
Payment Handler API
Introduction
Flow:

1. Users grant permission to origins which provides payment handlers, such as retail or
bank sites.

2. Payment handlers are registered via service worker registration, lists of enabled
payment methods and capabilities of payment handlers are specified using
paymentManager attribute in ServiceWorkerRegistration interface.

3. When ​PaymentRequest::show() is called, UA matches and displays a list of ​payment
instruments​ which are able to handle this payment request.

4. After an instrument is selected by the user, a ​PaymentRequestEvent is fired in the target
payment handler (service worker) whose ​PaymentManager the instrument was
registered with.

5. The payment handler processes the request and provides the response to UA using
PaymentRequestEvent::respondWith()​.

Ref: ​https://www.w3.org/TR/payment-handler/#model

Proposed Architecture

Why main thread bounded instead of using background thread?

- Frequent interaction with browser UI but limited interaction (PaymentRequestEvent +
PaymentResponse) with SWs

- A bit simpler architecture on the storage part using JS-implemented XPCOM component
to utilize IndexDB directly (Push API impl. for ref.)

Implementation Subtasks:

https://www.w3.org/TR/payment-request/#dom-paymentrequest-show()
https://www.w3.org/TR/payment-handler/#dom-paymentinstrument
https://www.w3.org/TR/payment-handler/#dom-paymentinstrument
https://www.w3.org/TR/payment-handler/#dom-paymentrequestevent
https://www.w3.org/TR/payment-handler/#dfn-paymentmanager
https://www.w3.org/TR/payment-handler/#dfn-paymentmanager
https://www.w3.org/TR/payment-handler/#dom-paymentrequestevent-respondwith
https://www.w3.org/TR/payment-handler/#model

1. nsIPaymentDBService: ​JS-Implemented XPCOM component to use indexDB for
storing instrument records

- PushService.jsm
- PushDB.jsm

2. ServiceWorkerRegistration::PaymentManager
- Implemented by both ​ServiceWorkerRegistrationMainThread​ and

ServiceWorkerRegistrationWorkerThread
- PaymentInstruments​: API for interacting with the local storage (through

nsIPaymentDBService) such as set/get instrument records
3. PaymentRequest.show()​: For each paymentMethod in the request, determine which

payment handlers support this method.
- Implement a matching algorithm which interacts with nsIPaymentDBService to

find a candidate list of payment handlers
- Interact with browser UI to show candidates for user to choose
- Trigger the dispatch of PaymentRequestEvent to selected payment handlers

4. PaymentRequestEvent
- Dispatch a PaymentRequestEvent triggered by PaymentRequest.show() to the

payment handler chosen by user
- WIP Patches

- Provide UA payment responses by PaymentRequestEvent::respondWith()
- Spec Pull Request: ​Define​ PaymentRequestEvent.respondWith()

behavior.
- Implement PaymentRequestEvent::openWindow()

- Spec Issue: ​Open Window Algorithm

Reference
[1] API for accessing the target SW from SWMS:
https​://bugzilla.mozilla.org/show_bug.cgi?id=1368625
[2] ​https://www.w3.org/TR/payment-handler/
[3] BackgroundSync API: ​https://bugzilla.mozilla.org/show_bug.cgi?id=1217544
[4] Cache API:
https://blog.wanderview.com/blog/2014/12/08/implementing-the-serviceworker-cache-api-in-gec
ko/

http://searchfox.org/mozilla-central/source/dom/push/PushService.jsm
http://searchfox.org/mozilla-central/source/dom/push/PushDB.jsm
http://searchfox.org/mozilla-central/source/dom/workers/ServiceWorkerRegistration.cpp#75
http://searchfox.org/mozilla-central/source/dom/workers/ServiceWorkerRegistration.cpp#876
https://www.w3.org/TR/payment-handler/#dom-paymentinstruments
https://www.w3.org/TR/payment-handler/#dom-paymentrequestevent
https://github.com/yrliou/gecko-dev/tree/PaymentRequestEvent
https://github.com/w3c/payment-handler/pull/194
https://github.com/w3c/payment-handler/pull/194
https://github.com/w3c/payment-handler/pull/194
https://github.com/w3c/payment-handler/issues/115
https://bugzilla.mozilla.org/show_bug.cgi?id=1368625
https://bugzilla.mozilla.org/show_bug.cgi?id=1368625
https://www.w3.org/TR/payment-handler/
https://bugzilla.mozilla.org/show_bug.cgi?id=1217544
https://blog.wanderview.com/blog/2014/12/08/implementing-the-serviceworker-cache-api-in-gecko/
https://blog.wanderview.com/blog/2014/12/08/implementing-the-serviceworker-cache-api-in-gecko/

[5] Suggested architecture draft from bkelly

[6] Proposed Architecture using PBackground

Why PBackground?

- To be complied with other service worker related API, such as cache API and
background sync API, and be easier to fit into the new architecture of SW.

- Easier to support non-e10s mode in the future by migrating PBrowser to PBackground.
- Move IPC overhead from main thread of chrome process to PBackground thread.
- Easier to communicate with storages in the future using QuotaClient +

SQLite/mozStorage (Cache and backgroundsync API impl. for ref.)

