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T H E G E O M E T RY O F R A N K D E C O M P O SIT IO N S O F M AT R IX
M U LT IP LIC AT IO N I: 2× 2 M AT R IC E S

LUCA CHIANT INI, CHRIST IAN IKENMEYER, J .M. LANDSBERG, AND GIORGIO OT TAVIANI

Abst r a c t . T his is t he first in a series of papers on rank decomposit ions of the mat rix mult i-
plicat ion t ensor. In this paper we: est ablish general fact s about rank decomposit ions of t ensors,
describe potent ial ways to search for new mat rix mult iplicat ion decomposit ions, give a geomet -
ric proof of the theorem of [3] est ablishing the symmet ry group of St rassen’s algorit hm, and
present two part icularly nice subfamilies in the St rassen family of decomposit ions.

1. In t r o d uc t io n

This is the first in a planned series of papers on the geometry of rank decomposit ions of
the matrix mult iplicat ion tensor M n ∈ Cn

2⊗Cn2⊗Cn2 . Our goals for the series are to deter-
mine possible symmetry groups for potent ially opt imal (or near opt imal) decomposit ions of the
matrix mult iplicat ion tensor and eventually to derive new decomposit ions based on symmetry
assumpt ions. In this paper we study Strassen’s rank 7 decomposit ion of M 2 , which we denote
Str . In the next paper [1] new decomposit ions of M 3 are presented and their symmetry groups
are described. Although this project began before the papers [3, 4] appeared, we have benefited
great ly from them in our study.
We begin in §2 by reviewing Strassen’s algorithm as a tensor decomposit ion. Then in §3 we

explain basic facts about rank decomposit ions of tensors with symmetry, in part icular, that the
decomposit ions come in families, and each member of the family has thesameabstract symmetry
group. While these abstract groups are all the same, for pract ical purposes (e.g., looking for
new decomposit ions), some realizat ions are more useful than others. We review the symmetries
of the matrix mult iplicat ion tensor in §4. After these generalit ies, in §5 we revisit the Strassen
family and display a part icularly convenient subfamily. We examine the Strassen family from
a project ive perspect ive in §6, which renders much of its symmetry t ransparent . Generalit ies
on the project ive perspect ive enable a very short proof of the upper bound in Burichenko’s
determinat ion of the symmetries of Strassen’s decomposit ion [3]. The project ive perspect ive
and emphasis on symmetry also enable two geometric proofs that Strassen’s expression actually
is a decomposit ion of M 2 , which we explain in §7.

N ot a t ion an d convent ion s. A,B ,C,U,V,W are vector spaces, GL(A) denotes the group of
invert ible linear maps A → A, and PGL(A) = GL(A)/ C∗ the group of project ive t ransforma-
t ions of project ive space PA. If a ∈ A, [a] denotes the corresponding point in project ive space.
S d denotes the permutat ion group on d elements. Irreducible representat ions of S d are indexed
by part it ions. We let [π] denote the irreducible S d module associated to the part it ion π.

Key words and phrases. mat rix mult iplicat ion, t ensor rank, t ensor decomposit ion, symmet ries , MSC 68Q17,
14L30, 15A69.
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A ckn owled gem ent s. This project began at a November 2013 “Research in pairs” program
at Mathemat isches Forschungsinst itut Oberwolfach. The authors thank the inst itute for its
hospitality and a great work environment . CI was at Texas A&M University during most of the
t ime this research was conducted.

2. St r a ssen’s a l g o r it hm

In 1968, V. Strassen set out to prove thestandard algorithm for mult iplying n × n matriceswas
opt imal in the sense that no algorithm using fewer mult iplicat ions exists. Since he ant icipated
this would be difficult to prove, he tried to show it just for two by two matrices. His spectacular
failure opened up a whole new area of research: Strassen’s algorithm for mult iplying 2 × 2
matrices a, b using seven scalar mult iplicat ions [8] is as follows: Set

I = (a1
1 + a2

2)(b1
1 + b2

2),
I I = (a2

1 + a2
2)b1

1,
I I I = a1

1(b1
2 − b2

2)
I V = a2

2(− b1
1 + b2

1)
V = (a1

1 + a1
2)b2

2

VI = (− a1
1 + a2

1)(b1
1 + b1

2),
V I I = (a1

2 − a2
2)(b2

1 + b2
2).

Set
c1

1 = I + I V − V + V I I ,
c2

1 = I I + I V,
c1

2 = I I I + V,
c2

2 = I + I I I − I I + V I .
Then c = ab.
Tobet ter seesymmetry, view matrix mult iplicat ion asa trilinear map (X ,Y, Z ) → t race(X YZ )

and in tensor form. To view it more invariant ly, let U, V,W = C2, let A = U∗⊗V , B = V ∗⊗W,
C = W ∗⊗U and consider M 2 ∈ (V⊗U∗)⊗(W⊗V ∗)⊗(U⊗W ∗), where M 2 = IdU ⊗IdV ⊗IdW
with the factors re-ordered (see, e.g., [7, §2.5.2]). Write

(1) u1 =
(
1
0

)
, u2 =

(
0
1

)
, u1 = (1, 0) u2 = (0, 1)

and set vj = wj = uj and vj = wj = uj . Then Strassen’s algorithm becomes the following
tensor decomposit ion

M 2 = (v1u1 + v2u2)⊗(w1v1 + w2v2)⊗(u1w1 + u2w2)(2)
[v1u1⊗w2(v1 − v2)⊗(u1 + u2)w2(3)
+ (v1 + v2)u2⊗w1v1⊗u2(w1 − w2)
+ v2(u1 − u2)⊗(w1 + w2)v2⊗u1w1]
+ [v2u2⊗w1(v2 − v1)⊗(u1 + u2)w1(4)
+ (v1 + v2)u1⊗w2v2⊗u1(w2 − w1)
+ v1(u2 − u1)⊗(w1 + w2)v1⊗u2w2].
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Note that this is the sum of seven rank one tensors, while the standard algorithm in tensor
format has eight rank one summands.
Int roduce the notat ion

vi uj⊗wkul⊗upwq Z3 := vi uj⊗wkul⊗upwq + vkul⊗wpuq⊗uiwj + vpuq⊗wiuj⊗ukwl .
Then the decomposit ion becomes

M 2 = (v1u1 + v2u2)⊗(w1v1 + w2v2)⊗(u1w1 + u2w2)(5)
+ v1u1⊗w2(v1 − v2)⊗(u1 + u2)w2

Z3(6)
− v2u2⊗w1(v1 − v2)⊗(u1 + u2)w1

Z3 .(7)
From this presentat ion we immediately see there is a cyclic Z3 symmetry by cyclically per-

mut ing the factors A,B ,C. The Z3 act ing on the rank one elements in the decomposit ion has
three orbits If we exchange u1 ↔ u2, u1 ↔ u2, v1 ↔ v2, etc., the decomposit ion is also preserved
by this Z2, with orbits (5) and the exchange of the triples, call this an internal Z2. These
symmetries are only part of the picture.

3. Symmet r ie s a nd fa mil ie s

Let T ∈ (CN )⊗k . We say T has rank one if T = a1⊗· · ·⊗ ak for some aj ∈ CN . Define the
symmetry group of T, GT ⊂ (GL× kN ) ⋉ S k to be the subgroup preserving T, where S k acts by
permut ing the factors.
For a rank decomposit ion T =

∑ r
j = 1 t j with each tj of tensor rank one, define the set S :=

{ t1, . . . , t r } , which we also call the decomposit ion, and the symmetry group of the decomposition
ΓS := { g ∈ GT | g · S = S} . Let Γ′S = ΓS ∩ (GL(A) × GL(B ) × GL(C)). Let Str denote
Strassen’s decomposit ion of M 2 .
I f g ∈ GT , then g · S := { gt1, . . . , gtr } is also a rank decomposit ion of T. Moreover:

P r op osit ion 3.1. For g ∈ GT , Γg·S = gΓSg− 1.

Proof. Let h ∈ ΓS, then ghg− 1(gt j ) = g(ht j ) ∈ g · S so Γg·S ⊆ gΓSt g− 1, but the construct ion is
symmetric in Γg·S and ΓS.

Similarly for a polynomial P ∈ SdCN and a Waring decomposit ion P = ℓd1 + · · · + ℓdr for some
ℓj ∈ CN , and g ∈ GP ⊂ GLN , the same result holds where S = { ℓ1, . . . , ℓr } .
In summary, algorithmscomein dim(GT )-dimensional families, and each member of thefamily

has the same abstract symmetry group.
We recall the following theorem of de Groote:

T h eor em 3.2. [5] The set of rank seven decomposit ions of M 2 is the orbit GM 2 · Str .

4. Symmet r ie s o f M n

We review the symmetry group of the matrix mult iplicat ion tensor
GM n := { g ∈ GL× 3

n2 × S 3 | g · M n = M n } .

Onemay also consider matrix mult iplicat ion as a polynomial that happens to bemult i-linear,
M n ∈ S3(A ⊕B ⊕C), and consider

G̃M n := { g ∈ GL(A ⊕B ⊕C) | g · M n = M n } .

Note that (GL(A) × GL(B ) × GL(C)) × S 3 ⊂ GL(A ⊕B ⊕C), so GM n ⊆ G̃M n .
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I t is clear that PGLn × PGLn × PGLn × Z3 ⊂ GM n , the Z3 because trace(X YZ ) =
trace(YZX ), and the PGLn ’s appear instead of GLn because if we rescale by λ IdU , then
U∗ scales by 1

λ and there is no effect on the decomposit ion. Moreover since trace(X YZ ) =
trace(YTX TZT ), we have PGL× 3

n ⋉ D3 ⊆ GM n , where the dihedral group D3 is isomorphic
to S 3, but we denote it by D3 to avoid confusion with a second copy of S 3 that will appear.
We emphasize that this Z2 is not contained in either the S 3 permut ing the factors or the
PGL(A)× PGL(B )× PGL(C) act ing on them. In G̃M n wecan also rescale the three factors by
non-zero complex numbersλ, µ,ν such that λµν = 1, so wehave (C∗)× 2× PGL× 3

n ⋉D3 ⊆ G̃M n ,
We will be primarily interested in GM n . The first equality in the following proposit ion

appeared in [5, Thms. 3.3,3.4] and [4, Prop. 4.7] with ad-hoc proofs. The second assert ion
appeared in [6]. We reproduce the proof from [6], as it is a special case of the result there.
P r op osit ion 4.1. GM n = PGL× 3

n ⋉ D3 and G̃M n = (C∗)× 2 × PGL× 3
n ⋉ D3.

Proof. It will be sufficient to show the second equality because the (C∗)× 2 acts t rivially on
A⊗B⊗C. For polynomials, we use the method of [2, Prop. 2.2] adapted to reducible repre-
sentat ions. A straight-forward Lie algebra calculat ion shows the connected component of the
ident ity of G̃M n is G̃0

M n
= (C∗)× 2 × PGL× 3

n . As was observed in [2] the full stabilizer group
must be contained in its normalizer N (G̃0

M n
). But the normalizer is the automorphism group

of the marked Dynkin diagram for A ⊕B ⊕C, which in our case is

1

1

1

1

1

1

Thereare three triplesof marked diagrams. Call each column consist ing of 3 marked diagrams
a group. The automorphism group of the picture is D3 = Z2 ⋉ Z3, where the Z2 may be seen as
flipping each diagram, exchanging the first and third diagram in each group, and exchanging the
first and second group. The Z3 comes from cyclically permut ing each group and the diagrams
within each group.

Regarding the symmetries discussed in §2, theZ3 is in theS 3 in PGL× 3
2 × S 3 and the internal

Z2 is in Γ′Str ⊂ PGL× 3
2 .

Thus if S is (theset of points of) a rank decomposit ion of M n , then ΓS ⊂ [(GL(U)× GL(V )×
GL(W)) ⋉ Z3]⋉ Z2.
We call a Z3 ⊂ ΓS a standard cyclic symmetry if it corresponds to (Id, Id, Id) ·Z3 ⊂ (GL(U) ×

GL(V ) × GL(W)) ⋉ Z3.
We call a Z2 ⊂ ΓS a convenient transpose symmetry if it corresponds to the symmetry of M n

given by a⊗b⊗c→ aT⊗cT⊗bT . The convenient t ranspose symmetry lies in (GL(A) × GL(B ) ×
GL(C)) × S 2 ⊂ (GL(A) × GL(B ) × GL(C)) × S 3, where the component of the transpose in S 2
switches the last two factors and the component in GL(A) × GL(B ) × GL(C) sends each matrix
to its t ranspose.

Remark 4.2. SinceM n ∈ (U∗⊗U)⊗3 one could consider the larger symmetry group considering
M n ∈ U⊗3⊗U∗⊗3 as is done in [3].
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5. T he St r a ssen fa mil y

Since PGL× 3
2 ⊂ GM 2 , we can replace u1, u2 by any basis of U in Strassen’s decomposit ion,

and similarly for v1, v2 and w1, w2. In part icular, we need not have u1 = v1 etc... When we
do that , the symmetries become conjugated by our change of basis matrices. If we only use
elements of the diagonal PGL 2 in PGL× 3

2 , the Z3-symmetry remains standard. More subt ly,
the Z3-symmetry remains the standard cyclic permutat ion of factors if we apply elements of Z3
in any of the PGL 2 ’s, i.e., set t ing ω = e2π i3 , we can apply any of

ρ(ω) =
(
0 − 1
1 − 1

)
and ρ(ω2) =

(
− 1 1
− 1 0

)

to U,V or W.
For example, if we apply the change of basis matrices

gU =
(
1 − 1
0 1

)
∈ GL(U), gV =

(
− 1 0
− 1 1

)
∈ GL(V ), gW =

(
0 1
1 0

)
∈ GL(W),

and take the imagevectorsasour new basisvectors, then set t ing u3 = − (u1+ u2) and u3 = u1− u2

and similarly for the v’s and w’s, the decomposit ion becomes:
M 2 = − (v1u2 + v2u3)⊗(w1v2 + w2v3)⊗(u1w2 + u2w3)(8)

+ v1u1⊗w1v1⊗u1w1(9)
+ v3u2⊗w3v2⊗u3w2(10)
+ v2u3⊗w2v3⊗u2w3(11)
− v1u2⊗w2v1⊗u3w3

Z3 .(12)

Remark 5.1. The matrices in (12) are all nilpotent , and none of the other matrices appearing
in this decomposit ion are.

Not ice that for the first term v1u2 + v2u3 = v2u1 + v3u1 = v3u2 + v2u1. Here there is a
standard Z3 ⊂ S 3. There are four fixed points for this standard Z3: (8),(9)(10),(11). (In any
element of the Strassen family there will be some Z3 with four fixed points, but the Z3 need
not be standard.) There is also a standard Z3 ⊂ PGL× 3

2 embedded diagonally, that sends
u1 → u2 → u3, and act ing by the inverse matrix on the dual basis, and similarly for the v’s and
w’s. Under this act ion (8) is fixed and we have the cyclic permutat ion (9)→(11)→(10).
If we take the standard vectors of (1) in each factor we get

M 2 =
(
0 − 1
1 − 1

) ⊗3
+
(
1 0
0 0

) ⊗3
+
(
0 1
0 1

) ⊗3
+
(
0 0
− 1 1

) ⊗3
+

(
0 1
0 0

)
⊗
(
0 0
1 0

)
⊗
(
1 − 1
1 − 1

)
Z3

If we want to see the Z3 ⊂ PGL× 3
2 more transparent ly, it is bet ter to diagonalize the Z3

act ion so the first matrix becomes
a =

(
ω 0
0 ω2

)
.

whereω := exp( − 2π i
3 ). Then for ι := i /

√
3, σ := exp( 2π i

12 )/
√
3 we get

M 2 = a⊗3 + b⊗3 + ( ̺ (b))⊗3 + ( ̺ 2(b))⊗3 + c⊗ ̺ (c) ⊗ ̺ 2(c) Z3 ,
where

b :=
(
σ ῑ
ι σ̄

)
, c :=

(
ι ι
ῑ ῑ

)
, ̺ : C2× 2 → C2× 2, ̺ (X ) = aX a− 1.

Note that a + b+ c = 0.
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6. P r o j ec t ive per spec t ive

Although theabove descript ion of theStrassen family of decomposit ions for M 2 is sat isfying,
it becomes even more transparent with a project ive perspect ive.

6.1. M 2 viewed p r o ject ively . Recall that PGL 2 acts simply t ransit ively on the set of t riples
of dist inct points of P1. So to fix a decomposit ion in the family, we select a t riple of points in
each space. We focus on PU. Call the points [u1], [u2 ], [u3]. Then these determine three points
in PU∗, [u1⊥ ], [u2⊥ ], [u3⊥ ]. We choose representat ives u1, u2, u3 sat isfying u1 + u2 + u3 = 0. We
could have taken any linear relat ion, it just would int roduce coefficients in the decomposit ion.
We take the most symmetric relat ion to keep all three points on an equal foot ing. Similarly,
we fix the scales on the uj ⊥ by requiring uj ⊥ (uj − 1) = 1 and uj ⊥ (uj + 1) = − 1, where indices are
considered mod Z3, so u3+ 1 = u1 and u1− 1 = u3.
In comparison with what we had before, let t ing the old indices be hat ted, we have û1 = u1,

û2 = u2, û3 = − u3 and û1 = u2⊥ , û2 = − u1⊥ , and û3 = − u3⊥ . The effect is to make the
symmetries of the decomposit ion more transparent . Our ident ificat ions of the ordered triples
{ u1, u2, u3} and { v1, v2, v3} exact ly determine a linear isomorphism a0 : U → V , and similarly
for the other pairs of vector spaces. Note that a0 = vj⊗uj + 1⊥ + vj + 1⊗uj + 2⊥ for any j = 1, 2, 3.
Then

M 2 = a0⊗b0⊗c0(13)
+ (v2⊗u1⊥ )⊗(w1⊗v3⊥ )⊗(u3⊗w2⊥ ) Z3

+ (v3⊗u1⊥ )⊗(w1⊗v2⊥ )⊗(u2⊗w3⊥ ) Z3 .

With this presentat ion, the S 3 ⊂ PGL 2 ⊂ PGL× 3
2 act ing by permut ing the indices transpar-

ent ly preserves the decomposit ion, with two orbits, the fixed point a0⊗b0⊗c0 and the orbit of
(v2⊗u1⊥ )⊗(w1⊗v3⊥ )⊗(u3⊗w2⊥ ).

Remark 6.1. Note that here there are no nilpotent matrices appearing.

Remark 6.2. The geometric picture of the decomposit ion of M 2 can be rephrased as follows.
Consider the space of linear isomorphisms U → V (mod scalar mult iplicat ion) as the project ive
space P3 of 2× 2 matrices, in which we fix coordinates, coming from the choice of basis for U,V .
The choice of basis also determines an ident ificat ion between U and V . Then a0 represents in
P3 a point of rank 2, which can be taken as the ident ity in the choice of coordinates. The other
6 points Qi = ui ⊗ uj ⊥ appearing in the first factor of the decomposit ion can be determined
as follows. The points Pi = ui ⊗ui⊥ (in the ident ificat ion) represent the choice of 3 points in
the conic obtained by cut t ing with a plane (e.g. the plane of t raceless matrices) the quadric
q = Seg(P1 × P1) of matrices of rank 1. Through each Pi one finds lines of the two rulings of q,
call then L i ,M i . Then the six points Qi are given by:

Q1 = L 1 ∩M 2, Q2 = L 2 ∩M 3, Q3 = L 3 ∩M 1

Q4 = M 1 ∩ L 2, Q5 = M 2 ∩ L 3, Q6 = M 3 ∩ L 1.
An analogue of the construct ion determines the seven points in the other two factors of the
tensor product , so that the 7 final summands can be determined combinatorially and the Z2, Z3
symmetries can be easily recognized.
Thegeometric construct ion can begeneralized to higher dimensional spaces, so it could insight

for extensions to larger matrix mult iplicat ion tensors. Thedifficult part is to determine how one
should combine the points constructed in each factor of the tensor product , in order to produce
a decomposit ion of M n .
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When we view (8) project ively, we get

M 2 = (v1u1⊥ + v2u3⊥ )⊗(w1v1⊥ + w2v3⊥ )⊗(u1w1⊥ + u2w3⊥ )(14)
+ v1u2⊥⊗w1v2⊥⊗u1w2⊥(15)
+ v3u1⊥⊗w3v1⊥⊗u3w1⊥(16)
+ v2u3⊥⊗w2v3⊥⊗u2w3⊥(17)
v1u1⊥⊗w2v2⊥⊗u3w3⊥

Z3 .(18)

With this presentat ion, S 3 ⊂ Γ′S is again t ransparent .

6.2. Sym m et r ies of ΓStr . Let M n =
∑ r

j = 1 t j be a rank decomposit ion for M n and write
t j = aj⊗bj⊗cj . Let r j = (rA j , rB j , rC j ) := (rank(aj ), rank(bj ), rank(cj )), and let r̃ j denote the
unordered triple. The following proposit ion is clear:
P r op osit ion 6.3. Let S be a rank decomposit ion of M n . Part it ion S by un-ordered rank
triples into disjoint subsets: S := {S1 1 1, S1 1 2, . . . , Sn n n} . Then Γ′S preserves each Ss t u.
We can say more about rank one elements:
If a ∈ U∗⊗V and rank(a) = 1, then there are unique points [µ] ∈ PU∗ and [v] ∈ PV such that

[a] = [µ⊗v].
Now given a decomposit ion S of M n , define SU∗ ⊂ PU∗ and SU ⊂ PU to correspond to the

elements appearing in S1 1 1. Then Γ′S preserves SU and SU∗ .
In the case of Strassen’s decomposit ion StrU is a configurat ion of three points in P1, so a

priori we must have Γ′Str ∩ PGL(U) ⊂ S 3. I f we insist on the standard Z3-symmetry (i.e.,
rest rict to the subfamily of decomposit ions where there is a standard cyclic symmetry), there
is just one PGL 2 and we have Γ′Str ⊆ S 3. Recall that this is no loss of generality as the full
symmetry group is the same for all decomposit ions in the family. We conclude ΓStr ⊆ S 3 × D3.
We have already seen S 3 × Z3 ⊂ ΓStr , Burichenko [3] shows that in addit ion there is a non-
convenient Z2 obtained by taking the convenient Z2 (which sends the decomposit ion to another

decomposit ion in the family) and then conjugat ing by
(
0 − 1
1 0

)
⊂ PGL 2 ⊂ PGL× 3

2 which sends

the decomposit ion back to Str . We recover (with a new proof of the upper bound) Burichenko’s
theorem:
T h eor em 6.4. [3] The symmetry group of Strassen’s decomposit ion of M 2 is S 3 × D3 ⊂
PGL× 3

2 × D3 = GM 2 .

7. How t o pr ove St r a ssen’s d ec o mpo sit io n is a c t ua l l y mat r ix mul t ipl ic a t io n

Thegroup ΓStr actson (U∗⊗U)⊗3 (in different ways, dependingon thechoiceof decomposit ion
in the family). Say we did not know Str but did know its symmetry group. Then we could
look for it inside the space of ΓStr invariant tensors. In future work we plan to take candidate
symmetry groups for matrix mult iplicat ion decomposit ions and look for decomposit ions with
elements from these subspaces. In this paper we simply illust rate the idea by going in the other
direct ion: furnishing a proof that Str is a decomposit ion of M 2 , by using the invariants to
reduce the computat ion to a simple verificat ion. We accomplish this in §7.2 below. We first
give yet another proof that Strassen’s decomposit ion ismatrix mult iplicat ion using the fact that
M 2 is characterized by its symmetries.
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7.1. P r oof t h a t St r assen ’s a lgor it h m wor ks via ch ar act er iza t ion by sym m et r ies. Here
is a proof that illust rates another potent ially useful property of M n : it is characterized by its
symmetry group [6] Any T ∈ (U∗⊗V)⊗(V ∗⊗W)⊗(W ∗⊗U) that is invariant under PGL(U) ×
PGL(V ) × PGL(W)⋉D3 is up to scale to M n . Any T ∈ (U∗⊗V)⊗(V ∗⊗W)⊗(W ∗⊗U) that is
invariant under a group isomorphic to PGL(U)× PGL(V )× PGL(W)⋉D3 is GL(A)× GL(B )×
GL(C) × S 3-equivalent up to scale to M n .

Remark 7.1. M n is also characterized as a polynomial by its symmetry group G̃M n , and any
T ∈ (U∗⊗V)⊗(V ∗⊗W)⊗(W ∗⊗U) that is invariant under PGL(U) × PGL(V ) × PGL(W) is up
to scale to M n . However, it is not characterized up to GL(A) × GL(B ) × GL(C)-equivalence
by G′

M n
in the strong sense of up to isomorphism because (X ,Y, Z ) → t race(YX Z ) has an

isomorphic symmetry group but is not GL(A) × GL(B ) × GL(C)-equivalent .

By the above discussion, we only need to check the right hand side of (13) is invariant under
PGL(U) × PGL(V ) × PGL(W) and to check its scale. But by symmetry, it is sufficient to
check it is invariant under PGL(U). For this it is sufficient to check it is annihilated by sl(U),
and again by symmetry, it is sufficient to check it is annihilated by u1⊗u1⊥ , which is a simple
calculat ion.

7.2. Sp aces of invar iant t en sor s. As an S 3-moduleA = U∗⊗V = [21]⊗[21] = [3]⊕[21]⊕[13 ].
In what follows we use the decomposit ions:

S2[21] = [3]⊕ [21]
Λ2[21] = [13]
S3[21] = [3]⊕ [21]⊕ [13].

Thespaceof standard cyclic Z3-invariant tensors in A⊗3 = S3A⊕S21A⊕2⊕Λ3A isS3A⊕Λ3A.
Inside the space of Z3-invariant vectors wewant to find instances of the trivial S 3-module [3] in
S3([3]⊕ [2, 1]⊕ [13]) ⊕Λ3([3]⊕ [2, 1]⊕ [13]). We have

S3([3]⊕ [2, 1]⊕ [13]) = S3[3]⊕S2[3]⊗[2, 1]⊕S2[3]⊗[13]⊕ [3]⊗S2[2, 1]⊕ [3]⊗[21]⊗[13]
⊕ [3]⊗S2[13]⊗S3[21]⊕S2[21]⊗[13]⊕ [21]⊗S2[13]⊕S3[13]

and four factors contain (or are) a t rivial representat ion: S3[3], [3]⊗S2[2, 1], [3]⊗S2[13], S3[21]
Similarly

Λ3([3]⊕ [21]⊕ [13]) = Λ2[21]⊗[3]⊕Λ2[21]⊗[13 ]⊕ [3]⊗[21]⊗[13]
of which Λ2[21]⊗[13] is the unique trivial submodule.
In summary:

P r op osit ion 7.2. The space of S 3 × Z3 invariants in (U∗⊗U)⊗3 when dimU = 2 is five dimen-
sional.
By a further direct calculat ion we obtain:

P r op osit ion 7.3. The space of S 3 × D3 invariants in (U∗⊗U)⊗3 when dimU = 2 is four
dimensional.
So if we knew there were an S 3 × D3 invariant decomposit ion of M 2 , it would be a simple

calculat ion to find it as a linear combinat ion of four basis vectors of the S 3 × D3-invariant
tensors. In future work we plan to assume similar invariance for larger matrix mult iplicat ion
tensors to shrink the search space to manageable size.



GEOMET RY AND ST RASSEN’S ALGORIT HM 9

R ef e r enc es
1. Grey Ballard, Christ ian Ikenmeyer, J .M. Landsberg, and Nick Ryder, T he geometry of rank decompositions of

matrix multiplication ii: 3x3 matrices, preprint .
2. H. Bermudez, S. Garibaldi, and V. Larsen, Linear preservers and representations with a 1-dimensional r ing of

invariants, Trans. Amer. Math. Soc. 366 (2014), no. 9, 4755–4780. MR 3217699
3. Vladimir P. Burichenko, On symmetries of the strassen algorithm, CoRR abs/ 1408.6273 (2014).
4. , Symmetries of matrix multiplication algorithms. I, CoRR abs/ 1508.01110 (2015).
5. Hans F . de Groote, On varieties of optimal algorithms for the computation of bilinear mappings. I. T he isotropy

group of a bilinear mapping, T heoret . Comput . Sci. 7 (1978), no. 1, 1–24. MR 0506377
6. Fulvio Gesmundo, Geometric aspects of iterated matrix multiplication, J . Algebra 461 (2016), 42–64.

MR 3513064
7. J . M. Landsberg, Tensors: geometry and applications, Graduat e Studies in Mathemat ics, vol. 128, American

Mathemat ical Society, P rovidence, RI, 2012. MR 2865915
8. Volker St rassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969), 354–356. MR 40 # 2223

Dipa r t iment o d i Ing eg ner ia d e l l ’In f o r ma zio ne e Sc ienze Mat emat ic he , Unive r sit a’ d i Siena , 53100
Siena , It a l y

E-mail address : luca.chiantini@unisi.it

Ma x P l a nc k Inst it u t e f o r In f o r mat ic s, Sa a r l a nd Inf o r mat ic s Ca mpus, Buil d ing E 1.4, D-66123
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