
thread’s modi�cations could cause errors or unexpected results due t
or nonexistent data. However, Rust gives us an error if we try to comp
Listing 16-9:

use std::thread;
use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
let val = String::from("hi");

 tx.send(val).unwrap();
println!("val is {}", val);

 });

let received = rx.recv().unwrap();
println!("Got: {}", received);

}

error[E0382]: use of moved value: `val`
 --> src/main.rs:10:31
 |
9 | tx.send(val).unwrap();
 | --- value moved here
10 | println!("val is {}", val);
 | ^^^ value used here afte
 |
 = note: move occurs because `val` has type `std::string:
does
not implement the `Copy` trait

Our concurrency mistake has caused a compile time error. The
ownership of its parameter, and when the value is moved, the receive
ownership of it. This stops us from accidentally using the value again a
the ownership system checks that everything is okay.

Sending Multiple Values and Seeing the Receiver Waiting

The code in Listing 16-8 compiled and ran, but it didn’t clearly show us
separate threads were talking to each other over the channel. In Listin
made some modi�cations that will prove the code in Listing 16-8 is run
concurrently: the spawned thread will now send multiple messages an
second between each message.

Filename: src/main.rs

Listing 16-10: Sending multiple messages and pausing between each

This time, the spawned thread has a vector of strings that we want to
main thread. We iterate over them, sending each individually, and pau
each by calling the thread::sleep function with a

use std::thread;
use std::sync::mpsc;
use std::time::Duration;

fn main() {
let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
let vals = vec![

String::from("hi"),
String::from("from"),
String::from("the"),
String::from("thread"),

];

for val in vals {
 tx.send(val).unwrap();
 thread::sleep(Duration::from_secs(
 }
 });

for received in rx {
println!("Got: {}", received);

 }
}

In the main thread, we’re not calling the recv function explicitly anym
we’re treating rx as an iterator. For each value received, we’re printin
channel is closed, iteration will end.

When running the code in Listing 16-10, you should see the following
1-second pause in between each line:

Because we don’t have any code that pauses or delays in the
thread, we can tell that the main thread is waiting to receive values fro
thread.

Creating Multiple Producers by Cloning the Transmitter

Earlier we mentioned that mpsc was an acronym for
consumer. Let’s put mpsc to use and expand the code in Listing 16-10
multiple threads that all send values to the same receiver. We can do
the transmitting half of the channel, as shown in Listing 16-11:

Filename: src/main.rs

Got: hi
Got: from
Got: the
Got: thread

Listing 16-11: Sending multiple messages from multiple producers

This time, before we create the �rst spawned thread, we call
end of the channel. This will give us a new sending handle we can pas
spawned thread. We pass the original sending end of the channel to a
spawned thread. This gives us two threads, each sending di�erent me
receiving end of the channel.

When you run the code, your output should look something like this:

// --snip--

let (tx, rx) = mpsc::channel();

let tx1 = mpsc::Sender::clone(&tx);
thread::spawn(move || {

let vals = vec![
String::from("hi"),
String::from("from"),
String::from("the"),
String::from("thread"),

];

for val in vals {
 tx1.send(val).unwrap();
 thread::sleep(Duration::from_secs(
 }
});

thread::spawn(move || {
let vals = vec![

String::from("more"),
String::from("messages"),
String::from("for"),
String::from("you"),

];

for val in vals {
 tx.send(val).unwrap();
 thread::sleep(Duration::from_secs(
 }
});

for received in rx {
println!("Got: {}", received);

}

// --snip--

You might see the values in another order; it depends on your system
makes concurrency interesting as well as di�cult. If you experiment w
thread::sleep , giving it various values in the di�erent threads, each

nondeterministic and create di�erent output each time.

Now that we’ve looked at how channels work, let’s look at a di�erent m
concurrency.

Shared-State Concurrency

Message passing is a �ne way of handling concurrency, but it’s not the
Consider this part of the slogan from the Go language documentation
“communicate by sharing memory.”

What would communicating by sharing memory look like? In addition,
message-passing enthusiasts not use it and do the opposite instead?

In a way, channels in any programming language are similar to single
because once you transfer a value down a channel, you should no lon
value. Shared memory concurrency is like multiple ownership: multipl
access the same memory location at the same time. As you saw in Cha
smart pointers made multiple ownership possible, multiple ownership
complexity because these di�erent owners need managing. Rust’s typ
ownership rules greatly assist in getting this management correct. For
let’s look at mutexes, one of the more common concurrency primitive
memory.

Using Mutexes to Allow Access to Data from One Thread at

Mutex is an abbreviation for mutual exclusion, as in, a mutex allows on
access some data at any given time. To access the data in a mutex, a t
signal that it wants access by asking to acquire the mutex’s
structure that is part of the mutex that keeps track of who currently h

Got: hi
Got: more
Got: from
Got: messages
Got: for
Got: the
Got: thread
Got: you

access to the data. Therefore, the mutex is described as
the locking system.

Mutexes have a reputation for being di�cult to use because you have
two rules:

You must attempt to acquire the lock before using the data.
When you’re done with the data that the mutex guards, you mus
data so other threads can acquire the lock.

For a real-world metaphor for a mutex, imagine a panel discussion at
with only one microphone. Before a panelist can speak, they have to a
they want to use the microphone. When they get the microphone, the
long as they want to and then hand the microphone to the next panel
requests to speak. If a panelist forgets to hand the microphone o� wh
�nished with it, no one else is able to speak. If management of the sha
microphone goes wrong, the panel won’t work as planned!

Management of mutexes can be incredibly tricky to get right, which is
people are enthusiastic about channels. However, thanks to Rust’s typ
ownership rules, you can’t get locking and unlocking wrong.

The API of Mutex<T>

As an example of how to use a mutex, let’s start by using a mutex in a
context, as shown in Listing 16-12:

Filename: src/main.rs

Listing 16-12: Exploring the API of Mutex<T> in a single-threaded cont

As with many types, we create a Mutex<T> using the associated functi
access the data inside the mutex, we use the lock
call will block the current thread so it can’t do any work until it’s our tu

use std::sync::Mutex;

fn main() {
let m = Mutex::new(5);

 {
let mut num = m.lock().unwrap();

 *num = 6;
 }

println!("m = {:?}", m);
}

lock.

The call to lock would fail if another thread holding the lock panicked
no one would ever be able to get the lock, so we’ve chosen to
thread panic if we’re in that situation.

After we’ve acquired the lock, we can treat the return value, named
as a mutable reference to the data inside. The type system ensures th
lock before using the value in m : Mutex<i32> is not an
lock to be able to use the i32 value. We can’t forget; the type system
access the inner i32 otherwise.

As you might suspect, Mutex<T> is a smart pointer. More accurately, t
returns a smart pointer called MutexGuard . This smart pointer implem
point at our inner data; the smart pointer also has a
releases the lock automatically when a MutexGuard
at the end of the inner scope in Listing 16-12. As a result, we don’t risk
release the lock and blocking the mutex from being used by other thre
the lock release happens automatically.

After dropping the lock, we can print the mutex value and see that we
change the inner i32 to 6.

Sharing a Mutex<T> Between Multiple Threads

Now, let’s try to share a value between multiple threads using
10 threads and have them each increment a counter value by 1, so the
from 0 to 10. Note that the next few examples will have compiler erro
those errors to learn more about using Mutex<T>
correctly. Listing 16-13 has our starting example:

Filename: src/main.rs

Listing 16-13: Ten threads each increment a counter guarded by a

We create a counter variable to hold an i32 inside a
16-12. Next, we create 10 threads by iterating over a range of number
thread::spawn and give all the threads the same closure, one that m

counter into the thread, acquires a lock on the Mutex<T>
and then adds 1 to the value in the mutex. When a thread �nishes run
num will go out of scope and release the lock so another thread can a

In the main thread, we collect all the join handles. Then, as we did in L
call join on each handle to make sure all the threads �nish. At that p
thread will acquire the lock and print the result of this program.

We hinted that this example wouldn’t compile. Now let’s �nd out why!

use std::sync::Mutex;
use std::thread;

fn main() {
let counter = Mutex::new(0);
let mut handles = vec![];

for _ in 0..10 {
let handle = thread::spawn(move || {

let mut num = counter.lock().unwrap();

 *num += 1;
 });
 handles.push(handle);
 }

for handle in handles {
 handle.join().unwrap();
 }

println!("Result: {}", *counter.lock().unwrap());
}

The error message states that the counter value is moved into the cl
captured when we call lock . That description sounds like what we wa
not allowed!

Let’s �gure this out by simplifying the program. Instead of making 10 t
for loop, let’s just make two threads without a loop and see what ha

the �rst for loop in Listing 16-13 with this code instead:

error[E0382]: capture of moved value: `counter`
 --> src/main.rs:10:27
 |
9 | let handle = thread::spawn(move || {
 | ------- value moved
here
10 | let mut num = counter.lock().unwrap();
 | ^^^^^^^ value captured here
 |
 = note: move occurs because `counter` has type `std::syn
 which does not implement the `Copy` trait

error[E0382]: use of moved value: `counter`
 --> src/main.rs:21:29
 |
9 | let handle = thread::spawn(move || {
 | ------- value moved
here
...
21 | println!("Result: {}", *counter.lock().unwrap());
 | ^^^^^^^ value used here af
 |
 = note: move occurs because `counter` has type `std::syn
 which does not implement the `Copy` trait

error: aborting due to 2 previous errors

We make two threads and change the variable names used with the s
handle2 and num2 . When we run the code this time, compiling gives

following:

use std::sync::Mutex;
use std::thread;

fn main() {
let counter = Mutex::new(0);
let mut handles = vec![];

let handle = thread::spawn(move || {
let mut num = counter.lock().unwrap();

 *num += 1;
 });
 handles.push(handle);

let handle2 = thread::spawn(move || {
let mut num2 = counter.lock().unwrap();

 *num2 += 1;
 });
 handles.push(handle2);

for handle in handles {
 handle.join().unwrap();
 }

println!("Result: {}", *counter.lock().unwrap());
}

Aha! The �rst error message indicates that counter
thread associated with handle . That move is preventing us from capt
when we try to call lock on it and store the result in
Rust is telling us that we can’t move ownership of
was hard to see earlier because our threads were in a loop, and Rust c
di�erent threads in di�erent iterations of the loop. Let’s �x the compil
multiple-ownership method we discussed in Chapter 15.

Multiple Ownership with Multiple Threads

In Chapter 15, we gave a value multiple owners by using the smart po
create a reference counted value. Let’s do the same here and see wha
wrap the Mutex<T> in Rc<T> in Listing 16-14 and clone the
ownership to the thread. Now that we’ve seen the errors, we’ll also sw
using the for loop, and we’ll keep the move keyword with the closure

Filename: src/main.rs

error[E0382]: capture of moved value: `counter`
 --> src/main.rs:16:24
 |
8 | let handle = thread::spawn(move || {
 | ------- value moved (in
here
...
16 | let mut num2 = counter.lock().unwrap();
 | ^^^^^^^ value captured here aft
 |
 = note: move occurs because `counter` has type `std::syn
 which does not implement the `Copy` trait

error[E0382]: use of moved value: `counter`
 --> src/main.rs:26:29
 |
8 | let handle = thread::spawn(move || {
 | ------- value moved (in
here
...
26 | println!("Result: {}", *counter.lock().unwrap());
 | ^^^^^^^ value used here af
 |
 = note: move occurs because `counter` has type `std::syn
 which does not implement the `Copy` trait

error: aborting due to 2 previous errors

Listing 16-14: Attempting to use Rc<T> to allow multiple threads to ow
Mutex<T>

Once again, we compile and get... di�erent errors! The compiler is tea

Wow, that error message is very wordy! Here are some important par
the �rst inline error says

use std::rc::Rc;
use std::sync::Mutex;
use std::thread;

fn main() {
let counter = Rc::new(Mutex::new(0));
let mut handles = vec![];

for _ in 0..10 {
let counter = Rc::clone(&counter);
let handle = thread::spawn(move || {

let mut num = counter.lock().unwrap();

 *num += 1;
 });
 handles.push(handle);
 }

for handle in handles {
 handle.join().unwrap();
 }

println!("Result: {}", *counter.lock().unwrap());
}

error[E0277]: the trait bound `std::rc::Rc<std::sync::Mutex
std::marker::Send` is not satisfied in `[closure@src/main.r
15:10 counter:std::rc::Rc<std::sync::Mutex<i32>>]`
 --> src/main.rs:11:22
 |
11 | let handle = thread::spawn(move || {
 | ^^^^^^^^^^^^^
`std::rc::Rc<std::sync::Mutex<i32>>`
cannot be sent between threads safely
 |
 = help: within `[closure@src/main.rs:11:36: 15:10
counter:std::rc::Rc<std::sync::Mutex<i32>>]`, the trait
`std::marker::Send` is
not implemented for `std::rc::Rc<std::sync::Mutex<i32>>`
 = note: required because it appears within the type
`[closure@src/main.rs:11:36: 15:10
counter:std::rc::Rc<std::sync::Mutex<i32>>]`
 = note: required by `std::thread::spawn`

`std::rc::Rc<std::sync::Mutex<i32>>` cannot be sent between

The reason for this is in the next important part to focus on, the error
distilled error message says the trait bound `Send` is not sati
about Send in the next section: it’s one of the traits that ensures the t
with threads are meant for use in concurrent situations.

Unfortunately, Rc<T> is not safe to share across threads. When
reference count, it adds to the count for each call to
count when each clone is dropped. But it doesn’t use any concurrency
make sure that changes to the count can’t be interrupted by another t
could lead to wrong counts—subtle bugs that could in turn lead to me
value being dropped before we’re done with it. What we need is a type
Rc<T> but one that makes changes to the reference count in a thread

Atomic Reference Counting with Arc<T>

Fortunately, Arc<T> is a type like Rc<T> that is safe to use in concurr
The a stands for atomic, meaning it’s an atomically reference counted
an additional kind of concurrency primitive that we won’t cover in deta
standard library documentation for std::sync::atomic
point, you just need to know that atomics work like primitive types bu
share across threads.

You might then wonder why all primitive types aren’t atomic and why
types aren’t implemented to use Arc<T> by default. The reason is tha
comes with a performance penalty that you only want to pay when yo
If you’re just performing operations on values within a single thread, y
run faster if it doesn’t have to enforce the guarantees atomics provide

Let’s return to our example: Arc<T> and Rc<T>
program by changing the use line, the call to new
Listing 16-15 will �nally compile and run:

Filename: src/main.rs

Listing 16-15: Using an Arc<T> to wrap the Mutex<T>
across multiple threads

This code will print the following:

We did it! We counted from 0 to 10, which may not seem very impress
teach us a lot about Mutex<T> and thread safety. You could also use t
structure to do more complicated operations than just incrementing a
this strategy, you can divide a calculation into independent parts, split
across threads, and then use a Mutex<T> to have each thread update
with its part.

Similarities Between RefCell<T> / Rc<T>

You might have noticed that counter is immutable but we could get a
reference to the value inside it; this means Mutex<T>
the Cell family does. In the same way we used
us to mutate contents inside an Rc<T> , we use
an Arc<T> .

use std::sync::{Mutex, Arc};
use std::thread;

fn main() {
let counter = Arc::new(Mutex::new(0));
let mut handles = vec![];

for _ in 0..10 {
let counter = Arc::clone(&counter);
let handle = thread::spawn(move || {

let mut num = counter.lock().unwrap();

 *num += 1;
 });
 handles.push(handle);
 }

for handle in handles {
 handle.join().unwrap();
 }

println!("Result: {}", *counter.lock().unwrap());
}

Result: 10

Another detail to note is that Rust can’t protect you from all kinds of lo
you use Mutex<T> . Recall in Chapter 15 that using
creating reference cycles, where two Rc<T> values refer to each other
memory leaks. Similarly, Mutex<T> comes with the risk of creating
occur when an operation needs to lock two resources and two thread
acquired one of the locks, causing them to wait for each other forever
interested in deadlocks, try creating a Rust program that has a deadlo
research deadlock mitigation strategies for mutexes in any language a
implementing them in Rust. The standard library API documentation f
and MutexGuard o�ers useful information.

We’ll round out this chapter by talking about the
can use them with custom types.

Extensible Concurrency with the
Traits

Interestingly, the Rust language has very few concurrency features. Alm
concurrency feature we’ve talked about so far in this chapter has been
standard library, not the language. Your options for handling concurre
limited to the language or the standard library; you can write your ow
features or use those written by others.

However, two concurrency concepts are embedded in the language: t
traits Sync and Send .

Allowing Transference of Ownership Between Threads with

The Send marker trait indicates that ownership of the type implemen
be transferred between threads. Almost every Rust type is
exceptions, including Rc<T> : this cannot be Send
value and tried to transfer ownership of the clone to another thread, b
might update the reference count at the same time. For this reason,
implemented for use in single-threaded situations where you don’t wa
thread-safe performance penalty.

Therefore, Rust’s type system and trait bounds ensure that you can ne
send an Rc<T> value across threads unsafely. When we tried to do th
16-14, we got the error the trait Send is not implemented for
When we switched to Arc<T> , which is Send , the code compiled.

Any type composed entirely of Send types is automatically marked as
Almost all primitive types are Send , aside from raw pointers, which w
Chapter 19.

Allowing Access from Multiple Threads with

The Sync marker trait indicates that it is safe for the type implementi
referenced from multiple threads. In other words, any type
reference to T) is Send , meaning the reference can be sent safely to
Similar to Send , primitive types are Sync , and types composed entire
are Sync are also Sync .

The smart pointer Rc<T> is also not Sync for the same reasons that i
The RefCell<T> type (which we talked about in Chapter 15) and the f
Cell<T> types are not Sync . The implementation of borrow checking
RefCell<T> does at runtime is not thread-safe. The smart pointer

and can be used to share access with multiple threads as you saw in t
Mutex<T> Between Multiple Threads” section.

Implementing Send and Sync Manually Is Unsafe

Because types that are made up of Send and Sync
and Sync , we don’t have to implement those traits manually. As mark
don’t even have any methods to implement. They’re just useful for en
invariants related to concurrency.

Manually implementing these traits involves implementing unsafe Rus
talk about using unsafe Rust code in Chapter 19; for now, the importa
is that building new concurrent types not made up of
careful thought to uphold the safety guarantees.
information about these guarantees and how to uphold them.

Summary

This isn’t the last you’ll see of concurrency in this book: the project in C
use the concepts in this chapter in a more realistic situation than the s
examples discussed here.

As mentioned earlier, because very little of how Rust handles concurre

the language, many concurrency solutions are implemented as crates
more quickly than the standard library, so be sure to search online for
state-of-the-art crates to use in multithreaded situations.

The Rust standard library provides channels for message passing and
types, such as Mutex<T> and Arc<T> , that are safe to use in concurre
type system and the borrow checker ensure that the code using these
end up with data races or invalid references. Once you get your code t
can rest assured that it will happily run on multiple threads without th
to-track-down bugs common in other languages. Concurrent program
longer a concept to be afraid of: go forth and make your programs co
fearlessly!

Next, we’ll talk about idiomatic ways to model problems and structure
your Rust programs get bigger. In addition, we’ll discuss how Rust’s idi
those you might be familiar with from object-oriented programming.

Object Oriented Programming Features
of Rust
Object-oriented programming (OOP) is a way of modeling programs. O
from Simula in the 1960s. Those objects in�uenced Alan Kay’s program
architecture in which objects pass messages to each other. He coined
oriented programming in 1967 to describe this architecture. Many com
de�nitions describe what OOP is; some de�nitions would classify Rust
oriented, but other de�nitions would not. In this chapter, we’ll explore
characteristics that are commonly considered object oriented and how
characteristics translate to idiomatic Rust. We’ll then show you how to
object-oriented design pattern in Rust and discuss the trade-o�s of do
implementing a solution using some of Rust’s strengths instead.

Characteristics of Object-Oriented Languages

There is no consensus in the programming community about what fea
language must have to be considered object oriented. Rust is in�uenc
programming paradigms, including OOP; for example, we explored th
came from functional programming in Chapter 13. Arguably, OOP lang
certain common characteristics, namely objects, encapsulation, and in
look at what each of those characteristics means and whether Rust su

Objects Contain Data and Behavior

The book Design Patterns: Elements of Reusable Object-Oriented Software
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-We
Professional, 1994) colloquially referred to as The Gang of Four
object-oriented design patterns. It de�nes OOP this way:

Object-oriented programs are made up of objects. An
and the procedures that operate on that data. The procedures are
called methods or operations.

Using this de�nition, Rust is object oriented: structs and enums have d
blocks provide methods on structs and enums. Even though structs an
methods aren’t called objects, they provide the same functionality, acc
Gang of Four’s de�nition of objects.

Encapsulation that Hides Implementation Details

Another aspect commonly associated with OOP is the idea of
means that the implementation details of an object aren’t accessible t
that object. Therefore, the only way to interact with an object is throug
code using the object shouldn’t be able to reach into the object’s inter
data or behavior directly. This enables the programmer to change and
object’s internals without needing to change the code that uses the ob

We discussed how to control encapsulation in Chapter 7: we can use t
keyword to decide which modules, types, functions, and methods in o
be public, and by default everything else is private. For example, we ca
struct AveragedCollection that has a �eld containing a vector of
struct can also have a �eld that contains the average of the values in t
meaning the average doesn’t have to be computed on demand whene
needs it. In other words, AveragedCollection will cache the calculate
us. Listing 17-1 has the de�nition of the AveragedCollection

Filename: src/lib.rs

pub struct AveragedCollection {
 list: Vec<i32>,
 average: f64,
}

Listing 17-1: An AveragedCollection struct that maintains a list of int
average of the items in the collection

The struct is marked pub so that other code can use it, but the �elds w
remain private. This is important in this case because we want to ensu
whenever a value is added or removed from the list, the average is als
do this by implementing add , remove , and average
shown in Listing 17-2:

Filename: src/lib.rs

Listing 17-2: Implementations of the public methods
AveragedCollection

The public methods add , remove , and average
instance of AveragedCollection . When an item is added to
method or removed using the remove method, the implementations
private update_average method that handles updating the

We leave the list and average �elds private so there is no way for e
add or remove items to the list �eld directly; otherwise, the

impl AveragedCollection {
pub fn add(&mut self, value: i32) {

self.list.push(value);
self.update_average();

 }

pub fn remove(&mut self) -> Option<i32
let result = self.list.pop();
match result {

Some(value) => {
self.update_average();
Some(value)

 },
None => None,

 }
 }

pub fn average(&self) -> f64 {
self.average

 }

fn update_average(&mut self) {
let total: i32 = self.list.iter().sum();
self.average = total as f64 / self

 }
}

become out of sync when the list changes. The
in the average �eld, allowing external code to read the

Because we’ve encapsulated the implementation details of the struct
AveragedCollection , we can easily change aspects, such as the data

future. For instance, we could use a HashSet instead of a
long as the signatures of the add , remove , and
same, code using AveragedCollection wouldn’t need to change. If we
public instead, this wouldn’t necessarily be the case:
methods for adding and removing items, so the external code would l
change if it were modifying list directly.

If encapsulation is a required aspect for a language to be considered o
then Rust meets that requirement. The option to use
code enables encapsulation of implementation details.

Inheritance as a Type System and as Code Sharing

Inheritance is a mechanism whereby an object can inherit from anothe
de�nition, thus gaining the parent object’s data and behavior without
de�ne them again.

If a language must have inheritance to be an object-oriented language
not one. There is no way to de�ne a struct that inherits the parent stru
method implementations. However, if you’re used to having inheritan
programming toolbox, you can use other solutions in Rust, depending
for reaching for inheritance in the �rst place.

You choose inheritance for two main reasons. One is for reuse of code
implement particular behavior for one type, and inheritance enables y
that implementation for a di�erent type. You can share Rust code usin
method implementations instead, which you saw in Listing 10-14 whe
default implementation of the summarize method on the
implementing the Summary trait would have the
without any further code. This is similar to a parent class having an im
a method and an inheriting child class also having the implementation
We can also override the default implementation of the
implement the Summary trait, which is similar to a child class overridin
implementation of a method inherited from a parent class.

The other reason to use inheritance relates to the type system: to ena
to be used in the same places as the parent type. This is also called
which means that you can substitute multiple objects for each other a

share certain characteristics.

Polymorphism

To many people, polymorphism is synonymous with inheritance. Bu
a more general concept that refers to code that can work with data
types. For inheritance, those types are generally subclasses.

Rust instead uses generics to abstract over di�erent possible types
bounds to impose constraints on what those types must provide. T
sometimes called bounded parametric polymorphism

Inheritance has recently fallen out of favor as a programming design s
programming languages because it’s often at risk of sharing more cod
necessary. Subclasses shouldn’t always share all characteristics of the
but will do so with inheritance. This can make a program’s design less
introduces the possibility of calling methods on subclasses that don’t m
that cause errors because the methods don’t apply to the subclass. In
languages will only allow a subclass to inherit from one class, further r
�exibility of a program’s design.

For these reasons, Rust takes a di�erent approach, using trait objects
inheritance. Let’s look at how trait objects enable polymorphism in Ru

Using Trait Objects that Allow for Values of Di�ere
Types

In Chapter 8, we mentioned that one limitation of vectors is that they
elements of only one type. We created a workaround in Listing 8-10 w
a SpreadsheetCell enum that had variants to hold integers, �oats, an
meant we could store di�erent types of data in each cell and still have
represented a row of cells. This is a perfectly good solution when our
items are a �xed set of types that we know when our code is compiled

However, sometimes we want our library user to be able to extend th
that are valid in a particular situation. To show how we might achieve
an example graphical user interface (GUI) tool that iterates through a
calling a draw method on each one to draw it to the screen—a comm
for GUI tools. We’ll create a library crate called gui

GUI library. This crate might include some types for people to use, suc
TextField . In addition, gui users will want to create their own types

drawn: for instance, one programmer might add an
SelectBox .

We won’t implement a fully �edged GUI library for this example but w
pieces would �t together. At the time of writing the library, we can’t kn
all the types other programmers might want to create. But we do kno
needs to keep track of many values of di�erent types, and it needs to
method on each of these di�erently typed values. It doesn’t need to k
what will happen when we call the draw method, just that the value w
method available for us to call.

To do this in a language with inheritance, we might de�ne a class nam
that has a method named draw on it. The other classes, such as
SelectBox , would inherit from Component and thus inherit the

could each override the draw method to de�ne their custom behavio
framework could treat all of the types as if they were
draw on them. But because Rust doesn’t have inheritance, we need a

structure the gui library to allow users to extend it with new types.

De�ning a Trait for Common Behavior

To implement the behavior we want gui to have, we’ll de�ne a trait n
that will have one method named draw . Then we can de�ne a vector
object. A trait object points to an instance of a type that implements th
specify. We create a trait object by specifying some sort of pointer, suc
reference or a Box<T> smart pointer, and then specifying the relevan
dyn keyword. (We’ll talk about the reason trait objects must use a poi

19 in the section “Dynamically Sized Types & Sized”.) We can use trait o
of a generic or concrete type. Wherever we use a trait object, Rust’s ty
ensure at compile time that any value used in that context will implem
object’s trait. Consequently, we don’t need to know all the possible typ
time.

We’ve mentioned that in Rust, we refrain from calling structs and enum
distinguish them from other languages’ objects. In a struct or enum, th
struct �elds and the behavior in impl blocks are separated, whereas
languages, the data and behavior combined into one concept is often
object. However, trait objects are more like objects in other languages
that they combine data and behavior. But trait objects di�er from trad
in that we can’t add data to a trait object. Trait objects aren’t as genera

objects in other languages: their speci�c purpose is to allow abstractio
common behavior.

Listing 17-3 shows how to de�ne a trait named

Filename: src/lib.rs

Listing 17-3: De�nition of the Draw trait

This syntax should look familiar from our discussions on how to de�n
Chapter 10. Next comes some new syntax: Listing 17-4 de�nes a struc
Screen that holds a vector named components

, which is a trait object; it’s a stand-in for any type inside a
Draw trait.

Filename: src/lib.rs

Listing 17-4: De�nition of the Screen struct with a
of trait objects that implement the Draw trait

On the Screen struct, we’ll de�ne a method named
method on each of its components , as shown in Listing 17-5:

Filename: src/lib.rs

Listing 17-5: A run method on Screen that calls the
component

This works di�erently than de�ning a struct that uses a generic type p

pub trait Draw {
fn draw(&self);

}

pub struct Screen {
pub components: Vec<Box<dyn Draw>>,

}

impl Screen {
pub fn run(&self) {

for component in self.components.iter() {
 component.draw();
 }
 }
}

trait bounds. A generic type parameter can only be substituted with o
type at a time, whereas trait objects allow for multiple concrete types
trait object at runtime. For example, we could have de�ned the
generic type and a trait bound as in Listing 17-6:

Filename: src/lib.rs

Listing 17-6: An alternate implementation of the
using generics and trait bounds

This restricts us to a Screen instance that has a list of components al
or all of type TextField . If you’ll only ever have homogeneous collect
generics and trait bounds is preferable because the de�nitions will be
monomorphized at compile time to use the concrete types.

On the other hand, with the method using trait objects, one
hold a Vec that contains a Box<Button> as well as a
how this works, and then we’ll talk about the runtime performance im

Implementing the Trait

Now we’ll add some types that implement the Draw
type. Again, actually implementing a GUI library is beyond the scope o
the draw method won’t have any useful implementation in its body. T
the implementation might look like, a Button struct might have �elds
height , and label , as shown in Listing 17-7:

Filename: src/lib.rs

pub struct Screen<T: Draw> {
pub components: Vec<T>,

}

impl<T> Screen<T>
where T: Draw {
pub fn run(&self) {

for component in self.components.iter() {
 component.draw();
 }
 }
}

Listing 17-7: A Button struct that implements the

The width , height , and label �elds on Button
components, such as a TextField type, that might have those �elds p
placeholder �eld instead. Each of the types we want to draw on the

implement the Draw trait but will use di�erent code in the
how to draw that particular type, as Button has here (without the act
which is beyond the scope of this chapter). The
an additional impl block containing methods related to what happen
clicks the button. These kinds of methods won’t apply to types like

If someone using our library decides to implement a
width , height , and options �elds, they implement the
SelectBox type as well, as shown in Listing 17-8:

Filename: src/main.rs

Listing 17-8: Another crate using gui and implementing the
SelectBox struct

pub struct Button {
pub width: u32,
pub height: u32,
pub label: String,

}

impl Draw for Button {
fn draw(&self) {

// code to actually draw a button
 }
}

extern crate gui;
use gui::Draw;

struct SelectBox {
 width: u32,
 height: u32,
 options: Vec<String>,
}

impl Draw for SelectBox {
fn draw(&self) {

// code to actually draw a select box
 }
}

Our library’s user can now write their main function to create a
the Screen instance, they can add a SelectBox
Box<T> to become a trait object. They can then call the

instance, which will call draw on each of the components. Listing 17-9
implementation:

Filename: src/main.rs

Listing 17-9: Using trait objects to store values of di�erent types that i
same trait

When we wrote the library, we didn’t know that someone might add th
type, but our Screen implementation was able to operate on the new
it because SelectBox implements the Draw type, which means it imp
draw method.

This concept—of being concerned only with the messages a value resp
than the value’s concrete type—is similar to the concept
typed languages: if it walks like a duck and quacks like a duck, then it m
In the implementation of run on Screen in Listing 17-5,
what the concrete type of each component is. It doesn’t check whethe
is an instance of a Button or a SelectBox , it just calls the
component. By specifying Box<dyn Draw> as the type of the values in

use gui::{Screen, Button};

fn main() {
let screen = Screen {

 components: vec![
Box::new(SelectBox {

 width: 75,
 height: 10,
 options: vec![

String::from("Yes"),
String::from("Maybe"),
String::from("No")

],
 }),

Box::new(Button {
 width: 50,
 height: 10,
 label: String::from("OK"),
 }),
],
 };

 screen.run();
}

components vector, we’ve de�ned Screen to need values that we can
method on.

The advantage of using trait objects and Rust’s type system to write co
code using duck typing is that we never have to check whether a value
particular method at runtime or worry about getting errors if a value d
implement a method but we call it anyway. Rust won’t compile our co
don’t implement the traits that the trait objects need.

For example, Listing 17-10 shows what happens if we try to create a
String as a component:

Filename: src/main.rs

Listing 17-10: Attempting to use a type that doesn’t implement the tra

We’ll get this error because String doesn’t implement the

This error lets us know that either we’re passing something to
to pass and we should pass a di�erent type or we should implement
String so that Screen is able to call draw on it.

Trait Objects Perform Dynamic Dispatch

extern crate gui;
use gui::Screen;

fn main() {
let screen = Screen {

 components: vec![
Box::new(String::from("Hi")),

],
 };

 screen.run();
}

error[E0277]: the trait bound `std::string::String: gui::Dr
satisfied
 --> src/main.rs:7:13
 |
 7 | Box::new(String::from("Hi")),
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait gui
 implemented for `std::string::String`
 |
 = note: required for the cast to the object type `gui::D

Recall in the “Performance of Code Using Generics” section in Chapter
discussion on the monomorphization process performed by the comp
use trait bounds on generics: the compiler generates nongeneric impl
functions and methods for each concrete type that we use in place of
parameter. The code that results from monomorphization is doing
which is when the compiler knows what method you’re calling at comp
opposed to dynamic dispatch, which is when the compiler can’t tell at c
which method you’re calling. In dynamic dispatch cases, the compiler
at runtime will �gure out which method to call.

When we use trait objects, Rust must use dynamic dispatch. The comp
know all the types that might be used with the code that is using trait
doesn’t know which method implemented on which type to call. Instea
Rust uses the pointers inside the trait object to know which method to
runtime cost when this lookup happens that doesn’t occur with static
Dynamic dispatch also prevents the compiler from choosing to inline a
code, which in turn prevents some optimizations. However, we did ge
in the code that we wrote in Listing 17-5 and were able to support in L
it’s a trade-o� to consider.

Object Safety Is Required for Trait Objects

You can only make object-safe traits into trait objects. Some complex r
the properties that make a trait object safe, but in practice, only two ru
relevant. A trait is object safe if all the methods de�ned in the trait hav
properties:

The return type isn’t Self .
There are no generic type parameters.

The Self keyword is an alias for the type we’re implementing the trai
on. Trait objects must be object safe because once you’ve used a trait
longer knows the concrete type that’s implementing that trait. If a trai
returns the concrete Self type, but a trait object forgets the exact typ
there is no way the method can use the original concrete type. The sa
generic type parameters that are �lled in with concrete type paramete
trait is used: the concrete types become part of the type that impleme
When the type is forgotten through the use of a trait object, there is n
what types to �ll in the generic type parameters with.

An example of a trait whose methods are not object safe is the standa
Clone trait. The signature for the clone method in the

The String type implements the Clone trait, and when we call the
on an instance of String we get back an instance of
clone on an instance of Vec , we get back an instance of
clone needs to know what type will stand in for

type.

The compiler will indicate when you’re trying to do something that vio
of object safety in regard to trait objects. For example, let’s say we trie
the Screen struct in Listing 17-4 to hold types that implement the
of the Draw trait, like this:

We would get this error:

This error means you can’t use this trait as a trait object in this way. If
interested in more details on object safety, see Rust RFC 255

Implementing an Object-Oriented Design Pattern

The state pattern is an object-oriented design pattern. The crux of the
value has some internal state, which is represented by a set of
value’s behavior changes based on the internal state. The state object
functionality: in Rust, of course, we use structs and traits rather than o
inheritance. Each state object is responsible for its own behavior and
when it should change into another state. The value that holds a state
nothing about the di�erent behavior of the states or when to transitio

pub trait Clone {
fn clone(&self) -> Self;

}

pub struct Screen {
pub components: Vec<Box<dyn Clone>>,

}

error[E0038]: the trait `std::clone::Clone` cannot be made
 --> src/lib.rs:2:5
 |
2 | pub components: Vec<Box<dyn Clone>>,
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `std::clo
cannot be
made into an object
 |
 = note: the trait cannot require that `Self : Sized`

states.

Using the state pattern means when the business requirements of the
change, we won’t need to change the code of the value holding the sta
that uses the value. We’ll only need to update the code inside one of t
to change its rules or perhaps add more state objects. Let’s look at an
state design pattern and how to use it in Rust.

We’ll implement a blog post work�ow in an incremental way. The blog
functionality will look like this:

A blog post starts as an empty draft.1.
When the draft is done, a review of the post is requested.2.
When the post is approved, it gets published.3.
Only published blog posts return content to print, so unapprove
accidentally be published.

4.

Any other changes attempted on a post should have no e�ect. For exa
to approve a draft blog post before we’ve requested a review, the pos
an unpublished draft.

Listing 17-11 shows this work�ow in code form: this is an example usa
we’ll implement in a library crate named blog . This won’t compile yet
haven’t implemented the blog crate yet.

Filename: src/main.rs

Listing 17-11: Code that demonstrates the desired behavior we want o
to have

We want to allow the user to create a new draft blog post with
want to allow text to be added to the blog post while it’s in the draft st

extern crate blog;
use blog::Post;

fn main() {
let mut post = Post::new();

 post.add_text("I ate a salad for lunch today"
assert_eq!("", post.content());

 post.request_review();
assert_eq!("", post.content());

 post.approve();
assert_eq!("I ate a salad for lunch today"

}

get the post’s content immediately, before approval, nothing should h
the post is still a draft. We’ve added assert_eq!
purposes. An excellent unit test for this would be to assert that a draft
returns an empty string from the content method, but we’re not goin
for this example.

Next, we want to enable a request for a review of the post, and we wa
return an empty string while waiting for the review. When the post rec
it should get published, meaning the text of the post will be returned w
is called.

Notice that the only type we’re interacting with from the crate is the
type will use the state pattern and will hold a value that will be one of
objects representing the various states a post can be in—draft, waitin
published. Changing from one state to another will be managed intern
Post type. The states change in response to the methods called by ou

on the Post instance, but they don’t have to manage the state change
users can’t make a mistake with the states, like publishing a post befo

De�ning Post and Creating a New Instance in the Draft Sta

Let’s get started on the implementation of the library! We know we ne
Post struct that holds some content, so we’ll start with the de�nition

and an associated public new function to create an instance of
Listing 17-12. We’ll also make a private State trait. Then
of Box<dyn State> inside an Option<T> in a private �eld named
why the Option<T> is necessary in a bit.

Filename: src/lib.rs

Listing 17-12: De�nition of a Post struct and a
instance, a State trait, and a Draft struct

The State trait de�nes the behavior shared by di�erent post states, a
PendingReview , and Published states will all implement the

the trait doesn’t have any methods, and we’ll start by de�ning just the
because that is the state we want a post to start in.

When we create a new Post , we set its state �eld to a
This Box points to a new instance of the Draft
create a new instance of Post , it will start out as a draft. Because the
Post is private, there is no way to create a Post

function, we set the content �eld to a new, empty

Storing the Text of the Post Content

Listing 17-11 showed that we want to be able to call a method named
pass it a &str that is then added to the text content of the blog post.
this as a method rather than exposing the content
implement a method later that will control how the
add_text method is pretty straightforward, so let’s add the implemen

17-13 to the impl Post block:

Filename: src/lib.rs

pub struct Post {
 state: Option<Box<dyn State>>,
 content: String,
}

impl Post {
pub fn new() -> Post {

 Post {
 state: Some(Box::new(Draft {})),
 content: String::new(),
 }
 }
}

trait State {}

struct Draft {}

impl State for Draft {}

Listing 17-13: Implementing the add_text method to add text to a po

The add_text method takes a mutable reference to
the Post instance that we’re calling add_text on. We then call
String in content and pass the text argument to add to the saved

behavior doesn’t depend on the state the post is in, so it’s not part of t
pattern. The add_text method doesn’t interact with the
part of the behavior we want to support.

Ensuring the Content of a Draft Post Is Empty

Even after we’ve called add_text and added some content to our pos
the content method to return an empty string slice because the post
draft state, as shown on line 8 of Listing 17-11. For now, let’s impleme
method with the simplest thing that will ful�ll this requirement: alway
empty string slice. We’ll change this later once we implement the abili
post’s state so it can be published. So far, posts can only be in the dra
post content should always be empty. Listing 17-14 shows this placeh
implementation:

Filename: src/lib.rs

Listing 17-14: Adding a placeholder implementation for the
Post that always returns an empty string slice

With this added content method, everything in Listing 17-11 up to lin
intended.

impl Post {
// --snip--
pub fn add_text(&mut self, text: &str) {

self.content.push_str(text);
 }
}

impl Post {
// --snip--
pub fn content(&self) -> &str {

""
 }
}

Requesting a Review of the Post Changes Its State

Next, we need to add functionality to request a review of a post, which
its state from Draft to PendingReview . Listing 17-15 shows this code

Filename: src/lib.rs

Listing 17-15: Implementing request_review methods on

We give Post a public method named request_review
reference to self . Then we call an internal request_review
state of Post , and this second request_review
and returns a new state.

We’ve added the request_review method to the
implement the trait will now need to implement the
that rather than having self , &self , or &mut self
method, we have self: Box<Self> . This syntax means the method is
called on a Box holding the type. This syntax takes ownership of

impl Post {
// --snip--
pub fn request_review(&mut self) {

if let Some(s) = self.state.take() {
self.state = Some(s.request_review())

 }
 }
}

trait State {
fn request_review(self: Box<Self>) ->

}

struct Draft {}

impl State for Draft {
fn request_review(self: Box<Self>) ->

Box::new(PendingReview {})
 }
}

struct PendingReview {}

impl State for PendingReview {
fn request_review(self: Box<Self>) ->

self
 }
}

invalidating the old state so the state value of the
state.

To consume the old state, the request_review method needs to take
the state value. This is where the Option in the
the take method to take the Some value out of the
its place, because Rust doesn’t let us have unpopulated �elds in struct
move the state value out of Post rather than borrowing it. Then we
state value to the result of this operation.

We need to set state to None temporarily rather than setting it direc
like self.state = self.state.request_review();
value. This ensures Post can’t use the old state
into a new state.

The request_review method on Draft needs to return a new, boxed
new PendingReview struct, which represents the state when a post is
review. The PendingReview struct also implements the
doesn’t do any transformations. Rather, it returns itself, because when
review on a post already in the PendingReview state, it should stay in
PendingReview state.

Now we can start seeing the advantages of the state pattern: the
method on Post is the same no matter its state
its own rules.

We’ll leave the content method on Post as is, returning an empty st
can now have a Post in the PendingReview state as well as in the
we want the same behavior in the PendingReview
to line 11!

Adding the approve Method that Changes the Behavior of

The approve method will be similar to the request_review
to the value that the current state says it should have when that state
shown in Listing 17-16:

Filename: src/lib.rs

Listing 17-16: Implementing the approve method on

We add the approve method to the State trait and add a new struct
implements State , the Published state.

Similar to request_review , if we call the approve

impl Post {
// --snip--
pub fn approve(&mut self) {

if let Some(s) = self.state.take() {
self.state = Some(s.approve())

 }
 }
}

trait State {
fn request_review(self: Box<Self>) ->
fn approve(self: Box<Self>) -> Box<dyn State>;

}

struct Draft {}

impl State for Draft {
// --snip--
fn approve(self: Box<Self>) -> Box<dyn State> {

self
 }
}

struct PendingReview {}

impl State for PendingReview {
// --snip--
fn approve(self: Box<Self>) -> Box<dyn State> {

Box::new(Published {})
 }
}

struct Published {}

impl State for Published {
fn request_review(self: Box<Self>) ->

self
 }

fn approve(self: Box<Self>) -> Box<dyn State> {
self

 }
}

e�ect because it will return self . When we call
returns a new, boxed instance of the Published
implements the State trait, and for both the request_review
approve method, it returns itself, because the post should stay in the

state in those cases.

Now we need to update the content method on
want to return the value in the post’s content �eld; otherwise, we wa
empty string slice, as shown in Listing 17-17:

Filename: src/lib.rs

Listing 17-17: Updating the content method on
method on State

Because the goal is to keep all these rules inside the structs that imple
we call a content method on the value in state
self) as an argument. Then we return the value that is returned from
content method on the state value.

We call the as_ref method on the Option because we want a refere
inside the Option rather than ownership of the value. Because
Option<Box<dyn State>> , when we call as_ref

returned. If we didn’t call as_ref , we would get an error because we c
state out of the borrowed &self of the function parameter.

We then call the unwrap method, which we know will never panic, bec
the methods on Post ensure that state will always contain a
those methods are done. This is one of the cases we talked about in th
You Have More Information Than the Compiler” section of Chapter 9 w
that a None value is never possible, even though the compiler isn’t ab
understand that.

At this point, when we call content on the &Box<dyn State>
e�ect on the & and the Box so the content method will ultimately b
type that implements the State trait. That means we need to add

impl Post {
// --snip--
pub fn content(&self) -> &str {

self.state.as_ref().unwrap().content(&
 }

// --snip--
}

State trait de�nition, and that is where we’ll put the logic for what co
depending on which state we have, as shown in Listing 17-18:

Filename: src/lib.rs

Listing 17-18: Adding the content method to the

We add a default implementation for the content
string slice. That means we don’t need to implement
PendingReview structs. The Published struct will override the

return the value in post.content .

Note that we need lifetime annotations on this method, as we discuss
10. We’re taking a reference to a post as an argument and returning
part of that post , so the lifetime of the returned reference is related
the post argument.

And we’re done—all of Listing 17-11 now works! We’ve implemented t
with the rules of the blog post work�ow. The logic related to the rules
state objects rather than being scattered throughout

Trade-o�s of the State Pattern

We’ve shown that Rust is capable of implementing the object-oriented
to encapsulate the di�erent kinds of behavior a post should have in e
methods on Post know nothing about the various behaviors. The wa
the code, we have to look in only one place to know the di�erent ways
post can behave: the implementation of the State

trait State {
// --snip--
fn content<'a>(&self, post: &'a Post) -> &

""
 }
}

// --snip--
struct Published {}

impl State for Published {
// --snip--
fn content<'a>(&self, post: &'a Post) -> &

 &post.content
 }
}

If we were to create an alternative implementation that didn’t use the
we might instead use match expressions in the methods on
main code that checks the state of the post and changes behavior in t

That would mean we would have to look in several places to understa
implications of a post being in the published state! This would only inc
states we added: each of those match expressions would need anoth

With the state pattern, the Post methods and the places we use
match expressions, and to add a new state, we would only need to ad

and implement the trait methods on that one struct.

The implementation using the state pattern is easy to extend to add m
functionality. To see the simplicity of maintaining code that uses the s
a few of these suggestions:

Add a reject method that changes the post’s state from
to Draft .
Require two calls to approve before the state can be changed to
Allow users to add text content only when a post is in the
have the state object responsible for what might change about t
not responsible for modifying the Post .

One downside of the state pattern is that, because the states impleme
transitions between states, some of the states are coupled to each oth
another state between PendingReview and Published
would have to change the code in PendingReview
It would be less work if PendingReview didn’t need to change with the
new state, but that would mean switching to another design pattern.

Another downside is that we’ve duplicated some logic. To eliminate so
duplication, we might try to make default implementations for the
and approve methods on the State trait that return
violate object safety, because the trait doesn’t know what the concrete
exactly. We want to be able to use State as a trait object, so we need
be object safe.

Other duplication includes the similar implementations of the
approve methods on Post . Both methods delegate to the implemen

same method on the value in the state �eld of
state �eld to the result. If we had a lot of methods on

pattern, we might consider de�ning a macro to eliminate the repetitio
D for more on macros).

By implementing the state pattern exactly as it’s de�ned for object-ori

languages, we’re not taking as full advantage of Rust’s strengths as we
look at some changes we can make to the blog
and transitions into compile time errors.

Encoding States and Behavior as Types

We’ll show you how to rethink the state pattern to get a di�erent set o
Rather than encapsulating the states and transitions completely so ou
no knowledge of them, we’ll encode the states into di�erent types. Co
Rust’s type checking system will prevent attempts to use draft posts w
published posts are allowed by issuing a compiler error.

Let’s consider the �rst part of main in Listing 17-11:

Filename: src/main.rs

We still enable the creation of new posts in the draft state using
ability to add text to the post’s content. But instead of having a
draft post that returns an empty string, we’ll make it so draft posts do
content method at all. That way, if we try to get a draft post’s conten

compiler error telling us the method doesn’t exist. As a result, it will be
us to accidentally display draft post content in production, because th
even compile. Listing 17-19 shows the de�nition of a
struct, as well as methods on each:

Filename: src/lib.rs

fn main() {
let mut post = Post::new();

 post.add_text("I ate a salad for lunch today"
assert_eq!("", post.content());

}

Listing 17-19: A Post with a content method and a
method

Both the Post and DraftPost structs have a private
blog post text. The structs no longer have the state
encoding of the state to the types of the structs. The
published post, and it has a content method that returns the

We still have a Post::new function, but instead of returning an instan
returns an instance of DraftPost . Because content
functions that return Post , it’s not possible to create an instance of

The DraftPost struct has an add_text method, so we can add text to
before, but note that DraftPost does not have a
the program ensures all posts start as draft posts, and draft posts don
content available for display. Any attempt to get around these constra
in a compiler error.

Implementing Transitions as Transformations into Di�erent Type

So how do we get a published post? We want to enforce the rule that

pub struct Post {
 content: String,
}

pub struct DraftPost {
 content: String,
}

impl Post {
pub fn new() -> DraftPost {

 DraftPost {
 content: String::new(),
 }
 }

pub fn content(&self) -> &str {
 &self.content
 }
}

impl DraftPost {
pub fn add_text(&mut self, text: &str) {

self.content.push_str(text);
 }
}

to be reviewed and approved before it can be published. A post in the
state should still not display any content. Let’s implement these const
another struct, PendingReviewPost , de�ning the
DraftPost to return a PendingReviewPost , and de�ning an
PendingReviewPost to return a Post , as shown in Listing 17-20:

Filename: src/lib.rs

Listing 17-20: A PendingReviewPost that gets created by calling
DraftPost and an approve method that turns a

published Post

The request_review and approve methods take ownership of
consuming the DraftPost and PendingReviewPost
into a PendingReviewPost and a published Post
have any lingering DraftPost instances after we’ve called
and so forth. The PendingReviewPost struct doesn’t have a
on it, so attempting to read its content results in a compiler error, as w
Because the only way to get a published Post instance that does hav
method de�ned is to call the approve method on a
way to get a PendingReviewPost is to call the request_review
DraftPost , we’ve now encoded the blog post work�ow into the type s

But we also have to make some small changes to

impl DraftPost {
// --snip--

pub fn request_review(self) -> PendingReviewPost {
 PendingReviewPost {
 content: self.content,
 }
 }
}

pub struct PendingReviewPost {
 content: String,
}

impl PendingReviewPost {
pub fn approve(self) -> Post {

 Post {
 content: self.content,
 }
 }
}

approve methods return new instances rather than modifying the str
called on, so we need to add more let post = shadowing assignmen
returned instances. We also can’t have the assertions about the draft
review post’s contents be empty strings, nor do we need them: we can
that tries to use the content of posts in those states any longer. The u
main is shown in Listing 17-21:

Filename: src/main.rs

Listing 17-21: Modi�cations to main to use the new implementation o
work�ow

The changes we needed to make to main to reassign
implementation doesn’t quite follow the object-oriented state pattern
transformations between the states are no longer encapsulated entire
Post implementation. However, our gain is that invalid states are now

because of the type system and the type checking that happens at com
ensures that certain bugs, such as display of the content of an unpubl
be discovered before they make it to production.

Try the tasks suggested for additional requirements that we mentione
this section on the blog crate as it is after Listing 17-20 to see what yo
the design of this version of the code. Note that some of the tasks mig
completed already in this design.

We’ve seen that even though Rust is capable of implementing object-o
patterns, other patterns, such as encoding state into the type system,
available in Rust. These patterns have di�erent trade-o�s. Although yo
familiar with object-oriented patterns, rethinking the problem to take
Rust’s features can provide bene�ts, such as preventing some bugs at
Object-oriented patterns won’t always be the best solution in Rust due
features, like ownership, that object-oriented languages don’t have.

extern crate blog;
use blog::Post;

fn main() {
let mut post = Post::new();

 post.add_text("I ate a salad for lunch today"

let post = post.request_review();

let post = post.approve();

assert_eq!("I ate a salad for lunch today"
}

Summary

No matter whether or not you think Rust is an object-oriented languag
this chapter, you now know that you can use trait objects to get some
features in Rust. Dynamic dispatch can give your code some �exibility
a bit of runtime performance. You can use this �exibility to implemen
patterns that can help your code’s maintainability. Rust also has other
ownership, that object-oriented languages don’t have. An object-orien
won’t always be the best way to take advantage of Rust’s strengths, bu
option.

Next, we’ll look at patterns, which are another of Rust’s features that e
�exibility. We’ve looked at them brie�y throughout the book but haven
capability yet. Let’s go!

Patterns and Matching
Patterns are a special syntax in Rust for matching against the structur
complex and simple. Using patterns in conjunction with
constructs gives you more control over a program’s control �ow. A pa
some combination of the following:

Literals
Destructured arrays, enums, structs, or tuples
Variables
Wildcards
Placeholders

These components describe the shape of the data we’re working with
match against values to determine whether our program has the corr
continue running a particular piece of code.

To use a pattern, we compare it to some value. If the pattern matches
use the value parts in our code. Recall the match
patterns, such as the coin-sorting machine example. If the value �ts th
pattern, we can use the named pieces. If it doesn’t, the code associate
pattern won’t run.

This chapter is a reference on all things related to patterns. We’ll cove
places to use patterns, the di�erence between refutable and irrefutab
the di�erent kinds of pattern syntax that you might see. By the end of
you’ll know how to use patterns to express many concepts in a clear w

All the Places Patterns Can Be Used

Patterns pop up in a number of places in Rust, and you’ve been using
without realizing it! This section discusses all the places where pattern

match Arms

As discussed in Chapter 6, we use patterns in the arms of
Formally, match expressions are de�ned as the keyword
and one or more match arms that consist of a pattern and an express
value matches that arm’s pattern, like this:

One requirement for match expressions is that they need to be
sense that all possibilities for the value in the match
for. One way to ensure you’ve covered every possibility is to have a ca
for the last arm: for example, a variable name matching any value can
thus covers every remaining case.

A particular pattern _ will match anything, but it never binds to a vari
often used in the last match arm. The _ pattern can be useful when y
ignore any value not speci�ed, for example. We’ll cover the
in the “Ignoring Values in a Pattern” section later in this chapter.

Conditional if let Expressions

In Chapter 6 we discussed how to use if let expressions mainly as a
write the equivalent of a match that only matches one case. Optionall
have a corresponding else containing code to run if the pattern in th
doesn’t match.

Listing 18-1 shows that it’s also possible to mix and match
else if let expressions. Doing so gives us more �exibility than a

in which we can express only one value to compare with the patterns.
conditions in a series of if let , else if , else if let
relate to each other.

match VALUE {
 PATTERN => EXPRESSION,
 PATTERN => EXPRESSION,
 PATTERN => EXPRESSION,
}

The code in Listing 18-1 shows a series of checks for several condition
what the background color should be. For this example, we’ve created
hardcoded values that a real program might receive from user input.

Filename: src/main.rs

Listing 18-1: Mixing if let , else if , else if let

If the user speci�es a favorite color, that color is the background color
Tuesday, the background color is green. If the user speci�es their age
we can parse it as a number successfully, the color is either purple or
depending on the value of the number. If none of these conditions ap
background color is blue.

This conditional structure lets us support complex requirements. With
values we have here, this example will print Using purple as the
.

You can see that if let can also introduce shadowed variables in th
match arms can: the line if let Ok(age) = age

variable that contains the value inside the Ok variant. This means we
the if age > 30 condition within that block: we can’t combine these
into if let Ok(age) = age && age > 30 . The shadowed
to 30 isn’t valid until the new scope starts with the curly bracket.

The downside of using if let expressions is that the compiler doesn
exhaustiveness, whereas with match expressions it does. If we omitte

fn main() {
let favorite_color: Option<&str> = None
let is_tuesday = false;
let age: Result<u8, _> = "34".parse();

if let Some(color) = favorite_color {
println!("Using your favorite color, {}, as the bac

color);
 } else if is_tuesday {

println!("Tuesday is green day!");
 } else if let Ok(age) = age {

if age > 30 {
println!("Using purple as the background color"

 } else {
println!("Using orange as the background color"

 }
 } else {

println!("Using blue as the background color"
 }
}

block and therefore missed handling some cases, the compiler would
the possible logic bug.

while let Conditional Loops

Similar in construction to if let , the while let
loop to run for as long as a pattern continues to match. The example i
shows a while let loop that uses a vector as a stack and prints the v
vector in the opposite order in which they were pushed.

Listing 18-2: Using a while let loop to print values for as long as
returns Some

This example prints 3, 2, and then 1. The pop method takes the last e
the vector and returns Some(value) . If the vector is empty,
while loop continues running the code in its block as long as

When pop returns None , the loop stops. We can use
element o� our stack.

for Loops

In Chapter 3, we mentioned that the for loop is the most common lo
in Rust code, but we haven’t yet discussed the pattern that
the pattern is the value that directly follows the keyword
x is the pattern.

Listing 18-3 demonstrates how to use a pattern in a
apart, a tuple as part of the for loop.

let mut stack = Vec::new();

stack.push(1);
stack.push(2);
stack.push(3);

while let Some(top) = stack.pop() {
println!("{}", top);

}

Listing 18-3: Using a pattern in a for loop to destructure a tuple

The code in Listing 18-3 will print the following:

We use the enumerate method to adapt an iterator to produce a valu
value’s index in the iterator, placed into a tuple. The �rst call to
the tuple (0, 'a') . When this value is matched to the pattern
index will be 0 and value will be 'a' , printing the �rst line of the o

let Statements

Prior to this chapter, we had only explicitly discussed using patterns w
if let , but in fact, we’ve used patterns in other places as well, includ

statements. For example, consider this straightforward variable assign
:

Throughout this book, we’ve used let like this hundreds of times, an
might not have realized it, you were using patterns! More formally, a
looks like this:

In statements like let x = 5; with a variable name in the
name is just a particularly simple form of a pattern. Rust compares th
against the pattern and assigns any names it �nds. So in the
is a pattern that means “bind what matches here to the variable
name x is the whole pattern, this pattern e�ectively means “bind eve
variable x , whatever the value is.”

To see the pattern matching aspect of let more clearly, consider List

let v = vec!['a', 'b', 'c'];

for (index, value) in v.iter().enumerate() {
println!("{} is at index {}", value, index);

}

a is at index 0
b is at index 1
c is at index 2

let x = 5;

let PATTERN = EXPRESSION;

uses a pattern with let to destructure a tuple.

Listing 18-4: Using a pattern to destructure a tuple and create three va

Here, we match a tuple against a pattern. Rust compares the value
pattern (x, y, z) and sees that the value matches the pattern, so Ru
x , 2 to y , and 3 to z . You can think of this tuple pattern as nesting

individual variable patterns inside it.

If the number of elements in the pattern doesn’t match the number o
the tuple, the overall type won’t match and we’ll get a compiler error.
Listing 18-5 shows an attempt to destructure a tuple with three eleme
variables, which won’t work.

Listing 18-5: Incorrectly constructing a pattern whose variables don’t m
number of elements in the tuple

Attempting to compile this code results in this type error:

If we wanted to ignore one or more of the values in the tuple, we coul
as you’ll see in the “Ignoring Values in a Pattern” section. If the problem
have too many variables in the pattern, the solution is to make the typ
removing variables so the number of variables equals the number of e
tuple.

Function Parameters

Function parameters can also be patterns. The code in Listing 18-6, wh
function named foo that takes one parameter named
look familiar.

let (x, y, z) = (1, 2, 3);

let (x, y) = (1, 2, 3);

error[E0308]: mismatched types
 --> src/main.rs:2:9
 |
2 | let (x, y) = (1, 2, 3);
 | ^^^^^^ expected a tuple with 3 elements, found
elements
 |
 = note: expected type `({integer}, {integer}, {integer})`
 found type `(_, _)`

Listing 18-6: A function signature uses patterns in the parameters

The x part is a pattern! As we did with let , we could match a tuple in
arguments to the pattern. Listing 18-7 splits the values in a tuple as w
function.

Filename: src/main.rs

Listing 18-7: A function with parameters that destructure a tuple

This code prints Current location: (3, 5) . The values
&(x, y) , so x is the value 3 and y is the value

We can also use patterns in closure parameter lists in the same way a
parameter lists, because closures are similar to functions, as discusse

At this point, you’ve seen several ways of using patterns, but patterns
same in every place we can use them. In some places, the patterns mu
irrefutable; in other circumstances, they can be refutable. We’ll discus
concepts next.

Refutability: Whether a Pattern Might Fail to Matc

Patterns come in two forms: refutable and irrefutable. Patterns that w
possible value passed are irrefutable. An example would be
let x = 5; because x matches anything and therefore cannot fail to

Patterns that can fail to match for some possible value are
would be Some(x) in the expression if let Some(x) = a_value
in the a_value variable is None rather than Some
match.

fn foo(x: i32) {
// code goes here

}

fn print_coordinates(&(x, y): &(i32, i32)) {
println!("Current location: ({}, {})", x, y);

}

fn main() {
let point = (3, 5);

 print_coordinates(&point);
}

Function parameters, let statements, and for
patterns, because the program cannot do anything meaningful when
match. The if let and while let expressions only accept refutable
because by de�nition they’re intended to handle possible failure: the f
conditional is in its ability to perform di�erently depending on success

In general, you shouldn’t have to worry about the distinction between
irrefutable patterns; however, you do need to be familiar with the con
refutability so you can respond when you see it in an error message. I
you’ll need to change either the pattern or the construct you’re using t
depending on the intended behavior of the code.

Let’s look at an example of what happens when we try to use a refuta
where Rust requires an irrefutable pattern and vice versa. Listing 18-8
statement, but for the pattern we’ve speci�ed Some(x)
might expect, this code will not compile.

Listing 18-8: Attempting to use a refutable pattern with

If some_option_value was a None value, it would fail to match the pa
meaning the pattern is refutable. However, the
irrefutable pattern because there is nothing valid the code can do with
At compile time, Rust will complain that we’ve tried to use a refutable
an irrefutable pattern is required:

Because we didn’t cover (and couldn’t cover!) every valid value with th
Some(x) , Rust rightfully produces a compiler error.

To �x the problem where we have a refutable pattern where an irrefu
needed, we can change the code that uses the pattern: instead of usin
use if let . Then if the pattern doesn’t match, the code will just skip
curly brackets, giving it a way to continue validly. Listing 18-9 shows ho
code in Listing 18-8.

let Some(x) = some_option_value;

error[E0005]: refutable pattern in local binding: `None` no
 -->
 |
3 | let Some(x) = some_option_value;
 | ^^^^^^^ pattern `None` not covered

Listing 18-9: Using if let and a block with refutable patterns instead

We’ve given the code an out! This code is perfectly valid, although it m
use an irrefutable pattern without receiving an error. If we give
will always match, such as x , as shown in Listing 18-10, it will not com

Listing 18-10: Attempting to use an irrefutable pattern with

Rust complains that it doesn’t make sense to use

For this reason, match arms must use refutable patterns, except for th
which should match any remaining values with an irrefutable pattern.
to use an irrefutable pattern in a match with only one arm, but this sy
particularly useful and could be replaced with a simpler

Now that you know where to use patterns and the di�erence between
irrefutable patterns, let’s cover all the syntax we can use to create pat

Pattern Syntax

Throughout the book, you’ve seen examples of many kinds of pattern
we gather all the syntax valid in patterns and discuss why you might w
one.

Matching Literals

As you saw in Chapter 6, you can match patterns against literals direct

if let Some(x) = some_option_value {
println!("{}", x);

}

if let x = 5 {
println!("{}", x);

};

error[E0162]: irrefutable if-let pattern
 --> <anon>:2:8
 |
2 | if let x = 5 {
 | ^ irrefutable pattern

following code gives some examples:

This code prints one because the value in x is 1. This syntax is useful
your code to take an action if it gets a particular concrete value.

Matching Named Variables

Named variables are irrefutable patterns that match any value, and w
many times in the book. However, there is a complication when you u
variables in match expressions. Because match
declared as part of a pattern inside the match expression will shadow
same name outside the match construct, as is the case with all variab
18-11, we declare a variable named x with the value
the value 10 . We then create a match expression on the value
patterns in the match arms and println! at the end, and try to �gure
code will print before running this code or reading further.

Filename: src/main.rs

Listing 18-11: A match expression with an arm that introduces a shad
y

Let’s walk through what happens when the match

let x = 1;

match x {
1 => println!("one"),
2 => println!("two"),
3 => println!("three"),

 _ => println!("anything"),
}

fn main() {
let x = Some(5);
let y = 10;

match x {
Some(50) => println!("Got 50"),
Some(y) => println!("Matched, y = {:?}"

 _ => println!("Default case, x = {:?}"
 }

println!("at the end: x = {:?}, y = {:?}"
}

�rst match arm doesn’t match the de�ned value of

The pattern in the second match arm introduces a new variable name
match any value inside a Some value. Because we’re in a new scope in
expression, this is a new y variable, not the y we declared at the beg
value 10. This new y binding will match any value inside a
have in x . Therefore, this new y binds to the inner value of the
value is 5 , so the expression for that arm executes and prints

If x had been a None value instead of Some(5)
wouldn’t have matched, so the value would have matched to the unde
didn’t introduce the x variable in the pattern of the underscore arm,
expression is still the outer x that hasn’t been shadowed. In this hypo
the match would print Default case, x = None

When the match expression is done, its scope ends, and so does the s
inner y . The last println! produces at the end: x = Some(5),

To create a match expression that compares the values of the outer
than introducing a shadowed variable, we would need to use a match
conditional instead. We’ll talk about match guards later in the “Extra C
Match Guards” section.

Multiple Patterns

In match expressions, you can match multiple patterns using the
means or. For example, the following code matches the value of
arms, the �rst of which has an or option, meaning if the value of
the values in that arm, that arm’s code will run:

This code prints one or two .

Matching Ranges of Values with ...

let x = 1;

match x {
1 | 2 => println!("one or two"),
3 => println!("three"),

 _ => println!("anything"),
}

The ... syntax allows us to match to an inclusive range of values. In
code, when a pattern matches any of the values within the range, that
execute:

If x is 1, 2, 3, 4, or 5, the �rst arm will match. This syntax is more conv
using the | operator to express the same idea; instead of
to specify 1 | 2 | 3 | 4 | 5 if we used | . Specifying a range is muc
especially if we want to match, say, any number between 1 and 1,000!

Ranges are only allowed with numeric values or
checks that the range isn’t empty at compile time. The only types for w
tell if a range is empty or not are char and numeric values.

Here is an example using ranges of char values:

Rust can tell that c is within the �rst pattern’s range and prints

Destructuring to Break Apart Values

We can also use patterns to destructure structs, enums, tuples, and re
di�erent parts of these values. Let’s walk through each value.

Destructuring Structs

Listing 18-12 shows a Point struct with two �elds,
using a pattern with a let statement.

Filename: src/main.rs

let x = 5;

match x {
1 ... 5 => println!("one through five"

 _ => println!("something else"),
}

let x = 'c';

match x {
'a' ... 'j' => println!("early ASCII letter"
'k' ... 'z' => println!("late ASCII letter"

 _ => println!("something else"),
}

Listing 18-12: Destructuring a struct’s �elds into separate variables

This code creates the variables a and b that match the values of the
of the p variable. This example shows that the names of the variables
don’t have to match the �eld names of the struct. But it’s common to w
variable names to match the �eld names to make it easier to rememb
variables came from which �elds.

Because having variable names match the �elds is common and beca
let Point { x: x, y: y } = p; contains a lot of duplication, there i

for patterns that match struct �elds: you only need to list the name of
and the variables created from the pattern will have the same names.
shows code that behaves in the same way as the code in Listing 18-12
variables created in the let pattern are x and

Filename: src/main.rs

Listing 18-13: Destructuring struct �elds using struct �eld shorthand

This code creates the variables x and y that match the
variable. The outcome is that the variables x and
struct.

struct Point {
 x: i32,
 y: i32,
}

fn main() {
let p = Point { x: 0, y: 7 };

let Point { x: a, y: b } = p;
assert_eq!(0, a);
assert_eq!(7, b);

}

struct Point {
 x: i32,
 y: i32,
}

fn main() {
let p = Point { x: 0, y: 7 };

let Point { x, y } = p;
assert_eq!(0, x);
assert_eq!(7, y);

}

We can also destructure with literal values as part of the struct pattern
creating variables for all the �elds. Doing so allows us to test some of
particular values while creating variables to destructure the other �eld

Listing 18-14 shows a match expression that separates
cases: points that lie directly on the x axis (which is true when
(x = 0), or neither.

Filename: src/main.rs

Listing 18-14: Destructuring and matching literal values in one pattern

The �rst arm will match any point that lies on the
matches if its value matches the literal 0 . The pattern still creates an
we can use in the code for this arm.

Similarly, the second arm matches any point on the
�eld matches if its value is 0 and creates a variable
The third arm doesn’t specify any literals, so it matches any other
variables for both the x and y �elds.

In this example, the value p matches the second arm by virtue of
so this code will print On the y axis at 7 .

Destructuring Enums

We’ve destructured enums earlier in this book, for example, when we
Option<i32> in Listing 6-5 in Chapter 6. One detail we haven’t mentio

that the pattern to destructure an enum should correspond to the wa
stored within the enum is de�ned. As an example, in Listing 18-15 we
Message enum from Listing 6-2 and write a match

each inner value.

Filename: src/main.rs

fn main() {
let p = Point { x: 0, y: 7 };

match p {
 Point { x, y: 0 } => println!("On the x axis at {}"
 Point { x: 0, y } => println!("On the y axis at {}"
 Point { x, y } => println!("On neither axis: ({}, {
 }
}

Listing 18-15: Destructuring enum variants that hold di�erent kinds of

This code will print Change the color to red 0, green 160, and
changing the value of msg to see the code from the other arms run.

For enum variants without any data, like Message::Quit
value any further. We can only match on the literal
variables are in that pattern.

For struct-like enum variants, such as Message::Move
the pattern we specify to match structs. After the variant name, we pla
brackets and then list the �elds with variables so we break apart the p
the code for this arm. Here we use the shorthand form as we did in Li

For tuple-like enum variants, like Message::Write
element and Message::ChangeColor that holds a tuple with three ele

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}

fn main() {
let msg = Message::ChangeColor(0, 160,

match msg {
 Message::Quit => {

println!("The Quit variant has no data to destr
 },
 Message::Move { x, y } => {

println!(
"Move in the x direction {} and in the y di

 x,
 y
);
 }
 Message::Write(text) => println!("Text message: {}"
 Message::ChangeColor(r, g, b) => {

println!(
"Change the color to red {}, green {}, and

 r,
 g,
 b
)
 }
 }
}

pattern is similar to the pattern we specify to match tuples. The numb
in the pattern must match the number of elements in the variant we’r

Destructuring Nested Structs & Enums

Up until now, all of our examples have been matching structures that
deep. Matching can work on nested structures too!

We can refactor the example above to support both RGB and HSV colo

Destructuring References

When the value we’re matching to our pattern contains a reference, w

enum Color {
 Rgb(i32, i32, i32),
 Hsv(i32, i32, i32)
}

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(Color),
}

fn main() {
let msg = Message::ChangeColor(Color::Hsv(

match msg {
 Message::ChangeColor(Color::Rgb(r, g, b)) => {

println!(
"Change the color to red {}, green {}, and

 r,
 g,
 b
)
 },
 Message::ChangeColor(Color::Hsv(h, s, v)) => {

println!(
"Change the color to hue {}, saturation {},

 h,
 s,
 v
)
 }
 _ => ()
 }
}

destructure the reference from the value, which we can do by specifyi
pattern. Doing so lets us get a variable holding the value that the refer
rather than getting a variable that holds the reference. This technique
useful in closures where we have iterators that iterate over references
to use the values in the closure rather than the references.

The example in Listing 18-16 iterates over references to
destructuring the reference and the struct so we can perform calculat
and y values easily.

Listing 18-16: Destructuring a reference to a struct into the struct �eld

This code gives us the variable sum_of_squares
result of squaring the x value and the y value, adding those togethe
adding the result for each Point in the points

If we had not included the & in &Point { x, y }
because iter would then iterate over references to the items in the v
than the actual values. The error would look like this:

This error indicates that Rust was expecting our closure to match
tried to match directly to a Point value, not a reference to a

Destructuring Structs and Tuples

We can mix, match, and nest destructuring patterns in even more com

let points = vec![
 Point { x: 0, y: 0 },
 Point { x: 1, y: 5 },
 Point { x: 10, y: -3 },
];

let sum_of_squares: i32 = points
 .iter()
 .map(|&Point { x, y }| x * x + y * y)
 .sum();

error[E0308]: mismatched types
 -->
 |
14 | .map(|Point { x, y }| x * x + y * y)
 | ^^^^^^^^^^^^ expected &Point, found stru
 |
 = note: expected type `&Point`
 found type `Point`

following example shows a complicated destructure where we nest st
inside a tuple and destructure all the primitive values out:

This code lets us break complex types into their component parts so w
values we’re interested in separately.

Destructuring with patterns is a convenient way to use pieces of value
value from each �eld in a struct, separately from each other.

Ignoring Values in a Pattern

You’ve seen that it’s sometimes useful to ignore values in a pattern, su
arm of a match , to get a catchall that doesn’t actually do anything but
for all remaining possible values. There are a few ways to ignore entir
of values in a pattern: using the _ pattern (which you’ve seen), using t
within another pattern, using a name that starts with an underscore, o
ignore remaining parts of a value. Let’s explore how and why to use ea
patterns.

Ignoring an Entire Value with _

We’ve used the underscore (_) as a wildcard pattern that will match a
not bind to the value. Although the underscore
last arm in a match expression, we can use it in any pattern, including
parameters, as shown in Listing 18-17.

Filename: src/main.rs

Listing 18-17: Using _ in a function signature

This code will completely ignore the value passed as the �rst argumen
print This code only uses the y parameter: 4

let ((feet, inches), Point {x, y}) = ((3,

fn foo(_: i32, y: i32) {
println!("This code only uses the y parameter: {}"

}

fn main() {
 foo(3, 4);
}

In most cases when you no longer need a particular function paramet
change the signature so it doesn’t include the unused parameter. Igno
parameter can be especially useful in some cases, for example, when
trait when you need a certain type signature but the function body in
implementation doesn’t need one of the parameters. The compiler wi
about unused function parameters, as it would if you used a name ins

Ignoring Parts of a Value with a Nested _

We can also use _ inside another pattern to ignore just part of a valu
when we want to test for only part of a value but have no use for the o
the corresponding code we want to run. Listing 18-18 shows code resp
managing a setting’s value. The business requirements are that the us
be allowed to overwrite an existing customization of a setting but can
setting and can give the setting a value if it is currently unset.

Listing 18-18: Using an underscore within patterns that match
don’t need to use the value inside the Some

This code will print Can't overwrite an existing customized val
setting is Some(5) . In the �rst match arm, we don’t need to match

values inside either Some variant, but we do need to test for the case
setting_value and new_setting_value are the

why we’re not changing setting_value , and it doesn’t get changed.

In all other cases (if either setting_value or new_setting_value
expressed by the _ pattern in the second arm, we want to allow
to become setting_value .

We can also use underscores in multiple places within one pattern to
particular values. Listing 18-19 shows an example of ignoring the seco

let mut setting_value = Some(5);
let new_setting_value = Some(10);

match (setting_value, new_setting_value) {
 (Some(_), Some(_)) => {

println!("Can't overwrite an existing customized va
 }
 _ => {
 setting_value = new_setting_value;
 }
}

println!("setting is {:?}", setting_value);

values in a tuple of �ve items.

Listing 18-19: Ignoring multiple parts of a tuple

This code will print Some numbers: 2, 8, 32 , and the values 4 and 16

Ignoring an Unused Variable by Starting Its Name with

If you create a variable but don’t use it anywhere, Rust will usually issu
because that could be a bug. But sometimes it’s useful to create a vari
use yet, such as when you’re prototyping or just starting a project. In t
you can tell Rust not to warn you about the unused variable by startin
the variable with an underscore. In Listing 18-20, we create two unuse
when we run this code, we should only get a warning about one of the

Filename: src/main.rs

Listing 18-20: Starting a variable name with an underscore to avoid ge
variable warnings

Here we get a warning about not using the variable
about not using the variable preceded by the underscore.

Note that there is a subtle di�erence between using only
starts with an underscore. The syntax _x still binds the value to the v
_ doesn’t bind at all. To show a case where this distinction matters, L

provide us with an error.

let numbers = (2, 4, 8, 16, 32);

match numbers {
 (first, _, third, _, fifth) => {

println!("Some numbers: {}, {}, {}"
 },
}

fn main() {
let _x = 5;
let y = 10;

}

Listing 18-21: An unused variable starting with an underscore still bind
which might take ownership of the value

We’ll receive an error because the s value will still be moved into
us from using s again. However, using the underscore by itself doesn
the value. Listing 18-22 will compile without any errors because
into _ .

Listing 18-22: Using an underscore does not bind the value

This code works just �ne because we never bind

Ignoring Remaining Parts of a Value with ..

With values that have many parts, we can use the
and ignore the rest, avoiding the need to list underscores for each ign
.. pattern ignores any parts of a value that we haven’t explicitly matc

of the pattern. In Listing 18-23, we have a Point
three-dimensional space. In the match expression, we want to operat
coordinate and ignore the values in the y and z

let s = Some(String::from("Hello!"));

if let Some(_s) = s {
println!("found a string");

}

println!("{:?}", s);

let s = Some(String::from("Hello!"));

if let Some(_) = s {
println!("found a string");

}

println!("{:?}", s);

Listing 18-23: Ignoring all �elds of a Point except for

We list the x value and then just include the ..
to list y: _ and z: _ , particularly when we’re working with structs th
�elds in situations where only one or two �elds are relevant.

The syntax .. will expand to as many values as it needs to be. Listing
how to use .. with a tuple.

Filename: src/main.rs

Listing 18-24: Matching only the �rst and last values in a tuple and ign
values

In this code, the �rst and last value are matched with
match and ignore everything in the middle.

However, using .. must be unambiguous. If it is unclear which value
for matching and which should be ignored, Rust will give us an error. L
shows an example of using .. ambiguously, so it will not compile.

Filename: src/main.rs

struct Point {
 x: i32,
 y: i32,
 z: i32,
}

let origin = Point { x: 0, y: 0, z: 0 };

match origin {
 Point { x, .. } => println!("x is {}", x),
}

fn main() {
let numbers = (2, 4, 8, 16, 32);

match numbers {
 (first, .., last) => {

println!("Some numbers: {}, {}"
 },
 }
}

Listing 18-25: An attempt to use .. in an ambiguous way

When we compile this example, we get this error:

It’s impossible for Rust to determine how many values in the tuple to i
matching a value with second and then how many further values to ig
thereafter. This code could mean that we want to ignore
then ignore 8 , 16 , and 32 ; or that we want to ignore
and then ignore 16 and 32 ; and so forth. The variable name
anything special to Rust, so we get a compiler error because using
like this is ambiguous.

Extra Conditionals with Match Guards

A match guard is an additional if condition speci�ed after the pattern
arm that must also match, along with the pattern matching, for that a
chosen. Match guards are useful for expressing more complex ideas t
alone allows.

The condition can use variables created in the pattern. Listing 18-26 sh
where the �rst arm has the pattern Some(x) and also has a match gu
if x < 5 .

fn main() {
let numbers = (2, 4, 8, 16, 32);

match numbers {
 (.., second, ..) => {

println!("Some numbers: {}", second)
 },
 }
}

error: `..` can only be used once per tuple or tuple struct
 --> src/main.rs:5:22
 |
5 | (.., second, ..) => {
 | ^^

Listing 18-26: Adding a match guard to a pattern

This example will print less than five: 4 . When
the �rst arm, it matches, because Some(4) matches
checks whether the value in x is less than 5 , and because it is, the �r
selected.

If num had been Some(10) instead, the match guard in the �rst arm w
false because 10 is not less than 5. Rust would then go to the second a
would match because the second arm doesn’t have a match guard an
matches any Some variant.

There is no way to express the if x < 5 condition within a pattern, s
guard gives us the ability to express this logic.

In Listing 18-11, we mentioned that we could use match guards to solv
shadowing problem. Recall that a new variable was created inside the
match expression instead of using the variable outside the

meant we couldn’t test against the value of the outer variable. Listing
how we can use a match guard to �x this problem.

Filename: src/main.rs

Listing 18-27: Using a match guard to test for equality with an outer va

This code will now print Default case, x = Some(5)

let num = Some(4);

match num {
Some(x) if x < 5 => println!("less than five: {}"
Some(x) => println!("{}", x),
None => (),

}

fn main() {
let x = Some(5);
let y = 10;

match x {
Some(50) => println!("Got 50"),
Some(n) if n == y => println!("Matched, n = {:?}"

 _ => println!("Default case, x = {:?}"
 }

println!("at the end: x = {:?}, y = {:?}"
}

match arm doesn’t introduce a new variable y that would shadow the
meaning we can use the outer y in the match guard. Instead of speci
pattern as Some(y) , which would have shadowed the outer
This creates a new variable n that doesn’t shadow anything because t
variable outside the match .

The match guard if n == y is not a pattern and therefore doesn’t in
variables. This y is the outer y rather than a new shadowed
a value that has the same value as the outer y by comparing

You can also use the or operator | in a match guard to specify multip
match guard condition will apply to all the patterns. Listing 18-31 show
precedence of combining a match guard with a pattern that uses
part of this example is that the if y match guard applies to
though it might look like if y only applies to 6

Listing 18-18: Combining multiple patterns with a match guard

The match condition states that the arm only matches if the value of
5 , or 6 and if y is true . When this code runs, the pattern of the �rs

because x is 4 , but the match guard if y is false, so the �rst arm is
The code moves on to the second arm, which does match, and this pr
no . The reason is that the if condition applies to the whole pattern

only to the last value 6 . In other words, the precedence of a match gu
to a pattern behaves like this:

rather than this:

After running the code, the precedence behavior is evident: if the mat
applied only to the �nal value in the list of values speci�ed using the
arm would have matched and the program would have printed

let x = 4;
let y = false;

match x {
4 | 5 | 6 if y => println!("yes"),

 _ => println!("no"),
}

(4 | 5 | 6) if y => ...

4 | 5 | (6 if y) => ...

@ Bindings

The at operator (@) lets us create a variable that holds a value at the s
testing that value to see whether it matches a pattern. Listing 18-32 sh
example where we want to test that a Message::Hello
3...7 . But we also want to bind the value to the variable

it in the code associated with the arm. We could name this variable
the �eld, but for this example we’ll use a di�erent name.

Listing 18-19: Using @ to bind to a value in a pattern while also testing

This example will print Found an id in range: 5
before the range 3...7 , we’re capturing whatever value matched the
also testing that the value matched the range pattern.

In the second arm, where we only have a range speci�ed in the patter
associated with the arm doesn’t have a variable that contains the actu
id �eld. The id �eld’s value could have been 10, 11, or 12, but the co

with that pattern doesn’t know which it is. The pattern code isn’t able
from the id �eld, because we haven’t saved the

In the last arm, where we’ve speci�ed a variable without a range, we d
value available to use in the arm’s code in a variable named
we’ve used the struct �eld shorthand syntax. But we haven’t applied a
value in the id �eld in this arm, as we did with the �rst two arms: any
match this pattern.

Using @ lets us test a value and save it in a variable within one pattern

enum Message {
 Hello { id: i32 },
}

let msg = Message::Hello { id: 5 };

match msg {
 Message::Hello { id: id_variable @ 3...

println!("Found an id in range: {}"
 },
 Message::Hello { id: 10...12 } => {

println!("Found an id in another range"
 },
 Message::Hello { id } => {

println!("Found some other id: {}"
 },
}

Legacy patterns: ref and ref mut

In older versions of Rust, match would assume that you want to move
matched. But sometimes, that's not what you wanted. For example:

Here, robot_name is a &Option<String> . Rust would then complain t
doesn't match up with &Option<T> , so you'd have to write this:

Next, Rust would complain that name is trying to move the
but because it's a reference to an option, it's borrowed, and so can't b
This is where the ref keyword comes into play:

The ref keyword is like the opposite of & in patterns; this says "plea
be a &String , don't try to move it out. In other words, the
against a reference, but ref creates a reference.
mutable references.

Anyway, today's Rust doesn't work like this. If you try to
borrowed, then all of the bindings you create will attempt to borrow a

let robot_name = &Some(String::from("Bors"

match robot_name {
Some(name) => println!("Found a name: {}"
None => (),

}

println!("robot_name is: {:?}", robot_name);

let robot_name = &Some(String::from("Bors"

match robot_name {
 &Some(name) => println!("Found a name: {}"

None => (),
}

println!("robot_name is: {:?}", robot_name);

let robot_name = &Some(String::from("Bors"

match robot_name {
 &Some(ref name) => println!("Found a name: {}"

None => (),
}

println!("robot_name is: {:?}", robot_name);

means that the original code works as you'd expect.

Because Rust is backwards compatible, we couldn't remove
they're sometimes useful in obscure situations, where you want to pa
part of a struct as mutable and another part as immutable. But you m
older Rust code, so knowing what they do is still useful.

Summary

Rust’s patterns are very useful in that they help distinguish between d
data. When used in match expressions, Rust ensures your patterns co
possible value, or your program won’t compile. Patterns in
function parameters make those constructs more useful, enabling the
of values into smaller parts at the same time as assigning to variables
simple or complex patterns to suit our needs.

Next, for the penultimate chapter of the book, we’ll look at some adva
a variety of Rust’s features.

Advanced Features
By now, you’ve learned the most commonly used parts of the Rust pro
language. Before we do one more project in Chapter 20, we’ll look at a
the language you might run into every once in a while. You can use th
reference for when you encounter any unknowns when using Rust. Th
learn to use in this chapter are useful in very speci�c situations. Althou
not reach for them often, we want to make sure you have a grasp of a
Rust has to o�er.

In this chapter, we’ll cover:

Unsafe Rust: how to opt out of some of Rust’s guarantees and ta
for manually upholding those guarantees
Advanced lifetimes: syntax for complex lifetime situations
Advanced traits: associated types, default type parameters, fully
syntax, supertraits, and the newtype pattern in relation to traits
Advanced types: more about the newtype pattern, type aliases, t
and dynamically sized types
Advanced functions and closures: function pointers and returnin

It’s a panoply of Rust features with something for everyone! Let’s dive

Unsafe Rust

All the code we’ve discussed so far has had Rust’s memory safety guar
enforced at compile time. However, Rust has a second language hidde
doesn’t enforce these memory safety guarantees: it’s called
like regular Rust, but gives us extra superpowers.

Unsafe Rust exists because, by nature, static analysis is conservative. W
compiler tries to determine whether or not code upholds the guarant
for it to reject some valid programs rather than accept some invalid p
Although the code might be okay, as far as Rust is able to tell, it’s not!
you can use unsafe code to tell the compiler, “Trust me, I know what I’
downside is that you use it at your own risk: if you use unsafe code inc
problems due to memory unsafety, such as null pointer dereferencing

Another reason Rust has an unsafe alter ego is that the underlying com
hardware is inherently unsafe. If Rust didn’t let you do unsafe operatio
do certain tasks. Rust needs to allow you to do low-level systems prog
as directly interacting with the operating system or even writing your o
system. Working with low-level systems programming is one of the go
language. Let’s explore what we can do with unsafe Rust and how to d

Unsafe Superpowers

To switch to unsafe Rust, use the unsafe keyword and then start a ne
holds the unsafe code. You can take four actions in unsafe Rust, called
superpowers, that you can’t in safe Rust. Those superpowers include th

Dereference a raw pointer
Call an unsafe function or method
Access or modify a mutable static variable
Implement an unsafe trait

It’s important to understand that unsafe doesn’t turn o� the borrow
disable any other of Rust’s safety checks: if you use a reference in uns
still be checked. The unsafe keyword only gives you access to these f
that are then not checked by the compiler for memory safety. You’ll st
degree of safety inside of an unsafe block.

In addition, unsafe does not mean the code inside the block is neces
or that it will de�nitely have memory safety problems: the intent is tha
programmer, you’ll ensure the code inside an unsafe
valid way.

People are fallible, and mistakes will happen, but by requiring these fo
operations to be inside blocks annotated with unsafe
related to memory safety must be within an unsafe
small; you’ll be thankful later when you investigate memory bugs.

To isolate unsafe code as much as possible, it’s best to enclose unsafe
safe abstraction and provide a safe API, which we’ll discuss later in the
we examine unsafe functions and methods. Parts of the standard libra
implemented as safe abstractions over unsafe code that has been aud
unsafe code in a safe abstraction prevents uses of
the places that you or your users might want to use the functionality i
with unsafe code, because using a safe abstraction is safe.

Let’s look at each of the four unsafe superpowers in turn. We’ll also lo
abstractions that provide a safe interface to unsafe code.

Dereferencing a Raw Pointer

In Chapter 4, in the “Dangling References” section, we mentioned that
ensures references are always valid. Unsafe Rust has two new types c
pointers that are similar to references. As with references, raw pointer
immutable or mutable and are written as *const T
asterisk isn’t the dereference operator; it’s part of the type name. In th
raw pointers, immutable means that the pointer can’t be directly assig
being dereferenced.

Di�erent from references and smart pointers, raw pointers:

Are allowed to ignore the borrowing rules by having both immut
mutable pointers or multiple mutable pointers to the same locat
Aren’t guaranteed to point to valid memory
Are allowed to be null
Don’t implement any automatic cleanup

By opting out of having Rust enforce these guarantees, you can give u
safety in exchange for greater performance or the ability to interface w
language or hardware where Rust’s guarantees don’t apply.

Listing 19-1 shows how to create an immutable and a mutable raw po
references.

Listing 19-1: Creating raw pointers from references

Notice that we don’t include the unsafe keyword in this code. We can
pointers in safe code; we just can’t dereference raw pointers outside a
as you’ll see in a bit.

We’ve created raw pointers by using as to cast an immutable and a m
reference into their corresponding raw pointer types. Because we cre
directly from references guaranteed to be valid, we know these partic
pointers are valid, but we can’t make that assumption about just any r

Next, we’ll create a raw pointer whose validity we can’t be so certain o
shows how to create a raw pointer to an arbitrary location in memory
arbitrary memory is unde�ned: there might be data at that address or
not, the compiler might optimize the code so there is no memory acce
program might error with a segmentation fault. Usually, there is no go
write code like this, but it is possible.

Listing 19-2: Creating a raw pointer to an arbitrary memory address

Recall that we can create raw pointers in safe code, but we can’t
pointers and read the data being pointed to. In Listing 19-3, we use th
operator * on a raw pointer that requires an unsafe

Listing 19-3: Dereferencing raw pointers within an

let mut num = 5;

let r1 = &num as *const i32;
let r2 = &mut num as *mut i32;

let address = 0x012345usize;
let r = address as *const i32;

let mut num = 5;

let r1 = &num as *const i32;
let r2 = &mut num as *mut i32;

unsafe {
println!("r1 is: {}", *r1);
println!("r2 is: {}", *r2);

}

Creating a pointer does no harm; it’s only when we try to access the va
points at that we might end up dealing with an invalid value.

Note also that in Listing 19-1 and 19-3, we created
pointers that both pointed to the same memory location, where
instead tried to create an immutable and a mutable reference to
not have compiled because Rust’s ownership rules don’t allow a muta
the same time as any immutable references. With raw pointers, we ca
mutable pointer and an immutable pointer to the same location and c
through the mutable pointer, potentially creating a data race. Be caref

With all of these dangers, why would you ever use raw pointers? One
is when interfacing with C code, as you’ll see in the next section, “Callin
Function or Method.” Another case is when building up safe abstractio
borrow checker doesn’t understand. We’ll introduce unsafe functions
an example of a safe abstraction that uses unsafe code.

Calling an Unsafe Function or Method

The second type of operation that requires an unsafe block is calls to
functions. Unsafe functions and methods look exactly like regular func
methods, but they have an extra unsafe before the rest of the de�nit
unsafe keyword in this context indicates the function has requiremen

uphold when we call this function, because Rust can’t guarantee we’ve
requirements. By calling an unsafe function within an
we’ve read this function’s documentation and take responsibility for u
function’s contracts.

Here is an unsafe function named dangerous that doesn’t do anythin

We must call the dangerous function within a separate
dangerous without the unsafe block, we’ll get an error:

unsafe fn dangerous() {}

unsafe {
 dangerous();
}

By inserting the unsafe block around our call to
that we’ve read the function’s documentation, we understand how to
and we’ve veri�ed that we’re ful�lling the contract of the function.

Bodies of unsafe functions are e�ectively unsafe
operations within an unsafe function, we don’t need to add another

Creating a Safe Abstraction over Unsafe Code

Just because a function contains unsafe code doesn’t mean we need t
entire function as unsafe. In fact, wrapping unsafe code in a safe func
common abstraction. As an example, let’s study a function from the st
split_at_mut , that requires some unsafe code and explore how we m

implement it. This safe method is de�ned on mutable slices: it takes o
makes it two by splitting the slice at the index given as an argument. L
shows how to use split_at_mut .

Listing 19-4: Using the safe split_at_mut function

We can’t implement this function using only safe Rust. An attempt mig
something like Listing 19-5, which won’t compile. For simplicity, we’ll im
split_at_mut as a function rather than a method and only for slices

rather than for a generic type T .

error[E0133]: call to unsafe function requires unsafe funct
 -->
 |
4 | dangerous();
 | ^^^^^^^^^^^ call to unsafe function

let mut v = vec![1, 2, 3, 4, 5, 6];

let r = &mut v[..];

let (a, b) = r.split_at_mut(3);

assert_eq!(a, &mut [1, 2, 3]);
assert_eq!(b, &mut [4, 5, 6]);

Listing 19-5: An attempted implementation of split_at_mut

This function �rst gets the total length of the slice. Then it asserts that
as a parameter is within the slice by checking whether it’s less than or
length. The assertion means that if we pass an index that is greater th
split the slice at, the function will panic before it attempts to use that i

Then we return two mutable slices in a tuple: one from the start of the
the mid index and another from mid to the end of the slice.

When we try to compile the code in Listing 19-5, we’ll get an error.

Rust’s borrow checker can’t understand that we’re borrowing di�eren
slice; it only knows that we’re borrowing from the same slice twice. Bo
di�erent parts of a slice is fundamentally okay because the two slices
overlapping, but Rust isn’t smart enough to know this. When we know
but Rust doesn’t, it’s time to reach for unsafe code.

Listing 19-6 shows how to use an unsafe block, a raw pointer, and so
unsafe functions to make the implementation of

fn split_at_mut(slice: &mut [i32], mid: usize
{

let len = slice.len();

assert!(mid <= len);

 (&mut slice[..mid],
 &mut slice[mid..])
}

error[E0499]: cannot borrow `*slice` as mutable more than o
 -->
 |
6 | (&mut slice[..mid],
 | ----- first mutable borrow occurs here
7 | &mut slice[mid..])
 | ^^^^^ second mutable borrow occurs here
8 | }
 | - first borrow ends here

Listing 19-6: Using unsafe code in the implementation of the

Recall from “The Slice Type” section in Chapter 4 that slices are a point
and the length of the slice. We use the len method to get the length
the as_mut_ptr method to access the raw pointer of a slice. In this ca
have a mutable slice to i32 values, as_mut_ptr
*mut i32 , which we’ve stored in the variable ptr

We keep the assertion that the mid index is within the slice. Then we
unsafe code: the slice::from_raw_parts_mut function takes a raw po
length, and it creates a slice. We use this function to create a slice that
ptr and is mid items long. Then we call the offset

argument to get a raw pointer that starts at mid
pointer and the remaining number of items after

The function slice::from_raw_parts_mut is unsafe because it takes a
and must trust that this pointer is valid. The offset
unsafe, because it must trust that the o�set location is also a valid poi
we had to put an unsafe block around our calls to
offset so we could call them. By looking at the code and by adding t

that mid must be less than or equal to len , we can tell that all the ra
within the unsafe block will be valid pointers to data within the slice.
acceptable and appropriate use of unsafe .

Note that we don’t need to mark the resulting split_at_mut
we can call this function from safe Rust. We’ve created a safe abstract
unsafe code with an implementation of the function that uses
way, because it creates only valid pointers from the data this function

In contrast, the use of slice::from_raw_parts_mut

use std::slice;

fn split_at_mut(slice: &mut [i32], mid: usize
{

let len = slice.len();
let ptr = slice.as_mut_ptr();

assert!(mid <= len);

unsafe {
 (slice::from_raw_parts_mut(ptr, mid),
 slice::from_raw_parts_mut(ptr.offset(mid
 }
}

when the slice is used. This code takes an arbitrary memory location a
slice 10,000 items long.

Listing 19-7: Creating a slice from an arbitrary memory location

We don’t own the memory at this arbitrary location, and there is no gu
the slice this code creates contains valid i32 values. Attempting to us
though it’s a valid slice results in unde�ned behavior. If we would not
to align address to 4 (the alignment of i32), then even just calling
slice::from_raw_parts_mut would already be unde�ned behavior --

always be aligned, even if they are not used (and even if they are emp

Using extern Functions to Call External Code

Sometimes, your Rust code might need to interact with code written in
language. For this, Rust has a keyword, extern , that facilitates the cre
of a Foreign Function Interface (FFI). An FFI is a way for a programming l
de�ne functions and enable a di�erent (foreign) programming langua
functions.

Listing 19-8 demonstrates how to set up an integration with the
the C standard library. Functions declared within
call from Rust code. The reason is that other languages don’t enforce
guarantees, and Rust can’t check them, so responsibility falls on the p
ensure safety.

Filename: src/main.rs

use std::slice;

let address = 0x01234usize;
let r = address as *mut i32;

let slice : &[i32] = unsafe {
 slice::from_raw_parts_mut(r, 10000)
};

Listing 19-8: Declaring and calling an extern function de�ned in anot

Within the extern "C" block, we list the names and signatures of ext
from another language we want to call. The "C"
interface (ABI) the external function uses: the ABI de�nes how to call th
the assembly level. The "C" ABI is the most common and follows the
language’s ABI.

Calling Rust Functions from Other Languages

We can also use extern to create an interface that allows other lan
call Rust functions. Instead of an extern block, we add the
and specify the ABI to use just before the fn keyword. We also nee
#[no_mangle] annotation to tell the Rust compiler not to mangle th

this function. Mangling is when a compiler changes the name we’ve
function to a di�erent name that contains more information for oth
the compilation process to consume but is less human readable. Ev
programming language compiler mangles names slightly di�erently
Rust function to be nameable by other languages, we must disable
compiler’s name mangling.

In the following example, we make the call_from_c
code, after it’s compiled to a shared library and linked from C:

This usage of extern does not require unsafe

extern "C" {
fn abs(input: i32) -> i32;

}

fn main() {
unsafe {

println!("Absolute value of -3 according to C: {}"
 }
}

#[no_mangle]
pub extern "C" fn call_from_c() {

println!("Just called a Rust function from C!"
}

Accessing or Modifying a Mutable Static Variable

Until now, we’ve not talked about global variables
problematic with Rust’s ownership rules. If two threads are accessing
mutable global variable, it can cause a data race.

In Rust, global variables are called static variables. Listing 19-9 shows a
declaration and use of a static variable with a string slice as a value.

Filename: src/main.rs

Listing 19-9: De�ning and using an immutable static variable

Static variables are similar to constants, which we discussed in the “Di
Between Variables and Constants” section in Chapter 3. The names of
are in SCREAMING_SNAKE_CASE by convention, and we
type, which is &'static str in this example. Static variables can only
references with the 'static lifetime, which means the Rust compiler
the lifetime; we don’t need to annotate it explicitly. Accessing an immu
variable is safe.

Constants and immutable static variables might seem similar, but a su
is that values in a static variable have a �xed address in memory. Usin
always access the same data. Constants, on the other hand, are allowe
their data whenever they’re used.

Another di�erence between constants and static variables is that stati
be mutable. Accessing and modifying mutable static variables is
shows how to declare, access, and modify a mutable static variable na

Filename: src/main.rs

static HELLO_WORLD: &str = "Hello, world!"

fn main() {
println!("name is: {}", HELLO_WORLD);

}

Listing 19-10: Reading from or writing to a mutable static variable is un

As with regular variables, we specify mutability using the
reads or writes from COUNTER must be within an
and prints COUNTER: 3 as we would expect because it’s single threade
multiple threads access COUNTER would likely result in data races.

With mutable data that is globally accessible, it’s di�cult to ensure the
races, which is why Rust considers mutable static variables to be unsa
possible, it’s preferable to use the concurrency techniques and thread
pointers we discussed in Chapter 16 so the compiler checks that data
di�erent threads is done safely.

Implementing an Unsafe Trait

The �nal action that works only with unsafe is implementing an unsa
unsafe when at least one of its methods has some invariant that the c
verify. We can declare that a trait is unsafe by adding the
trait and marking the implementation of the trait as

Listing 19-11.

static mut COUNTER: u32 = 0;

fn add_to_count(inc: u32) {
unsafe {

 COUNTER += inc;
 }
}

fn main() {
 add_to_count(3);

unsafe {
println!("COUNTER: {}", COUNTER);

 }
}

unsafe trait Foo {
// methods go here

}

unsafe impl Foo for i32 {
// method implementations go here

}

Listing 19-11: De�ning and implementing an unsafe trait

By using unsafe impl , we’re promising that we’ll uphold the invariant
compiler can’t verify.

As an example, recall the Sync and Send marker traits we discussed
“Extensible Concurrency with the Sync and Send
compiler implements these traits automatically if our types are compo
Send and Sync types. If we implement a type that contains a type tha

or Sync , such as raw pointers, and we want to mark that type as
must use unsafe . Rust can’t verify that our type upholds the guarante
be safely sent across threads or accessed from multiple threads; there
to do those checks manually and indicate as such with

When to Use Unsafe Code

Using unsafe to take one of the four actions (superpowers) just discu
or even frowned upon. But it is trickier to get unsafe
compiler can’t help uphold memory safety. When you have a reason t
code, you can do so, and having the explicit unsafe
track down the source of problems if they occur.

Advanced Lifetimes

In Chapter 10 in the “Validating References with Lifetimes” section, you
to annotate references with lifetime parameters to tell Rust how lifetim
references relate. You saw how every reference has a lifetime, but mo
Rust will let you elide lifetimes. Now we’ll look at three advanced featu
that we haven’t covered yet:

Lifetime subtyping: ensures that one lifetime outlives another lif
Lifetime bounds: speci�es a lifetime for a reference to a generic
Inference of trait object lifetimes: allows the compiler to infer tra
lifetimes and when they need to be speci�ed
The anonymous lifetime: making elision more obvious

Ensuring One Lifetime Outlives Another with Lifetime Subt

Lifetime subtyping speci�es that one lifetime should outlive another life

explore lifetime subtyping, imagine we want to write a parser. We’ll us
called Context that holds a reference to the string we’re parsing. We’
that will parse this string and return success or failure. The parser will
the Context to do the parsing. Listing 19-12 implements this parser c
code doesn’t have the required lifetime annotations, so it won’t compi

Filename: src/lib.rs

Listing 19-12: De�ning a parser without lifetime annotations

Compiling the code results in errors because Rust expects lifetime par
string slice in Context and the reference to a Context

For simplicity’s sake, the parse function returns
function will do nothing on success and, on failure, will return the part
slice that didn’t parse correctly. A real implementation would provide
information and would return a structured data type when parsing su
won’t be discussing those details because they aren’t relevant to the li
this example.

To keep this code simple, we won’t write any parsing logic. However, it
that somewhere in the parsing logic we would handle invalid input by
error that references the part of the input that is invalid; this referenc
the code example interesting in regard to lifetimes. Let’s pretend that
parser is that the input is invalid after the �rst byte. Note that this cod
the �rst byte is not on a valid character boundary; again, we’re simplif
example to focus on the lifetimes involved.

To get this code to compile, we need to �ll in the lifetime parameters f
slice in Context and the reference to the Context
straightforward way to do this is to use the same lifetime name everyw
in Listing 19-13. Recall from the “Lifetime Annotations in Struct De�nit
Chapter 10 that each of struct Context<'a> , struct Parser<'a>
declaring a new lifetime parameter. While their names happen to all b

struct Context(&str);

struct Parser {
 context: &Context,
}

impl Parser {
fn parse(&self) -> Result<(), &str> {

Err(&self.context.0[1..])
 }
}

three lifetime parameters declared in this example aren’t related.

Filename: src/lib.rs

Listing 19-13: Annotating all references in Context
parameters

This code compiles just �ne. It tells Rust that a Parser
Context with lifetime 'a and that Context holds a string slice that a

as the reference to the Context in Parser . Rust’s compiler error mes
lifetime parameters were required for these references, and we’ve no
lifetime parameters.

Next, in Listing 19-14, we’ll add a function that takes an instance of
Parser to parse that context, and returns what

quite work.

Filename: src/lib.rs

Listing 19-14: An attempt to add a parse_context
uses a Parser

We get two verbose errors when we try to compile the code with the a
parse_context function:

struct Context<'a>(&'a str);

struct Parser<'a> {
 context: &'a Context<'a>,
}

impl<'a> Parser<'a> {
fn parse(&self) -> Result<(), &str> {

Err(&self.context.0[1..])
 }
}

fn parse_context(context: Context) -> Result
 Parser { context: &context }.parse()
}

These errors state that the Parser instance that is created and the
parameter live only until the end of the parse_context
to live for the entire lifetime of the function.

In other words, Parser and context need to outlive
before the function starts as well as after it ends for all the references
always be valid. The Parser we’re creating and the
scope at the end of the function, because parse_context
context .

To �gure out why these errors occur, let’s look at the de�nitions in Lis
speci�cally the references in the signature of the

error[E0597]: borrowed value does not live long enough
 --> src/lib.rs:14:5
 |
14 | Parser { context: &context }.parse()
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ does not live long en
15 | }
 | - temporary value only lives until here
 |
note: borrowed value must be valid for the anonymous lifeti
on the function body at 13:1...
 --> src/lib.rs:13:1
 |
13 | / fn parse_context(context: Context) -> Result<(), &st
14 | | Parser { context: &context }.parse()
15 | | }
 | |_^

error[E0597]: `context` does not live long enough
 --> src/lib.rs:14:24
 |
14 | Parser { context: &context }.parse()
 | ^^^^^^^ does not live long enou
15 | }
 | - borrowed value only lives until here
 |
note: borrowed value must be valid for the anonymous lifeti
on the function body at 13:1...
 --> src/lib.rs:13:1
 |
13 | / fn parse_context(context: Context) -> Result<(), &st
14 | | Parser { context: &context }.parse()
15 | | }
 | |_^

fn parse(&self) -> Result<(), &str> {

Remember the elision rules? If we annotate the lifetimes of the refere
eliding, the signature would be as follows:

That is, the error part of the return value of parse
lifetime of the Parser instance (that of &self in the
makes sense: the returned string slice references the string slice in the
instance held by the Parser , and the de�nition of the
the lifetime of the reference to Context and the lifetime of the string
Context holds should be the same.

The problem is that the parse_context function returns the value ret
parse , so the lifetime of the return value of parse_context

the Parser as well. But the Parser instance created in the
won’t live past the end of the function (it’s temporary), and
scope at the end of the function (parse_context

Rust thinks we’re trying to return a reference to a value that goes out
end of the function, because we annotated all the lifetimes with the sa
parameter. The annotations told Rust the lifetime of the string slice th
holds is the same as that of the lifetime of the reference to
holds.

The parse_context function can’t see that within the
returned will outlive Context and Parser and that the reference
returns refers to the string slice, not to Context

By knowing what the implementation of parse does, we know that th
the return value of parse is tied to the Parser instance is that it’s ref
Parser instance’s Context , which is referencing the string slice. So, it

lifetime of the string slice that parse_context needs to care about. W
tell Rust that the string slice in Context and the reference to the
have di�erent lifetimes and that the return value of
lifetime of the string slice in Context .

First, we’ll try giving Parser and Context di�erent lifetime paramete
Listing 19-15. We’ll use 's and 'c as lifetime parameter names to cla
lifetime goes with the string slice in Context and which goes with the
Context in Parser . Note that this solution won’t completely �x the p

a start. We’ll look at why this �x isn’t su�cient when we try to compile

Filename: src/lib.rs

fn parse<'a>(&'a self) -> Result<(), &

Listing 19-15: Specifying di�erent lifetime parameters for the referenc
slice and to Context

We’ve annotated the lifetimes of the references in all the same places
annotated them in Listing 19-13. But this time we used di�erent param
depending on whether the reference goes with the string slice or with
We’ve also added an annotation to the string slice part of the return v
to indicate that it goes with the lifetime of the string slice in

When we try to compile now, we get the following error:

struct Context<'s>(&'s str);

struct Parser<'c, 's> {
 context: &'c Context<'s>,
}

impl<'c, 's> Parser<'c, 's> {
fn parse(&self) -> Result<(), &'s str> {

Err(&self.context.0[1..])
 }
}

fn parse_context(context: Context) -> Result
 Parser { context: &context }.parse()
}

error[E0491]: in type `&'c Context<'s>`, reference has a lo
than the data it references
 --> src/lib.rs:4:5
 |
4 | context: &'c Context<'s>,
 | ^^^^^^^^^^^^^^^^^^^^^^^^
 |
note: the pointer is valid for the lifetime 'c as defined o
3:1
 --> src/lib.rs:3:1
 |
3 | / struct Parser<'c, 's> {
4 | | context: &'c Context<'s>,
5 | | }
 | |_^
note: but the referenced data is only valid for the lifetim
on the struct at 3:1
 --> src/lib.rs:3:1
 |
3 | / struct Parser<'c, 's> {
4 | | context: &'c Context<'s>,
5 | | }
 | |_^

Rust doesn’t know of any relationship between
referenced data in Context with lifetime 's needs to be constrained
that it lives longer than the reference with lifetime
the reference to Context might not be valid.

Now we get to the point of this section: the Rust feature
that one lifetime parameter lives at least as long as another one. In th
where we declare lifetime parameters, we can declare a lifetime
declare a lifetime 'b that lives at least as long as
syntax 'b: 'a .

In our de�nition of Parser , to say that 's (the lifetime of the string s
guaranteed to live at least as long as 'c (the lifetime of the reference
we change the lifetime declarations to look like this:

Filename: src/lib.rs

Now the reference to Context in the Parser and the reference to the
the Context have di�erent lifetimes; we’ve ensured that the lifetime o
slice is longer than the reference to the Context

That was a very long-winded example, but as we mentioned at the sta
chapter, Rust’s advanced features are very speci�c. You won’t often ne
we described in this example, but in such situations, you’ll know how t
something and give it the necessary lifetime.

Lifetime Bounds on References to Generic Types

In the “Trait Bounds” section in Chapter 10, we discussed using trait bo
generic types. We can also add lifetime parameters as constraints on g
these are called lifetime bounds. Lifetime bounds help Rust verify that
generic types won’t outlive the data they’re referencing.

As an example, consider a type that is a wrapper over references. Rec
RefCell<T> type from the “ RefCell<T> and the Interior Mutability Pa

in Chapter 15: its borrow and borrow_mut methods return the types
RefMut , respectively. These types are wrappers over references that k

borrowing rules at runtime. The de�nition of the
without lifetime bounds for now.

struct Parser<'c, 's: 'c> {
 context: &'c Context<'s>,
}

Filename: src/lib.rs

Listing 19-16: De�ning a struct to wrap a reference to a generic type, w
bounds

Without explicitly constraining the lifetime 'a in relation to the gener
Rust will error because it doesn’t know how long the generic type

Because T can be any type, T could be a reference or a type that hol
references, each of which could have their own lifetimes. Rust can’t be
as long as 'a .

Fortunately, the error provides helpful advice on how to specify the lif
this case:

Listing 19-17 shows how to apply this advice by specifying the lifetime
we declare the generic type T .

Listing 19-17: Adding lifetime bounds on T to specify that any referen
least as long as 'a

This code now compiles because the T: 'a syntax speci�es that
but if it contains any references, the references must live at least as lo

struct Ref<'a, T>(&'a T);

error[E0309]: the parameter type `T` may not live long enou
 --> src/lib.rs:1:19
 |
1 | struct Ref<'a, T>(&'a T);
 | ^^^^^^
 |
 = help: consider adding an explicit lifetime bound `T: 'a
note: ...so that the reference type `&'a T` does not outliv
points at
 --> src/lib.rs:1:19
 |
1 | struct Ref<'a, T>(&'a T);
 | ^^^^^^

consider adding an explicit lifetime bound `T: 'a` so that
type
`&'a T` does not outlive the data it points at

struct Ref<'a, T: 'a>(&'a T);

We could solve this problem in a di�erent way, as shown in the de�nit
StaticRef struct in Listing 19-18, by adding the

means if T contains any references, they must have the

Listing 19-18: Adding a 'static lifetime bound to
have only 'static references or no references

Because 'static means the reference must live as long as the entire
type that contains no references meets the criteria of all references liv
the entire program (because there are no references). For the borrow
concerned about references living long enough, there is no real distin
type that has no references and a type that has references that live fo
the same for determining whether or not a reference has a shorter life
it refers to.

Inference of Trait Object Lifetimes

In Chapter 17 in the “Using Trait Objects that Allow for Values of Di�er
section, we discussed trait objects, consisting of a trait behind a refere
us to use dynamic dispatch. We haven’t yet discussed what happens if
implementing the trait in the trait object has a lifetime of its own. Con
19-19 where we have a trait Red and a struct Ball
reference (and thus has a lifetime parameter) and also implements tra
want to use an instance of Ball as the trait object

Filename: src/main.rs

Listing 19-19: Using a type that has a lifetime parameter with a trait ob

struct StaticRef<T: 'static>(&'static T);

trait Red { }

struct Ball<'a> {
 diameter: &'a i32,
}

impl<'a> Red for Ball<'a> { }

fn main() {
let num = 5;

let obj = Box::new(Ball { diameter: &num })
}

This code compiles without any errors, even though we haven’t explic
the lifetimes involved in obj . This code works because there are rules
with lifetimes and trait objects:

The default lifetime of a trait object is 'static
With &'a Trait or &'a mut Trait , the default lifetime of the tr
With a single T: 'a clause, the default lifetime of the trait objec
With multiple clauses like T: 'a , there is no default lifetime; we
explicit.

When we must be explicit, we can add a lifetime bound on a trait obje
Box<dyn Red> using the syntax Box<dyn Red + 'static>

depending on whether the reference lives for the entire program or n
other bounds, the syntax adding a lifetime bound means that any imp
Red trait that has references inside the type must have the same lifet

the trait object bounds as those references.

The anonymous lifetime

Let's say that we have a struct that's a wrapper around a string slice, li

We can write a function that returns one of these like this:

But that's a lot of 'a s! To cut down on some of this noise, we can use
lifetime, '_ , like this:

The '_ says "use the elidied lifetime here." This means that we can st
StrWrap contains a reference, but we don't need all of the lifetime an

make sense of it.

It works in impl headers too; for example:

struct StrWrap<'a>(&'a str);

fn foo<'a>(string: &'a str) -> StrWrap<'a> {
 StrWrap(string)
}

fn foo(string: &str) -> StrWrap<'_> {
 StrWrap(string)
}

Next, let’s look at some other advanced features that manage traits.

Advanced Traits

We �rst covered traits in the “Traits: De�ning Shared Behavior” section
but as with lifetimes, we didn’t discuss the more advanced details. No
more about Rust, we can get into the nitty-gritty.

Specifying Placeholder Types in Trait De�nitions with Asso
Types

Associated types connect a type placeholder with a trait such that the t
de�nitions can use these placeholder types in their signatures. The im
trait will specify the concrete type to be used in this type’s place for th
implementation. That way, we can de�ne a trait that uses some types
needing to know exactly what those types are until the trait is implem

We’ve described most of the advanced features in this chapter as bein
needed. Associated types are somewhere in the middle: they’re used
than features explained in the rest of the book but more commonly th
other features discussed in this chapter.

One example of a trait with an associated type is the
library provides. The associated type is named Item
values the type implementing the Iterator trait is iterating over. In “
Trait and the next Method” section of Chapter 13, we mentioned tha
of the Iterator trait is as shown in Listing 19-20.

// verbose
impl<'a> fmt::Debug for StrWrap<'a> {

// elided
impl fmt::Debug for StrWrap<'_> {

pub trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;
}

Listing 19-20: The de�nition of the Iterator trait that has an associat

The type Item is a placeholder type, and the next
will return values of type Option<Self::Item> . Implementors of the
will specify the concrete type for Item , and the
containing a value of that concrete type.

Associated types might seem like a similar concept to generics, in that
us to de�ne a function without specifying what types it can handle. So
associated types?

Let’s examine the di�erence between the two concepts with an examp
Chapter 13 that implements the Iterator trait on the
13-21, we speci�ed that the Item type was u32

Filename: src/lib.rs

This syntax seems comparable to that of generics. So why not just de�
Iterator trait with generics, as shown in Listing 19-21?

Listing 19-21: A hypothetical de�nition of the Iterator

The di�erence is that when using generics, as in Listing 19-21, we mus
types in each implementation; because we can also implement
Iterator<String> for Counter or any other type, we could have mu

implementations of Iterator for Counter . In other words, when a tr
parameter, it can be implemented for a type multiple times, changing
types of the generic type parameters each time. When we use the
Counter , we would have to provide type annotations to indicate whic

implementation of Iterator we want to use.

With associated types, we don’t need to annotate types because we ca
trait on a type multiple times. In Listing 19-20 with the de�nition that u
types, we can only choose what the type of Item
be one impl Iterator for Counter . We don’t have to specify that we

impl Iterator for Counter {
type Item = u32;

fn next(&mut self) -> Option<Self::Item> {
// --snip--

pub trait Iterator<T> {
fn next(&mut self) -> Option<T>;

}

iterator of u32 values everywhere that we call next

Default Generic Type Parameters and Operator Overloadin

When we use generic type parameters, we can specify a default concr
generic type. This eliminates the need for implementors of the trait to
concrete type if the default type works. The syntax for specifying a def
generic type is <PlaceholderType=ConcreteType>

A great example of a situation where this technique is useful is with op
overloading. Operator overloading is customizing the behavior of an op
+) in particular situations.

Rust doesn’t allow you to create your own operators or overload arbit
But you can overload the operations and corresponding traits listed in
implementing the traits associated with the operator. For example, in
overload the + operator to add two Point instances together. We do
implementing the Add trait on a Point struct:

Filename: src/main.rs

Listing 19-22: Implementing the Add trait to overload the
instances

use std::ops::Add;

#[derive(Debug, PartialEq)]
struct Point {
 x: i32,
 y: i32,
}

impl Add for Point {
type Output = Point;

fn add(self, other: Point) -> Point {
 Point {
 x: self.x + other.x,
 y: self.y + other.y,
 }
 }
}

fn main() {
assert_eq!(Point { x: 1, y: 0 } + Point { x:

 Point { x: 3, y: 3 });
}

The add method adds the x values of two Point
Point instances to create a new Point . The Add
Output that determines the type returned from the

The default generic type in this code is within the

This code should look generally familiar: a trait with one method and a
type. The new part is RHS=Self : this syntax is called
generic type parameter (short for “right hand side”) de�nes the type o
parameter in the add method. If we don’t specify a concrete type for
implement the Add trait, the type of RHS will default to
we’re implementing Add on.

When we implemented Add for Point , we used the default for
wanted to add two Point instances. Let’s look at an example of imple
Add trait where we want to customize the RHS type rather than using

We have two structs, Millimeters and Meters , holding values in di�
want to add values in millimeters to values in meters and have the im
Add do the conversion correctly. We can implement
Meters as the RHS , as shown in Listing 19-23.

Filename: src/lib.rs

Listing 19-23: Implementing the Add trait on Millimeters
Meters

trait Add<RHS=Self> {
type Output;

fn add(self, rhs: RHS) -> Self::Output;
}

use std::ops::Add;

struct Millimeters(u32);
struct Meters(u32);

impl Add<Meters> for Millimeters {
type Output = Millimeters;

fn add(self, other: Meters) -> Millimeters {
 Millimeters(self.0 + (other.0 * 1000
 }
}

To add Millimeters and Meters , we specify impl Add<Meters>
the RHS type parameter instead of using the default of

You’ll use default type parameters in two main ways:

To extend a type without breaking existing code
To allow customization in speci�c cases most users won’t need

The standard library’s Add trait is an example of the second purpose:
add two like types, but the Add trait provides the ability to customize
Using a default type parameter in the Add trait de�nition means you
specify the extra parameter most of the time. In other words, a bit of i
boilerplate isn’t needed, making it easier to use the trait.

The �rst purpose is similar to the second but in reverse: if you want to
parameter to an existing trait, you can give it a default to allow extens
functionality of the trait without breaking the existing implementation

Fully Quali�ed Syntax for Disambiguation: Calling Methods
Same Name

Nothing in Rust prevents a trait from having a method with the same
another trait’s method, nor does Rust prevent you from implementing
one type. It’s also possible to implement a method directly on the type
name as methods from traits.

When calling methods with the same name, you’ll need to tell Rust wh
want to use. Consider the code in Listing 19-24 where we’ve de�ned tw
and Wizard , that both have a method called fly
a type Human that already has a method named
method does something di�erent.

Filename: src/main.rs

Listing 19-24: Two traits are de�ned to have a fly
the Human type, and a fly method is implemented on

When we call fly on an instance of Human , the compiler defaults to c
method that is directly implemented on the type, as shown in Listing 1

Filename: src/main.rs

Listing 19-25: Calling fly on an instance of Human

Running this code will print *waving arms furiously*
fly method implemented on Human directly.

To call the fly methods from either the Pilot
use more explicit syntax to specify which fly method we mean. Listin

trait Pilot {
fn fly(&self);

}

trait Wizard {
fn fly(&self);

}

struct Human;

impl Pilot for Human {
fn fly(&self) {

println!("This is your captain speaking."
 }
}

impl Wizard for Human {
fn fly(&self) {

println!("Up!");
 }
}

impl Human {
fn fly(&self) {

println!("*waving arms furiously*"
 }
}

fn main() {
let person = Human;

 person.fly();
}

demonstrates this syntax.

Filename: src/main.rs

Listing 19-26: Specifying which trait’s fly method we want to call

Specifying the trait name before the method name clari�es to Rust wh
implementation of fly we want to call. We could also write
which is equivalent to the person.fly() that we used in Listing 19-26
longer to write if we don’t need to disambiguate.

Running this code prints the following:

Because the fly method takes a self parameter, if we had two
implement one trait, Rust could �gure out which implementation of a
based on the type of self .

However, associated functions that are part of traits don’t have a
When two types in the same scope implement that trait, Rust can’t �gu
type you mean unless you use fully quali�ed syntax
Listing 19-27 has the associated function baby_name
for the struct Dog , and the associated function

Filename: src/main.rs

fn main() {
let person = Human;

 Pilot::fly(&person);
 Wizard::fly(&person);
 person.fly();
}

This is your captain speaking.
Up!
waving arms furiously

Listing 19-27: A trait with an associated function and a type with an as
function of the same name that also implements the trait

This code is for an animal shelter that wants to name all puppies Spot
implemented in the baby_name associated function that is de�ned on
type also implements the trait Animal , which describes characteristic
animals have. Baby dogs are called puppies, and that is expressed in t
implementation of the Animal trait on Dog in the
with the Animal trait.

In main , we call the Dog::baby_name function, which calls the associa
de�ned on Dog directly. This code prints the following:

This output isn’t what we wanted. We want to call the
of the Animal trait that we implemented on Dog
A baby dog is called a puppy . The technique of specifying the trait

used in Listing 19-26 doesn’t help here; if we change
19-28, we’ll get a compilation error.

Filename: src/main.rs

trait Animal {
fn baby_name() -> String;

}

struct Dog;

impl Dog {
fn baby_name() -> String {

String::from("Spot")
 }
}

impl Animal for Dog {
fn baby_name() -> String {

String::from("puppy")
 }
}

fn main() {
println!("A baby dog is called a {}", Dog::baby_name())

}

A baby dog is called a Spot

Listing 19-28: Attempting to call the baby_name function from the
Rust doesn’t know which implementation to use

Because Animal::baby_name is an associated function rather than a m
thus doesn’t have a self parameter, Rust can’t �gure out which imple
Animal::baby_name we want. We’ll get this compiler error:

To disambiguate and tell Rust that we want to use the implementation
Dog , we need to use fully quali�ed syntax. Listing 19-29 demonstrates

fully quali�ed syntax.

Filename: src/main.rs

Listing 19-29: Using fully quali�ed syntax to specify that we want to ca
baby_name function from the Animal trait as implemented on

We’re providing Rust with a type annotation within the angle brackets
we want to call the baby_name method from the
Dog by saying that we want to treat the Dog type as an

This code will now print what we want:

In general, fully quali�ed syntax is de�ned as follows:

For associated functions, there would not be a receiver
of other arguments. You could use fully quali�ed syntax everywhere t
functions or methods. However, you’re allowed to omit any part of thi

fn main() {
println!("A baby dog is called a {}", Animal::baby_name

}

error[E0283]: type annotations required: cannot resolve `_:
 --> src/main.rs:20:43
 |
20 | println!("A baby dog is called a {}", Animal::baby
 | ^^^^^^^^^^^^
 |
 = note: required by `Animal::baby_name`

fn main() {
println!("A baby dog is called a {}", <Dog

}

A baby dog is called a puppy

<Type as Trait>::function(receiver_if_method, next_arg, ...

Rust can �gure out from other information in the program. You only n
more verbose syntax in cases where there are multiple implementatio
same name and Rust needs help to identify which implementation you

Using Supertraits to Require One Trait’s Functionality With
Another Trait

Sometimes, you might need one trait to use another trait’s functionali
you need to rely on the dependent traits also being implemented. The
on is a supertrait of the trait you’re implementing.

For example, let’s say we want to make an OutlinePrint
outline_print method that will print a value framed in asterisks. Tha
Point struct that implements Display to result in
outline_print on a Point instance that has 1

the following:

In the implementation of outline_print , we want to use the
functionality. Therefore, we need to specify that the
for types that also implement Display and provide the functionality t
OutlinePrint needs. We can do that in the trait de�nition by specifyi
OutlinePrint: Display . This technique is similar to adding a trait bo

Listing 19-30 shows an implementation of the OutlinePrint

Filename: src/main.rs

* *
* (1, 3) *
* *

Listing 19-30: Implementing the OutlinePrint trait that requires the
from Display

Because we’ve speci�ed that OutlinePrint requires the
the to_string function that is automatically implemented for any typ
implements Display . If we tried to use to_string
specifying the Display trait after the trait name, we’d get an error say
method named to_string was found for the type

Let’s see what happens when we try to implement
doesn’t implement Display , such as the Point

Filename: src/main.rs

We get an error saying that Display is required but not implemented

use std::fmt;

trait OutlinePrint: fmt::Display {
fn outline_print(&self) {

let output = self.to_string();
let len = output.len();
println!("{}", "*".repeat(len + 4));
println!("*{}*", " ".repeat(len +
println!("* {} *", output);
println!("*{}*", " ".repeat(len +
println!("{}", "*".repeat(len + 4));

 }
}

struct Point {
 x: i32,
 y: i32,
}

impl OutlinePrint for Point {}

error[E0277]: the trait bound `Point: std::fmt::Display` is
 --> src/main.rs:20:6
 |
20 | impl OutlinePrint for Point {}
 | ^^^^^^^^^^^^ `Point` cannot be formatted with the
formatter;
try using `:?` instead if you are using a format string
 |
 = help: the trait `std::fmt::Display` is not implemented

To �x this, we implement Display on Point and satisfy the constrain
OutlinePrint requires, like so:

Filename: src/main.rs

Then implementing the OutlinePrint trait on Point
we can call outline_print on a Point instance to display it within an
asterisks.

Using the Newtype Pattern to Implement External Traits o
Types

In Chapter 10 in the “Implementing a Trait on a Type” section, we men
orphan rule that states we’re allowed to implement a trait on a type a
the trait or the type are local to our crate. It’s possible to get around th
using the newtype pattern, which involves creating a new type in a tupl
covered tuple structs in the “Using Tuple Structs without Named Field
Di�erent Types” section of Chapter 5.) The tuple struct will have one �
thin wrapper around the type we want to implement a trait for. Then t
type is local to our crate, and we can implement the trait on the wrapp
term that originates from the Haskell programming language. There is
performance penalty for using this pattern, and the wrapper type is el
time.

As an example, let’s say we want to implement Display
orphan rule prevents us from doing directly because the
Vec<T> type are de�ned outside our crate. We can make a

an instance of Vec<T> ; then we can implement
Vec<T> value, as shown in Listing 19-31.

Filename: src/main.rs

use std::fmt;

impl fmt::Display for Point {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::

write!(f, "({}, {})", self.x, self
 }
}

Listing 19-31: Creating a Wrapper type around Vec<String>

The implementation of Display uses self.0 to access the inner
Wrapper is a tuple struct and Vec<T> is the item at index 0 in the tup

use the functionality of the Display type on Wrapper

The downside of using this technique is that Wrapper
the methods of the value it’s holding. We would have to implement all
Vec<T> directly on Wrapper such that the methods delegate to

allow us to treat Wrapper exactly like a Vec<T> . If we wanted the new
every method the inner type has, implementing the
15 in the “Treating Smart Pointers like Regular References with the
section) on the Wrapper to return the inner type would be a solution.
the Wrapper type to have all the methods of the inner type—for exam
the Wrapper type’s behavior—we would have to implement just the m
want manually.

Now you know how the newtype pattern is used in relation to traits; it
pattern even when traits are not involved. Let’s switch focus and look
advanced ways to interact with Rust’s type system.

Advanced Types

The Rust type system has some features that we’ve mentioned in this
haven’t yet discussed. We’ll start by discussing newtypes in general as
why newtypes are useful as types. Then we’ll move on to type aliases,
similar to newtypes but with slightly di�erent semantics. We’ll also dis
and dynamically sized types.

use std::fmt;

struct Wrapper(Vec<String>);

impl fmt::Display for Wrapper {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::

write!(f, "[{}]", self.0.join(", "
 }
}

fn main() {
let w = Wrapper(vec![String::from("hello"
println!("w = {}", w);

}

Note: The next section assumes you’ve read the earlier section “The
Pattern to Implement External Traits on External Types.”

Using the Newtype Pattern for Type Safety and Abstraction

The newtype pattern is useful for tasks beyond those we’ve discussed
statically enforcing that values are never confused and indicating the u
You saw an example of using newtypes to indicate units in Listing 19-2
the Millimeters and Meters structs wrapped
a function with a parameter of type Millimeters
that accidentally tried to call that function with a value of type

Another use of the newtype pattern is in abstracting away some imple
details of a type: the new type can expose a public API that is di�erent
the private inner type if we used the new type directly to restrict the a
functionality, for example.

Newtypes can also hide internal implementation. For example, we cou
People type to wrap a HashMap<i32, String> that stores a person’s

with their name. Code using People would only interact with the pub
provide, such as a method to add a name string to the
wouldn’t need to know that we assign an i32 ID to names internally.
pattern is a lightweight way to achieve encapsulation to hide impleme
which we discussed in the “Encapsulation that Hides Implementation
of Chapter 17.

Creating Type Synonyms with Type Aliases

Along with the newtype pattern, Rust provides the ability to declare a
an existing type another name. For this we use the
can create the alias Kilometers to i32 like so:

Now, the alias Kilometers is a synonym for i32
Meters types we created in Listing 19-23, Kilometers

Values that have the type Kilometers will be treated the same as valu

type Kilometers = i32;

Because Kilometers and i32 are the same type, we can add values
and we can pass Kilometers values to functions that take
However, using this method, we don’t get the type checking bene�ts t
the newtype pattern discussed earlier.

The main use case for type synonyms is to reduce repetition. For exam
have a lengthy type like this:

Writing this lengthy type in function signatures and as type annotation
code can be tiresome and error prone. Imagine having a project full o
in Listing 19-32.

Listing 19-32: Using a long type in many places

A type alias makes this code more manageable by reducing the repeti
19-33, we’ve introduced an alias named Thunk for the verbose type a
all uses of the type with the shorter alias Thunk

type Kilometers = i32;

let x: i32 = 5;
let y: Kilometers = 5;

println!("x + y = {}", x + y);

Box<dyn Fn() + Send + 'static>

let f: Box<dyn Fn() + Send + 'static> = Box

fn takes_long_type(f: Box<dyn Fn() + Send +
// --snip--

}

fn returns_long_type() -> Box<dyn Fn() + Send
// --snip--

}

Listing 19-33: Introducing a type alias Thunk to reduce repetition

This code is much easier to read and write! Choosing a meaningful na
alias can help communicate your intent as well (
evaluated at a later time, so it’s an appropriate name for a closure tha

Type aliases are also commonly used with the Result<T, E>
repetition. Consider the std::io module in the standard library. I/O o
return a Result<T, E> to handle situations when operations fail to w
has a std::io::Error struct that represents all possible I/O errors. M
functions in std::io will be returning Result<T, E>
std::io::Error , such as these functions in the

The Result<..., Error> is repeated a lot. As such,
declaration:

Because this declaration is in the std::io module, we can use the ful
std::io::Result<T> —that is, a Result<T, E> with the
std::io::Error . The Write trait function signatures end up looking

type Thunk = Box<dyn Fn() + Send + 'static

let f: Thunk = Box::new(|| println!("hi"));

fn takes_long_type(f: Thunk) {
// --snip--

}

fn returns_long_type() -> Thunk {
// --snip--

}

use std::io::Error;
use std::fmt;

pub trait Write {
fn write(&mut self, buf: &[u8]) -> Result
fn flush(&mut self) -> Result<(), Error>;

fn write_all(&mut self, buf: &[u8]) ->
fn write_fmt(&mut self, fmt: fmt::Arguments) ->

}

type Result<T> = Result<T, std::io::Error>;

The type alias helps in two ways: it makes code easier to write
consistent interface across all of std::io . Because it’s an alias, it’s jus
Result<T, E> , which means we can use any methods that work on

with it, as well as special syntax like the ? operator.

The Never Type that Never Returns

Rust has a special type named ! that’s known in type theory lingo as
because it has no values. We prefer to call it the
place of the return type when a function will never return. Here is an e

This code is read as “the function bar returns never.” Functions that r
called diverging functions. We can’t create values of the type
possibly return.

But what use is a type you can never create values for? Recall the code
2-5; we’ve reproduced part of it here in Listing 19-34.

Listing 19-34: A match with an arm that ends in

At the time, we skipped over some details in this code. In Chapter 6 in
Control Flow Operator” section, we discussed that
same type. So, for example, the following code doesn’t work:

pub trait Write {
fn write(&mut self, buf: &[u8]) -> Result
fn flush(&mut self) -> Result<()>;

fn write_all(&mut self, buf: &[u8]) ->
fn write_fmt(&mut self, fmt: Arguments) ->

}

fn bar() -> ! {
// --snip--

}

let guess: u32 = match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue,

};

The type of guess in this code would have to be an integer
requires that guess have only one type. So what does
we allowed to return a u32 from one arm and have another arm that
continue in Listing 19-34?

As you might have guessed, continue has a ! value. That is, when Ru
the type of guess , it looks at both match arms, the former with a valu
the latter with a ! value. Because ! can never have a value, Rust dec
type of guess is u32 .

The formal way of describing this behavior is that expressions of type
coerced into any other type. We’re allowed to end this
because continue doesn’t return a value; instead, it moves control ba
the loop, so in the Err case, we never assign a value to

The never type is useful with the panic! macro as well. Remember th
function that we call on Option<T> values to produce a value or panic
de�nition:

In this code, the same thing happens as in the match
val has the type T and panic! has the type !

expression is T . This code works because panic!
the program. In the None case, we won’t be returning a value from
code is valid.

One �nal expression that has the type ! is a loop

let guess = match guess.trim().parse() {
Ok(_) => 5,
Err(_) => "hello",

}

impl<T> Option<T> {
pub fn unwrap(self) -> T {

match self {
Some(val) => val,
None => panic!("called `Option::unwrap()` on a

 }
 }
}

print!("forever ");

loop {
print!("and ever ");

}

Here, the loop never ends, so ! is the value of the expression. Howev
be true if we included a break , because the loop would terminate wh
break .

Dynamically Sized Types and the Sized

Due to Rust’s need to know certain details, such as how much space to
value of a particular type, there is a corner of its type system that can
the concept of dynamically sized types. Sometimes referred to as
these types let us write code using values whose size we can know on

Let’s dig into the details of a dynamically sized type called
using throughout the book. That’s right, not &str
can’t know how long the string is until runtime, meaning we can’t crea
type str , nor can we take an argument of type
which does not work:

Rust needs to know how much memory to allocate for any value of a p
and all values of a type must use the same amount of memory. If Rust
write this code, these two str values would need to take up the same
space. But they have di�erent lengths: s1 needs 12 bytes of storage a
15. This is why it’s not possible to create a variable holding a dynamica

So what do we do? In this case, you already know the answer: we mak
s1 and s2 a &str rather than a str . Recall that in the “String Slices

Chapter 4, we said the slice data structure stores the starting position
of the slice.

So although a &T is a single value that stores the memory address of
located, a &str is two values: the address of the
know the size of a &str value at compile time: it’s twice the length of
is, we always know the size of a &str , no matter how long the string i
general, this is the way in which dynamically sized types are used in Ru
an extra bit of metadata that stores the size of the dynamic informatio
rule of dynamically sized types is that we must always put values of dy
types behind a pointer of some kind.

We can combine str with all kinds of pointers: for example,
In fact, you’ve seen this before but with a di�erent dynamically sized t
trait is a dynamically sized type we can refer to by using the name of t

let s1: str = "Hello there!";
let s2: str = "How's it going?";

Chapter 17 in the “Using Trait Objects that Allow for Values of Di�eren
section, we mentioned that to use traits as trait objects, we must put t
pointer, such as &dyn Trait or Box<dyn Trait>

To work with DSTs, Rust has a particular trait called the
whether or not a type’s size is known at compile time. This trait is auto
implemented for everything whose size is known at compile time. In a
implicitly adds a bound on Sized to every generic function. That is, a
de�nition like this:

is actually treated as though we had written this:

By default, generic functions will work only on types that have a know
compile time. However, you can use the following special syntax to re
restriction:

A trait bound on ?Sized is the opposite of a trait bound on
this as “ T may or may not be Sized .” This syntax is only available for
other traits.

Also note that we switched the type of the t parameter from
type might not be Sized , we need to use it behind some kind of poin
we’ve chosen a reference.

Next, we’ll talk about functions and closures!

Advanced Functions and Closures

Finally, we’ll explore some advanced features related to functions and
include function pointers and returning closures.

fn generic<T>(t: T) {
// --snip--

}

fn generic<T: Sized>(t: T) {
// --snip--

}

fn generic<T: ?Sized>(t: &T) {
// --snip--

}

Function Pointers

We’ve talked about how to pass closures to functions; you can also pa
functions to functions! This technique is useful when you want to pass
you’ve already de�ned rather than de�ning a new closure. Doing this
pointers will allow you to use functions as arguments to other functio
coerce to the type fn (with a lowercase f), not to be confused with the
trait. The fn type is called a function pointer. The syntax for specifying
parameter is a function pointer is similar to that of closures, as shown
19-35.

Filename: src/main.rs

Listing 19-35: Using the fn type to accept a function pointer as an arg

This code prints The answer is: 12 . We specify that the parameter
is an fn that takes one parameter of type i32 and returns an
f in the body of do_twice . In main , we can pass the function name

�rst argument to do_twice .

Unlike closures, fn is a type rather than a trait, so we specify
type directly rather than declaring a generic type parameter with one
as a trait bound.

Function pointers implement all three of the closure traits (
so you can always pass a function pointer as an argument for a functi
a closure. It’s best to write functions using a generic type and one of th
so your functions can accept either functions or closures.

An example of where you would want to only accept
interfacing with external code that doesn’t have closures: C functions
functions as arguments, but C doesn’t have closures.

fn add_one(x: i32) -> i32 {
 x + 1
}

fn do_twice(f: fn(i32) -> i32, arg: i32) ->
 f(arg) + f(arg)
}

fn main() {
let answer = do_twice(add_one, 5);

println!("The answer is: {}", answer);
}

As an example of where you could use either a closure de�ned inline
function, let’s look at a use of map . To use the map
numbers into a vector of strings, we could use a closure, like this:

Or we could name a function as the argument to

Note that we must use the fully quali�ed syntax that we talked about
“Advanced Traits” section because there are multiple functions availab
to_string . Here, we’re using the to_string function de�ned in the

which the standard library has implemented for any type that implem

Some people prefer this style, and some people prefer to use closures
compiling to the same code, so use whichever style is clearer to you.

Returning Closures

Closures are represented by traits, which means you can’t return closu
most cases where you might want to return a trait, you can instead us
type that implements the trait as the return value of the function. But
that with closures because they don’t have a concrete type that is retu
not allowed to use the function pointer fn as a return type, for exam

The following code tries to return a closure directly, but it won’t comp

The compiler error is as follows:

let list_of_numbers = vec![1, 2, 3];
let list_of_strings: Vec<String> = list_of_numbers
 .iter()
 .map(|i| i.to_string())
 .collect();

let list_of_numbers = vec![1, 2, 3];
let list_of_strings: Vec<String> = list_of_numbers
 .iter()
 .map(ToString::to_string)
 .collect();

fn returns_closure() -> Fn(i32) -> i32 {
 |x| x + 1
}

The error references the Sized trait again! Rust doesn’t know how m
need to store the closure. We saw a solution to this problem earlier. W
trait object:

This code will compile just �ne. For more about trait objects, refer to t
Objects That Allow for Values of Di�erent Types” section in Chapter 17

Summary

Whew! Now you have some features of Rust in your toolbox that you w
but you’ll know they’re available in very particular circumstances. We’v
several complex topics so that when you encounter them in error mes
suggestions or in other peoples’ code, you’ll be able to recognize these
syntax. Use this chapter as a reference to guide you to solutions.

Next, we’ll put everything we’ve discussed throughout the book into p
one more project!

Final Project: Building a Multithreaded
Web Server
It’s been a long journey, but we’ve reached the end of the book. In this
build one more project together to demonstrate some of the concepts
the �nal chapters, as well as recap some earlier lessons.

error[E0277]: the trait bound `std::ops::Fn(i32) -> i32 + '
std::marker::Sized` is not satisfied
 -->
 |
1 | fn returns_closure() -> Fn(i32) -> i32 {
 | ^^^^^^^^^^^^^^ `std::ops::Fn(i3
'static`
 does not have a constant size known at compile-time
 |
 = help: the trait `std::marker::Sized` is not implemented
 `std::ops::Fn(i32) -> i32 + 'static`
 = note: the return type of a function must have a statica

fn returns_closure() -> Box<dyn Fn(i32) ->
Box::new(|x| x + 1)

}

For our �nal project, we’ll make a web server that says “hello” and look
20-1 in a web browser.

Figure 20-1: Our �nal shared project

Here is the plan to build the web server:

Learn a bit about TCP and HTTP.1.
Listen for TCP connections on a socket.2.
Parse a small number of HTTP requests.3.
Create a proper HTTP response.4.
Improve the throughput of our server with a thread pool.5.

But before we get started, we should mention one detail: the method
be the best way to build a web server with Rust. A number of producti
are available on https://crates.io/ that provide more complete web serv
pool implementations than we’ll build.

However, our intention in this chapter is to help you learn, not to take
Because Rust is a systems programming language, we can choose the
abstraction we want to work with and can go to a lower level than is p
practical in other languages. We’ll write the basic HTTP server and thre
manually so you can learn the general ideas and techniques behind th
might use in the future.

Building a Single-Threaded Web Server

We’ll start by getting a single-threaded web server working. Before we

at a quick overview of the protocols involved in building web servers. T
these protocols are beyond the scope of this book, but a brief overvie
the information you need.

The two main protocols involved in web servers are the
(HTTP) and the Transmission Control Protocol (TCP)
protocols, meaning a client initiates requests and a
provides a response to the client. The contents of those requests and
de�ned by the protocols.

TCP is the lower-level protocol that describes the details of how inform
one server to another but doesn’t specify what that information is. HT
of TCP by de�ning the contents of the requests and responses. It’s tec
to use HTTP with other protocols, but in the vast majority of cases, HT
data over TCP. We’ll work with the raw bytes of TCP and HTTP request
responses.

Listening to the TCP Connection

Our web server needs to listen to a TCP connection, so that’s the �rst
on. The standard library o�ers a std::net module that lets us do this
new project in the usual fashion:

Now enter the code in Listing 20-1 in src/main.rs
address 127.0.0.1:7878 for incoming TCP streams. When it gets an i
stream, it will print Connection established! .

Filename: src/main.rs

$ cargo new hello
 Created binary (application) `hello` project
$ cd hello

use std::net::TcpListener;

fn main() {
let listener = TcpListener::bind("127.0.0.1:7878"

for stream in listener.incoming() {
let stream = stream.unwrap();

println!("Connection established!"
 }
}

Listing 20-1: Listening for incoming streams and printing a message w
a stream

Using TcpListener , we can listen for TCP connections at the address
127.0.0.1:7878 . In the address, the section before the colon is an IP

representing your computer (this is the same on every computer and
represent the authors’ computer speci�cally), and
port for two reasons: HTTP is normally accepted on this port, and 787
on a telephone.

The bind function in this scenario works like the
new TcpListener instance. The reason the function is called
networking, connecting to a port to listen to is known as “binding to a

The bind function returns a Result<T, E> , which indicates that bind
For example, connecting to port 80 requires administrator privileges
(nonadministrators can listen only on ports higher than 1024), so if we
connect to port 80 without being an administrator, binding wouldn’t w
example, binding wouldn’t work if we ran two instances of our progra
two programs listening to the same port. Because we’re writing a basi
learning purposes, we won’t worry about handling these kinds of erro
use unwrap to stop the program if errors happen.

The incoming method on TcpListener returns an iterator that gives
of streams (more speci�cally, streams of type TcpStream
an open connection between the client and the server. A
the full request and response process in which a client connects to the
server generates a response, and the server closes the connection. As
TcpStream will read from itself to see what the client sent and then al

our response to the stream. Overall, this for loop will process each c
turn and produce a series of streams for us to handle.

For now, our handling of the stream consists of calling
program if the stream has any errors; if there aren’t any errors, the pr
message. We’ll add more functionality for the success case in the next
reason we might receive errors from the incoming
the server is that we’re not actually iterating over connections. Instead
over connection attempts. The connection might not be successful for a
reasons, many of them operating system speci�c. For example, many
systems have a limit to the number of simultaneous open connection
support; new connection attempts beyond that number will produce a
some of the open connections are closed.

Let’s try running this code! Invoke cargo run in the terminal and then

127.0.0.1:7878 in a web browser. The browser should show an error m
“Connection reset,” because the server isn’t currently sending back an
when you look at your terminal, you should see several messages tha
when the browser connected to the server!

Sometimes, you’ll see multiple messages printed for one browser requ
might be that the browser is making a request for the page as well as
other resources, like the favicon.ico icon that appears in the browser t

It could also be that the browser is trying to connect to the server mul
because the server isn’t responding with any data. When
and is dropped at the end of the loop, the connection is closed as part
implementation. Browsers sometimes deal with closed connections b
because the problem might be temporary. The important factor is tha
successfully gotten a handle to a TCP connection!

Remember to stop the program by pressing ctrl-c
particular version of the code. Then restart cargo run
code changes to make sure you’re running the newest code.

Reading the Request

Let’s implement the functionality to read the request from the browse
the concerns of �rst getting a connection and then taking some action
connection, we’ll start a new function for processing connections. In th
handle_connection function, we’ll read data from the TCP stream and

can see the data being sent from the browser. Change the code to loo
20-2.

Filename: src/main.rs

 Running `target/debug/hello`
Connection established!
Connection established!
Connection established!

Listing 20-2: Reading from the TcpStream and printing the data

We bring std::io::prelude into scope to get access to certain traits
from and write to the stream. In the for loop in the
printing a message that says we made a connection, we now call the n
handle_connection function and pass the stream

In the handle_connection function, we’ve made the
reason is that the TcpStream instance keeps track of what data it retu
internally. It might read more data than we asked for and save that da
time we ask for data. It therefore needs to be mut
change; usually, we think of “reading” as not needing mutation, but in
need the mut keyword.

Next, we need to actually read from the stream. We do this in two step
declare a buffer on the stack to hold the data that is read in. We’ve m
512 bytes in size, which is big enough to hold the data of a basic reque
su�cient for our purposes in this chapter. If we wanted to handle req
arbitrary size, bu�er management would need to be more complicate
simple for now. We pass the bu�er to stream.read
TcpStream and put them in the bu�er.

Second, we convert the bytes in the bu�er to a string and print that st
String::from_utf8_lossy function takes a &[u8]

The “lossy” part of the name indicates the behavior of this function wh

use std::io::prelude::*;
use std::net::TcpStream;
use std::net::TcpListener;

fn main() {
let listener = TcpListener::bind("127.0.0.1:7878"

for stream in listener.incoming() {
let stream = stream.unwrap();

 handle_connection(stream);
 }
}

fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];

 stream.read(&mut buffer).unwrap();

println!("Request: {}", String::from_utf8_lossy(&buffer
}

invalid UTF-8 sequence: it will replace the invalid sequence with
U+FFFD REPLACEMENT CHARACTER . You might see replacement characte

characters in the bu�er that aren’t �lled by request data.

Let’s try this code! Start the program and make a request in a web bro
Note that we’ll still get an error page in the browser, but our program’
terminal will now look similar to this:

Depending on your browser, you might get slightly di�erent output. N
printing the request data, we can see why we get multiple connections
browser request by looking at the path after Request: GET
connections are all requesting /, we know the browser is trying to fetc
because it’s not getting a response from our program.

Let’s break down this request data to understand what the browser is
program.

A Closer Look at an HTTP Request

HTTP is a text-based protocol, and a request takes this format:

The �rst line is the request line that holds information about what the
requesting. The �rst part of the request line indicates the
GET or POST , which describes how the client is making this request. O
GET request.

The next part of the request line is /, which indicates the

$ cargo run
 Compiling hello v0.1.0 (file:///projects/hello)
 Finished dev [unoptimized + debuginfo] target(s) in 0.4
 Running `target/debug/hello`
Request: GET / HTTP/1.1
Host: 127.0.0.1:7878
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:52.0) G
Firefox/52.0
Accept: text/html,application/xhtml+xml,application/xml;q=0
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Upgrade-Insecure-Requests: 1
������������������������������������

Method Request-URI HTTP-Version CRLF
headers CRLF
message-body

(URI) the client is requesting: a URI is almost, but not quite, the same a
Resource Locator (URL). The di�erence between URIs and URLs isn’t imp
purposes in this chapter, but the HTTP spec uses the term URI, so we
mentally substitute URL for URI here.

The last part is the HTTP version the client uses, and then the request
CRLF sequence. (CRLF stands for carriage return and
typewriter days!) The CRLF sequence can also be written as
carriage return and \n is a line feed. The CRLF sequence separates th
from the rest of the request data. Note that when the CRLF is printed,
line start rather than \r\n .

Looking at the request line data we received from running our progra
that GET is the method, / is the request URI, and

After the request line, the remaining lines starting from
GET requests have no body.

Try making a request from a di�erent browser or asking for a di�eren
as 127.0.0.1:7878/test, to see how the request data changes.

Now that we know what the browser is asking for, let’s send back som

Writing a Response

Now we’ll implement sending data in response to a client request. Res
the following format:

The �rst line is a status line that contains the HTTP version used in the
numeric status code that summarizes the result of the request, and a
that provides a text description of the status code. After the CRLF sequ
headers, another CRLF sequence, and the body of the response.

Here is an example response that uses HTTP version 1.1, has a status
OK reason phrase, no headers, and no body:

The status code 200 is the standard success response. The text is a tin
HTTP response. Let’s write this to the stream as our response to a suc

HTTP-Version Status-Code Reason-Phrase CRLF
headers CRLF
message-body

HTTP/1.1 200 OK\r\n\r\n

From the handle_connection function, remove the
request data and replace it with the code in Listing 20-3.

Filename: src/main.rs

Listing 20-3: Writing a tiny successful HTTP response to the stream

The �rst new line de�nes the response variable that holds the succes
data. Then we call as_bytes on our response to convert the string d
write method on stream takes a &[u8] and sends those bytes direc

connection.

Because the write operation could fail, we use
Again, in a real application you would add error handling here. Finally,
and prevent the program from continuing until all the bytes are writte
connection; TcpStream contains an internal bu�er to minimize calls to
operating system.

With these changes, let’s run our code and make a request. We’re no l
any data to the terminal, so we won’t see any output other than the ou
Cargo. When you load 127.0.0.1:7878 in a web browser, you should ge
instead of an error. You’ve just hand-coded an HTTP request and resp

Returning Real HTML

Let’s implement the functionality for returning more than a blank pag
�le, hello.html, in the root of your project directory, not in the
input any HTML you want; Listing 20-4 shows one possibility.

Filename: hello.html

fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];

 stream.read(&mut buffer).unwrap();

let response = "HTTP/1.1 200 OK\r\n\r\n"

 stream.write(response.as_bytes()).unwrap();
 stream.flush().unwrap();
}

Listing 20-4: A sample HTML �le to return in a response

This is a minimal HTML5 document with a heading and some text. To
the server when a request is received, we’ll modify
Listing 20-5 to read the HTML �le, add it to the response as a body, an

Filename: src/main.rs

Listing 20-5: Sending the contents of hello.html as the body of the resp

We’ve added a line at the top to bring the standard library’s
code for opening a �le and reading the contents should look familiar;
Chapter 12 when we read the contents of a �le for our I/O project in L

Next, we use format! to add the �le’s contents as the body of the suc

Run this code with cargo run and load 127.0.0.1:7878
see your HTML rendered!

Currently, we’re ignoring the request data in buffer
contents of the HTML �le unconditionally. That means if you try reque

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Hello!</title>

</head>
<body>

<h1>Hello!</h1>
<p>Hi from Rust</p>

</body>
</html>

use std::fs;
// --snip--

fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];

 stream.read(&mut buffer).unwrap();

let contents = fs::read_to_string("hello.html"

let response = format!("HTTP/1.1 200 OK\r\n\r\n{}"

 stream.write(response.as_bytes()).unwrap();
 stream.flush().unwrap();
}

127.0.0.1:7878/something-else in your browser, you’ll still get back this s
response. Our server is very limited and is not what most web servers
customize our responses depending on the request and only send ba
for a well-formed request to /.

Validating the Request and Selectively Responding

Right now, our web server will return the HTML in the �le no matter w
requested. Let’s add functionality to check that the browser is request
returning the HTML �le and return an error if the browser requests an
this we need to modify handle_connection , as shown in Listing 20-6.
checks the content of the request received against what we know a re
like and adds if and else blocks to treat requests di�erently.

Filename: src/main.rs

Listing 20-6: Matching the request and handling requests to
requests

First, we hardcode the data corresponding to the
Because we’re reading raw bytes into the bu�er, we transform
by adding the b"" byte string syntax at the start of the content data.
whether buffer starts with the bytes in get . If it does, it means we’v
well-formed request to /, which is the success case we’ll handle in the
returns the contents of our HTML �le.

// --snip--

fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];

 stream.read(&mut buffer).unwrap();

let get = b"GET / HTTP/1.1\r\n";

if buffer.starts_with(get) {
let contents = fs::read_to_string(

let response = format!("HTTP/1.1 200 OK\r\n\r\n{}"

 stream.write(response.as_bytes()).unwrap();
 stream.flush().unwrap();
 } else {

// some other request
 }
}

If buffer does not start with the bytes in get , it means we’ve receive
request. We’ll add code to the else block in a moment to respond to
requests.

Run this code now and request 127.0.0.1:7878; you should get the HTM
If you make any other request, such as 127.0.0.1:7878/something-else
connection error like those you saw when running the code in Listing
20-2.

Now let’s add the code in Listing 20-7 to the else
status code 404, which signals that the content for the request was no
also return some HTML for a page to render in the browser indicating
the end user.

Filename: src/main.rs

Listing 20-7: Responding with status code 404 and an error page if any
than / was requested

Here, our response has a status line with status code 404 and the reas
NOT FOUND . We’re still not returning headers, and the body of the resp

HTML in the �le 404.html. You’ll need to create a
error page; again feel free to use any HTML you want or use the exam
Listing 20-8.

Filename: 404.html

// --snip--

} else {
let status_line = "HTTP/1.1 404 NOT FOUND\r\n\r\n"
let contents = fs::read_to_string("404.html"

let response = format!("{}{}", status_line, contents);

 stream.write(response.as_bytes()).unwrap();
 stream.flush().unwrap();
}

Listing 20-8: Sample content for the page to send back with any 404 re

With these changes, run your server again. Requesting
the contents of hello.html, and any other request, like
return the error HTML from 404.html.

A Touch of Refactoring

At the moment the if and else blocks have a lot of repetition: they’
�les and writing the contents of the �les to the stream. The only di�er
status line and the �lename. Let’s make the code more concise by pul
di�erences into separate if and else lines that will assign the value
line and the �lename to variables; we can then use those variables un
the code to read the �le and write the response. Listing 20-9 shows th
after replacing the large if and else blocks.

Filename: src/main.rs

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Hello!</title>

</head>
<body>

<h1>Oops!</h1>
<p>Sorry, I don't know what you're asking for.

</body>
</html>

Listing 20-9: Refactoring the if and else blocks to contain only the c
between the two cases

Now the if and else blocks only return the appropriate values for t
and �lename in a tuple; we then use destructuring to assign these two
status_line and filename using a pattern in the

Chapter 18.

The previously duplicated code is now outside the
status_line and filename variables. This makes it easier to see the

between the two cases, and it means we have only one place to updat
want to change how the �le reading and response writing work. The b
code in Listing 20-9 will be the same as that in Listing 20-8.

Awesome! We now have a simple web server in approximately 40 line
that responds to one request with a page of content and responds to
requests with a 404 response.

Currently, our server runs in a single thread, meaning it can only serve
a time. Let’s examine how that can be a problem by simulating some s
Then we’ll �x it so our server can handle multiple requests at once.

Turning Our Single-Threaded Server into a
Multithreaded Server

// --snip--

fn handle_connection(mut stream: TcpStream) {
// --snip--

let (status_line, filename) = if buffer.starts_with(get
 ("HTTP/1.1 200 OK\r\n\r\n", "hello.html"
 } else {
 ("HTTP/1.1 404 NOT FOUND\r\n\r\n",
 };

let contents = fs::read_to_string(filename).unwrap();

let response = format!("{}{}", status_line, contents);

 stream.write(response.as_bytes()).unwrap();
 stream.flush().unwrap();
}

Right now, the server will process each request in turn, meaning it wo
second connection until the �rst is �nished processing. If the server re
and more requests, this serial execution would be less and less optim
receives a request that takes a long time to process, subsequent requ
wait until the long request is �nished, even if the new requests can be
quickly. We’ll need to �x this, but �rst, we’ll look at the problem in acti

Simulating a Slow Request in the Current Server Implemen

We’ll look at how a slow-processing request can a�ect other requests
current server implementation. Listing 20-10 implements handling a r
with a simulated slow response that will cause the server to sleep for
before responding.

Filename: src/main.rs

Listing 20-10: Simulating a slow request by recognizing
seconds

This code is a bit messy, but it’s good enough for simulation purposes
second request sleep , whose data our server recognizes. We added
after the if block to check for the request to /sleep
the server will sleep for 5 seconds before rendering the successful HT

use std::thread;
use std::time::Duration;
// --snip--

fn handle_connection(mut stream: TcpStream) {
// --snip--

let get = b"GET / HTTP/1.1\r\n";
let sleep = b"GET /sleep HTTP/1.1\r\n"

let (status_line, filename) = if buffer.starts_with(get
 ("HTTP/1.1 200 OK\r\n\r\n", "hello.html"
 } else if buffer.starts_with(sleep) {
 thread::sleep(Duration::from_secs(
 ("HTTP/1.1 200 OK\r\n\r\n", "hello.html"
 } else {
 ("HTTP/1.1 404 NOT FOUND\r\n\r\n",
 };

// --snip--
}

You can see how primitive our server is: real libraries would handle th
multiple requests in a much less verbose way!

Start the server using cargo run . Then open two browser windows: o
http://127.0.0.1:7878/ and the other for http://127.0.0.1:7878/sleep
URI a few times, as before, you’ll see it respond quickly. But if you ente
then load /, you’ll see that / waits until sleep has slept for its full 5 sec
loading.

There are multiple ways we could change how our web server works t
more requests back up behind a slow request; the one we’ll implemen
pool.

Improving Throughput with a Thread Pool

A thread pool is a group of spawned threads that are waiting and read
task. When the program receives a new task, it assigns one of the thre
to the task, and that thread will process the task. The remaining threa
are available to handle any other tasks that come in while the �rst thr
processing. When the �rst thread is done processing its task, it’s retur
of idle threads, ready to handle a new task. A thread pool allows you t
connections concurrently, increasing the throughput of your server.

We’ll limit the number of threads in the pool to a small number to pro
Denial of Service (DoS) attacks; if we had our program create a new th
request as it came in, someone making 10 million requests to our serv
havoc by using up all our server’s resources and grinding the processi
to a halt.

Rather than spawning unlimited threads, we’ll have a �xed number of
in the pool. As requests come in, they’ll be sent to the pool for process
will maintain a queue of incoming requests. Each of the threads in the
o� a request from this queue, handle the request, and then ask the qu
another request. With this design, we can process
is the number of threads. If each thread is responding to a long-runnin
subsequent requests can still back up in the queue, but we’ve increase
of long-running requests we can handle before reaching that point.

This technique is just one of many ways to improve the throughput of
Other options you might explore are the fork/join model and the singl
async I/O model. If you’re interested in this topic, you can read more a
solutions and try to implement them in Rust; with a low-level language
these options are possible.

Before we begin implementing a thread pool, let’s talk about what usi
should look like. When you’re trying to design code, writing the client i
can help guide your design. Write the API of the code so it’s structured
want to call it; then implement the functionality within that structure r
implementing the functionality and then designing the public API.

Similar to how we used test-driven development in the project in Chap
compiler-driven development here. We’ll write the code that calls the
want, and then we’ll look at errors from the compiler to determine wh
change next to get the code to work.

Code Structure If We Could Spawn a Thread for Each Request

First, let’s explore how our code might look if it did create a new threa
connection. As mentioned earlier, this isn’t our �nal plan due to the pr
potentially spawning an unlimited number of threads, but it is a startin
20-11 shows the changes to make to main to spawn a new thread to
stream within the for loop.

Filename: src/main.rs

Listing 20-11: Spawning a new thread for each stream

As you learned in Chapter 16, thread::spawn will create a new thread
the code in the closure in the new thread. If you run this code and loa
browser, then / in two more browser tabs, you’ll indeed see that the re
don’t have to wait for /sleep to �nish. But as we mentioned, this will ev
overwhelm the system because you’d be making new threads without

Creating a Similar Interface for a Finite Number of Threads

We want our thread pool to work in a similar, familiar way so switchin
to a thread pool doesn’t require large changes to the code that uses o

fn main() {
let listener = TcpListener::bind("127.0.0.1:7878"

for stream in listener.incoming() {
let stream = stream.unwrap();

 thread::spawn(|| {
 handle_connection(stream);
 });
 }
}

20-12 shows the hypothetical interface for a ThreadPool
instead of thread::spawn .

Filename: src/main.rs

Listing 20-12: Our ideal ThreadPool interface

We use ThreadPool::new to create a new thread pool with a con�gur
threads, in this case four. Then, in the for loop,
as thread::spawn in that it takes a closure the pool should run for ea
need to implement pool.execute so it takes the closure and gives it t
the pool to run. This code won’t yet compile, but we’ll try so the compi
in how to �x it.

Building the ThreadPool Struct Using Compiler Driven Developme

Make the changes in Listing 20-12 to src/main.rs, and then let’s use the
errors from cargo check to drive our development. Here is the �rst e

Great! This error tells us we need a ThreadPool
now. Our ThreadPool implementation will be independent of the kind
web server is doing. So, let’s switch the hello crate from a binary cra

fn main() {
let listener = TcpListener::bind("127.0.0.1:7878"
let pool = ThreadPool::new(4);

for stream in listener.incoming() {
let stream = stream.unwrap();

 pool.execute(|| {
 handle_connection(stream);
 });
 }
}

$ cargo check
 Compiling hello v0.1.0 (file:///projects/hello)
error[E0433]: failed to resolve. Use of undeclared type or
`ThreadPool`
 --> src\main.rs:10:16
 |
10 | let pool = ThreadPool::new(4);
 | ^^^^^^^^^^^^^^^ Use of undeclared type
 `ThreadPool`

error: aborting due to previous error

crate to hold our ThreadPool implementation. After we change to a li
could also use the separate thread pool library for any work we want
thread pool, not just for serving web requests.

Create a src/lib.rs that contains the following, which is the simplest de�
ThreadPool struct that we can have for now:

Filename: src/lib.rs

Then create a new directory, src/bin, and move the binary crate rooted
into src/bin/main.rs. Doing so will make the library crate the primary cr
directory; we can still run the binary in src/bin/main.rs
the main.rs �le, edit it to bring the library crate in and bring
adding the following code to the top of src/bin/main.rs

Filename: src/bin/main.rs

This code still won’t work, but let’s check it again to get the next error
address:

This error indicates that next we need to create an associated function
for ThreadPool . We also know that new needs to have one paramete
accept 4 as an argument and should return a ThreadPool
the simplest new function that will have those characteristics:

Filename: src/lib.rs

pub struct ThreadPool;

extern crate hello;
use hello::ThreadPool;

$ cargo check
 Compiling hello v0.1.0 (file:///projects/hello)
error[E0599]: no function or associated item named `new` fo
`hello::ThreadPool` in the current scope
 --> src/bin/main.rs:13:16
 |
13 | let pool = ThreadPool::new(4);
 | ^^^^^^^^^^^^^^^ function or associated
in
 `hello::ThreadPool`

We chose usize as the type of the size parameter, because we kno
negative number of threads doesn’t make any sense. We also know w
the number of elements in a collection of threads, which is what the
for, as discussed in the “Integer Types” section of Chapter 3.

Let’s check the code again:

Now we get a warning and an error. Ignoring the warning for a mome
occurs because we don’t have an execute method on
“Creating a Similar Interface for a Finite Number of Threads” section th
our thread pool should have an interface similar to
implement the execute function so it takes the closure it’s given and
idle thread in the pool to run.

We’ll de�ne the execute method on ThreadPool
Recall from the “Storing Closures Using Generic Parameters and the
section in Chapter 13 that we can take closures as parameters with th
traits: Fn , FnMut , and FnOnce . We need to decide which kind of closu
We know we’ll end up doing something similar to the standard library
implementation, so we can look at what bounds the signature of

pub struct ThreadPool;

impl ThreadPool {
pub fn new(size: usize) -> ThreadPool {

 ThreadPool
 }
}

$ cargo check
 Compiling hello v0.1.0 (file:///projects/hello)
warning: unused variable: `size`
 --> src/lib.rs:4:16
 |
4 | pub fn new(size: usize) -> ThreadPool {
 | ^^^^
 |
 = note: #[warn(unused_variables)] on by default
 = note: to avoid this warning, consider using `_size` ins

error[E0599]: no method named `execute` found for type `hel
in the current scope
 --> src/bin/main.rs:18:14
 |
18 | pool.execute(|| {
 | ^^^^^^^

on its parameter. The documentation shows us the following:

The F type parameter is the one we’re concerned with here; the
related to the return value, and we’re not concerned with that. We can
spawn uses FnOnce as the trait bound on F . This is probably what w

because we’ll eventually pass the argument we get in
further con�dent that FnOnce is the trait we want to use because the
running a request will only execute that request’s closure one time, wh
the Once in FnOnce .

The F type parameter also has the trait bound
'static , which are useful in our situation: we need

from one thread to another and 'static because we don’t know how
thread will take to execute. Let’s create an execute
take a generic parameter of type F with these bounds:

Filename: src/lib.rs

We still use the () after FnOnce because this FnOnce
no parameters and doesn’t return a value. Just like function de�nition
type can be omitted from the signature, but even if we have no param
need the parentheses.

Again, this is the simplest implementation of the
but we’re trying only to make our code compile. Let’s check it again:

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where

 F: FnOnce() -> T + Send + 'static,
 T: Send + 'static

impl ThreadPool {
// --snip--

pub fn execute<F>(&self, f: F)
where

 F: FnOnce() + Send + 'static
 {

 }
}

We’re receiving only warnings now, which means it compiles! But note
cargo run and make a request in the browser, you’ll see the errors in

that we saw at the beginning of the chapter. Our library isn’t actually c
closure passed to execute yet!

Note: A saying you might hear about languages with strict compiler
Haskell and Rust, is “if the code compiles, it works.” But this saying i
universally true. Our project compiles, but it does absolutely nothin
building a real, complete project, this would be a good time to start
tests to check that the code compiles and has the behavior we wan

Validating the Number of Threads in new

We’ll continue to get warnings because we aren’t doing anything with
to new and execute . Let’s implement the bodies of these functions w
we want. To start, let’s think about new . Earlier we chose an unsigned
size parameter, because a pool with a negative number of threads m

However, a pool with zero threads also makes no sense, yet zero is a p
usize . We’ll add code to check that size is greater than zero before
ThreadPool instance and have the program panic if it receives a zero
assert! macro, as shown in Listing 20-13.

Filename: src/lib.rs

$ cargo check
 Compiling hello v0.1.0 (file:///projects/hello)
warning: unused variable: `size`
 --> src/lib.rs:4:16
 |
4 | pub fn new(size: usize) -> ThreadPool {
 | ^^^^
 |
 = note: #[warn(unused_variables)] on by default
 = note: to avoid this warning, consider using `_size` ins

warning: unused variable: `f`
 --> src/lib.rs:8:30
 |
8 | pub fn execute<F>(&self, f: F)
 | ^
 |
 = note: to avoid this warning, consider using `_f` instea

Listing 20-13: Implementing ThreadPool::new to panic if

We’ve added some documentation for our ThreadPool
that we followed good documentation practices by adding a section th
situations in which our function can panic, as discussed in Chapter 14
cargo doc --open and clicking the ThreadPool

docs for new look like!

Instead of adding the assert! macro as we’ve done here, we could m
a Result like we did with Config::new in the I/O project in Listing 12
decided in this case that trying to create a thread pool without any thr
an unrecoverable error. If you’re feeling ambitious, try to write a versi
the following signature to compare both versions:

Creating Space to Store the Threads

Now that we have a way to know we have a valid number of threads t
pool, we can create those threads and store them in the
returning it. But how do we “store” a thread? Let’s take another look a
thread::spawn signature:

impl ThreadPool {
/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

 ThreadPool
 }

// --snip--
}

pub fn new(size: usize) -> Result<ThreadPool, PoolCreationE

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where

 F: FnOnce() -> T + Send + 'static,
 T: Send + 'static

The spawn function returns a JoinHandle<T> , where
returns. Let’s try using JoinHandle too and see what happens. In our
closures we’re passing to the thread pool will handle the connection a
anything, so T will be the unit type () .

The code in Listing 20-14 will compile but doesn’t create any threads y
changed the de�nition of ThreadPool to hold a vector of
instances, initialized the vector with a capacity of
run some code to create the threads, and returned a
them.

Filename: src/lib.rs

Listing 20-14: Creating a vector for ThreadPool to hold the threads

We’ve brought std::thread into scope in the library crate, because w
thread::JoinHandle as the type of the items in the vector in

Once a valid size is received, our ThreadPool creates a new vector tha
size items. We haven’t used the with_capacity

performs the same task as Vec::new but with an important di�erenc
space in the vector. Because we know we need to store
doing this allocation up front is slightly more e�cient than using

use std::thread;

pub struct ThreadPool {
 threads: Vec<thread::JoinHandle<()>>,
}

impl ThreadPool {
// --snip--
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

let mut threads = Vec::with_capacity(size);

for _ in 0..size {
// create some threads and store them in the vector

 }

 ThreadPool {
 threads
 }
 }

// --snip--
}

resizes itself as elements are inserted.

When you run cargo check again, you’ll get a few more warnings, bu
succeed.

A Worker Struct Responsible for Sending Code from the

We left a comment in the for loop in Listing 20-14 regarding the crea
Here, we’ll look at how we actually create threads. The standard librar
thread::spawn as a way to create threads, and

code the thread should run as soon as the thread is created. However
want to create the threads and have them wait for code that we’ll send
standard library’s implementation of threads doesn’t include any way
have to implement it manually.

We’ll implement this behavior by introducing a new data structure bet
ThreadPool and the threads that will manage this new behavior. We’l

structure Worker , which is a common term in pooling implementation
people working in the kitchen at a restaurant: the workers wait until o
from customers, and then they’re responsible for taking those orders

Instead of storing a vector of JoinHandle<()> instances in the thread
instances of the Worker struct. Each Worker will store a single
instance. Then we’ll implement a method on Worker
to run and send it to the already running thread for execution. We’ll al
worker an id so we can distinguish between the di�erent workers in
logging or debugging.

Let’s make the following changes to what happens when we create a
We’ll implement the code that sends the closure to the thread after w
set up in this way:

De�ne a Worker struct that holds an id and a 1.
Change ThreadPool to hold a vector of Worker2.
De�ne a Worker::new function that takes an
instance that holds the id and a thread spawned with an empty

3.

In ThreadPool::new , use the for loop counter to generate an
Worker with that id , and store the worker in the vector.

4.

If you’re up for a challenge, try implementing these changes on your o
looking at the code in Listing 20-15.

Ready? Here is Listing 20-15 with one way to make the preceding mod

Filename: src/lib.rs

Listing 20-15: Modifying ThreadPool to hold Worker
threads directly

We’ve changed the name of the �eld on ThreadPool
because it’s now holding Worker instances instead of
use the counter in the for loop as an argument to
new Worker in the vector named workers .

use std::thread;

pub struct ThreadPool {
 workers: Vec<Worker>,
}

impl ThreadPool {
// --snip--
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

let mut workers = Vec::with_capacity(size);

for id in 0..size {
 workers.push(Worker::new(id));
 }

 ThreadPool {
 workers
 }
 }

// --snip--
}

struct Worker {
 id: usize,
 thread: thread::JoinHandle<()>,
}

impl Worker {
fn new(id: usize) -> Worker {

let thread = thread::spawn(|| {});

 Worker {
 id,
 thread,
 }
 }
}

External code (like our server in src/bin/main.rs) doesn’t need to know
implementation details regarding using a Worker
make the Worker struct and its new function private. The
the id we give it and stores a JoinHandle<()> instance that is create
a new thread using an empty closure.

This code will compile and will store the number of
an argument to ThreadPool::new . But we’re still
get in execute . Let’s look at how to do that next.

Sending Requests to Threads via Channels

Now we’ll tackle the problem that the closures given to
nothing. Currently, we get the closure we want to execute in the
But we need to give thread::spawn a closure to run when we create e
during the creation of the ThreadPool .

We want the Worker structs that we just created to fetch code to run
held in the ThreadPool and send that code to its thread to run.

In Chapter 16, you learned about channels—a simple way to communi
two threads—that would be perfect for this use case. We’ll use a chan
as the queue of jobs, and execute will send a job from the
Worker instances, which will send the job to its thread. Here is the pla

The ThreadPool will create a channel and hold on to the sendin
channel.

1.

Each Worker will hold on to the receiving side of the channel.2.
We’ll create a new Job struct that will hold the closures we want
the channel.

3.

The execute method will send the job it wants to execute down
side of the channel.

4.

In its thread, the Worker will loop over its receiving side of the ch
execute the closures of any jobs it receives.

5.

Let’s start by creating a channel in ThreadPool::new
the ThreadPool instance, as shown in Listing 20-16. The
anything for now but will be the type of item we’re sending down the c

Filename: src/lib.rs

Listing 20-16: Modifying ThreadPool to store the sending end of a cha
Job instances

In ThreadPool::new , we create our new channel and have the pool ho
end. This will successfully compile, still with warnings.

Let’s try passing a receiving end of the channel into each worker as th
creates the channel. We know we want to use the receiving end in the
workers spawn, so we’ll reference the receiver
in Listing 20-17 won’t quite compile yet.

Filename: src/lib.rs

// --snip--
use std::sync::mpsc;

pub struct ThreadPool {
 workers: Vec<Worker>,
 sender: mpsc::Sender<Job>,
}

struct Job;

impl ThreadPool {
// --snip--
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

let (sender, receiver) = mpsc::channel();

let mut workers = Vec::with_capacity(size);

for id in 0..size {
 workers.push(Worker::new(id));
 }

 ThreadPool {
 workers,
 sender,
 }
 }

// --snip--
}

Listing 20-17: Passing the receiving end of the channel to the workers

We’ve made some small and straightforward changes: we pass the rec
the channel into Worker::new , and then we use it inside the closure.

When we try to check this code, we get this error:

impl ThreadPool {
// --snip--
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

let (sender, receiver) = mpsc::channel();

let mut workers = Vec::with_capacity(size);

for id in 0..size {
 workers.push(Worker::new(id, receiver));
 }

 ThreadPool {
 workers,
 sender,
 }
 }

// --snip--
}

// --snip--

impl Worker {
fn new(id: usize, receiver: mpsc::Receiver<Job>) -> Wor

let thread = thread::spawn(|| {
 receiver;
 });

 Worker {
 id,
 thread,
 }
 }
}

The code is trying to pass receiver to multiple
you’ll recall from Chapter 16: the channel implementation that Rust pr
multiple producer, single consumer. This means we can’t just clone the
of the channel to �x this code. Even if we could, that is not the techniq
want to use; instead, we want to distribute the jobs across threads by
single receiver among all the workers.

Additionally, taking a job o� the channel queue involves mutating the
the threads need a safe way to share and modify
race conditions (as covered in Chapter 16).

Recall the thread-safe smart pointers discussed in Chapter 16: to shar
across multiple threads and allow the threads to mutate the value, we
Arc<Mutex<T>> . The Arc type will let multiple workers own the receiv

will ensure that only one worker gets a job from the receiver at a time
shows the changes we need to make.

Filename: src/lib.rs

$ cargo check
 Compiling hello v0.1.0 (file:///projects/hello)
error[E0382]: use of moved value: `receiver`
 --> src/lib.rs:27:42
 |
27 | workers.push(Worker::new(id, receiver));
 | ^^^^^^^^ valu
 previous iteration of loop
 |
 = note: move occurs because `receiver` has type
 `std::sync::mpsc::Receiver<Job>`, which does not impleme
trait

Listing 20-18: Sharing the receiving end of the channel among the wor
and Mutex

In ThreadPool::new , we put the receiving end of the channel in an
For each new worker, we clone the Arc to bump the reference count
can share ownership of the receiving end.

With these changes, the code compiles! We’re getting there!

Implementing the execute Method

Let’s �nally implement the execute method on
from a struct to a type alias for a trait object that holds the type of clo

use std::sync::Arc;
use std::sync::Mutex;
// --snip--

impl ThreadPool {
// --snip--
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

let (sender, receiver) = mpsc::channel();

let receiver = Arc::new(Mutex::new(receiver));

let mut workers = Vec::with_capacity(size);

for id in 0..size {
 workers.push(Worker::new(id, Arc::clone(&receiv
 }

 ThreadPool {
 workers,
 sender,
 }
 }

// --snip--
}

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Jo

{
// --snip--

 }
}

execute receives. As discussed in the “Creating Type Synonyms with T
section of Chapter 19, type aliases allow us to make long types shorte
20-19.

Filename: src/lib.rs

Listing 20-19: Creating a Job type alias for a Box
sending the job down the channel

After creating a new Job instance using the closure we get in
job down the sending end of the channel. We’re calling
that sending fails. This might happen if, for example, we stop all our th
executing, meaning the receiving end has stopped receiving new mess
moment, we can’t stop our threads from executing: our threads contin
long as the pool exists. The reason we use unwrap
won’t happen, but the compiler doesn’t know that.

But we’re not quite done yet! In the worker, our closure being passed
thread::spawn still only references the receiving end of the channel. I

the closure to loop forever, asking the receiving end of the channel fo
running the job when it gets one. Let’s make the change shown in List
Worker::new .

Filename: src/lib.rs

// --snip--

type Job = Box<dyn FnOnce() + Send + 'static

impl ThreadPool {
// --snip--

pub fn execute<F>(&self, f: F)
where

 F: FnOnce() + Send + 'static
 {

let job = Box::new(f);

self.sender.send(job).unwrap();
 }
}

// --snip--

Listing 20-20: Receiving and executing the jobs in the worker’s thread

Here, we �rst call lock on the receiver to acquire the mutex, and th
unwrap to panic on any errors. Acquiring a lock might fail if the mutex

state, which can happen if some other thread panicked while holding
than releasing the lock. In this situation, calling
the correct action to take. Feel free to change this
message that is meaningful to you.

If we get the lock on the mutex, we call recv to receive a
�nal unwrap moves past any errors here as well, which might occur if
holding the sending side of the channel has shut down, similar to how
method returns Err if the receiving side shuts down.

The call to recv blocks, so if there is no job yet, the current thread wi
becomes available. The Mutex<T> ensures that only one
trying to request a job.

Theoretically, this code should compile. Unfortunately, the Rust comp
yet, and we get this error:

// --snip--

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Jo

{
let thread = thread::spawn(move || {

loop {
let job = receiver.lock().unwrap().recv().u

println!("Worker {} got a job; executing."

 (*job)();
 }
 });

 Worker {
 id,
 thread,
 }
 }
}

This error is fairly cryptic because the problem is fairly cryptic. To call
closure that is stored in a Box<T> (which is what our
needs to move itself out of the Box<T> because the closure takes own
when we call it. In general, Rust doesn’t allow us to move a value out o
because Rust doesn’t know how big the value inside the
Chapter 15 that we used Box<T> precisely because we had something
size that we wanted to store in a Box<T> to get a value of a known siz

As you saw in Listing 17-15, we can write methods that use the syntax
self: Box<dyn Self> , which allows the method to take ownership of

stored in a Box<T> . That’s exactly what we want to do here, but unfor
won’t let us: the part of Rust that implements behavior when a closure
implemented using self: Box<dyn Self> . So Rust doesn’t yet unders
could use self: Box<dyn Self> in this situation to take ownership of
move the closure out of the Box<T> .

Rust is still a work in progress with places where the compiler could b
in the future, the code in Listing 20-20 should work just �ne. People ju
working to �x this and other issues! After you’ve �nished this book, we
you to join in.

But for now, let’s work around this problem using a handy trick. We ca
explicitly that in this case we can take ownership of the value inside th
self: Box<dyn Self> ; then, once we have ownership of the closure,

This involves de�ning a new trait FnBox with the method
self: Box<dyn Self> in its signature, de�ning
FnOnce() , changing our type alias to use the new trait, and changing

the call_box method. These changes are shown in Listing 20-21.

Filename: src/lib.rs

error[E0161]: cannot move a value of type std::ops::FnOnce(
std::marker::Send: the size of std::ops::FnOnce() + std::ma
cannot be
statically determined
 --> src/lib.rs:63:17
 |
63 | (*job)();
 | ^^^^^^

Listing 20-21: Adding a new trait FnBox to work around the current lim
Box<dyn FnOnce()>

First, we create a new trait named FnBox . This trait has the one meth
which is similar to the call methods on the other
self: Box<dyn Self> to take ownership of self
Box<T> .

Next, we implement the FnBox trait for any type
trait. E�ectively, this means that any FnOnce() closures can use our
method. The implementation of call_box uses
of the Box<T> and call the closure.

We now need our Job type alias to be a Box of anything that implem
trait FnBox . This will allow us to use call_box in

trait FnBox {
fn call_box(self: Box<Self>);

}

impl<F: FnOnce()> FnBox for F {
fn call_box(self: Box<F>) {

 (*self)()
 }
}

type Job = Box<dyn FnBox + Send + 'static>;

// --snip--

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Jo

{
let thread = thread::spawn(move || {

loop {
let job = receiver.lock().unwrap().recv().u

println!("Worker {} got a job; executing."

 job.call_box();
 }
 });

 Worker {
 id,
 thread,
 }
 }
}

instead of invoking the closure directly. Implementing the
FnOnce() closure means we don’t have to change anything about the

we’re sending down the channel. Now Rust is able to recognize that w
do is �ne.

This trick is very sneaky and complicated. Don’t worry if it doesn’t mak
someday, it will be completely unnecessary.

With the implementation of this trick, our thread pool is in a working s
cargo run and make some requests:

$ cargo run
 Compiling hello v0.1.0 (file:///projects/hello)
warning: field is never used: `workers`
 --> src/lib.rs:7:5
 |
7 | workers: Vec<Worker>,
 | ^^^^^^^^^^^^^^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

warning: field is never used: `id`
 --> src/lib.rs:61:5
 |
61 | id: usize,
 | ^^^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

warning: field is never used: `thread`
 --> src/lib.rs:62:5
 |
62 | thread: thread::JoinHandle<()>,
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

 Finished dev [unoptimized + debuginfo] target(s) in 0.9
 Running `target/debug/hello`
Worker 0 got a job; executing.
Worker 2 got a job; executing.
Worker 1 got a job; executing.
Worker 3 got a job; executing.
Worker 0 got a job; executing.
Worker 2 got a job; executing.
Worker 1 got a job; executing.
Worker 3 got a job; executing.
Worker 0 got a job; executing.
Worker 2 got a job; executing.

Success! We now have a thread pool that executes connections asynch
There are never more than four threads created, so our system won’t
if the server receives a lot of requests. If we make a request to
be able to serve other requests by having another thread run them.

Note that if you open /sleep in multiple browser windows simultaneou
load 5 seconds apart from each other, because some web browsers e
instances of the same request sequentially for caching reasons. This li
caused by our web server.

After learning about the while let loop in Chapter 18, you might be
we didn’t write the worker thread code as shown in Listing 20-22.

Filename: src/lib.rs

Listing 20-22: An alternative implementation of

This code compiles and runs but doesn’t result in the desired threadin
slow request will still cause other requests to wait to be processed. Th
somewhat subtle: the Mutex struct has no public
ownership of the lock is based on the lifetime of the
LockResult<MutexGuard<T>> that the lock method returns. At comp

borrow checker can then enforce the rule that a resource guarded by
be accessed unless we hold the lock. But this implementation can also
lock being held longer than intended if we don’t think carefully about
the MutexGuard<T> . Because the values in the while
the duration of the block, the lock remains held for the duration of the

// --snip--

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Jo

{
let thread = thread::spawn(move || {

while let Ok(job) = receiver.lock().unwrap().re
println!("Worker {} got a job; executing."

 job.call_box();
 }
 });

 Worker {
 id,
 thread,
 }
 }
}

job.call_box() , meaning other workers cannot receive jobs.

By using loop instead and acquiring the lock and a job within the blo
outside it, the MutexGuard returned from the lock
the let job statement ends. This ensures that the lock is held during
recv , but it is released before the call to job.call_box()

to be serviced concurrently.

Graceful Shutdown and Cleanup

The code in Listing 20-21 is responding to requests asynchronously th
of a thread pool, as we intended. We get some warnings about the
thread �elds that we’re not using in a direct way that reminds us we’

up anything. When we use the less elegant ctrl-c
other threads are stopped immediately as well, even if they’re in the m
a request.

Now we’ll implement the Drop trait to call join
they can �nish the requests they’re working on before closing. Then w
way to tell the threads they should stop accepting new requests and s
see this code in action, we’ll modify our server to accept only two requ
gracefully shutting down its thread pool.

Implementing the Drop Trait on ThreadPool

Let’s start with implementing Drop on our thread pool. When the poo
our threads should all join to make sure they �nish their work. Listing
�rst attempt at a Drop implementation; this code won’t quite work ye

Filename: src/lib.rs

Listing 20-23: Joining each thread when the thread pool goes out of sc

impl Drop for ThreadPool {
fn drop(&mut self) {

for worker in &mut self.workers {
println!("Shutting down worker {}"

 worker.thread.join().unwrap();
 }
 }
}

First, we loop through each of the thread pool workers
because self is a mutable reference, and we also need to be able to
For each worker, we print a message saying that this particular worke
down, and then we call join on that worker’s thread. If the call to
unwrap to make Rust panic and go into an ungraceful shutdown.

Here is the error we get when we compile this code:

The error tells us we can’t call join because we only have a mutable
worker and join takes ownership of its argument. To solve this issu

move the thread out of the Worker instance that owns
consume the thread. We did this in Listing 17-15: if
Option<thread::JoinHandle<()> instead, we can call the
Option to move the value out of the Some variant and leave a

place. In other words, a Worker that is running will have a
and when we want to clean up a Worker , we’ll replace
Worker doesn’t have a thread to run.

So we know we want to update the de�nition of

Filename: src/lib.rs

Now let’s lean on the compiler to �nd the other places that need to ch
this code, we get two errors:

error[E0507]: cannot move out of borrowed content
 --> src/lib.rs:65:13
 |
65 | worker.thread.join().unwrap();
 | ^^^^^^ cannot move out of borrowed content

struct Worker {
 id: usize,
 thread: Option<thread::JoinHandle<()>>,
}

Let’s address the second error, which points to the code at the end of
we need to wrap the thread value in Some when we create a new
following changes to �x this error:

Filename: src/lib.rs

The �rst error is in our Drop implementation. We mentioned earlier t
to call take on the Option value to move thread
changes will do so:

Filename: src/lib.rs

error[E0599]: no method named `join` found for type
`std::option::Option<std::thread::JoinHandle<()>>` in the c
 --> src/lib.rs:65:27
 |
65 | worker.thread.join().unwrap();
 | ^^^^

error[E0308]: mismatched types
 --> src/lib.rs:89:13
 |
89 | thread,
 | ^^^^^^
 | |
 | expected enum `std::option::Option`, found
 `std::thread::JoinHandle`
 | help: try using a variant of the expected
`Some(thread)`
 |
 = note: expected type
`std::option::Option<std::thread::JoinHandle<()>>`
 found type `std::thread::JoinHandle<_>`

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Jo

{
// --snip--

 Worker {
 id,
 thread: Some(thread),
 }
 }
}

As discussed in Chapter 17, the take method on
and leaves None in its place. We’re using if let
thread; then we call join on the thread. If a worker’s thread is alread
know that worker has already had its thread cleaned up, so nothing h
case.

Signaling to the Threads to Stop Listening for Jobs

With all the changes we’ve made, our code compiles without any warn
bad news is this code doesn’t function the way we want it to yet. The k
the closures run by the threads of the Worker instances: at the mome
join , but that won’t shut down the threads because they

jobs. If we try to drop our ThreadPool with our current implementatio
main thread will block forever waiting for the �rst thread to �nish.

To �x this problem, we’ll modify the threads so they listen for either a
signal that they should stop listening and exit the in�nite loop. Instead
instances, our channel will send one of these two enum variants.

Filename: src/lib.rs

This Message enum will either be a NewJob variant that holds the
should run, or it will be a Terminate variant that will cause the thread
and stop.

We need to adjust the channel to use values of type
as shown in Listing 20-24.

impl Drop for ThreadPool {
fn drop(&mut self) {

for worker in &mut self.workers {
println!("Shutting down worker {}"

if let Some(thread) = worker.thread.take() {
 thread.join().unwrap();
 }
 }
 }
}

enum Message {
 NewJob(Job),
 Terminate,
}

Filename: src/lib.rs

pub struct ThreadPool {
 workers: Vec<Worker>,
 sender: mpsc::Sender<Message>,
}

// --snip--

impl ThreadPool {
// --snip--

pub fn execute<F>(&self, f: F)
where

 F: FnOnce() + Send + 'static
 {

let job = Box::new(f);

self.sender.send(Message::NewJob(job)).unwrap();
 }
}

// --snip--

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Me

 Worker {

let thread = thread::spawn(move ||{
loop {

let message = receiver.lock().unwrap().recv

match message {
 Message::NewJob(job) => {

println!("Worker {} got a job; exec

 job.call_box();
 },
 Message::Terminate => {

println!("Worker {} was told to ter

break;
 },
 }
 }
 });

 Worker {
 id,
 thread: Some(thread),
 }
 }
}

Listing 20-24: Sending and receiving Message values and exiting the lo
receives Message::Terminate

To incorporate the Message enum, we need to change
the de�nition of ThreadPool and the signature of
method of ThreadPool needs to send jobs wrapped in the
Then, in Worker::new where a Message is received from the channel,
processed if the NewJob variant is received, and the thread will break
if the Terminate variant is received.

With these changes, the code will compile and continue to function in
as it did after Listing 20-21. But we’ll get a warning because we aren’t c
messages of the Terminate variety. Let’s �x this warning by changing
implementation to look like Listing 20-25.

Filename: src/lib.rs

Listing 20-25: Sending Message::Terminate to the workers before cal
each worker thread

We’re now iterating over the workers twice: once to send one
each worker and once to call join on each worker’s thread. If we trie
message and join immediately in the same loop, we couldn’t guaran
worker in the current iteration would be the one to get the message fr
channel.

To better understand why we need two separate loops, imagine a sce

impl Drop for ThreadPool {
fn drop(&mut self) {

println!("Sending terminate message to all workers.

for _ in &mut self.workers {
self.sender.send(Message::Terminate).unwrap();

 }

println!("Shutting down all workers."

for worker in &mut self.workers {
println!("Shutting down worker {}"

if let Some(thread) = worker.thread.take() {
 thread.join().unwrap();
 }
 }
 }
}

workers. If we used a single loop to iterate through each worker, on th
a terminate message would be sent down the channel and
worker’s thread. If that �rst worker was busy processing a request at t
the second worker would pick up the terminate message from the cha
down. We would be left waiting on the �rst worker to shut down, but i
because the second thread picked up the terminate message. Deadlo

To prevent this scenario, we �rst put all of our Terminate
in one loop; then we join on all the threads in another loop. Each work
receiving requests on the channel once it gets a terminate message. S
sure that if we send the same number of terminate messages as there
each worker will receive a terminate message before

To see this code in action, let’s modify main to accept only two reques
gracefully shutting down the server, as shown in Listing 20-26.

Filename: src/bin/main.rs

Listing 20-26: Shut down the server after serving two requests by exiti

You wouldn’t want a real-world web server to shut down after serving
requests. This code just demonstrates that the graceful shutdown and
working order.

The take method is de�ned in the Iterator trait and limits the itera
two items at most. The ThreadPool will go out of scope at the end of
drop implementation will run.

Start the server with cargo run , and make three requests. The third r
error, and in your terminal you should see output similar to this:

fn main() {
let listener = TcpListener::bind("127.0.0.1:7878"
let pool = ThreadPool::new(4);

for stream in listener.incoming().take(
let stream = stream.unwrap();

 pool.execute(|| {
 handle_connection(stream);
 });
 }

println!("Shutting down.");
}

You might see a di�erent ordering of workers and messages printed.
this code works from the messages: workers 0 and 3 got the �rst two
then on the third request, the server stopped accepting connections. W
ThreadPool goes out of scope at the end of main

and the pool tells all workers to terminate. The workers each print a m
they see the terminate message, and then the thread pool calls
each worker thread.

Notice one interesting aspect of this particular execution: the
terminate messages down the channel, and before any worker receive
messages, we tried to join worker 0. Worker 0 had not yet received the
message, so the main thread blocked waiting for worker 0 to �nish. In
each of the workers received the termination messages. When worker
main thread waited for the rest of the workers to �nish. At that point,
received the termination message and were able to shut down.

Congrats! We’ve now completed our project; we have a basic web serv
thread pool to respond asynchronously. We’re able to perform a grace
of the server, which cleans up all the threads in the pool.

Here’s the full code for reference:

Filename: src/bin/main.rs

$ cargo run
 Compiling hello v0.1.0 (file:///projects/hello)
 Finished dev [unoptimized + debuginfo] target(s) in 1.0
 Running `target/debug/hello`
Worker 0 got a job; executing.
Worker 3 got a job; executing.
Shutting down.
Sending terminate message to all workers.
Shutting down all workers.
Shutting down worker 0
Worker 1 was told to terminate.
Worker 2 was told to terminate.
Worker 0 was told to terminate.
Worker 3 was told to terminate.
Shutting down worker 1
Shutting down worker 2
Shutting down worker 3

Filename: src/lib.rs

extern crate hello;
use hello::ThreadPool;

use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;
use std::fs;
use std::thread;
use std::time::Duration;

fn main() {
let listener = TcpListener::bind("127.0.0.1:7878"
let pool = ThreadPool::new(4);

for stream in listener.incoming().take(
let stream = stream.unwrap();

 pool.execute(|| {
 handle_connection(stream);
 });
 }

println!("Shutting down.");
}

fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];

 stream.read(&mut buffer).unwrap();

let get = b"GET / HTTP/1.1\r\n";
let sleep = b"GET /sleep HTTP/1.1\r\n"

let (status_line, filename) = if buffer.starts_with(get
 ("HTTP/1.1 200 OK\r\n\r\n", "hello.html"
 } else if buffer.starts_with(sleep) {
 thread::sleep(Duration::from_secs(
 ("HTTP/1.1 200 OK\r\n\r\n", "hello.html"
 } else {
 ("HTTP/1.1 404 NOT FOUND\r\n\r\n",
 };

let contents = fs::read_to_string(filename).unwrap();

let response = format!("{}{}", status_line, contents);

 stream.write(response.as_bytes()).unwrap();
 stream.flush().unwrap();
}

use std::thread;
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;

enum Message {
 NewJob(Job),
 Terminate,
}

pub struct ThreadPool {
 workers: Vec<Worker>,
 sender: mpsc::Sender<Message>,
}

trait FnBox {
fn call_box(self: Box<Self>);

}

impl<F: FnOnce()> FnBox for F {
fn call_box(self: Box<F>) {

 (*self)()
 }
}

type Job = Box<dyn FnBox + Send + 'static>;

impl ThreadPool {
/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

let (sender, receiver) = mpsc::channel();

let receiver = Arc::new(Mutex::new(receiver));

let mut workers = Vec::with_capacity(size);

for id in 0..size {
 workers.push(Worker::new(id, Arc::clone(&receiv
 }

 ThreadPool {
 workers,
 sender,

 }
 }

pub fn execute<F>(&self, f: F)
where

 F: FnOnce() + Send + 'static
 {

let job = Box::new(f);

self.sender.send(Message::NewJob(job)).unwrap();
 }
}

impl Drop for ThreadPool {
fn drop(&mut self) {

println!("Sending terminate message to all workers.

for _ in &mut self.workers {
self.sender.send(Message::Terminate).unwrap();

 }

println!("Shutting down all workers."

for worker in &mut self.workers {
println!("Shutting down worker {}"

if let Some(thread) = worker.thread.take() {
 thread.join().unwrap();
 }
 }
 }
}

struct Worker {
 id: usize,
 thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Me

 Worker {

let thread = thread::spawn(move ||{
loop {

let message = receiver.lock().unwrap().recv

match message {
 Message::NewJob(job) => {

println!("Worker {} got a job; exec

 job.call_box();
 },

We could do more here! If you want to continue enhancing this projec
some ideas:

Add more documentation to ThreadPool and its public methods
Add tests of the library’s functionality.
Change calls to unwrap to more robust error handling.
Use ThreadPool to perform some task other than serving web r
Find a thread pool crate on https://crates.io/
using the crate instead. Then compare its API and robustness to
we implemented.

Summary

Well done! You’ve made it to the end of the book! We want to thank yo
on this tour of Rust. You’re now ready to implement your own Rust pr
with other peoples’ projects. Keep in mind that there is a welcoming c
other Rustaceans who would love to help you with any challenges you
your Rust journey.

Appendix
The following sections contain reference material you may �nd useful
journey.

Appendix A: Keywords

 Message::Terminate => {
println!("Worker {} was told to ter

break;
 },
 }
 }
 });

 Worker {
 id,
 thread: Some(thread),
 }
 }
}

The following list contains keywords that are reserved for current or fu
Rust language. As such, they cannot be used as identi�ers (except as
including names of functions, variables, parameters, struct �elds, mod
constants, macros, static values, attributes, types, traits, or lifetimes.

Keywords Currently in Use

The following keywords currently have the functionality described.

as - perform primitive casting, disambiguate the speci�c trait co
item, or rename items in use and extern crate
break - exit a loop immediately
const - de�ne constant items or constant raw pointers
continue - continue to the next loop iteration
crate - link an external crate or a macro variable representing t

which the macro is de�ned
else - fallback for if and if let control �ow constructs
enum - de�ne an enumeration
extern - link an external crate, function, or variable
false - Boolean false literal
fn - de�ne a function or the function pointer type
for - loop over items from an iterator, implement a trait, or spe

ranked lifetime
if - branch based on the result of a conditional expression
impl - implement inherent or trait functionality
in - part of for loop syntax
let - bind a variable
loop - loop unconditionally
match - match a value to patterns
mod - de�ne a module
move - make a closure take ownership of all its captures
mut - denote mutability in references, raw pointers, or pattern b
pub - denote public visibility in struct �elds,
ref - bind by reference
return - return from function
Self - a type alias for the type implementing a trait
self - method subject or current module
static - global variable or lifetime lasting the entire program ex
struct - de�ne a structure
super - parent module of the current module
trait - de�ne a trait

true - Boolean true literal
type - de�ne a type alias or associated type
unsafe - denote unsafe code, functions, traits, or implementatio
use - import symbols into scope
where - denote clauses that constrain a type
while - loop conditionally based on the result of an expression

Keywords Reserved for Future Use

The following keywords do not have any functionality but are reserved
potential future use.

abstract

alignof

become

box

do

final

macro

offsetof

override

priv

proc

pure

sizeof

typeof

unsized

virtual

yield

Raw identi�ers

Raw identi�ers let you use keywords where they would not normally b
pre�xing them with r# .

For example, match is a keyword. If you try to compile this function:

fn match(needle: &str, haystack: &str) ->
 haystack.contains(needle)
}

You'll get this error:

You can write this with a raw identi�er:

Note the r# pre�x on both the function name as well as the call.

Motivation

This feature is useful for a few reasons, but the primary motivation wa
situations. For example, try is not a keyword in the 2015 edition, but
edition. So if you have a library that is written in Rust 2015 and has a
call it in Rust 2018, you'll need to use the raw identi�er.

Appendix B: Operators and Symbols

This appendix contains a glossary of Rust’s syntax, including operators
symbols that appear by themselves or in the context of paths, generic
macros, attributes, comments, tuples, and brackets.

Operators

Table B-1 contains the operators in Rust, an example of how the oper
appear in context, a short explanation, and whether that operator is o
an operator is overloadable, the relevant trait to use to overload that
listed.

Table B-1: Operators

error: expected identifier, found keyword `match`
 --> src/main.rs:4:4
 |
4 | fn match(needle: &str, haystack: &str) -> bool {
 | ^^^^^ expected identifier, found keyword

fn r#match(needle: &str, haystack: &str) ->
 haystack.contains(needle)
}

fn main() {
assert!(r#match("foo", "foobar"));

}

Operator Example Explanation

!

ident!(...) ,
ident!{...} ,
ident![...]

Macro expansion

! !expr
Bitwise or logical
complement

!= var != expr Nonequality comparison

% expr % expr Arithmetic remainder

%= var %= expr
Arithmetic remainder and
assignment

&
&expr ,
&mut expr

Borrow

&

&type ,
&mut type ,
&'a type ,
&'a mut type

Borrowed pointer type

& expr & expr Bitwise AND

&= var &= expr
Bitwise AND and
assignment

&& expr && expr Logical AND

* expr * expr Arithmetic multiplication

*= var *= expr
Arithmetic multiplication
and assignment

* *expr Dereference

*
*const type ,
*mut type

Raw pointer

+
trait + trait ,
'a + trait

Compound type
constraint

+ expr + expr Arithmetic addition

+= var += expr
Arithmetic addition and
assignment

, expr, expr
Argument and element
separator

- - expr Arithmetic negation

- expr - expr Arithmetic subtraction

Operator Example Explanation

-= var -= expr
Arithmetic subtraction
and assignment

->
fn(...) -> type

, |...| -> type
Function and closure
return type

. expr.ident Member access

..

.. , expr.. ,

..expr ,
expr..expr

Right-exclusive range
literal

..=
..=expr ,
expr..=expr

Right-inclusive range
literal

.. ..expr
Struct literal update
syntax

..
variant(x, ..) ,
struct_type {
x, .. }

“And the rest” pattern
binding

... expr...expr
In a pattern: inclusive
range pattern

/ expr / expr Arithmetic division

/= var /= expr
Arithmetic division and
assignment

:
pat: type ,
ident: type

Constraints

: ident: expr Struct �eld initializer

: 'a: loop {...} Loop label

; expr;
Statement and item
terminator

; [...; len]
Part of �xed-size array
syntax

<< expr << expr Left-shift

<<= var <<= expr Left-shift and assignment

< expr < expr Less than comparison

<= expr <= expr
Less than or equal to
comparison

=
var = expr ,
ident = type

Assignment/equivalence

Operator Example Explanation

== expr == expr Equality comparison

=> pat => expr Part of match arm syntax

> expr > expr Greater than comparison

>= expr >= expr
Greater than or equal to
comparison

>> expr >> expr Right-shift

>>= var >>= expr
Right-shift and
assignment

@ ident @ pat Pattern binding

^ expr ^ expr Bitwise exclusive OR

^= var ^= expr
Bitwise exclusive OR and
assignment

| pat | pat Pattern alternatives

| expr | expr Bitwise OR

|= var |= expr
Bitwise OR and
assignment

|| expr || expr Logical OR

? expr? Error propagation

Non-operator Symbols

The following list contains all non-letters that don’t function as operat
don’t behave like a function or method call.

Table B-2 shows symbols that appear on their own and are valid in a v
locations.

Table B-2: Stand-Alone Syntax

Symbol

'ident Named lifetime or loop label

...u8 , ...i32 , ...f64 ,

...usize , etc.
Numeric literal of speci�c type

"..." String literal

Symbol

r"..." , r#"..."# ,
r##"..."## , etc.

Raw string literal, escape charac
processed

b"..."
Byte string literal; constructs a
of a string

br"..." , br#"..."# ,
br##"..."## , etc.

Raw byte string literal, combinat
and byte string literal

'...' Character literal

b'...' ASCII byte literal

|...| expr Closure

!
Always empty bottom type for d
functions

_
“Ignored” pattern binding; also u
integer literals readable

Table B-3 shows symbols that appear in the context of a path through
hierarchy to an item.

Table B-3: Path-Related Syntax

Symbol

ident::ident Namespace path

::path
Path relative to the crate root (i.
explicitly absolute path)

self::path
Path relative to the current mod
explicitly relative path).

super::path
Path relative to the parent of th
module

type::ident ,
<type as trait>::ident

Associated constants, functions

<type>::...

Associated item for a type that c
directly named (e.g.,
<[T]>::...

trait::method(...)
Disambiguating a method call b
trait that de�nes it

type::method(...)
Disambiguating a method call b
type for which it’s de�ned

Symbol

<type as
trait>::method(...)

Disambiguating a method call b
trait and type

Table B-4 shows symbols that appear in the context of using generic t

Table B-4: Generics

Symbol

path<...>
Speci�es parameters to generic type in
Vec<u8>)

path::<...> ,
method::<...>

Speci�es parameters to generic type, fu
method in an expression; often referre
turbo�sh (e.g., "42".parse::<i32>(

fn ident<...> ... De�ne generic function

struct ident<...>
... De�ne generic structure

enum ident<...>
... De�ne generic enumeration

impl<...> ... De�ne generic implementation

for<...> type Higher-ranked lifetime bounds

type<ident=type>
A generic type where one or more asso
have speci�c assignments (e.g.,

Table B-5 shows symbols that appear in the context of constraining ge
parameters with trait bounds.

Table B-5: Trait Bound Constraints

Symbol

T: U
Generic parameter T constrained to types th
implement U

T: 'a

Generic type T must outlive lifetime
type cannot transitively contain any referenc
lifetimes shorter than

T : 'static
Generic type T contains no borrowed refere
than 'static ones

'b: 'a Generic lifetime 'b must outlive lifetime

T: ?Sized
Allow generic type parameter to be a dynam
type

Symbol

'a + trait ,
trait + trait

Compound type constraint

Table B-6 shows symbols that appear in the context of calling or de�n
specifying attributes on an item.

Table B-6: Macros and Attributes

Symbol Explanation

#[meta] Outer attribute

#![meta] Inner attribute

$ident Macro substitution

$ident:kind Macro capture

$(…)… Macro repetition

Table B-7 shows symbols that create comments.

Table B-7: Comments

Symbol Explanation

// Line comment

//! Inner line doc comment

/// Outer line doc comment

/*...*/ Block comment

/*!...*/ Inner block doc comment

/**...*/ Outer block doc comment

Table B-8 shows symbols that appear in the context of using tuples.

Table B-8: Tuples

Symbol

() Empty tuple (aka unit), both literal

(expr) Parenthesized expression

(expr,) Single-element tuple expression

(type,) Single-element tuple type

(expr, ...) Tuple expression

Symbol

(type, ...) Tuple type

expr(expr, ...)
Function call expression; also used
tuple struct

ident!(...) ,
ident!{...} ,
ident![...]

Macro invocation

expr.0 , expr.1 , etc. Tuple indexing

Table B-9 shows the contexts in which curly braces are used.

Table B-9: Curly Brackets

Context Explanation

{...} Block expression

Type {...} struct

Table B-10 shows the contexts in which square brackets are used.

Table B-10: Square Brackets

Context

[...] Array literal

[expr; len] Array literal containing

[type; len] Array type containing

expr[expr]
Collection indexing. Overloadable (
IndexMut)

expr[..] , expr[a..] ,
expr[..b] , expr[a..b]

Collection indexing pretending to be
slicing, using Range
RangeFull as the “index”

Appendix C: Derivable Traits

In various places in the book, we’ve discussed the
apply to a struct or enum de�nition. The derive
implement a trait with its own default implementation on the type you
with the derive syntax.

In this appendix, we provide a reference of all the traits in the standar
you can use with derive . Each section covers:

What operators and methods deriving this trait will enable
What the implementation of the trait provided by
What implementing the trait signi�es about the type
The conditions in which you’re allowed or not allowed to implem
Examples of operations that require the trait

If you want di�erent behavior than that provided by the
standard library documentation for each trait for details of how to ma
implement them.

The rest of the traits de�ned in the standard library can’t be implemen
types using derive . These traits don’t have sensible default behavior
you to implement them in the way that makes sense for what you’re t
accomplish.

An example of a trait that can’t be derived is Display
end users. You should always consider the appropriate way to display
end user. What parts of the type should an end user be allowed to see
would they �nd relevant? What format of the data would be most rele
The Rust compiler doesn’t have this insight, so it can’t provide approp
behavior for you.

The list of derivable traits provided in this appendix is not comprehen
can implement derive for their own traits, making the list of traits yo
derive with truly open-ended. Implementing derive

macro, which is covered in Appendix D.

Debug for Programmer Output

The Debug trait enables debug formatting in format strings, which you
adding :? within {} placeholders.

The Debug trait allows you to print instances of a type for debugging p
you and other programmers using your type can inspect an instance a
point in a program’s execution.

The Debug trait is required, for example, in use of the
prints the values of instances given as arguments if the equality asser
programmers can see why the two instances weren’t equal.

PartialEq and Eq for Equality Comparisons

The PartialEq trait allows you to compare instances of a type to che
and enables use of the == and != operators.

Deriving PartialEq implements the eq method. When
structs, two instances are equal only if all �elds are equal, and the inst
equal if any �elds are not equal. When derived on enums, each varian
itself and not equal to the other variants.

The PartialEq trait is required, for example, with the use of the
which needs to be able to compare two instances of a type for equalit

The Eq trait has no methods. Its purpose is to signal that for every va
annotated type, the value is equal to itself. The
that also implement PartialEq , although not all types that implemen
can implement Eq . One example of this is �oating point number type
implementation of �oating point numbers states that two instances o
a-number (NaN) value are not equal to each other.

An example of when Eq is required is for keys in a
HashMap<K, V> can tell whether two keys are the same.

PartialOrd and Ord for Ordering Comparisons

The PartialOrd trait allows you to compare instances of a type for so
A type that implements PartialOrd can be used with the
operators. You can only apply the PartialOrd trait to types that also
PartialEq .

Deriving PartialOrd implements the partial_cmp
Option<Ordering> that will be None when the values given don’t pro

ordering. An example of a value that doesn’t produce an ordering, eve
values of that type can be compared, is the not-a-number (
Calling partial_cmp with any �oating point number and the
will return None .

When derived on structs, PartialOrd compares two instances by com
value in each �eld in the order in which the �elds appear in the struct
When derived on enums, variants of the enum declared earlier in the
are considered less than the variants listed later.

The PartialOrd trait is required, for example, for the

rand crate that generates a random value in the range speci�ed by a
high value.

The Ord trait allows you to know that for any two values of the annot
valid ordering will exist. The Ord trait implements the
Ordering rather than an Option<Ordering> because a valid ordering

possible. You can only apply the Ord trait to types that also implemen
and Eq (and Eq requires PartialEq). When derived on structs and e
behaves the same way as the derived implementation for
PartialOrd .

An example of when Ord is required is when storing values in a
structure that stores data based on the sort order of the values.

Clone and Copy for Duplicating Values

The Clone trait allows you to explicitly create a deep copy of a value,
duplication process might involve running arbitrary code and copying
the “Ways Variables and Data Interact: Clone” section in Chapter 4 for
information on Clone .

Deriving Clone implements the clone method, which when impleme
whole type, calls clone on each of the parts of the type. This means a
values in the type must also implement Clone to derive

An example of when Clone is required is when calling the
The slice doesn’t own the type instances it contains, but the vector ret
to_vec will need to own its instances, so to_vec

type stored in the slice must implement Clone .

The Copy trait allows you to duplicate a value by only copying bits sto
stack; no arbitrary code is necessary. See the “Stack-Only Data: Copy”
Chapter 4 for more information on Copy .

The Copy trait doesn’t de�ne any methods to prevent programmers f
overloading those methods and violating the assumption that no arbi
being run. That way, all programmers can assume that copying a valu
fast.

You can derive Copy on any type whose parts all implement
apply the Copy trait to types that also implement
implements Copy has a trivial implementation of
as Copy .

The Copy trait is rarely required; types that implement
available, meaning you don’t have to call clone , which makes the cod

Everything possible with Copy you can also accomplish with
might be slower or have to use clone in places.

Hash for Mapping a Value to a Value of Fixed Size

The Hash trait allows you to take an instance of a type of arbitrary siz
instance to a value of �xed size using a hash function. Deriving
hash method. The derived implementation of the

of calling hash on each of the parts of the type, meaning all �elds or v
implement Hash to derive Hash .

An example of when Hash is required is in storing keys in a
data e�ciently.

Default for Default Values

The Default trait allows you to create a default value for a type. Deriv
implements the default function. The derived implementation of the
function calls the default function on each part of the type, meaning
values in the type must also implement Default

The Default::default function is commonly used in combination wi
update syntax discussed in the “Creating Instances From Other Instan
Update Syntax” section in Chapter 5. You can customize a few �elds o
then set and use a default value for the rest of the �elds by using
..Default::default() .

The Default trait is required when you use the method
Option<T> instances, for example. If the Option<T>
unwrap_or_default will return the result of Default::default

in the Option<T> .

Appendix D: Macros

We’ve used macros like println! throughout this book but haven’t fu
what a macro is and how it works. This appendix explains macros as f

What macros are and how they di�er from functions
How to de�ne a declarative macro to do metaprogramming
How to de�ne a procedural macro to create custom

We’re covering the details of macros in an appendix because they’re s
Rust. Macros have changed and, in the near future, will change at a qu
the rest of the language and standard library since Rust 1.0, so this se
likely to become out-of-date than the rest of the book. Due to Rust’s s
guarantees, the code shown here will continue to work with future ver
may be additional capabilities or easier ways to write macros that wer
the time of this publication. Bear that in mind when you try to implem
from this appendix.

The Di�erence Between Macros and Functions

Fundamentally, macros are a way of writing code that writes other cod
known as metaprogramming. In Appendix C, we discussed the
generates an implementation of various traits for you. We’ve also used
and vec! macros throughout the book. All of these macros
code than the code you’ve written manually.

Metaprogramming is useful for reducing the amount of code you have
maintain, which is also one of the roles of functions. However, macros
additional powers that functions don’t have.

A function signature must declare the number and type of parameter
has. Macros, on the other hand, can take a variable number of param
call println!("hello") with one argument or
two arguments. Also, macros are expanded before the compiler interp
meaning of the code, so a macro can, for example, implement a trait o
A function can’t, because it gets called at runtime and a trait needs to
at compile time.

The downside to implementing a macro instead of a function is that m
are more complex than function de�nitions because you’re writing Ru
writes Rust code. Due to this indirection, macro de�nitions are genera
to read, understand, and maintain than function de�nitions.

Another di�erence between macros and functions is that macro de�n
namespaced within modules like function de�nitions are. To prevent u
name clashes when using external crates, you have to explicitly bring
the scope of your project at the same time as you bring the external c
using the #[macro_use] annotation. The following example would bri

macros de�ned in the serde crate into the scope of the current crate

If extern crate was able to bring macros into scope by default witho
annotation, you would be prevented from using two crates that happe
macros with the same name. In practice, this con�ict doesn’t occur oft
more crates you use, the more likely it is.

There is one last important di�erence between macros and functions:
de�ne or bring macros into scope before you call them in a �le, where
de�ne functions anywhere and call them anywhere.

Declarative Macros with macro_rules!
Metaprogramming

The most widely used form of macros in Rust are
sometimes referred to as macros by example, macro_rules!
macros. At their core, declarative macros allow you to write something
Rust match expression. As discussed in Chapter 6,
structures that take an expression, compare the resulting value of the
patterns, and then run the code associated with the matching pattern
compare a value to patterns that have code associated with them; in t
the value is the literal Rust source code passed to the macro, the patte
compared with the structure of that source code, and the code associ
pattern is the code that replaces the code passed to the macro. This a
during compilation.

To de�ne a macro, you use the macro_rules! construct. Let’s explore
macro_rules! by looking at how the vec! macro is de�ned. Chapter

we can use the vec! macro to create a new vector with particular valu
example, the following macro creates a new vector with three integers

We could also use the vec! macro to make a vector of two integers o
string slices. We wouldn’t be able to use a function to do the same bec
wouldn’t know the number or type of values up front.

Let’s look at a slightly simpli�ed de�nition of the

#[macro_use]
extern crate serde;

let v: Vec<u32> = vec![1, 2, 3];

Listing D-1: A simpli�ed version of the vec! macro de�nition

Note: The actual de�nition of the vec! macro in the standard libra
code to preallocate the correct amount of memory up front. That c
optimization that we don’t include here to make the example simpl

The #[macro_export] annotation indicates that this macro should be
whenever the crate in which we’re de�ning the macro is imported. Wit
annotation, even if someone depending on this crate uses the
annotation, the macro wouldn’t be brought into scope.

We then start the macro de�nition with macro_rules!
we’re de�ning without the exclamation mark. The name, in this case
by curly brackets denoting the body of the macro de�nition.

The structure in the vec! body is similar to the structure of a
Here we have one arm with the pattern ($($x:expr),*)
the block of code associated with this pattern. If the pattern matches,
block of code will be emitted. Given that this is the only pattern in this
only one valid way to match; any other will be an error. More complex
have more than one arm.

Valid pattern syntax in macro de�nitions is di�erent than the pattern
in Chapter 18 because macro patterns are matched against Rust code
rather than values. Let’s walk through what the pieces of the pattern i
mean; for the full macro pattern syntax, see the reference

First, a set of parentheses encompasses the whole pattern. Next come
$) followed by a set of parentheses, which captures values that match

within the parentheses for use in the replacement code. Within
which matches any Rust expression and gives the expression the nam

#[macro_export]
macro_rules! vec {
 ($($x:expr),*) => {
 {

let mut temp_vec = Vec::new();
 $(
 temp_vec.push($x);
)*
 temp_vec
 }
 };
}

The comma following $() indicates that a literal comma separator ch
optionally appear after the code that matches the code captured in
following the comma speci�es that the pattern matches zero or more
precedes the * .

When we call this macro with vec![1, 2, 3]; , the
with the three expressions 1 , 2 , and 3 .

Now let’s look at the pattern in the body of the code associated with th
temp_vec.push() code within the $()* part is generated for each pa
$() in the pattern, zero or more times depending on how many time

matches. The $x is replaced with each expression matched. When we
with vec![1, 2, 3]; , the code generated that replaces this macro ca
following:

We’ve de�ned a macro that can take any number of arguments of any
generate code to create a vector containing the speci�ed elements.

Given that most Rust programmers will use macros more than
discuss macro_rules! any further. To learn more about how to write
the online documentation or other resources, such as
Macros”.

Procedural Macros for Custom derive

The second form of macros is called procedural macros
functions (which are a type of procedure). Procedural macros accept s
as an input, operate on that code, and produce some Rust code as an
than matching against patterns and replacing the code with other cod
macros do. At the time of this writing, you can only de�ne procedural
your traits to be implemented on a type by specifying the trait name in
annotation.

We’ll create a crate named hello_macro that de�nes a trait named
one associated function named hello_macro . Rather than making ou
implement the HelloMacro trait for each of their types, we’ll provide a
macro so users can annotate their type with #[derive(HelloMacro

let mut temp_vec = Vec::new();
temp_vec.push(1);
temp_vec.push(2);
temp_vec.push(3);
temp_vec

implementation of the hello_macro function. The default implement
Hello, Macro! My name is TypeName! where TypeName

which this trait has been de�ned. In other words, we’ll write a crate th
another programmer to write code like Listing D-2 using our crate.

Filename: src/main.rs

Listing D-2: The code a user of our crate will be able to write when usi
procedural macro

This code will print Hello, Macro! My name is Pancakes!
step is to make a new library crate, like this:

Next, we’ll de�ne the HelloMacro trait and its associated function:

Filename: src/lib.rs

We have a trait and its function. At this point, our crate user could imp
to achieve the desired functionality, like so:

extern crate hello_macro;
#[macro_use]
extern crate hello_macro_derive;

use hello_macro::HelloMacro;

#[derive(HelloMacro)]
struct Pancakes;

fn main() {
 Pancakes::hello_macro();
}

$ cargo new hello_macro --lib

pub trait HelloMacro {
fn hello_macro();

}

However, they would need to write the implementation block for each
wanted to use with hello_macro ; we want to spare them from having
work.

Additionally, we can’t yet provide a default implementation for the
function that will print the name of the type the trait is implemented o
have re�ection capabilities, so it can’t look up the type’s name at runti
macro to generate code at compile time.

The next step is to de�ne the procedural macro. At the time of this wr
macros need to be in their own crate. Eventually, this restriction migh
convention for structuring crates and macro crates is as follows: for a
foo , a custom derive procedural macro crate is called

crate called hello_macro_derive inside our hello_macro

Our two crates are tightly related, so we create the procedural macro
directory of our hello_macro crate. If we change the trait de�nition in
we’ll have to change the implementation of the procedural macro in
hello_macro_derive as well. The two crates will need to be published

and programmers using these crates will need to add both as depend
bring them both into scope. We could instead have the
hello_macro_derive as a dependency and reexport the procedural m

the way we’ve structured the project makes it possible for programme
hello_macro even if they don’t want the derive

We need to declare the hello_macro_derive crate as a procedural m
also need functionality from the syn and quote
we need to add them as dependencies. Add the following to the

extern crate hello_macro;

use hello_macro::HelloMacro;

struct Pancakes;

impl HelloMacro for Pancakes {
fn hello_macro() {

println!("Hello, Macro! My name is Pancakes!"
 }
}

fn main() {
 Pancakes::hello_macro();
}

$ cargo new hello_macro_derive --lib

hello_macro_derive :

Filename: hello_macro_derive/Cargo.toml

To start de�ning the procedural macro, place the code in Listing D-3 in
src/lib.rs �le for the hello_macro_derive crate. Note that this code wo
until we add a de�nition for the impl_hello_macro

Filename: hello_macro_derive/src/lib.rs

Listing D-3: Code that most procedural macro crates will need to have
Rust code

Notice the way we’ve split the functions in D-3; this will be the same fo
procedural macro crate you see or create, because it makes writing a
macro more convenient. What you choose to do in the place where th
impl_hello_macro function is called will be di�erent depending on yo

macro’s purpose.

We’ve introduced three new crates: proc_macro
crate comes with Rust, so we didn’t need to add that to the dependen
Cargo.toml. The proc_macro crate allows us to convert Rust code into
containing that Rust code. The syn crate parses Rust code from a stri
structure that we can perform operations on. The

[lib]
proc-macro = true

[dependencies]
syn = "0.14.4"
quote = "0.6.3"

extern crate proc_macro;
extern crate syn;
#[macro_use]
extern crate quote;

use proc_macro::TokenStream;

#[proc_macro_derive(HelloMacro)]
pub fn hello_macro_derive(input: TokenStream) -> TokenStrea

// Construct a represntation of Rust code as a syntax tree
// that we can manipulate
let ast = syn::parse(input).unwrap();

// Build the trait implementation
 impl_hello_macro(&ast)
}

structures and turns them back into Rust code. These crates make it m
parse any sort of Rust code we might want to handle: writing a full par
code is no simple task.

The hello_macro_derive function will get called when a user of our li
#[derive(HelloMacro)] on a type. The reason is that we’ve annotate
hello_macro_derive function here with proc_macro_derive
HelloMacro , which matches our trait name; that’s the convention mo

macros follow.

This function �rst converts the input from a TokenStream
we can then interpret and perform operations on. This is where
The parse function in syn takes a TokenStream
representing the parsed Rust code. The following code shows the rele
the DeriveInput struct we get from parsing the string

The �elds of this struct show that the Rust code we’ve parsed is a unit
ident (identi�er, meaning the name) of Pancakes

struct for describing all sorts of Rust code; check the
DeriveInput for more information.

At this point, we haven’t de�ned the impl_hello_macro
build the new Rust code we want to include. But before we do, note th
also a TokenStream which is added to the code that our crate users w
they compile their crate, they’ll get extra functionality that we provide

You might have noticed that we’re calling unwrap
syn::parse function fails here. Panicking on errors is necessary in pro

code because proc_macro_derive functions must return
Result to conform to the procedural macro API. We’ve chosen to sim

example by using unwrap ; in production code, you should provide mo
messages about what went wrong by using panic!

Now that we have the code to turn the annotated Rust code from a

DeriveInput {
// --snip--

 ident: Ident(
"Pancakes"

),
 body: Struct(
 Unit
)
}

a DeriveInput instance, let’s generate the code that implements the
trait on the annotated type:

Filename: hello_macro_derive/src/lib.rs

We get an Ident struct instance containing the name (identi�er) of th
type using ast.ident . The code in Listing D-2 speci�es that the
Ident("Pancakes") .

The quote! macro lets us write the Rust code that we want to return,
result of its execution is not what is expected by the compiler and nee
converted to a TokenStream by calling the into
intermediate representation and returns a value of the required type.

This macro also provides some very cool templating mechanics; we ca
and quote! will replace it with the value in the variable named
do some repetition similar to the way regular macros work. Check out
crate’s docs for a thorough introduction.

We want our procedural macro to generate an implementation of our
trait for the type the user annotated, which we can get by using
implementation has one function, hello_macro
functionality we want to provide: printing Hello, Macro! My name
name of the annotated type.

The stringify! macro used here is built into Rust. It takes a Rust exp
1 + 2 , and at compile time turns the expression into a string literal, s

. This is di�erent than format! or println! , which evaluate the expr
turn the result into a String . There is a possibility that the
expression to print literally, so we use stringify!
allocation by converting #name to a string literal at compile time.

At this point, cargo build should complete successfully in both

fn impl_hello_macro(ast: &syn::DeriveInput) -> TokenStream
let name = &ast.ident;
let gen = quote! {

impl HelloMacro for #name {
fn hello_macro() {

println!("Hello, Macro! My name is {}"
(#name));
 }
 }
 };
 gen.into()
}

hello_macro_derive . Let’s hook up these crates to the code in Listing
procedural macro in action! Create a new binary project in your
using cargo new pancakes . We need to add hello_macro
as dependencies in the pancakes crate’s Cargo.toml
of hello_macro and hello_macro_derive to https://crates.io/
dependencies; if not, you can specify them as path

Put the code from Listing D-2 into src/main.rs, and run
Hello, Macro! My name is Pancakes! The implementation of the

from the procedural macro was included without the
implement it; the #[derive(HelloMacro)] added the trait implement

The Future of Macros

In the future, Rust will expand declarative and procedural macros. Rus
better declarative macro system with the macro
procedural macros for more powerful tasks than just
under development at the time of this publication; please consult the
documentation for the latest information.

Appendix E: Translations of the Book

For resources in languages other than English. Most are still in progre
Translations label to help or let us know about a new translation!

Português (BR)
Português (PT)
Tiếng việt
简体中文, alternate
Українська
Español
Italiano
Русский
한국어

日本語
Français

[dependencies]
hello_macro = { path = "../hello_macro" }
hello_macro_derive = { path = "../hello_macro/hello_macro_d

Polski
עברית
Cebuano
Tagalog

Appendix F - How Rust is Made and
“Nightly Rust”
This appendix is about how Rust is made and how that a�ects you as
developer.

Stability Without Stagnation

As a language, Rust cares a lot about the stability of your code. We wa
rock-solid foundation you can build on, and if things were constantly c
would be impossible. At the same time, if we can’t experiment with ne
may not �nd out important �aws until after their release, when we can
change things.

Our solution to this problem is what we call “stability without stagnatio
guiding principle is this: you should never have to fear upgrading to a
stable Rust. Each upgrade should be painless, but should also bring yo
fewer bugs, and faster compile times.

Choo, Choo! Release Channels and Riding the Trains

Rust development operates on a train schedule. That is, all developme
the master branch of the Rust repository. Releases follow a software
model, which has been used by Cisco IOS and other software projects
three release channels for Rust:

Nightly
Beta
Stable

Most Rust developers primarily use the stable channel, but those who
experimental new features may use nightly or beta.

Here’s an example of how the development and release process work
that the Rust team is working on the release of Rust 1.5. That release h

December of 2015, but it will provide us with realistic version number
is added to Rust: a new commit lands on the master
nightly version of Rust is produced. Every day is a release day, and the
created by our release infrastructure automatically. So as time passes
look like this, once a night:

Every six weeks, it’s time to prepare a new release! The
repository branches o� from the master branch used by nightly. Now
releases:

Most Rust users do not use beta releases actively, but test against bet
system to help Rust discover possible regressions. In the meantime, th
nightly release every night:

Let’s say a regression is found. Good thing we had some time to test t
before the regression snuck into a stable release! The �x is applied to
nightly is �xed, and then the �x is backported to the
of beta is produced:

Six weeks after the �rst beta was created, it’s time for a stable release
branch is produced from the beta branch:

Hooray! Rust 1.5 is done! However, we’ve forgotten one thing: because
have gone by, we also need a new beta of the next
stable branches o� of beta , the next version of

nightly: * - - * - - *

nightly: * - - * - - *
 |
beta: *

nightly: * - - * - - * - - * - - *
 |
beta: *

nightly: * - - * - - * - - * - - * - - *
 |
beta: * - - - - - - - - *

nightly: * - - * - - * - - * - - * - - * - * - *
 |
beta: * - - - - - - - - *
 |
stable: *

again:

This is called the “train model” because every six weeks, a release “lea
but still has to take a journey through the beta channel before it arrive
release.

Rust releases every six weeks, like clockwork. If you know the date of o
release, you can know the date of the next one: it’s six weeks later. A n
having releases scheduled every six weeks is that the next train is com
feature happens to miss a particular release, there’s no need to worry
happening in a short time! This helps reduce pressure to sneak possib
features in close to the release deadline.

Thanks to this process, you can always check out the next build of Rus
yourself that it’s easy to upgrade to: if a beta release doesn’t work as e
can report it to the team and get it �xed before the next stable release
Breakage in a beta release is relatively rare, but
bugs do exist.

Unstable Features

There’s one more catch with this release model: unstable features. Ru
technique called “feature �ags” to determine what features are enable
release. If a new feature is under active development, it lands on
therefore, in nightly, but behind a feature �ag. If you, as a user, wish to
work-in-progress feature, you can, but you must be using a nightly rel
annotate your source code with the appropriate �ag to opt in.

If you’re using a beta or stable release of Rust, you can’t use any featu
the key that allows us to get practical use with new features before we
stable forever. Those who wish to opt into the bleeding edge can do s
who want a rock-solid experience can stick with stable and know that
break. Stability without stagnation.

This book only contains information about stable features, as in-progr
still changing, and surely they’ll be di�erent between when this book w
when they get enabled in stable builds. You can �nd documentation fo
features online.

nightly: * - - * - - * - - * - - * - - * - * - *
 | |
beta: * - - - - - - - - * *
 |
stable: *

Rustup and the Role of Rust Nightly

Rustup makes it easy to change between di�erent release channels of
global or per-project basis. By default, you’ll have stable Rust installed
nightly, for example:

You can see all of the toolchains (releases of Rust and associated comp
have installed with rustup as well. Here’s an example on one of your
Windows computer:

As you can see, the stable toolchain is the default. Most Rust users use
the time. You might want to use stable most of the time, but use night
project, because you care about a cutting-edge feature. To do so, you
rustup override in that project’s directory to set the nightly toolchai
rustup should use when you’re in that directory:

Now, every time you call rustc or cargo inside of
will make sure that you are using nightly Rust, rather than your defaul
This comes in handy when you have a lot of Rust projects!

The RFC Process and Teams

So how do you learn about these new features? Rust’s development m
Request For Comments (RFC) process. If you’d like an improvement in Ru
write up a proposal, called an RFC.

Anyone can write RFCs to improve Rust, and the proposals are review
discussed by the Rust team, which is comprised of many topic subteam
list of the teams on Rust’s website, which includes teams for each area
language design, compiler implementation, infrastructure, documenta
The appropriate team reads the proposal and the comments, writes s
of their own, and eventually, there’s consensus to accept or reject the

If the feature is accepted, an issue is opened on the Rust repository, a

$ rustup install nightly

> rustup toolchain list
stable-x86_64-pc-windows-msvc (default)
beta-x86_64-pc-windows-msvc
nightly-x86_64-pc-windows-msvc

$ cd ~/projects/needs-nightly
$ rustup override set nightly

can implement it. The person who implements it very well may not be
proposed the feature in the �rst place! When the implementation is re
the master branch behind a feature gate, as we discussed in the “Uns
section.

After some time, once Rust developers who use nightly releases have
out the new feature, team members will discuss the feature, how it’s w
nightly, and decide if it should make it into stable Rust or not. If the de
move forward, the feature gate is removed, and the feature is now co
It rides the trains into a new stable release of Rust.

G - Other useful tools
In this appendix, we'll talk about some additional tools that are provid
project, and are useful when developing Rust code.

Automatic formatting with rustfmt

rustfmt is a tool that can re-format your code according to communi
projects use rustfmt to prevent arguments about which style to use
Rust: just do what the tool does!

rustfmt is not at 1.0 yet, but a preview is available for you to use in th
Please give it a try and let us know how it goes!

To install rustfmt :

This will give you both rustfmt and cargo-fmt
rustc and cargo . To take any Cargo project and format it:

IDE integration with the Rust Language Server

To help IDE integration, the Rust project distributes
as in http://langserver.org/. This can be used by di�erent clients, such
plugin for Visual Studio: Code.

$ rustup component add rustfmt-preview

$ cargo fmt

The rls is not at 1.0 yet, but a preview is available for you to use in th
Please give it a try and let us know how it goes!

To install the rls :

Then, install the language server support in your particular IDE, and it

$ rustup component add rls-preview

