$\underline{\text { Bug } 1484996 \text { - Implementing a weighted shuffle }}$

Suppose $w_{1}, w_{2} \in \mathbb{R}^{>0}$. We can think of these as two 'weights'.
Let $X_{1}, X_{2} \sim U[0,1]$ be independent random variables uniformly distributed in the unit interval.

Then

$$
\begin{aligned}
\mathrm{P}\left(X_{1}^{\left(1 / w_{1}\right)}<X_{2}^{\left(1 / w_{2}\right)}\right) & =\mathrm{P}\left(X_{1}<X_{2}^{\left(w_{1} / w_{2}\right)}\right) \\
& =\int_{0}^{1} \int_{0}^{X_{2}^{\left(w_{1} / w_{2}\right)}} 1 \mathrm{~d} X_{1} \mathrm{~d} X_{2} \\
& =\int_{0}^{1} X_{2}^{\left(w_{1} / w_{2}\right)} \mathrm{d} X_{2} \\
& =\frac{w_{2}}{w_{1}+w_{2}} \\
\mathrm{P}\left(X_{1}^{\left(1 / w_{1}\right)}>X_{2}^{\left(1 / w_{2}\right)}\right) & =\frac{w_{1}}{w_{1}+w_{2}}
\end{aligned}
$$

Equivalently, $X_{1}^{\left(1 / w_{1}\right)}>X_{2}^{\left(1 / w_{2}\right)}$ is $\frac{w_{1}}{w_{2}}$ 'times' as likely as $X_{1}^{\left(1 / w_{1}\right)}<X_{2}^{\left(1 / w_{2}\right)}$.
This motivates the following method of obtaining a weighted shuffle. Given a list of n objects with strictly-positive weights w_{1}, \ldots, w_{n}, assign each the corresponding rank $x_{i}^{\left(1 / w_{i}\right)}$ (where x_{i} is chosen uniformly at random from the unit interval), and sort the list by that rank.

