
Draf
t-C

on
fide

nti
al

The 9 Lives of Bleichenbacher’s CAT:
New Cache ATtacks on TLS Implementations
Eyal Ronen∗, Robert Gillham†, Daniel Genkin‡, Adi Shamir∗, David Wong§, and Yuval Yarom†∗∗

∗Weizmann Institute
†University of Adelaide
‡University of Michigan

§NCC Group
∗∗Data61

Abstract—At CRYPTO’98, Bleichenbacher published his sem-
inal paper which described a padding oracle attack against
RSA implementations that follow the PKCS #1 v1.5 standard.
Over the last twenty years researchers and implementors had
spent a huge amount of effort in developing and deploying
numerous mitigation techniques which were supposed to plug all
the possible sources of Bleichenbacher-like leakages. However,
as we show in this paper most implementations are still vul-
nerable to several novel types of attack based on leakage from
various microarchitectural side channels: Out of nine popular
implementations of TLS that we tested, we were able to break the
security of seven implementations with practical proof-of-concept
attacks. We demonstrate the feasibility of using those Cache-like
ATacks (CATs) to perform a downgrade attack against any TLS
connection to a vulnerable server, using a BEAST-like Man in the
Browser attack. The main difficulty we face is how to perform
the thousands of oracle queries required before the browser’s
imposed timeout (which is 30 seconds for almost all browsers,
with the exception of Firefox which can be tricked into extending
this period). The attack seems to be inherently sequential (due
to its use of adaptive chosen ciphertext queries), but we describe
a new way to parallelize Bleichenbacher-like padding attacks
by exploiting any available number of TLS servers that share
the same public key certificate. With this improvement, we
could demonstrate the feasibility of a downgrade attack which
could recover all the 2048 bits of the RSA plaintext (including
the premaster secret value, which suffices to establish a secure
connection) from five available TLS servers in under 30 seconds.
This sequential-to-parallel transformation of such attacks can be
of independent interest, speeding up and facilitating other side
channel attacks on RSA implementations.

I. INTRODUCTION

The Public Key Cryptography Standard #1 (PKCS #1) [53]
is the main standard used for implementing the RSA public
key algorithm [51] in a large variety of security protocols.
Twenty years ago, Bleichenbacher [10] demonstrated that the
padding scheme defined in PKCS #1 v1.5 (which is used
to map shorter messages into full length RSA plaintexts)
is vulnerable to a padding oracle attack. Specifically, given
an indication whether the plaintext which corresponds to a
given ciphertext is correctly formatted, an attacker can mount
an adaptive chosen ciphertext attack which recovers the full
plaintext from any given ciphertext.

Since its publication, multiple Bleichenbacher-like attacks
have been demonstrated, exploiting a large variety of oracles,
including error messages [11, 36], timing variations [34, 42]

and memory access patterns [62]. After each attack, imple-
mentors had adopted some mitigation techniques to ensure
that the use of PKCS #1 v1.5 does not leak information
on the padding, but these mitigation techniques had become
increasingly difficult to understand, to implement, and to
maintain. Considering the number of demonstrated attacks and
the ongoing mitigation efforts, we set out in this paper to
answer the following basic question:

Are modern implementations of PKCS #1 v1.5 secure against
padding oracle attacks?

A. Our Contribution.

Regrettably, our answer to this question is negative, as the
vast majority of implementations we evaluated are still vul-
nerable to padding oracle attacks. Making the situation worse,
we show that padding oracle attacks can be made extremely
efficient, via more careful analysis and novel parallelization
techniques. Finally, we show that while the use of RSA key
exchange is declining, padding oracles can be used to mount
downgrade attacks, posing them as a threat to the security of a
much larger number of connections (including those done via
protocols that do not even support the RSA key exchange).

More specifically, our contributions are as follows.

New Techniques for Microarchitectural Padding Oracle
Attacks. We have tested nine fully patched implementations
of various RSA-based security protocols (OpenSSL, Amazon
s2n, MbedTLS, Apple CoreTLS, Mozilla NSS, WolfSSL,
GnuTLS, BearSSL and BoringSSL). While all of these imple-
mentations attempt to protect against microarchitectural and
timing side channel attacks, we describe new side channel
attack techniques which overcome the padding oracle counter-
measures. Notably, out of the nine evaluated implementations,
only the last two (BearSSL and BoringSSL) could not be
successfully attacked by our new techniques.

Downgrade Attacks. Next, we show the feasibility of per-
forming downgrade attacks against all the deployed versions
of TLS, including the latest TLS 1.3 standard (which does
not even support RSA key exchange). More specifically, even
though the use of RSA in secure connections is diminishing
(only ≈ 6% of TLS connections currently use RSA [1, 45]),
this fraction is still too high to allow vendors to drop this

Draf
t-C

on
fide

nti
al

mode. However, as we show in Section VI, supporting this
small fraction of users puts everyone at risk, as it allows the
attacker to perform a downgrade attack by specifying RSA as
the only public key algorithm supported by the server.

Attack Efficiency. Rather then targeting premaster secrets of
individual connections, we adopt a BEAST-like [20] approach,
targeting instead the long term login tokens. As only a single
broken connection is sufficient to recover the login token, in
Section VI we show that the query complexity of padding
oracle attacks can be substantially reduced (at the expense
of the success probability of breaking a specific connection),
while still preserving the attacker’s ability to extract login
tokens before the connection timeout enforced by almost all
web browsers.

Attack Parallelization. As another major contribution,
we show in this paper a novel connection between padding
oracle attacks and the Closest Vector Problem (CVP). While
there are some techniques to parallelize parts of padding
oracle queries [36], those techniques could not overcome
the fact that (perfect) padding oracles attacks use adaptively
chosen ciphertexts, thereby requiring that some parts of the
attack remain sequential. Using lattice reduction techniques
we overcome this limitation, by combining the results from
different (and partial) attack runs against different servers
sharing the same RSA key. With those techniques in hand, we
were able to show for the first time the feasibility of recovering
a full 2048-bit RSA plaintext using five TLS servers in under
the 30 second timeout enforced by almost all web browsers.

B. Software Versions and Responsible Disclosure

Our attacks were performed on the most updated versions of
the cryptographic libraries evaluated, as published at the time
of writing. We have compiled each library using its default
compilation flags, leaving all side channel countermeasures
in place. Following the practice of responsible disclosure, we
disclosed our findings in August 2018 to all the vendors men-
tioned in this paper. We have further participated in the design
and empirical verification of the proposed countermeasures.
Updated versions of the affected libraries will be published
in a coordinated public disclosure in November 2018. We
note that, coincidentally, OpenSSL partially patched one of the
vulnerabilities we discovered, independently and in parallel to
our disclosure process.

II. BACKGROUND

A. Padding Oracle Attacks on TLS

TLS has a long history of padding oracle attacks of different
types. Those attacks led to the development and implementa-
tion of new mitigation techniques, and then new attacks.

The Lucky 13 attack by AlFardan and Paterson [5] showed
how to use a padding oracle attack to break TLS CBC HMAC
encryption. Irazoqui et al. [33] and Ronen et al. [52] have
shown how to use cache attacks to attack code that has been
patched against the original attack.

After the publication of the Bleichenbacher attack, the TLS
specifications defined a new mitigation with the goal of remov-
ing the oracle [16, 17, 18]. However, it seems that completely
removing the oracle is a very diffuclt task as was shown by
multiple cycles of new attacks and new mitigations[11, 36, 42].
As we show in our paper, Bleichenbacher type attacks are still
possible even on fully patched implementations.

B. RSA PKCS #1 v1.5 Padding

In this section we describe the PKCS #1 v1.5 padding
standard, which dictates how a message should be padded
before RSA encryption. Let (N, e) be an RSA public key, let
(N, d) be the corresponding private key, and let ` be the length
of N (in bytes). The encryption of a message m containing
k ≤ `− 11 bytes is performed as follows.

1) First, a random padding string PS of byte-length ` −
3 − k ≥ 8 is chosen such that PS does not contain any
zero-valued bytes.

2) Set m∗ to be 0x00||0x02||PS ||0x00||m. Note that the
length of m∗ is exactly ` bytes.

3) Interpret m∗ as an integer 0 < m∗ < N and compute the
ciphertext c = m∗e mod N .

The decryption routine computes m′ = cd mod N and parses
m′ as a bit string. It then checks whether m′ is of the from
m′ = 0x00||0x02||PS ′′||0x00||m′′ where PS′′ is a string
consisting of at least 8 bytes, all of them must be non-zero. In
case this condition holds the decryption routine returns m′′.
Otherwise the decryption routine fails.

C. Bleichenbacher’s Attack on PKCS #1 v1.5 Padding

In this section we provide a high level description
of Bleichenbacher’s “million message” attack [10] on the
PKCS #1 v1.5 padding standard described above. At a high
level, the attack allows an attacker to compute an RSA private
key operation (e.g., md mod N) on a message m of his choice
without knowing the secret exponent d.

Attack Prerequisites. Bleichenbacher’s attack assumes the
existence of an oracle Bl which given a ciphertext c as input
answers whether c can be successfully decrypted using RSA
PKCS #1 v1.5 padding as described above. More formally,
let (N, d) be an RSA private key. The oracle Bl performs the
following for every ciphertext c

Bl(c) =

{
1 if cd mod N has a valid PKCS #1 v1.5 padding
0 otherwise

As was previously shown, such an oracle can be obtained by
several types of side channel leakage [11, 34, 36, 42, 62].

We now describe how an attacker can use the Bleichen-
bacher oracle Bl to perform an RSA secret key operation, such
as decryption or signature, on c without knowing the secret
exponent d. We refer the reader to [10] for a more complete
description.

High Level Attack Description. Let c be an integer. To
compute m = cd mod N , the attack proceeds as follows.

Draf
t-C

on
fide

nti
al

• Phase 1: Blinding. The attacker repeatedly chooses random
integers s0 and computes c∗ ← c · se0 mod N . The attacker
checks if c∗ is a valid PKCS #1 v1.5 ciphertext by evaluating
Bl(c∗). This phase terminates when an s0 such that Bl(c∗) =
1 is found. The phase and can be skipped completely if c
is already a valid PKCS #1 v1.5 ciphertext in which case
s0 = 1.

We note that when the oracle succeeds (Bl(c∗) = 1) the at-
tacker knows that the corresponding message m∗ = m·s0 mod
N starts with 0x0002. Thus, it holds that m · s0 mod N ∈
[2B, 3B) where B = 28(`−2) and ` is the length of N in bytes.
Finally, the condition of m·s0 mod N ∈ [2B, 3B) implies that
there exists an integer r such that 2B ≤ m · s0 − rN < 3B,
or equivalently:

2B + rN

s0
≤ m <

3B + rn

s0
.

• Phase 2: Range Reduction. Having established that
2B+rN

s0
≤ m < 3B+rn

s0
, the attacker proceeds to choose

a new random integer s, computes c∗ ← c · se mod N
and checks that Bl(c∗) = 1. When a suitable s is found,
the adversary can further reduce the possible ranges of m,
see [10] for additional details. The attack terminates when
the possible range of m is reduced to a single candidate.

Attack Efficiency. For N consisting of 1024-bits, Bleichen-
bacher’s original analysis [10] requires about one million calls
to the oracle Bl (e.g., requiring the attacker to observe one
million decryptions). However, subsequent analysis has shown
that the attack is possible with as little as 3800 oracle queries
under realistic scenarios [7].

The Noisy Oracle Case. We note here that the Bleichen-
bacher attack does not require the oracle Bl to be perfect.
Specifically, the attack can handle one sided errors where
Bl(c) = 0 for some valid PKCS #1 v1.5 ciphertexts (i.e. false
negatives). All that the attack requires is that the attacker can
correctly identify valid PKCS #1 v1.5 ciphertext sufficiently
often.

D. Manger’s Attack

Following Bleichenbacher’s work, Manger [41] presented
another padding oracle attack that allows an attacker
to compute cd mod N without knowing the secret expo-
nent d. Manger’s attack, originally designed for attacking
PKCS #1 v2.0, can be adapted to the PKCS #1 v1.5 case.
The attack is more efficient than the Bleichenbacher attack,
but it has different prerequisites.

Attack Prerequisites. In this case we assume the existence
of an oracle Ma which given a ciphertext c answers whether
the most significant byte of cd mod N is zero. More formally,
let (N, d) be an RSA private key. The oracle Ma outputs the
following for every ciphertext c

Ma(c) =

{
1 if cd mod N starts with 0x00
0 otherwise

.

That is, the oracle outputs for a given ciphertext c whether
its decryption cd mod N lies in the interval [0, B− 1] or not,
where B = 28(`−1) and ` is the length of N in bytes.

High Level Attack Description. Let c = me mod N be
a ciphertext. At a high level, Manger’s attack is very similar
to Bleichenbacher’s attack, requiring the attacker to choose a
value s, to compute c∗ ← c · se mod N and to query Ma in
an attempt to find a c∗ such that Ma(c∗) = 1.

Attack Efficiency. Manger’s attack requires a little more
than log2(N) oracle calls to perform an RSA secret operation.
This compares favorably with the approximate one million
oracle calls required for the Bleichenbacher attack. However,
in contrast to Bleichenbacher’s attack, which can tolerate
oracle false negatives, Manger’s attack requires a “perfect”
oracle which always answers correctly, without any errors.

E. The Interval Oracle Attack

Well before Bleichenbacher’s work, Ben-Or et al. [8] proved
the security of single RSA bits, by showing an algorithm for
decrypting RSA ciphertexts given one bit of plaintext leakage.
One of the oracles considered in that work is the interval
oracle, that indicates if the plaintext is inside or outside a
specific interval.

Attack Prerequisites. More specifically, for an RSA private
key (N, d) assume we have an oracle that outputs the following
for every ciphertext c

In(c) =

{
1 if cd mod N starts with bit 1
0 otherwise

.

That is, the oracle outputs for a given ciphertext c whether
its decryption cd mod N lies in the interval [0, 28`−1] or not,
where ` is the length of N in bytes.

High Level Attack Description. The main idea of the
attack is to generate two random multiplications c1 = a · c
and c2 = b · c of the ciphertext c, and then use an eu-
clidean greatest common divisor (gcd) algorithm to compute
gcd(c1, c2). When a pair of ciphertext c1, c2 is found such that
gcd(c1, c2) = 1, it is possible to efficiently recover cd mod N .
See Ben-Or et al. [8] for a more complete description.

Attack Efficiency. The attack of Ben-Or et al. [8] is relatively
efficient, requiring about 15 log2N oracle queries to decrypt
a ciphertext c. For a random choice of c1 and c2 the attack
succeeds with a probability of 6/π2.

F. Notation and Additional Padding Oracle Attacks

Several works follow-up on the attacks of Ben-Or et al. [8],
Bleichenbacher [10], and Manger [41], obtained similar results
using other padding oracles commonly found in implemen-
tations of PKCS #1 v1.5, where some oracles provide more
information than others [7, 36]. In this paper, we consider four
different checks that an implementation can validate against
the RSA-decrypted padded plaintext. All implementations start
by checking that the padded plaintext starts with 0x0002, and
then may proceed with further checks.

Draf
t-C

on
fide

nti
al

• The first check corresponds to the test for a zero byte
somewhere after the first ten bytes of the plaintext.

• The second check verifies that there are no zero bytes in the
padding string PS ′′.

• The third check verifies the plaintext length against some
specific value (48 byte for a TLS premaster secret in our
case).

• Finally, the fourth check is payload-aware and TLS-specific:
it verifies the first two bytes of the payload; these bytes
are set to the client’s protocol version as defined in RFC-
5246 [18].

Notation. We extend the notation of Bardou et al. [7] to
refer to various oracles. Specifically, our notation is:
FFFF denotes an oracle that gets as input a ciphertext and

returns true only if the corresponding plaintext passes
all four checks. This is the same as the Bad-Version
Oracle (BVO) of Klı́ma et al. [36].

FFFT denotes an oracle that returns true for ciphertexts
corresponding to plaintexts that pass the first three
checks, ignoring the fourth check.

FFTT is an oracle that only verifies first two checks. This is
the Bleichenbacher oracle described in Section II-C

FTTT denotes an oracle that returns true if the decrypted
plaintext passes the first check and disregards the last
three checks.

TTTT is an oracle that disregards the four checks, returning
true for ciphertexts whose corresponding plaintexts
start with 0x0002.

M denotes a Manger oracle (Section II-D).
I denotes an Interval oracle (Section II-E).

G. The TLS Mitigation for the Bleichenbacher attack

The TLS specifications [16, 17, 18] define defences for the
Bleichenbacher attack. The decrypted message m is used as a
shared premaster secret between the client and the server. Cru-
cially, the attacker does not know the plaintext of the messages
sent as part of the attack, and cannot, therefore, distinguish
random strings from correctly decrypted plaintexts. Thus, to
mitigate the Bleichenbacher attack, the server pregenrates a
random premaster secret, and swaps it for the plaintext if the
PKCS #1 v1.5 validation fails.

This choice of premaster secret depending on the validity
of the padding must be done in constant-time as well. Unfor-
tunately, correctly implementating this mitigation is a delicate
task. Any differences in the server’s behavior between the
PKCS #1 v1.5 conforming and the non-conforming cases may
be exploited to obtain a Bleichenbacher-type oracle [11, 42].
Although most implementations do attempt to implement
constant-time code for this mitigation, we show that all but two
are still vulnerable to microarchitectural side-channel attacks.

H. Microarchitectural Side Channels

To improve the performance of programs, modern pro-
cessors try to predict the future program behavior based
on its past behavior. Thus, processors typically cache some
microarchitectural state that depends on past behavior and

subsequently use that state to optimize future behavior. Unfor-
tunately, when multiple programs share the use of the same
microarchitectural components, the behavior of one program
may affect the performance of another. Microarchitectural side
channel attacks exploit this effect to leak otherwise unavailable
information between programs [24].

Cache-Based Side Channel Attacks. Caching compo-
nents, and in particular data and instruction caches, are often
exploited for microarchitectural attacks. Cache-based attacks
have been used to retrieve cryptographic keys [2, 9, 27, 32,
40, 48, 49, 56, 60], monitor keystrokes [28], perform website
fingerprinting [47], and attack other algorithms [12, 58]. At a
high level, cache attacks typically follow one of two patterns,
which we now discuss.

FLUSH+RELOAD. In the FLUSH+RELOAD [60] attack and
its variations [28, 29, 61], the attacker first evicts (flushes) a
memory location from the cache. The attacker then waits a bit,
before reloading the flushed location again, while measuring
the time that this reload takes. If the victim accesses the same
memory location between the flush and the reload phases, the
memory will be cached, and access will be fast. Otherwise,
the memory location will not be cached and the access will be
slower. Thus, the attacker deduces information regarding the
victim’s access patterns to a given address.

PRIME+PROBE. Attacks employing the PRIME+PROBE
technique [48, 49] or similar techniques [2, 19, 32, 40], first
fill the cache with the attacker’s data. The attacker then waits,
allowing the victim to execute code before measuring the time
to access the previously cached data. When the victim accesses
its data, this data evicts some of the attacker’s data from the
cache. By measuring the access time to the previously cached
data, the attacker can infer some information on the victim’s
memory access patterns.

Attack Limitations. Both attacks require that the victim and
attacker share some CPU caching components, implying that
both programs have to run on the same physical machine. At
a high level, FLUSH+RELOAD tends to be more accurate and
have fewer false positives than PRIME+PROBE [60]. However,
FLUSH+RELOAD requires the attacker to share memory with
the victim and thus is typically applied to monitoring victim
code execution patterns, rather than data access patterns.

Branch-Prediction Attacks. The branch predictor of
the processor has also been a target for microarchitectural
attacks [3, 21, 22, 23, 38]. The branch predictor typically
consists of two components, the Branch Target Buffer (BTB)
which predicts branch destinations, and the Branch History
Buffer (BHB), also known as the directional predictor, which
predicts the outcome of conditional branches.

When a program executes a branch instruction, the pro-
cessor observes the branch outcome and destination and
modifies the state of the branch predictor. Attacks on the
branch predictor exploit either the timing differences between
correct or incorrect prediction or the performance monitoring
information that the processor provides to recover the state

Draf
t-C

on
fide

nti
al

of the predictor and detect the outcomes of prior branches
executed by a victim program.

To mitigate Spectre attacks [37], Intel introduced mech-
anisms for controlling the branch predictor [31]. It is not
clear whether these mechanisms completely eliminate branch
prediction channels [25]. Furthermore, we have verified that
by default Ubuntu Linux does not use the Indirect Branch
Predictor Barrier mechanism to protect user processes from
each other.

III. ATTACK MODEL AND METHODOLOGY

In this paper, we target implementations of PKCS #1 v1.5
that leak information via microarchitectural side channels. We
then exploit the leaked information to implement a padding
oracle, which we use to decrypt or to sign a message. To
mount our attacks the adversary needs three capabilities:

1. Side Channel Capability. The first capability an adversary
needs is to mount a microarchitectural side channel attack
against a vulnerable implementation. For that, the adversary
needs the ability to execute code on the machine that runs the
victim’s implementation.

2. Privileged Network Position Capability. Our attacks
exploit a padding oracle attack to perform a private key
operation such as a signature or decryption of a message that
has been sent to the victim. To decrypt a ciphertext and use
its result, an adversary must first obtain a network man-in-the-
middle position. To forge signatures, an adversary must first
obtain the relevant data to sign and be in a privileged position
to exploit it.

3. Decryption Capability. The third capability our adversary
needs is the ability to trigger the victim server to decrypt
ciphertexts chosen by the adversary.

A concrete attack scenario we consider in this work is
attacking a TLS server running on the same physical hardware
as an unprivileged attacker. For example, a TLS server running
in a virtual machine on a public cloud server, where the
physical server hardware is shared between the victim’s TLS
server and an attacker’s virtual machine. Indeed, previous
works have shown that attackers can achieve co-location [50],
and leverage it for mounting side channel attacks [30]. Thus,
the first capability is achievable for a determined adversary.

The second and third capabilities are achievable in this
scenario by an attacker that controls any node along the path
between the client and the server. Malicious network operators
are one example of actors that have such control, but this is not
the only case. In particular, attackers can exploit vulnerabilities
in routers to assume control and mount our attack [15].

There are, however, some problems specific to this scenario.
The recent version of the TLS protocol, TLS 1.3, no longer
supports RSA key exchanges, and in TLS 1.2 (Elliptic Curve)
Diffie-Hellman key exchanges are recommended over RSA
key exchanges. Hence, the adversary needs to perform active
protocol downgrade attacks to force the use of RSA in
the communication. Furthermore, clients, such as browsers,

impose time limits on the handshake, forcing the attacker
to complete an attack that may require a large number of
decryption within a short time. Section VI explains how we
can perform such downgrade attacks, within the time limits.

IV. VULNERABILITY CLASSIFICATION

We now examine an outline of typical RSA PKCS #1 v1.5
implementations, explain where padding oracle vulnerabilities
arise in these, and provide concrete examples from TLS im-
plementations we investigated. Further examples are included
in Appendix A.

Handling PKCS #1 v1.5 in TLS typically consists of three
stages:

• Data Conversion. First, the RSA ciphertext is decrypted
and the resulting plaintext is converted into a byte array.

• PKCS #1 v1.5 Verification. Next, the conformity of the
array to the PKCS #1 v1.5 standard is checked.

• Padding Oracle Mitigations. Finally, if the array is
not PKCS #1 v1.5 conforming, the server deploys the
padding oracle countermeasures presented in Section II-G.
As discussed, the risk of padding oracle attacks is only
mitigated after the countermeasures are deployed.

Unfortunately, despite more than twenty years of research in
both padding oracle attacks and side channel resistance, in
this work we find that vulnerabilities still occur in all of these
stages. We now provide a high level description of the various
stages and their associated side channel vulnerabilities.

A. Data Conversion.

In RSA, the plaintext and the ciphertext are large num-
bers, e.g. 2048-bit long. These are typically represented as
little-endian arrays of 32- or 64-bit words. PKCS #1 v1.5,
however uses big-endian byte arrays, thus requiring a format
conversation. For values of fixed length, this conversation is
relatively straightforward. However, while the length of the
RSA modulus provides an upper bound on the length of the
RSA decryption result, the exact length of the RSA plaintext
is not known until after RSA decryption of the corresponding
ciphertext. Thus, if the RSA decryption result is too short, the
little-to-big endian conversation code has to pad the ciphertext
with a sufficient amount of zero bytes.

1 int RSA_padding_check_none(to, tlen, from, flen){
2 // to is the output buffer of maximum length tlen

bytes
3 // from is the input buffer of length flen bytes
4 memset(to, 0, tlen - flen);
5 memcpy(to + tlen - flen, from, flen);
6 return tlen;
7 }

Listing 1. Pseudocode of raw plaintext copy with no padding check function

As an example, consider the pseudo code of the implementa-
tion of the OpenSSL function RSA padding check none in
Listing 1. The function is called as part of the implementation
of the TLS protocol in OpenSSL, and its purpose is to copy the
RSA decryption results to an output buffer, without perfoming
any padding checks.

Draf
t-C

on
fide

nti
al

To handle the case that the plaintext from the RSA decryp-
tion is smaller than the output buffer, RSA padding check -
none uses memset to pad the output buffer. The length of
the padding is set to the difference between the lengths of
the output array and the plaintext. In case of a full-length
plaintext, the length of the padding is zero. Using a branch
prediction attack we can detect this scenario, and learn whether
the plaintext is full-length. This gives us the oracle required
for a Manger attack.

Unfortunately, this example is by no means unique,
and multiple implementation expose FTTT- or Manger-type
padding oracles during the data conversion phase. See Ap-
pendix A for further examples.

B. PKCS #1 v1.5 Verification

Once the data is represented as a sequence of bytes, the
implementation needs to check that it is PKCS #1 v1.5 con-
forming, that is, that the first byte is zero, the second is 0x02,
the following eight bytes are non-zero, and that there is a zero
byte at a position above 10. Yet, many implementations branch
on the results of these checks, leaking the outcome to a side
channel attacker via the implementation’s control flow. The
exact oracle obtained depends on the specific implementation
and the type of leakage.

The OpenSSL RSA PKCS #1 v1.5 decryption API provides
an example of such an issue. OpenSSL exports a function,
RSA public decrypt, whose arguments are an input buffer
containing the ciphertext, an output buffer for the plaintext, the
RSA decryption key, and the padding mode to check the plain-
text against. When using PKCS #1 v1.5 padding, RSA pub-
lic decrypt invokes RSA padding check PKCS1 type 2
to validate the padding after decryption. A pseudocode of the
validation function is shown in Listing 2.

As the pseudocode shows, OpenSSL performs the checks
outlined in Section II-B in constant-time (Lines 7–13), re-
turning the length of the decrypted message if the decryption
is successful, or −1 if there is a padding error. To set the
return value, the function uses an explicit branch (Line 17).
Furthermore, the memory copy in Line 21 is only executed
in case of a successful decryption, whereas the error logging
(Line 25) is invoked in the case of a padding error.

A comment in the code (Line 15) indicates that the authors
are aware of the leakage, and the manual page for the function
warns against its use [46]. Thus, OpenSSL does not use this
PKCS #1 v1.5 verification code for its own implementation
of the TLS protocol. Furthermore, both Xiao et al. [57] and
Zhang et al. [62] exploit the leakage through the conditional
error logging for mounting Bleichenbacher attacks.

Amazon’s s2n. OpenSSL is the cryptographic engine
underlying many applications, all of these are potentially vul-
nerable to our cache-based padding oracle attack. Specifically,
Amazon’s implementation of the TLS protocol, s2n [54], uses
this API, and consequently leaks an FFTT-type oracle. For
other vulnerabilities in s2n, see Appendix A-B.

C. Padding Oracle Mitigations.

As Section II-G describes, when a TLS implementation detects
that a plaintext does not conform to the PKCS #1 v1.5 format,
it cannot just terminate the handshake, because this creates a
padding oracle. Instead it must replace the non-conforming
plaintext with a random sequence of bytes and proceed with
the TLS handshake. However, some implementations fail
to protect this replacement, leaking the deployment of the
countermeasure and allowing the creation of a padding oracle.

We can find examples of such leakage in CoreTLS, Apple’s
implementation of the TLS protocol that is sometimes used in
both MacOS and iOS devices.

Listing 3 shows the code that handles the mitigation
of Bleichenbacher’s attack in CoreTLS (i.e., replacing the
incorrectly-padded RSA plaintext with random data). Lines 7
and 8 perform the RSA decryption and the validation of the
PKCS #1 v1.5 format. The code logs validation failure of
the PKCS #1 v1.5 format in Line 11. It also checks that
the output is of the expected length, issuing a log message
on failure (Lines 13–17). For brevity we omit the code that
handles the success case (Line 20). The main mitigation
against Bleichenbacher attacks occurs in Line 24, where the
code generates a random value to be used as the session key.

While the PKCS #1 v1.5 padding verification code in
CoreTLS constant time, the code that handles the mitigations
against padding oracle attacks is far from constant time. As
seen in Listing 3, the code contains multiple sources of side
channel leakage which we now describe.

First, all of the conditional if statements in the presented
code can be exploited by branch prediction attacks to imple-
ment FFTT (Line 9), FFFT (Line 13), or FFFF (Lines 19
and 22) Bleichenbacher-type oracles.

Next, a cache attack can monitor either the code of the log
message function or the code of the random number generator,
which only runs if the PKCS #1 v1.5 validation fails. Another
option is to monitor the bodies of the if statements in Lines 19
or 22. These attacks be used to implement an FFFF-type
padding oracle.

Finally, generating the random session key only on
PKCS #1 v1.5 validation failure (Line 24) is a significant
weakness in the implementation. Random number generation
is a non-trivial operation that may take significant time and
thus might expose a Bleichenbacher oracle via a timing attack.
That is, by simply measuring the response time of a TLS server
that uses the CoreTLS library, an attacker might get a FFFF-
type Bleichenbacher oracle.

D. Summary of the Findings.

Table I summarizes our findings, showing the identified oracle
types in each stage of the implementations we evaluated. As
we can see, seven of the nine tested implementations expose
padding oracles via microarchitectural attacks. Only BearSSL
and Google’s BoringSSL are not vulnerable to our attacks.

Draf
t-C

on
fide

nti
al

1 int RSA_padding_check_PKCS1_type_2(to, tlen, from, flen, num_bytes){
2 // to is the output buffer of maximum length tlen bytes
3 // from is the input buffer of length flen bytes
4 // num_bytes is the maximum number of bytes in an RSA plaintext
5 // returns the number of message bytes (not counting the padding) or -1 in case of a padding error
6

7 good = constant_time_is_zero(from[0]);
8 good &= constant_time_eq(from[1], 2);
9 zero_index = find_index_of_first_zero_byte_constant_time(from+2, flen);

10 good &= constant_time_greaterOrEqual(zero_index, 2 + 8); //first 10 plaintext bytes must be non-zero
11 msg_index = zero_index + 1; //compute location of first message byte
12 msg_len = num_bytes - msg_index; //compute message length
13 good &= constant_time_greaterOrEqual(tlen, msg_len); //check that to buffer is long enough
14

15 /* We can’t continue in constant-time because we need to copy the result and we cannot fake its length.
This unavoidably leaks timing information at the API boundary. */

16

17 if (!good) {
18 mlen = -1;
19 goto err;
20 }
21 memcpy(to, from+msg_index, mlen);
22

23 err:
24 if (mlen == -1)
25 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, RSA_R_PKCS_DECODING_ERROR);
26 return mlen;
27 }

Listing 2. Pseudocode of RSA padding check PKCS1 type 2

1 int SSLDecodeRSAKeyExchange(keyExchange, ctx){
2 keyRef = ctx->signingPrivKeyRef;
3 src = keyExchange.data;
4 localKeyModulusLen = keyExchange.length;
5 ... // addtional inilization code omitted
6

7 err = sslRsaDecrypt(keyRef, src,
localKeyModulusLen,

8 ctx->preMasterSecret.data,
SSL_RSA_PREMASTER_SECRET_SIZE, &outputLen);

9 if(err != errSSLSuccess) {
10 /* possible Bleichenbacher attack */
11 sslLogNegotiateDebug("SSLDecodeRSAKeyExchange:
12 RSA decrypt fail");
13 } else if(outputLen !=
14 SSL_RSA_PREMASTER_SECRET_SIZE) {
15 sslLogNegotiateDebug("SSLDecodeRSAKeyExchange:

premaster secret size error");
16 // not passed back to caller
17 err = errSSLProtocol;
18 }
19 if(err == errSSLSuccess) {
20 ... // (omitted for brevity)
21 }
22 if(err != errSSLSuccess) {
23 ... // (omitted for brevity)
24 sslRand(&tmpBuf);
25 }
26 /* in any case, save premaster secret (good or

bogus) and proceed */
27 return errSSLSuccess;
28 }

Listing 3. Apple’s TLS mitigation function

V. EXPERIMENTAL RESULTS

To validate that the vulnerabilities we identified can indeed
be exploited, we mounted concrete side-channel attacks on
some of the implementations. We now discuss some of the
techniques we used for this validation.

TABLE I
SUMMARY OF IDENTIFIED PADDING ORACLES.

Data PKCS #1 v1.5 TLS
Conv. Verification Mitigation

OpenSSL M M
OpenSSL API M FFTT
Amazon s2n FFFT
MbedTLS I FFTT, FFFT*
Apple CoreTLS FFTT, FFFT, FFFF
Mozilla NSS M M, TTTT, FTTT* FFFF
WolfSSL M M, FFTT FFTT, FFFF
GnuTLS M M, TTTT, FFTT FFTT, FFFT
BoringSSL Not Vulnerable
BearSSL Not Vulnerable

A. Attacking the OpenSSL API

The vulnerability in the OpenSSL API (Section IV-B) has
already been disclosed by both Xiao et al. [57] and Zhang
et al. [62]. Our attack is similar to the attack of Zhang et al.
[62], but achieves a significantly lower error rate, resulting
in a lower number of required oracle invocations. Combined
with our improved error handling (Section VI-B) we achieve
a reduction by a factor of 6 in the number of oracle queries
we require.

Our test machine uses a 4 core Intel Core i7-7500 processor,
with a 4 MiB cache and 16 GiB memory, running Ubuntu
18.04.1. We use the Flush+Reload attack [60], as implemented
in the Mastik toolkit [59].

To reduce the likelihood of errors, we monitor both the
call-site to RSAerr (Line 25 of Listing 2) and the code of
the function RSAerr. Monitoring each of these locations may
generate false positives, i.e. indicate access when the plaintext
is PKCS #1 v1.5 conforming. The former results in false

Draf
t-C

on
fide

nti
al

positives because the call to RSAerr shares the cache line
with the surrounding code, that is always invoked. The latter
results in false positives when unrelated code logs an error. By
only predicting a non-conforming plaintext if both locations
are accessed within a short interval, we reduce the likelihood
of false positives.

We note that this technique is very different to the approach
of Genkin et al. [26] of monitoring two memory locations to
reduce false negative errors due to a race between the victim
and the attacker [6]. Unlike us, they assume access if any of
the monitored locations is accessed.

Overall, our technique achieves a false positive rate of 4.3%
and false negative rate of 1.1%.

B. Attacking the OpenSSL Data Conversion

We now turn our attention to the code OpenSSL uses for
its own implementation of the TLS protocol. As discussed in
Section IV-A, OpenSSL leaks a Manger oracle through the
length argument in the call to memset in Line 4 of Listing 1.
We now show how we detect that the length passed to memset
is zero.

We implement a proof-of-concept attack on an Intel NUC
computer, featuring an Intel Core i7-6770HQ CPU, with
32 GiB memory, running Centos 7.4.1708. The GNU C li-
brary provides multiple implementations for memset, each
opimized for a different processor feature. During initial-
ization, the library chooses the best implementation for the
computer, and stores it in a function pointer. In run time,
the program invokes the best implementation of memset
by dereferencing the function pointer. On our system, the
selected function is memset sse2. We show part of the
(disassembled) code of this function in Listing 4.

1 <+209>: test $0x1,%dl
2 <+212>: je 0x40e918 <__memset_sse2+216>
3 <+214>: mov %cl,(%rdi)
4 <+216>: test $0x2,%dl
5 <+219>: je 0x40e87a <__memset_sse2+58>
6 <+225>: mov %cx,-0x2(%rax,%rdx,1)
7 <+230>: retq

Listing 4. A snippet of memset sse2

The presented code is only executed if the length argument
for memset is less than 4. Line 1 of the code first tests the
least significant bit of the length. If it is clear, i.e. if the length
is 0 or 2, Line 2 branches over Line 3. In Line 4, the code
tests if the second bit of the length, branching in Line 5 if the
length is less than 2. Thus, if both branches at Lines 2 and 4
are taken, the length argument is 0.
Branch Prediction Attack. Our attack follows previous
works in creating shadow branches, at addresses that match the
least significant bits of monitored branches [22, 38]. Because
the branch predictor ignores the high bits of the address, the
outcome of the victim branch affects the prediction for the
matching shadow branch. That is, when a monitored branch is
taken, the BTB predicts that both the monitored branch and it
shadow will branch to the same offset as the monitored branch.

Prior works either measure the time to execute the shadow
branch [22] or check the performance counters [38] to detect
mispredictions of the shadow branch, and from these infer the
outcome of previous executions of the monitored branch. How-
ever, performance counters are not always available to user
processes, and measurements of execution time of branches
are noisy. Instead, we combine the branch prediction attack
with FLUSH+RELOAD [60] to achieve high accuracy detection
of mispredictions.

Specifically, for each monitored branch we create two
shadows, the trainer and the spy branches. Each of these
branches to a different offset, such that the offsets of the
monitored branch and of the shadow branches each falls in
a different cache line. The attack then follows a sequence of
steps:
• Invoke the trainer shadow to train the branch predictor to

predict the trainer offset for all three branches.
• Flush the cache line at the trainer offset from the spy branch

from the cache.
• Execute the victim. If the victim branch is taken, it will

update the BTB state to predict the victim offset for all
three branches

• Invoke the spy branch. Because the branch predictor predicts
either the victim or the trainer offset, the spy branch
mispredicts. In the case that the victim branch has not been
taken, the mispredicted branch will attempt to branch to the
trainer offset from the branch, bringing the prviously flushed
line back into the cache.

• Measure the time to access the previously flushed line. If the
victim branch has been taken, this line will not be cached,
and access will be slow. If, however, the victim branch did
not execute or was not taken, the line will be in the cache
due to the misprediction in the previous step, and accesss
will be fast.
We implemented this attack and we can predict the outcome

of each of the monitored branches with a probability higher
than 98%. We cannot, however, monitor both branches con-
currently. Consequently, for the manger attack, we will have
to send each message twice. Once for monitoring the outcome
of the branch in Line 2 and the other for the branch in Line 5.

VI. MAN IN THE MIDDLE ATTACKS

In principle, a padding oracle attack can be used to compute
the premaster secret used in any TLS connection that uses RSA
key exchange, thereby completely breaking the connection’s
confidentiality guarantees. At the time of writing, this accounts
for ≈ 6% of all TLS connections[1, 45]. Moreover, the attack
does not need to be performed online, as an attacker can record
the connection’s encrypted traffic and use a padding oracle to
decrypt it at a later date. Even though the attack seems to
have only limited applicability, we show how to use an online
downgrade attack to break the security of all TLS connections,
even when they do not wish to use the RSA option.

Man In The Middle Attacks via Padding Oracles. Next,
as noted in [35], efficient padding oracle attacks can be used

Draf
t-C

on
fide

nti
al

online to mount man in the middle (MiTM) downgrade attacks
on TLS connections. Such online padding oracle attacks are
particularly dangerous as an attacker mounting a downgrade
attack can force both the client and server to initiate the hand-
shake with TLS 1.2 RSA key exchange, break the connection’s
premaster secret using the padding oracle, and subsequently
finish the handshake using the obtained premaster secret.

Moreover, efficient online padding oracle attacks are dan-
gerous even in the case where an updated client uses a
protocol that does not support RSA key exchange (such as
TLS 1.3 and QUIC) to connect to a server that supports RSA
key exchange. Assuming the server uses the same certificate
for RSA decryption and signing, an attacker can simulate
a TLS 1.3 connection with the client, and use the online
padding oracle to sign a forged ephemeral public key (see [35]
for details). As observed by Jager et al. [35] using single-
certificate scenario for all RSA operations across all protocols
in a given server is in fact quite common, as popular TLS
servers often do not use separate certificates for RSA key
exchange and RSA signing1.

As TLS servers often offer older protocols which contain
padding oracles for compatibility reasons, and will continue
to do so for many years, the above-outlined attack scenarios
makes padding oracles a threat to almost all TLS connections.
Mounting Online Padding Oracle Attacks. Mounting such
an online padding oracle MiTM attack, the attacker has to
finish the attack before the browser-enforced TLS timeout. As
was shown by [4], we can cause Firefox to keep a TLS hand-
shake alive indefinitely, thus allowing us to perform even very
long attacks. Using a BEAST style attack [20] we can perform
this attack in the background, without the user noticing any
long delays. However, to mount such an online padding oracle
MiTM attack against other browsers, the attacker has to be
extremely efficient, finishing the attack before the browser-
enforced TLS timeout. Unfortunately, this is often difficult
to achieve as a padding oracle might require the attacker to
perform many thousands of TLS handshakes with the server,
which takes much longer than a typical browser-enforced
TLS timeout of about 30 seconds (for Google Chrome and
Microsoft Edge).
Analysis and improvement of Padding Oracle Attacks.
In this section, we analyze the complexity of padding oracle
attacks for an online MiTM scenario. Our contributions are as
follows. First, we present a novel analysis of the query com-
plexity required from a padding oracle attack (Section VI-A).
Next, we handle the case of imperfect and noisy oracles
(Section VI-B). Finally, in Section VII we address the question
of parallelizing padding oracle attacks across any available
number of servers, demonstrating a new connection between
padding oracle attacks and lattice reduction techniques.

A. Reducing the Query Complexity of Padding Oracles
Assume we would like to break the security of a specific

account in some popular online service (e.g., Gmail). As the

1For example, at the time of writing, Amazon AWS servers uses the same
RSA certificate for signing and key encryption.

connection is usually done via https (which uses TLS), one
attack vector is to attempt to break the user’s existing TLS
connection with the online service. Using padding oracles to
mount a MiTM downgrade attack on a specific connection
might be difficult given the 30 seconds browser-enforced time-
out for completing the TLS handshake. In our new analysis,
we assume that we perform a BEAST style attack [20]. In
this scenario a malicious web site controlled by the attacker,
causes the user’s browser to repeatedly try to connect to the
TLS server in the background without the user’s knowledge.
This attack only requires that the browser supports JavaScript,
and does not need any special privileges (in particular, the
attacker does not have to compromise the normal operation
of the target machine in any way). A successful MiTM attack
on even a single TLS handshake will allow the attacker to
decrypt the user’s login token, thereby allowing a malicious
server login.

Low Success Probability is Sufficient. Any Bleichenbacher
like attack requires a large expected number of queries that
can not be completed before the browser’s timeout. However,
we can use the long tail distribution of the number of queries
in order to find an attack that required a much lower number
of queries with some small but not negligible probability (say
1/1000). By using the BEAST attack we can amplify this small
probability by forcing the browser to repeatedly negotiating
new TLS handshakes in the background until we succeed.

The remainder of this section is as follows. First, following
the outline of Bleichenbacher’s and Manger’s attacks presented
in Sections II-C and II-D, we notice that the overall oracle
query complexity of both attacks highly depends on the
probability that the padding oracle outputs 1 on a random
ciphertext c. We thus begin by analyzing this probability for
several common oracles. Next, we present simulations results
of the total oracle query complexity required from several
attack success probabilities.

Analyzing OpenSSL API FFTT Oracle. We begin by
analyzing the probability that a random ciphertext c conforms
with the requirements of the FFTT padding oracle present in
OpenSSL’s decryption API (Section IV-B). Let (d,N) be an
RSA private key. For a ciphertext c to be conforming, the
following must hold:

1) First, the two topmost bytes of cd mod N (the RSA plain-
text corresponding to c) must be 0x0002. For a random c,
this happens with probability of 2−16.

2) Next, the first 8 padding bytes of the plaintext correspond-
ing to c must be non-zero. For a random c, this event
happens with probability of (255/256)8.

3) The plaintext corresponding to c contains a zero byte. For
a 2048-bit RSA modulus N , we have 246 remaining bytes.
Thus, for a randomly selected c, this event holds with
probability of 1− (255/256)246 (or 1− (255/256)502 for
a 4096-bit modulus).

Draf
t-C

on
fide

nti
al

We obtain that for any 2048-bit RSA private key it holds that

Pr
c
[FFTT(c) = 1] = 2−16 ·

(
255

256

)8

·

(
1−

(
255

256

)246
)

≈ 9.14 · 10−6.

Similarly, for any 4096-bit RSA private key, we obtain that
Prc[FFTT(c) = 1] ≈ 1.27 · 10−5. Next, the expected number
of oracle queries required to obtain a conforming ciphertext is
1/Prc[FFTT(c) = 1] which results in about 110000 queries
for 2048-bit key and about 80000 queries for 4096-bit key.
However, the median (50% success probability to obtain a
conforming ciphertext) is about 76000 queries for 2048-bit key
and about 55000 queries for 4096-bit key. Next, if we allow
a low success probability of 1/1000, the required number
of random oracle queries to obtain a conforming ciphertext
is much lower, approximately 110 queries for 2048-bit key
and about 80 queries for 4096-bit key. Finally, we note that
partially due to this effect, the total query complexity of our
attack goes down as the RSA private key gets larger.
Analyzing MbedTLS FFFT Oracle. We now proceed
to analyze the FFFT padding oracle present in MbedTLS
implementation of the PKCS #1 v1.5 verification code (Sec-
tion A-C). Let (d,N) be an RSA private key. For a plaintext c
to be conforming to an FFFT oracle, the following must hold.
1) The first two conditions of the FFTT oracle present in the

OpenSSL decryption API hold. For a random ciphertext the
probability that both conditions hold is 2−16 · (255/256)8.

2) The size of the unpadded plaintext corresponding to c is
between 0 and 48 bytes. For a 2048-bit RSA key, we
have 256 bytes of padded plaintext. The first 10 bytes
are checked in the first condition, leaving 246 bytes for
the padding and the plaintext itself. As the padding string
must consist of some number of non zero bytes and
terminate with a zero byte, we obtain that for a random
2048-bit ciphertext c, this event holds with probability of
(255/256)246−48 · (1− (255/256)48).
Similarly, for 4096-bit RSA key (containing 512 bytes),
this event holds for a random ciphertext with probability
of (255/256)502−48 · (1− (255/256)48).

Thus, for any 2048-bit RSA private key it holds that

Pr
c
[FFFT(c) = 1] =

1

216

(
255

256

)8(
255

256

)198
(
1−

(
255

256

)48
)

≈ 1.16 · 10−6.

Similarly, for any 4096-bit RSA private key, we obtain that
Prc[FFFT(c) = 1] ≈ 4.28 · 10−7. Next, the expected number
of oracle queries required to obtain a conforming ciphertext is
1/Prc[FFFT(c) = 1] which results in about 857000 queries
for 2048-bit key and about 2334000 queries for 4096-bit key.
As in the case of the FFTT analyzed previously the query
complexity is greatly reduced for smaller success probabilities,
requiring about 594000 queries for a 50% success probability
and only 860 queries for a success probability of 1/1000
for 2048-bit keys. For 4096-bit keys, the median is 1618000

queries and 2300 queries are required for a success probability
of 1/1000.

Analyzing the Manger Oracle. The Manger attack
complexity is much simpler, having the number of queries
required be approximately the length of the RSA modulus in
bits with very low variance (i.e., about 2048 queries for 2048-
bit keys and 4096 queries for 4096-bit keys).

Full Attack Simulation. While the query complexity of the
entire padding oracle attack highly depends on the probability
p that the padding oracle outputs 1 on a random ciphertext, for
Bleichenbacher-type oracles the exact relation between p and
the attacks’ query complexity is rather difficult to analyze.
Instead, we ran 500000 simulations of the full attack using
the FFTT, FFFT and Manger type oracles, for a 2048-bit
RSA modulus. The results of our simulation are presented in
Table II, for both decryption and signature forging attacks.
For each oracle type and attack type, we give the required
number of oracle queries needed to complete the attack with
the different success probabilities. It is easy to see that for
a small success probability (i.e., 1/1000), we need a much
lower (by up to a factor of 10) number of padding oracle
queries, compared to the number required for a 50% success
probability. As outlined above, while the success probability
of each individual attack attempt is low (1/1000), the attacker
can always use BEAST-style techniques, having a malicious
website repeatedly issue TLS connections to the target website.
As soon as a single connection attempt is broken, the attacker
can decrypt the user’s login token, compromising the account.
Finally, we note the because each attack attempt has a low
oracle query complexity, it is possible to complete the attempt
below the 30 seconds timeout enforced by Chrome and Edge.

B. Handling Oracle Errors

In case an implementation reveals a padding oracle directly
via network messages, the resulting padding oracle is often
“perfect”, exhibiting no errors. However, in case the oracle
is obtained via side channels (such as the microarchitectural
padding oracles considered in this work) the result is often
noisy, containing both false negative or false positive errors.
Moreover, the error probability is often not symmetric, that
is Pr[False Positive] 6= Pr[False Negative]. In this section
we analyze the padding oracles considered in this work,
presenting efficient strategies for error recovery. See Table II
for a summary of the results.

Handling Errors in Manger Type Attack. As outlined in
Section II-D the Manger attack is not error tolerant, having any
type of error in any oracle query result in the attack failing to
break the target TLS connection. Thus, to obtain an error-free
result we propose to repeat each oracle query several times,
taking a majority vote in the result. We now proceed to analyze
the exact number of repetitions required by this approach.

Indeed, assume we want a padding oracle attack to succeed
with a low probability of p = 0.001. For a 2048-bit RSA
modulus, we will require about 2048 queries to break the target
connection. This means that we require (1−Pr[error])2048 >

Draf
t-C

on
fide

nti
al

TABLE II
NUMBER OF ORACLE QUERIES REQUIRED FOR 2048-BIT RSA MODULUS.

Signature Forging with Success Probability Decryption with Success Probability
Oracle 0.001 0.01 0.1 0.5 0.001 0.01 0.1 0.5

FFTT Oracle (OpenSSL API) 16381 19899 40945 122377 14700 15147 16764 50766
FFFT Oracle (MbedTLS) 139426 192633 533840 1292250 116699 123359 237702 870664
Manger Oracle ≈ 2048 ≈ 2048 ≈ 2048 ≈ 2048 ≈ 2048 ≈ 2048 ≈ 2048 ≈ 2048

FFTT Oracle With Errors 29989 33944 57130 147406 28170 28683 30494 70990
Manger Oracle With Errors ≈ 6144 ≈ 6144 ≈ 6144 ≈ 6144 ≈ 6144 ≈ 6144 ≈ 6144 ≈ 6144

0.001 which yields Pr[error] < 1 − 2048
√
0.001 ≈ 0.00337.

Next, from the experimental results outlined in Section V-B,
we have that our side channel based Manger oracle has a false
positive rate of 0.02 and a false negative rate of 0.02, as the
Manger oracle cannot tolerate both types of errors, we obtain
that each individual oracle calls is incorrect with a probability
of at most 0.02. Assume we take the majority over r distinct
oracle calls. For the majority to be incorrect, it has to be
the case that Pr[error] <

∑r
i=r/2+1(0.02)

i ≈ (0.02)r/2+1 <
0.00337, which yields r = 3.

Handling Errors in Bleichenbacher-type Oracles. As
outlined in Section II-C, Bleichenbacher-type oracles are tol-
erant to one sided errors. Although a single false positive
might cause the attack to fail, the attack can tolerate an
arbitrary number of false negatives. This is since inserting a
false negative (meaning the oracle answered 0 for ciphertext
whose plaintext is PKCS #1 v1.5 conforming) into the attack
algorithm will just require more queries to find the next
blinded ciphertext that decrypts to a PKCS #1 v1.5 conforming
plaintext. Although a false negative in the first phase can result
in a large number of extra queries (the probability of finding a
conforming plaintext is low), a false positive in the later stages
might be relatively “cheap”.

To better understand the total query complexity required
for a side-channel based Bleichenbacher-type oracle, we sim-
ulated the end-to-end attack using the false negative and
false positive rates obtained in Section V-A (i.e., we set
Pr[False Positive] = 0.043 and Pr[False Negative] =
0.011). As a Bleichenbacher-type oracle can tolerate false
negatives, we used just one sided error correction. That is,
in case the oracle reports the ciphertext as not PKCS #1 v1.5
compatible we accept the answer and try another ciphertext.
However, in case the oracle reports that ciphertext does con-
form to the PKCS #1 v1.5 standard, we repeat the measure-
ment 6 times (by issuing additional queries) and require that
positive answer will be given for 5 out of the 6 queries. We
note that this amount of repetitions was empirically chosen to
minimize the attacks’ total query complexity. The results of
our simulations can be seen in Table II. Notice that the total
query complexity is between about ×1.2 and about ×2 the
oracle queries required from the perfect oracle case (i.e., no
false negatives or false positives).

VII. PARALLELIZATION OF THE ATTACK

We would like to exploit the fact that large service providers
often use multiple TLS servers that share the same RSA key;

this is done in order to support greater bandwidth, provide
redundancy, and provide better latency for different locations
around the world. We would like to be able to parallelize our
attacks using several such servers as oracles, making the attack
fast enough for a MiTM downgrade attack. Parallelization
of the Bleichenbacher attack was first mentioned by Klı́ma
et al. [36], who proposed to parallelize phase 2 of the attack
Section II-C in case of multiple possible ranges, in a round
robin manner on a single available server. Böck et al. [11] men-
tioned the possibility of using multiple servers to parallelize
the attack. However, they have not given a concrete method
of doing this, and did not address the inherent limitation of
trivial parallelization methods.

Limitations of Trivial Parallelization. A trivial paralleliza-
tion method for the Bleichenbacher attack is to parallelize
multiple queries with different values for si in each phase
of the attack; this will allow us to find the correct value
faster. We can also use the approach of Klı́ma et al. [36]
if we have multiple ranges in phase 2. Another approach
is to parallelize the multiple identical queries for error cor-
rection in Bleichenbacher and Manger attacks mentioned in
Section VI-B. However, both Bleichenbacher and Manger
attacks are adaptive chosen ciphertext attacks, requiring at least
log2N sequential queries. This is true even if we have an
unlimited number of oracles.

Parallelization via the Closest Vector Problem. A new
type of parallelization is possible by representing the problem
as a variant of the Closest Vector Problem (CVP) and solving
it with the LLL efficient lattice reduction technique [39]. Our
main observation is that our adaptive attack can be parallelized
by creating multiple parallel attacks against copies of the same
ciphertext starting from different initial blinding values. We
can then stop each attack after a predetermined number of
adaptive queries, and combine the partial information recov-
ered in each attack into a full plaintext recovery by using CVP.

A. Parallelization of the Manger Attack.

At each point in the Manger attack (after the initial blinding
in phase 1), we know that m · s mod N is inside the interval
[a, b], where m is the unknown plaintex, s is the known
blinding value, N is the RSA modulus, and the attack’s goal is
to decrease the size of the interval [a, b]. During each adaptive
step of the attack, the size of the interval is reduced. When
|[a, b]| = 1, we know that a = m ·s mod N , and can recover
the original plaintext by calculating m = a · s−1 mod N . If

Draf
t-C

on
fide

nti
al

we can approximate halve the size of the interval in each step,
we can complete the attack after ≈ log2N adaptive queries.

We look at the scenario where we run k attacks in parallel,
but only have time for i adaptive queries for each attack. For
each attack j after i queries the interval is [aij , b

i
j]. The number

of information bits we learned about the value of m·s mod N
from the attack so far is given by Iij = log2N−log2 (bij − aij)
If after i adaptive queries

∑k
j=1 I

i
j > log2N we can recover

the value of m. We write k linear equations of the form

m · sj − aij mod N < 2log2 (bij−a
i
j)

and recover m by solving CVP using an LLL lattice reduction
algorithm. Full details about how to set up the lattice and how
to interpret the short vectors that the LLL algorithm produces
can be found in the full version of the paper.

Analyzing the Parallel Attack. We would like to analyze
the trade-off between the number of adaptive queries and
the number of parallel oracles. In the Manger attack the
blinding phase requires on average 128 parallel queries, and
gives us 8 bits of information on the plaintext. The next two
phases (called step 1 and 2 in the original paper) are harder
to analyze, but experiments show that they usually require
40 − 100 adaptive queries and give us 8 − 12 extra bits of
information. After that, each adaptive query gives us ≈ 1 bit
of information. For RSA modulus of 2048 bits the original
Manger attack without blinding requires 2100 adaptive queries
and just one oracle (which requires negligible computation).
On the other extreme we can try a fully parallelized attack
using only the blinding phase. This will require approximately
128 · 256 = 32768 parallel queries, that will result in 256
equations giving us 8 bits each. Recovering the plaintext will
require us to reduce a relatively large lattice of dimension
≈ 256, which requires a considerable amount of computation.
A more efficient trade-off will be to run several partial adaptive
attacks in parallel.

Parallel Manger Attack Simulation. We ran a simulation to
test the feasibility of performing a MiTM on a TLS connection
and a 2048 bits RSA with multiple parallel partial Manger
attacks. We assume that we have 30 seconds before the TLS
connection will timeout and that each TLS handshakes takes
about 0.05 seconds (which is the actual time measured on
a Core i7-7500U CPU @ 2.70GHz). We allow each of the
parallel attacks to have 560 adaptive oracle queries (leaving
us 2 seconds for the lattice reduction and finalizing the
handshake). We simulated a parallel attack using 5 servers
(the minimal number of servers required to fit at least 2048
queries in 30 seconds is 4, but due to overheads we require at
least 5 servers).

We start by running the blinding phase in parallel until
we get 5 valid blinding values. We then use our remaining
queries to continue the 5 attacks in parallel. As before, we
ran a simulation of the attack with 5 oracles 500000 times.
With probability 0.001 we got at least 438 bits of information
from each of the 5 attacks, or a total of more than 2190 bits.
This is more than the required number of bits to recover the

plaintext. We successfully implemented and tested a proof of
concept of the lattice reduction and were able to perform the
plaintext recovery using the LLL algorithm in sage[55] with
a negligible run time of less than 0.01 seconds (running on a
Intel Corei7-4790 CPU @ 3.6GHz).

B. Parallelization of the Bleichenbacher Attack.

The Bleichenbacher attack can also be parallelized in the
same way as we have shown for the Manger attack. We assume
k parallel attacks. For each attack we start with a different
blinding value, such that for attack number j we know that
2B < s0j < 3B − 1. After i adaptive queries we learn that
ai < sij < bi.2 Using this information we can recover the
plaintext as we have done for the Manger attack.

Analyzing the Parallel Attack. As the Bleichenbacher
attack has a much higher query complexity than the Manger
attack, we will require a large number of servers to attack.
However, if we have k servers, running k attacks in parallel
is very inefficient, due to the high cost of the first blinding
phase. Instead we use the fact that each adaptive step of the
attack includes many queries that can be done in parallel. We
start by using all servers for multiple parallel queries until
we find a small number of blinded values (e.g. 5 as in the
Manger attack). We then split the k servers evenly between
the blinded values to create multiple attacks. For each blinded
value, multiple servers will be used to run the parallel queries
required for each adaptive step.

VIII. DISCUSSION AND CONCLUSIONS

In this work we have answered negatively the question
”Are modern implementations of PKCS #1 v1.5 secure against
padding oracle attacks?”. The systemic re-discovery of Ble-
ichenbacher’s attack on RSA PKCS #1 v1.5 encryption over
the last 20 years has shown that the mitigations requirements
are unrealistic towards developers. Among the nine popular
implementations we surveyed, only two successfuly survived
our analysis. The insistence that protocols preserve this broken
padding standard still have consequences today, reaching even
the latest version of TLS 1.3 released in August 2018.

A. Recommendation for mitigations

As we have seen, it is very hard to implement a completely
secure and side channel free PKCS #1 v1.5 based RSA key
exchange for TLS. We propose several recommendations to
help reduce the protocol’s vulnerability to our attacks.

Deprecation of RSA key exchange. The safest mitigation
is to deprecated the RSA key exchange and switch to (Elliptic
Curve) Diffie-Hellman key exchanges. This might be hard due
to backward compatibility issues.

Certificate separation. If RSA key exchanges must be
supported, it should be done with a dedicated public key that
does not allow for signing. If multiple versions of TLS are
supported, keys should not be re-used across versions in order

2With low probability we might have more than one possible domain, and
in that case we can take the domain from one of the previous queries

Draf
t-C

on
fide

nti
al

to prevent downgrade attacks. If multiple TLS servers are used,
each server should use a different public key if possible to
prevent parallelization of the attack.

Constant-time code and safe API. The decryption code
should be constant-time, with no branching or memory ac-
cesses depending on the plaintext (e.g. as achieved in the
BoringSSL and BearSSL code). Most of the APIs that we
have seen to the decryption function do not allow the calling
code to pass the required plaintext size. APIs that pass the
expected plaintext length to the unpadding function are safer,
since they make it easier to implement the code in constant-
time, and when a remaining side channel exists, it will result
in a ”weaker” Oracle that greatly increases the amount of time
required for an attack.

Using large RSA keys. The minimal threshold for de-
cryption using Bleichenbacher and Manger type attacks is
o(number of bits in N) of consecutive calls to the oracle.
Using larger keys (at least 2048bit) will require more time
for the attack and might make MiTM attack less practical.

Handshake timeouts. It is harder to do a MiTM attack when
the TLS handshake timeout is very short. Clients should use
short TLS timeouts, and make sure they are resilient to any
attack that can lengthen the timeout (such as the TLS warning
alerts attack against Firefox[4]).

Speed limitation. As RSA key exchanges are only a small
fraction of today’s TLS traffic[1, 45], limiting the speed of
allowed RSA decryptions makes MiTM attacks less practical.

Dedicated hardware for running sensitive cryptographic
code. Side channel attacks are extremely difficult to defend
against. Critical and sensitive operations such as private key
decryption should not be run on a hardware shared with other
code if possible.

B. Future work

Timeouts in TLS client. As we have seen in this work
and previous works [4], the possibility of doing some MiTM
attacks depends strongly on the amount of time the attacker has
before the client gives up on the handshake. Clients that have
long handshake timeouts (e.g. curl and git) or are vulnerable
to a ”timeout extension” attack (e.g. Firefox) put their users
at risk. A systematic review of different client’s timeouts con-
figuration and their resilience to ”timeout extension” attacks
is required.

Keyless TLS implementations. Many (often private) TLS
implementations segregate private key operations from the
protocol implementation by having a keyless server responding
to signature and decryption requests from keyless clients.
PKCS #1 v1.5 verification is not always done from the keyless
server and decrypted ciphertexts of variable-length passed to
the keyless clients can be passively observed from a privileged
network position. A review of available implementations and
standards (like LURK [43]) is needed.

REFERENCES

[1] “The ICSI Notary,” http://notary.icsi.berkeley.edu/
#connection-cipher-details.

[2] O. Acıiçmez, “Yet another microarchitectural attack:
Exploiting I-Cache,” in CSAW, 2007.

[3] O. Acıiçmez, S. Gueron, and J. Seifert, “New branch
prediction vulnerabilities in OpenSSL and necessary soft-
ware countermeasures,” in IMA Int. Conf., 2007.

[4] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,
M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Z. Béguelin, and P. Zimmermann, “Imperfect forward
secrecy: How Diffie-Hellman fails in practice,” in CCS,
2015.

[5] N. J. AlFardan and K. G. Paterson, “Lucky thirteen:
Breaking the TLS and DTLS record protocols,” in IEEE
SP, 2013, pp. 526–540.

[6] T. Allan, B. B. Brumley, K. E. Falkner, J. van de
Pol, and Y. Yarom, “Amplifying side channels through
performance degradation,” in ACSAC, 2016.

[7] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato,
G. Steel, and J. Tsay, “Efficient padding oracle attacks
on cryptographic hardware,” in CRYPTO, 2012.

[8] M. Ben-Or, B. Chor, and A. Shamir, “On the crypto-
graphic security of single RSA bits,” in STOC.

[9] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.
[10] D. Bleichenbacher, “Chosen ciphertext attacks against

protocols based on the RSA encryption standard
PKCS #1,” in CRYPTO, 1998.

[11] H. Böck, J. Somorovsky, and C. Young, “Return of
Bleichenbacher’s oracle threat (ROBOT),” in USENIX
Security, 2018.

[12] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A. Sadeghi, “Software grand exposure:
SGX cache attacks are practical,” in WOOT, 2017.

[13] J. V. Bulck, F. Piessens, and R. Strackx, “SGX-Step: A
practical attack framework for precise enclave execution
control,” in SysTEX@SOSP, 2017.

[14] ——, “Nemesis: Studying microarchitectural timing
leaks in rudimentary CPU interrupt logic,” in CCS, 2018.

[15] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried,
S. Cohney, M. Green, N. Heninger, R.-P. Weinmann,
E. Rescorla, and H. Shacham, “A systematic analysis of
the Juniper Dual EC incident,” in CCS, 2016.

[16] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,”
RFC 2246, Jan. 1999.

[17] T. Dierks and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.1,” RFC 4346, Apr. 2006.

[18] ——, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246, Aug. 2008.

[19] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. M.
Tullsen, “Prime+Abort: A timer-free high-precision L3
cache attack using intel TSX,” in USENIX Security, 2017.

[20] T. Duong and J. Rizzo, “Here come the ⊕ ninjas,” 2011.
[21] D. Evtyushkin, D. Ponomarev, and N. B. Abu-Ghazaleh,

http://notary.icsi.berkeley.edu/#connection-cipher-details
http://notary.icsi.berkeley.edu/#connection-cipher-details

Draf
t-C

on
fide

nti
al

“Understanding and mitigating covert channels through
branch predictors,” TACO, vol. 13, no. 1, 2016.

[22] D. Evtyushkin, D. V. Ponomarev, and N. B. Abu-
Ghazaleh, “Jump over ASLR: attacking branch predictors
to bypass ASLR,” in MICRO, 2016.

[23] D. Evtyushkin, R. Riley, N. B. Abu-Ghazaleh, and
D. Ponomarev, “BranchScope: A new side-channel attack
on directional branch predictor,” in ASPLOS, 2018.

[24] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of
microarchitectural timing attacks and countermeasures on
contemporary hardware,” J. Cryptographic Engineering,
vol. 8, no. 1, 2018.

[25] Q. Ge, Y. Yarom, and G. Heiser, “No security without
time protection: We need a new hardware-software con-
tract,” in APSys, Aug. 2018.

[26] D. Genkin, L. Valenta, and Y. Yarom, “May the fourth
be with you: A microarchitectural side channel attack on
several real-world applications of Curve25519,” in CCS,
2017.

[27] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom,
“Drive-by key-extraction cache attacks from portable
code,” in ACNS, 2018.

[28] D. Gruss, R. Spreitzer, and S. Mangard, “Cache tem-
plate attacks: Automating attacks on inclusive last-level
caches,” in USENIX Security, 2015.

[29] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,
“Flush+Flush: A fast and stealthy cache attack,” in
DIMVA, 2016.

[30] M. S. Inci, B. Gülmezoglu, G. Irazoqui, T. Eisenbarth,
and B. Sunar, “Cache attacks enable bulk key recovery
on the cloud,” in CHES, 2016.

[31] Intel, “Speculative execution side channel mitigations,”
May 2018.

[32] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared
cache attack that works across cores and defies VM
sandboxing - and its application to AES,” in IEEE SP,
2015, pp. 591–604.

[33] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar,
“Lucky 13 strikes back,” in ASIA CCS, 2015.

[34] T. Jager, S. Schinzel, and J. Somorovsky, “Bleichen-
bacher’s attack strikes again: Breaking PKCS#1 v1.5 in
XML encryption,” in ESORICS, 2012.

[35] T. Jager, J. Schwenk, and J. Somorovsky, “On the secu-
rity of TLS 1.3 and QUIC against weaknesses in PKCS#1
v1.5 encryption,” in CCS, 2015.

[36] V. Klı́ma, O. Pokorný, and T. Rosa, “Attacking RSA-
based sessions in SSL/TLS,” in CHES, 2003.

[37] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Haburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwartz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in IEEE SP, 2019.

[38] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring fine-grained control flow inside
SGX enclaves with branch shadowing,” in USENIX Se-
curity, 2017.

[39] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring

polynomials with rational coefficients,” Mathematische
Annalen, vol. 261, no. 4, 1982.

[40] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-
level cache side-channel attacks are practical,” in IEEE
SP, 2015.

[41] J. Manger, “A chosen ciphertext attack on RSA optimal
asymmetric encryption padding (OAEP) as standardized
in PKCS #1 v2.0,” in CRYPTO, 2001.

[42] C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk,
S. Schinzel, and E. Tews, “Revisiting SSL/TLS im-
plementations: New Bleichenbacher side channels and
attacks,” in USENIX Security, 2014.

[43] D. Migault and I. Boureanu, “LURK extension ver-
sion 1 for (D)TLS 1.2 authentication,” IETF, Internet-
Draft draft-mglt-lurk-tls12-01, 2018.

[44] A. Moghimi, G. Irazoqui, and T. Eisenbarth,
“Cachezoom: How SGX amplifies the power of
cache attacks,” in CHES, 2017.

[45] Mozilla, “SSL handshake key exchange algorithm for full
handshake,” https://mzl.la/2BQjcMO.

[46] OpenSSL, “RSA public encrypt,” https://www.openssl.
org/docs/man1.0.2/crypto/RSA private decrypt.html.

[47] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The spy in the sandbox: Practical cache
attacks in JavaScript and their implications,” in CCS,
2015.

[48] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and countermeasures: The case of AES,” in CT-RSA,
2006.

[49] C. Percival, “Cache missing for fun and profit,” in
Proceedings of BSDCan, 2005.

[50] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds,” in CCS, 2009.

[51] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method
for obtaining digital signatures and public-key cryptosys-
tems,” Commun. ACM, vol. 21, no. 2, 1978.

[52] E. Ronen, K. G. Paterson, and A. Shamir, “Pseudo
constant time implementations of TLS are only pseudo
secure,” in CCS, 2018.

[53] PKCS #1 v2.2: RSA Cryptography Standard, RSA Lab-
oratories, 2012.

[54] S. Schmidt, “Introducing s2n, a new open source tls
implementation,” 2015.

[55] The Sage Developers, SageMath, the Sage Mathematics
Software System (Version 8.3), www.sagemath.org, 2018.

[56] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and
H. Miyauchi, “Cryptanalysis of DES implemented on
computers with cache,” in CHES, 2003.

[57] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “STACCO:
differentially analyzing side-channel traces for detecting
SSL/TLS vulnerabilities in secure enclaves,” in CCS,
2017.

[58] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepa-
thy: Leveraging shared resource attacks to learn DNN
architectures,” CoRR, vol. abs/1808.04761, 2018.

https://mzl.la/2BQjcMO
https://www.openssl.org/docs/man1.0.2/crypto/RSA_private_decrypt.html
https://www.openssl.org/docs/man1.0.2/crypto/RSA_private_decrypt.html
www.sagemath.org

Draf
t-C

on
fide

nti
al

1 int BN2binpad((bn, to)){
2 //bn is big number (storing the RSA plaintext)
3 //to is the output buffer
4 //BN_BYTES is the number of bytes in each bn word
5

6 i = BN_num_bytes(bn);
7 tolen=i
8 while (i--) {
9 l = bn[i / BN_BYTES];

10 *(to++) = (unsigned char)
11 (l>> (8 * (i % BN_BYTES))) & 0xff;
12 }
13 return tolen;
14 }

Listing 5. Pseudocode of big number serialization functions

[59] Y. Yarom, “Mastik: A micro-architectural side-channel
toolkit,” cs.adelaide.edu.au/∼yval/Mastik/Mastik.pdf,
2017.

[60] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack,” in
USENIX Security, 2014.

[61] X. Zhang, Y. Xiao, and Y. Zhang, “Return-oriented
Flush-Reload side channels on ARM and their implica-
tions for Android devices,” in CCS, 2016.

[62] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-tenant side-channel attacks in PaaS clouds,” in
CCS, 2014.

APPENDIX A
VULNERABILITIES DESCRIPTION

A. OpenSSL TLS Implementation

Perhaps aware of the side channel issues in its RSA
decryption API, OpenSSL does not use the code described
in Section IV-B for its own TLS implementation. Instead,
OpenSSL reimplemented the RSA PKCS #1 v1.5 padding
verification as part of its TLS protocol code. This constant time
implementation does not appear to be vulnerable to a cache-
based padding oracle attack. However, OpenSSL’s code does
contain two side channel vulnerabilities in its data conversion
and raw RSA decryption routines which we now describe.

Leaky Data Conversation. As mentioned in Section IV, the
big numbers representing the RSA ciphertext and plaintext are
typically saved as an array of 32-bit words, while the result
of the PKCS #1 v1.5 padding is an array of bytes. To convert
the data from one representation to the other, OpenSSL uses
a serialization function which takes as input a big number
and serializes it into a byte array (where index 0 is the most
significant byte). In order not to create a padding oracle, it
is important that the serialization function be written in a
constant-time manner, and not leak the length of the RSA
plaintext during the serialization process.

The pseudocode of OpenSSL’s serialization function is
presented in Listing 5. Notice the while loop in Line 8,
which performs as many iterations as the number of non-
zero bytes of the RSA plaintext, resulting in an extremely
efficient Manger-type padding oracle. Traditionally, mounting
such precise microarchitectural attacks is difficult, as a single

loop iteration takes less time than the channel’s temporal
resolution. However, recent works [13, 14, 44] have shown
that mounting high precision side channel attacks is possible
in the case of trusted execution environments (e.g., Intel SGX),
often with cycle-accurate resolution.

B. Amazon s2n

S2n is Amazon’s implementation of the TLS protocol, used
as part of Amazon Web Services. It simplifies the OpenSSL
TLS implementation, removing uncommon and deprecated
TLS configurations. The implementation of RSA decryption
(Listing 6) invokes the OpenSSL RSA private decrypt API
function to process and remove the PKCS #1 v1.5 padding
(Line 6). We have already discussed the weakness due to the
use of the OpenSSL function (Section IV-B). We now discuss
another vulnerability in the s2n code.

Leaky PKCS #1 v1.5 Verification. In case the decryption
and PKCS #1 v1.5 verification succeeds and the output is of
the expected length, s2n copies the data to the output array
(Line 7). Moreover, the decision of whether to copy and the
copy itself is done in constant time to avoid leaking the result
of the result of the PKCS #1 v1.5 unpadding.

However, the s2n API relies on the error status returned
from OpenSSL to identify padding failures or mis-formatted
output. Thus, s2n uses an if macro, which compiles to a
conditional branch (see Line 8), which yields an FFFT oracle.

C. MbedTLS

MbedTLS aims at providing a portable, easy to use and
to read implementation of the TLS protocol and is designed
primerly to be used in low powered embedded devices. We
have identified vulnerabilities in both the data conversion
and the PKCS #1 v1.5 verification stages of the mbedTLS
implementation which we now describe.

Leaky PKCS #1 v1.5 Verification. Listing 7 shows the
relevant parts of the mbedTLS PKCS #1 v1.5 verification
For brevity we omit the padding format and plaintext length
validation, which execute in constant-time. The rest of the
code, however uses conditional branches to handle padding
validation failures (Lines 7–10) and incorrect plaintext length
(Lines 12–15). Thus, despite the constant-time validation, the
following form of oracles are still exposed.

• Potentially Leaky Comparison. First, the comparison in
Line 6 may be implemented using conditional statements,
which would leak via branch prediction. This does not
happen in our test environment, where the comparison is
implemented using a conditional set instruction, which
to the best of our knowledge executes in constant-time.
However without a guarantee that the compiler will use a
constant-time implementation there is a potential for a leak
in other environments.

• Length Dependant Branches. Both if statements in Lines 7
and 12 can be exploited for a branch prediction attack. The
former allows a FFTT Bleichenbacher oracle and the latter
allows an FFFT oracle variant. In fact, the oracle is slightly

cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

Draf
t-C

on
fide

nti
al

1 int s2n_rsa_decrypt(priv, in, out){
2 unsigned char intermediate[4096];
3 const s2n_rsa_private_key *key = &priv->key.rsa_key;
4 S2N_ERROR_IF(s2n_rsa_private_encrypted_size(key) > sizeof(intermediate), S2N_ERR_NOMEM);
5 S2N_ERROR_IF(out->size > sizeof(intermediate), S2N_ERR_NOMEM);
6 int r = RSA_private_decrypt(in->size, in->data, intermediate, key->rsa, RSA_PKCS1_PADDING);
7 GUARD(s2n_constant_time_copy_or_dont(out->data, intermediate, out->size, r != out->size));
8 S2N_ERROR_IF(r != out->size, S2N_ERR_SIZE_MISMATCH);
9 return 0;

10 }

Listing 6. Pseudocode of Amazon s2n’s wrap for OpenSSL’s API

1 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt(
2 ilen, olen, input, output, output_max_len) {
3 ...
4 //Omited code checks for valid padding and

length of decrypted plaintext
5

6 bad |= (pad_count < 8);
7 if(bad){
8 ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
9 goto cleanup;

10 }
11

12 if(ilen - (p - buf) > output_max_len){
13 ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
14 goto cleanup;
15 }
16

17 *olen = ilen - (p - buf);
18 memcpy(output, p, *olen);
19 ret = 0;
20

21 cleanup:
22 mbedtls_zeroize(buf, sizeof(buf));
23 return(ret);
24 }

Listing 7. MbedTLS’s unpadding function

1 size_t mbedtls_clz(x){
2 // x is the RSA decrypted plaintext
3 // biL is the number of bits in limb (typ. 64)
4 size_t j;
5 mask = 1 << (biL - 1);
6

7 for(j = 0; j < biL; j++){
8 if(x & mask) break;
9 mask >>= 1;

10 }
11 return j;
12 }

Listing 8. MbedTLS’s bit length checking function function

stronger than a standard FFFT oracle because the test is
one sided, i.e. it only checks for maximum size instead of
checking for exact size.

• Length Dependant Early Termination. Finally, due
to early termination on bad inputs, the code that copies
to the output (Line 18) is only executed if the plaintext
is PKCS #1 v1.5 conforming. Thus we can implement an
FFFT oracle via an instruction cache attack, monitoring
either the call to memcpy or the code of memcpy itself.

Leaky Data Conversion. The last step in the implementation
of RSA decryption in mbedTLS is to copy the plaintext to the
output. As discussed in Section IV, there is no a-priory method
for determining the plaintext’s length, and applications can

1 mp_to_fixlen_octets(mp, str, length)
2 {
3 // mp is a number encoded in little endian
4 // str is an array of length bytes containing
5 // a big endian encoding of mp
6 int ix, pos = 0;
7 unsigned int bytes;
8 bytes = mp_unsigned_octet_size(mp);
9 /* place any needed leading zeros */

10 for (; length > bytes; --length) {
11 *str++ = 0;
12 }
13 .../* code for convering a little-endian large
14 * number mp into a big-endian fixed-length
15 * byte array str (omitted for brevity) */
16 }

Listing 9. Data Conversion in NSS

only determine the length after decryption. To determine the
length, mbedTLS scans the words that represent the plaintext
from the most significant to the least significant, looking for a
non-zero word. In a padding oracle attack, this is very likely
to be the first word of the plaintext. MbeTLS then scans the
bits of the word to find the most significant non-zero bit. This
scan, shown in Listing 8, loops over the bits, from the most
significant to the least significant (Line 7), checking for a non-
zero bit (Line 8). An adversary that can count the number
of iterations executed can learn the leading number of zero
bits, which can be used for a Manger type oracle. As in
Appendix A-A, such attacks are unfesible for unprivileged
adversaries, but can be performed by a root adversary attacking
a code running in trusted execution environment (e.g., Intel
SGX). Finally, we note that the adversary only needs to deter-
mine whether the loop body gets executed for implementing
an Interval oracle (see Section II-E).

D. Mozilla NSS

Mozilla’s Network Security Services (NSS) library is the
cryptographic engine often used in applications developed
by the Mozilla project. NSS implements countermeasures
for padding oracle attacks, however, the TLS code ignores
the possibility of leakage through microarchitectural channels
Consequently, the TLS implementation exposes padding oracle
in each of the three stages of handling PKCS #1 v1.5 padding.

Leaky Data Conversion. Listing 9 shows a leak in the data
conversion stage. The code is the start of the function mp -
to fixlen octets, which converts a large number into a fixed-
length byte array. The function first determines the number
of bytes required for storing the number (Line 8). Next, it

Draf
t-C

on
fide

nti
al

1 RSA_DecryptBlock(key, output, outputLen,
2 maxOutputLen, input, inputLen)
3 {
4 ...
5 rv = RSA_PrivateKeyOp(key, buffer, input);
6 if (rv != SECSuccess)
7 goto loser;
8

9 /* XXX(rsleevi): Constant time */
10 if (buffer[0] != RSA_BLOCK_FIRST_OCTET ||
11 buffer[1] != RSA_BlockPublic) {
12 goto loser;
13 }
14 *outputLen = 0;
15 for (i = 2; i < modulusLen; i++) {
16 if (buffer[i] == RSA_BLOCK_AFTER_PAD_OCTET) {
17 *outputLen = modulusLen - i - 1;
18 break;
19 }
20 }
21 if (*outputLen == 0)
22 goto loser;
23 ...
24 PORT_Memcpy(output, buffer + modulusLen - *

outputLen, *outputLen);
25 return SECSuccess;
26

27 loser:
28 PORT_Free(buffer);
29 failure:
30 return SECFailure;
31 }

Listing 10. NSS’s PKCS #1 v1.5 Verification function

zero-pads the output byte array, so that the final output is
exatly length bytes (Lines 10–12). Finally, it converts the large
number m from its little-endian representation to a big-endian
byte array representation (omitted for brevity).

Unfortunately, mp to fixlen octets does not perform the
padding in constant time, thus leaking the number of leading
zeros in the RSA decrypted plaintext to an adversary that can
count (via the cache side channel) the number of iterations
in the loop in Lines 10–12. Furthermore, a branch prediction
attack can determine whether the body of the loop executed,
allowing a Manger-type oracle.
Leaky PKCS #1 v1.5 Verification. We now describe
the leaks from the PKCS #1 v1.5 verification code in NSS
(Listing 10). The code performs a textbook verification of the
PKCS #1 v1.5 format, e.g. Lines 10 and 11 check the values
of the first two bytes in the message.

Unfortunately, the code in Listing 10 terminates early in
case of verification failure. Thus, using a branch prediction
attack to monitor any of the if statements in the code yields an
TTTT-type padding oracle. Moreover, in case that the checks
in Lines 10 and 11 are compiled into two differnet branches
this can allow for a Manger type Oracle. Furthermore, as
in Appendix A-C, monitoring the call to PORT Memcpy
(Line 24) using a cache side channel yields a stronger variant
of FTTT-type padding oracle, as it only checks for zero
anywhere after the first 2 bytes.
Leaky Padding Oracle Mitigations. Finally, as in OpenSSL
(Listing 2), the NSS code responsible for mitigating padding
oracle attacks checks the results of the PKCS #1 v1.5 ver-

1 wc_RsaFunctionSync(in, inLen, out, outLen, key)
2 {
3 ... // code for perfoming RSA decryption of in
4 // result is stored in temp
5 if (ret == 0) {
6 len = mp_unsigned_bin_size(tmp);
7 while (len < keyLen) {
8 *out++ = 0x00;
9 len++;

10 }
11 ...
12 }
13 ...
14 }

Listing 11. WolfSSL’s RSA decryption conversion

1 void nettle_mpz_to_octets(length, *s, x, sign){
2 // convert x in little endian big number to
3 // a big endian byte attay representation s
4 // of length bytes
5 uint8_t *dst = s + length - 1;
6 size_t size = mpz_size(x);
7 size_t i;
8

9 for (i = 0; i<size; i++) {
10 mp_limb_t limb = mpz_getlimbn(x, i);
11 size_t j;
12 for (j = 0; length && j<sizeof(mp_limb_t); j++){
13 *dst-- = sign ˆ (limb & 0xff);
14 limb >>= 8;
15 length--;
16 }
17 }
18 if (length) memset(s, sign, length);
19 }

Listing 12. GnuTLS’s Data Conversion function

ification procedure using an if statement that translates to a
conditional branch. Thus, monitoring this branch as done for
Section IV-B results in a FFFF-type padding oracle.

E. WolfSSL

WolfSSL is a TLS library aimed at embedded devices. As
in NSS, the WolfSSL code exposes oracles in all stages of
PKCS #1 v1.5 handling.
Leaky RSA Decryption Routine. After performing RSA
decryption, WolfSSL pads the plaintext to the length of the
RSA modulus (Lines 7–10 in Listing 11) using a while loop.
The number of iterations this loop performs leaks the number
of leading zero bytes, exposing a Manger oracle.
Leaky PKCS #1 v1.5 Verification and Padding Oracle
Mitigations. Additionally WolfSSL uses a naive, variable
time code for PKCS #1 v1.5 verification, leaking Manger
and FFTT-type padding oracles. Moreover, the padding oracle
mitigation code leaks FFTT- and FFFF-type padding oracles
through the microarchitectural channels.

F. GnuTLS

GnuTLS is another popular implementation of the TLS
protocol. Like WolfSSL and NSS, GnuTLS does not use
constant time code for the PKCS #1 v1.5 verification, resulting
is numerous side-channel-observable padding oracles.
Leaky Data Conversion. To convert RSA-decrypted plaintext
from a little-endian big number format to big-endian byte

Draf
t-C

on
fide

nti
al

1 int pkcs1_decrypt(key_size, m, length, message){
2 TMP_GMP_DECL(em, uint8_t);
3 uint8_t *terminator;
4 size_t padding;
5 size_t message_length;
6 int ret;
7 TMP_GMP_ALLOC(em, key_size);
8 nettle_mpz_get_str_256(key_size, em, m);
9 /* Check format */

10 if (em[0] || em[1] != 2){
11 ret = 0;
12 goto cleanup;
13 }
14 ...
15 memcpy(message, terminator+1, message_length);
16 *length = message_length;
17 ret = 1;
18 cleanup:
19 TMP_GMP_FREE(em);
20 return ret;
21 }

Listing 13. GnuTLS’s PKCS #1 v1.5 verification

1 int proc_rsa_client_kx(session, data){
2 ...
3 // we do not need strong random numbers here.
4 ret = gnutls_rnd(GNUTLS_RND_NONCE, rndkey.data,

rndkey.size);
5 ...
6 ret = gnutls_privkey_decrypt_data(session->

internals.selected_key, 0, &data, &plaintext);
7 if (ret<0 || plaintext.size!=GNUTLS_MASTER_SIZE) {
8 randomize_key = 1;
9 ...

10 }
11 ...
12 if (randomize_key != 0){
13 session->key.key.data = rndkey.data;
14 session->key.key.size = rndkey.size;
15 rndkey.data = NULL;
16 } else {
17 session->key.key.data = plaintext.data;
18 session->key.key.size = plaintext.size;
19 }
20 return ret;
21 }

Listing 14. Pseudocode of GnuTLS’s padding oracle mitigation

array format, GnuTLS uses code from the Nettle cryptographic
library3. Listing 12 shows the data conversion code in Nettle.
Line 18 conditionally calls memset when there are leading
zeros in the plaintext, exposing a Manger oracle.
Leaky PKCS #1 v1.5 Verification. GnuTLS also relies on
leaky Nettle for PKCS #1 v1.5 verification (Listing 13). The
branch in Line 10 allows for a Manger type oracle or a TTTT
oracle. The conditional call to memcpy in Line 15 exposes
an FFTT oracle.
Leaky Padding Oracle Mitigations. The GnuTLS padding
oracle mitigation code is also not constant-time, see List-
ing 14 for a simplified version. In particular, the branches in
Lines 7 and 12 yield a FFTT Bleichenbacher oracle. Another
potential security issue in the code present in Listing 14 is
the comment “we do not need strong random numbers here”
(Line 3). We note that predicting the random session key

3https://www.lysator.liu.se/∼nisse/nettle/

used for padding oracle mitigation, renders the mitigation
ineffective. This is since the attacker can use this session key
to generate the correct client finish message, thereby causing
the server to complete the TLS handshake. This results in
a remote Bleichenbacher FFTT oracle that does not require
any side channel leakage. We leave further exploration of bad
randomness used in padding oracle mitigations to future work.

https://www.lysator.liu.se/~nisse/nettle/

	Introduction
	Our Contribution.
	Software Versions and Responsible Disclosure

	Background
	Padding Oracle Attacks on TLS
	RSA PKCS #1 v1.5 Padding
	Bleichenbacher's Attack on PKCS #1 v1.5 Padding
	Manger's Attack
	The Interval Oracle Attack
	Notation and Additional Padding Oracle Attacks
	The TLS Mitigation for the Bleichenbacher attack
	Microarchitectural Side Channels

	Attack Model and Methodology
	Vulnerability Classification
	Data Conversion.
	PKCS #1 v1.5 Verification
	Padding Oracle Mitigations.
	Summary of the Findings.

	Experimental Results
	Attacking the OpenSSL API
	Attacking the OpenSSL Data Conversion

	Man In The Middle Attacks
	Reducing the Query Complexity of Padding Oracles
	Handling Oracle Errors

	Parallelization of the Attack
	Parallelization of the Manger Attack.
	Parallelization of the Bleichenbacher Attack.

	Discussion and Conclusions
	Recommendation for mitigations
	Future work

	Appendix A: Vulnerabilities Description
	OpenSSL TLS Implementation
	Amazon s2n
	MbedTLS
	Mozilla NSS
	WolfSSL
	GnuTLS

