
User Blocking Considered Harmful?
An Attacker-controllable Side Channel to Identify Social Accounts

Abstract—This paper presents a practical side-channel attack
that identifies the social web service account of a visitor to an
attacker’s website. Our attack leverages the widely adopted
user-blocking mechanism, abusing its inherent property that
certain pages return different web content depending on
whether a user is blocked from another user. Our key insight is
that an account prepared by an attacker can hold an attacker-
controllable binary state of blocking/non-blocking with respect
to an arbitrary user on the same service; provided that the
user is logged in to the service, this state can be retrieved as
one-bit data through the conventional cross-site timing attack
when a user visits the attacker’s website. We generalize and
refer to such a property as visibility control, which we consider
as the fundamental assumption of our attack. Building on this
primitive, we show that an attacker with a set of controlled
accounts can gain a complete and flexible control over the data
leaked through the side channel. Using this mechanism, we
show that it is possible to design and implement a robust, large-
scale user identification attack on a wide variety of social web
services. To verify the feasibility of our attack, we perform an
extensive empirical study using 16 popular social web services
and demonstrate that at least 12 of these are vulnerable to
our attack. Vulnerable services include not only popular social
networking sites such as Twitter and Facebook, but also other
types of web services that provide social features, e.g., eBay and
Xbox Live. We also demonstrate that the attack can achieve
nearly 100% accuracy and can finish within a sufficiently
short time in a practical setting. We discuss the fundamental
principles, practical aspects, and limitations of the attack as
well as possible defenses.

1. Introduction

The Social web has become ubiquitous in our daily lives.
It includes not only popular social networking services such
as Facebook and Twitter but also other forms of web services
with social features, e.g., online services for video games
such as XBox Live and online auction/shopping sites such
as eBay. Social web services facilitate interactions between
people with similar interests. The widespread adoption of
social webs has increased not only the number of users per
service but also the number of services used by each user.
Ref. [1] reports that Internet users have an average of five
or more social accounts.

Like many other web services, social webs have security
and privacy concerns. What distinguishes social webs from

other web services is that they have an intrinsic privacy
risk; users are encouraged to share large amounts of per-
sonal/sensitive information on these services, e.g., personal
photos, health information, home addresses, employment
status, and sexual preferences. An attacker can collate var-
ious data from social web services to infer individuals’
personal information. For example, as Minkus et al. [2]
revealed, an attacker can recover a target’s purchase history
if s/he knows the target’s eBay account. The purchases may
include potentially sensitive items, e.g., gun-related items or
medical tests. To protect privacy, an eBay user may use a
pseudonym for his/her account name; even in such a case,
however, an attacker who can link an eBay account with an
account on Facebook, which encourages users to disclose
their real name, can infer the identity of the actual person
who purchased the sensitive items on eBay.

In this study, we introduce a side-channel attack that
identifies the social account(s) of a website visitor. The key
idea behind our approach is to leverage user blocking, which
is an indispensable mechanism to thwart various types of
harassment in social webs, e.g., trolling, unwanted sexual
solicitation, or cyber bullying. Because user blocking is a
generic function commonly adopted by a wide range of
social web services, an attacker can target various social
web services. In fact, our attack is applicable to at least
the following various social web services: Ashley Madison,
eBay, Facebook, Google+, Instagram, Medium, Pornhub,
Roblox, Tumblr, Twitter, Xbox Live, and Xvideos. Because
having an account with some of the services included on
this list could involve privacy-sensitive information1, any
account identification can directly lead to privacy risks.

Our attack leverages the user-blocking mechanism as
a means of generating the leaking signals used for the
side-channel attack2. More specifically, we leverage the
mechanism’s inherent property that certain pages return
different web content depending on whether or not a user is
blocked from another user. Our key insight is that an account
prepared by an attacker can hold an attacker-controllable
binary state of blocking/non-blocking, with respect to an
arbitrary user on the service, and this state can be retrieved
as one-bit data through cross-site request forgery and a
timing side channel when a user visits the attacker’s website.

1. Ashley Madison is an online dating service. Pornhub and Xvideos are
pornographic video sharing services.

2. More precisely, our side-channel attack is classified as a cross-site
timing attack. Details of the cross-site timing attacks will be described in
Section 3.1.



We specially refer to this key action as visibility control in
this paper, as an attacker is forcing another user to change
how they see certain things in the system. Building on
this primitive, we show that an attacker can use a set of
controlled accounts to construct a controllable side channel,
i.e, leaked data is completely under the attacker’s control.
Using this mechanism, we show that it is possible to design
and implement a robust, large-scale user identification attack
mechanism on a wide variety of social web services. We
note that the number of accounts required has a theoretically
logarithmic relation to the number of users to be targeted,
e.g., 20 attacker-prepared accounts are needed to cover 1
million users. The novelty of our attack is discussed further
in Section 3.3.

We note that disabling our side channel, i.e., user block-
ing, requires careful assessment as it is a crucial function
that is widely used on social webs. As we will discuss in
Section 2.2, an analysis of 223,487 Twitter users revealed
that 3,770 users have blocked more than 1,000 accounts.
Our online survey also revealed that 52.3%/41.4% of Twit-
ter/Facebook users have responded they have used the block-
ing mechanism before, and 92.4%/93.9% responded there
should not be a limit on the number of blocks. These results
suggest that neither disabling blocking nor posing a limit
on it, is desirable from the viewpoints of the actual usage
of the service and users’ expectations. Furthermore, as we
show in Section 5.3, limiting the number of user blocks per
account would not be an effective countermeasure owing to
our additional technique, user-space partitioning.

To verify the feasibility of our attack, we performed
extensive empirical studies using 16 existing social web
services. As mentioned above, we found that 12 of these
services are vulnerable to the attack. Using 20 actual ac-
counts, we found that the attack succeeds with nearly 100%
accuracy under a practical setting.

Our contributions can be summarized as follows:
• We demonstrate that the user-blocking mechanism, which

is an indispensable function widely adopted in various so-
cial web services, can be exploited as the leaking signals
for a side-channel attack that identifies user accounts.

• In addition to the side-channel attack, we develop several
techniques to accurately identify users’ accounts. We also
reveal that this attack is applicable to many currently
existing services. The attack has a high success rate of
nearly 100%, and is high-speed, taking as short as 4–8
seconds in a preferable setting, or 20-98 seconds even in
a crude environment with a large amount of delay.

• We discuss the principles, the practical aspects, and the
limitations of this study, as well as some defenses against
the attack.

2. Background: User Blocking

In this section, we first provide a technical overview
of user blocking, which serves as a side channel used for
the user identification attack. Next, we demonstrate that
simply disabling/limiting this side channel is not a desirable

Figure 1. The differences of appearance between non-blocking (left) and
blocking (right) pages on Facebook.

solution against the attack from the viewpoints of actual
usage and user expectations.

2.1. Technical Overview

User blocking is a means of blocking communication
between two users. Note that some “blocking” mechanisms
adopted by social web services are not user blocking per se
but message blocking, e.g., “muting” or “ignoring”. While
user blocking rejects a person access to your account, mes-
sage blocking filters out all the messages (or notifications)
originating from that person. Even if a person is blocked
with message blocking, this does not necessarily mean
that they do not have access to your online activities. In
this paper, we will not focus on message blocking unless
otherwise noted.

Social web services with user-blocking mechanisms
have intrinsic web pages that change content depending on
the status of the visitor, i.e., whether or not a visitor is
blocked from another person. A typical example is a user
profile data page, which provides information on a person
such as a photograph (icon), a self-introduction, affiliation,
recent posts/updates, etc. Figure 1 shows screenshots of
some Facebook profile pages. In the non-blocked state, the
user profile information is fully available; in the blocked
state, these pieces of information are hidden. In addition
to a user profile page, some social web services provide
pages that reflect similar differences. A summary of such
techniques is presented in Section 4.

To execute user blocking, a user typically clicks the
“block” button set on the profile page of the person to be
blocked or enters the account ID of the person in a text
box shown on a dedicated page for user blocking. Even
though official application programming interfaces (APIs)
for performing user blocking are not necessarily provided
on all social web services, to the best of our knowledge no
services adopt a special mechanism, such as CAPTCHA,
to prevent automated user-blocking requests. Therefore, it
is currently easy to perform the large-scale user blocking
necessary to implement our user identification attack by
using a script that emulates authentic requests or a headless
browser.

2.2. Usage and Expectations

In this subsection, we discuss how many accounts do
people block on social web services and why they do so. To
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Figure 2. Log-log CCDF of the number of user blocks per account on
Twitter. Mean value is 154.21.

TABLE 1. DEMOGRAPHY OF THE EXPECTATIONS SURVEY.

# respondents Gender Age (Years)
10–29 / 30–49 / 50–

Facebook 198 F:54 M:46 (%) 31 / 60 / 9 (%)
Twitter 170 F:56 M:44 (%) 41 / 51 / 8 (%)

answer the “how many” question, we first present statistics
derived from the data collected at “Blocked By Me” [3], a
web service that displays a list of users a person has blocked
on Twitter3. The data, comprising the number of blocked
users for 223,487 unique accounts, were collected from
March 2011 to August 2017. As an individual may have
used the web service for several times during the measure-
ment period, we adopt the maximum value of the numbers
of blocked users measured for each person. Figure 2 shows
the log-log complementary cumulative distribution function
(CCDF) of the number of blocked users per account. It
is seen that the distribution is heavy-tailed, indicating that,
although the majority of users blocked a small number of
other accounts (median = 15), a non-negligible number of
users had to block a large number of other accounts. For
instance, 3,770 users blocked more than 1,000 accounts.
Note that the rate-limit of access to Twitter API truncates the
number of blocked users at 75,000; thus, users indicated in
the figure as having blocked 75,000 users are likely to have
actually blocked more. In many cases, a person who blocks
a large number of other users may be using a shared block
list to evade various harassments. As checking the content
of such lists is not feasible, some users may have simply
cumulatively added new accounts to their block lists. These
insights account for the reason why several users have a
large number of blocked users.

Next, to answer the “why” question we recruited partic-
ipants to take an online survey. As summarized in Table 1,
the demography of the respondents shows that responses
represent a diverse, cross-section of respondents. Key find-
ings derived from the closed-ended questions are as follows:
(1) 52.3%/41.4% of Twitter/Facebook users responded that
they have used the blocking mechanism; (2) 92.4%/93.9%
of Twitter/Facebook users responded that social web service
should not limit the number of accounts a person can block

3. The data are provided on the courtesy of Gerry Mulvenna [3]. The
entire set was anonymized to protect user privacy.

on the service. This result indicates that users do not expect
to have limitations on the number of blockable users. We
also included the open-ended questions: “why do you block
other users?” and “why do you think that there should be
no limitation on the number of blocked users?” Typical
answers to the first question include “do not want to read
the unwanted messages/posts” and “not to be tracked by
strangers/trolls/ex-friends/coworkers, etc.” Typical answers
to the second question include “there are a huge number of
spam/bogus accounts” and “just adding unwanted users to
the blocklist is easy to maintain.”

The observations derived from the web service log anal-
ysis and the online survey imply that simply disabling our
side channel, user-blocking, is not a desirable countermea-
sure against the threat from the viewpoints of actual usage
of a service and users’ expectations.

3. Attack Overview

In this section, we give a brief overview of the attack. We
present the threat model and the attack flow with a concrete
example. We also elaborate on the novelty of the attack and
how it compares to some of the existing works in this area.

3.1. Threat Model

In this attack, the attacker’s goal is to determine the
social account of the visitors to her/his website. We present
two possible attack scenarios under this goal. In the first, the
attacker targets unspecified mass users in order to determine
out who visited the attacker’s website, for the purpose of,
e.g., marketing. In the second scenario the attacker targets a
limited number of users with already known identities, such
as their names or email addresses, and wants to determine
their anonymous accounts which cannot be searched for
using such identities. In both scenarios, the visitor’s privacy
is obviously breached, as the identity of the user or their
private activity is revealed to the attacker without their
consent.

Our attack employs a cross-site timing attack, which is
an attack that combines cross-site request forgery (CSRF)
and a timing attack [4]. Cross-site timing attacks bypass
the same-origin policy and enable an attacker to obtain
information using the target’s view of another site, i.e., in
our context, the attacker can know whether or not the target
user is blocked by the attacker-prepared signaling accounts.
As we detail in Section 4, the status of blocked/non-blocked
can be estimated from the time a web server of a social web
takes to load a web content, or the round-trip time (RTT), of
the profile page of a signaling account. As such, we make the
following assumptions, which we will discuss in additional
detail in Section 7.
Attack Trigger. We assume that the attacker can somehow
induce their target to visit a malicious website. For example,
the attacker uses malvertising techniques [5] or simply sends
out email messages, in which case they can also link e-
mail addresses to social accounts. Further details on this are
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discussed in Section 7.
Log-in Status. We assume that a target person has logged
into the social web services, i.e., that cookies are enabled
on the person’s web browser. This assumption plays a vital
role in the success of the attack because the logged-in status
triggers the difference between views of profiles of blocking
and non-blocking accounts. Because the majority of web
services, e.g., Facebook, have an automatic sign-in option,
we consider this assumption to be reasonable.
User Device. We assume that the target person uses a PC
when accessing the malicious website. Users of mobile plat-
forms typically access social web services through dedicated
mobile apps instead of the web interface provided for mobile
browsers. Therefore, we cannot easily apply the attack to
a mobile device. Note that our attack is effective if mobile
users access a social web service via cookie-enabled mobile
web browsers.

3.2. Attack Flow and Example

As illustrated in Figure 3, our attack has two separate
phases: the side-channel control phase and the side-channel
retrieval phase. Below, we describe the steps in each phase
with a concrete example. Note that some details are omitted
for simplicity but will be described in later sections.

I. Side-Channel Control Phase

The purpose of the side-channel control phase is to
construct user-identifiable side-channel data through user
blocking. This phase is required just once before performing
the attack.
Step 1. Target Enumeration: For a social web service of
interest, the attacker first enumerates the users who will be
the target of the attack. Let N be the number of targets.
The attacker can target either mass (randomly sampled or
even all) user accounts or a limited set of selected users
(e.g., celebrities, high-level corporate officers) according to
the attacker’s purpose. Large-scale, efficient enumeration
of social accounts can be achieved in several ways, as
in [6], [7]. Note that because this attack leverages CSRF,
whether the account is closed (e.g., private, protected) is
not a concern as long as the account is blockable.
In the example, the attacker lists a small set of N = 8 users
who will be the target of the attack. If the attack succeeds,
the attacker will be able to identify the accounts of these
eight users whenever they visit the attacker’s website while
logged onto the social web services.
Step 2. Bit Assignment: The attacker prepares m accounts
on the social web service where m is a number satisfying
2m ≥ N ; these accounts are referred to as “signaling
accounts” and denoted as Si, i = 1 . . .m. The attacker
encodes a set of target users into bit arrays with length m,
with the value of the i-th bit of each array corresponding
to “block” (1) or “do not block” (0) by account Si. The
attacker can express a maximum of 2m distinct target users,
but at the cost of increase in m, the attacker can further add
redundant bits to produce an error-correcting code.

In the example, the attacker prepares m = 3 signaling
accounts, S1, S2, and S3, with each target user is mapped
into distinct bit arrays of length m, as shown in the table.
All possible bit patterns are mapped to the users and there
are no redundant bits.

Step 3. Target Blocking: The attacker controls the sig-
naling accounts to block each target user according to the
bit array. Note that the number of blocking that must be
performed per signaling account is approximately half of
the total number of targets, as shown in the figure. It is not
difficult to see that this requirement can be controlled at
the cost of adding more redundant signaling accounts, i.e.,
the block/non-block table in the figure will become more
sparse.
In the example, S1 is configured to block Erin, Frank, Grace,
and Heidi, with the remaining four users left non-blocked
(default). S2 and S3 are configured in a similar manner.

II. Side-Channel Retrieval Phase

The purpose of the side-channel retrieval phase is to
identify the user utilizing the data retrieved through the
timing side channel. This phase is executed every time a
user accesses the attacker’s website.

Step 1. User’s Visit: When a user visits the web server
under the control of the attacker, JavaScript code is down-
loaded and is executed on the user’s browser.

Step 2. RTT Measurement: The JavaScript code measures
the time taken to load the profile of the signaling accounts by
sending HTTP requests to each of these accounts. Note that,
as this is a CSRF, the request is issued on behalf of the user’s
account. Special RTT measurements are also performed to
determine the threshold value used in the next step, but we
omit the details here.
In the example, the script issues HTTP requests to the profile
page of each of the signaling accounts — S1, S2, and S3

— and receives the measurements of 214, 128, and 223 ms,
respectively.

Step 3. User Identification: The attacker then tries to
identify the user from the measurements acquired in the
preceding step. Because the time needed to load the profile
of a blocking account exhibits a statistical difference from
that needed to load the profile of a non-blocking account,
the sequence of measured time samples can be used to build
a bit array of “blocked” and “non-blocked” states. Once the
bit array is recovered, the attacker does a lookup on the bit
array map and identifies the user.
In the example, the measurements, 214, 128, 223 ms are
compared against a threshold value of, say, 150 ms, and are
determined to be non-blocked, blocked, and non-blocked,
respectively. This result is represented as a bit array {101},
enabling the attacker to infer from the table that the user
who visited the malicious site is Carol4.

4. As we will detail in Section 5, when {000} is observed, it is still
possible to distinguish Alice from non-target users by using two special
accounts that do/don’t block all the target users.
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Figure 3. Attack overview

3.3. Novelty of the Attack

While our attack is certainly novel overall, its conceptual
novelty lies primarily in the side-channel control phase
rather than in the side-channel retrieval phase, which can
be implemented using many different existing approaches
in addition to that adopted in our implementation [4]. The
side-channel control phase is made particularly novel by its
use of the underlying concept of visibility control, which
allows for the encoding and retrieving of arbitrary bits of
data independent of what the side channel is. This flexibility
inherently enables the attack to achieve account identifica-
tion in a generic manner. By contrast, most similar methods
that exploit browser side channels focus on stealing the
content of a specific resource, limiting the acquirable data
to that related to the targeted resource. Rather than studying
such resource-specific side-channel acquisition methodolo-
gies, we questioned and exploited the design of general
systems equipped with visibility-control features, e.g., user
blocking. To the best of our knowledge, this concept has
not been previously discussed in the literature despite its
significant potential impact on nearly all major social web
services currently operating.

We now compare our work to two of the major recent
studies in this area. The goal of the first study was to retrieve
various user data (e.g., age, contacts, search history) through
several browser side-channel techniques [8]. The major dif-
ference between this work and ours is that it was some-
what focused on the development of individual techniques
to acquire resource-specific side channels. Although this
makes their methodology more powerful in the sense that
it can even reveal a user’s private information (e.g., search
history), their methodology and goals were more service-
and resource-specific. By contrast, the purpose of our work
is to find user accounts and then link these with all available
public information to which they are tied independent of the
target resource used for sending side-channel data. Another
similar study involved an attack based on browser history
stealing [9], which, in the authors’ words, shared a goal
similar to ours of user identification or de-anonymization.
This approach exploited the (now eliminated) mechanism
allowing an attacker to infer a user’s browser history to

determine if the user belongs to certain groups based on the
presence of access history to certain pages. Methodology-
wise, the concept of repetitively identifying the groups to
which a target user belongs, until to the point where the
target can be uniquely identified, is conceptually similar
to our approach. The main difference, however, is that
our method allows for the construction of such groups in
advance in an arbitrary manner. Thus, while our approach
requires some initial setup effort, it has the advantage of
being much more reliable in assuring identification (i.e., no
ambiguity remains due to a lack of groups) as long as the
side channel can be correctly retrieved.

4. User-blocking Side Channel

This section aims to demonstrate that the differences
between the time to load profile pages of blocked and non-
blocked users can be used to perform a timing attack. In the
following, we first look at the characteristics of the RTTs
measured for blocked and non-blocked accounts. Next, we
present several techniques that can increase the distinguisha-
bility of RTTs. Finally, after applying the RTT expansion
techniques, we test whether the RTTs are statistically distin-
guishable using various social web services, which include
popular social media such as Twitter and Facebook and other
web services such as eBay and XBox Live.

4.1. Characteristics of RTTs

Here, we briefly describe the setup for our experiments.
We executed a simple JavaScript code on a browser logged-
in to a service with account A. The JavaScript issues GET
requests to a page associated with an account which blocks
A, and another page associated with an account that does
not block A. Our objective is to see whether we can see the
differences in the RTT measurements associated with these
two types of accounts: blocking and non-blocking.

In the following, we characterize the measured RTTs
using three social web services, Facebook, Twitter, and Tum-
blr as the representative examples. We study other services
in the next subsection. Figure 4 shows the distributions of
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Figure 4. Distributions of RTTs for blocking and non-blocking accounts.

the measured RTTs. For Facebook, there is a clear gap be-
tween the RTT distributions for blocking and non-blocking
accounts. For Tumblr, even though two distributions are
closer, we see the difference between the distributions. We
study whether or not this slight differences can be used
as the timing side channel in Section 6. For Twitter, the
distributions suggest that there is no sufficient difference
to distinguish their RTT difference. Nevertheless, we have
discovered that it is possible to intentionally amplify their
RTT difference by posting more content to the profile page.
More details on this will be described in the next subsection.

Note that, while we see longer RTTs for non-blocking
accounts on Tumblr, we see longer RTTs for blocking
accounts on Facebook. It is natural that the profile pages of
blocking accounts are loaded quickly because the content of
these pages may be lighter than those of the profile pages of
non-blocking accounts. While not conclusive, we conjecture
that this could be because Facebook does not utilize its
server-side on-memory cache at all when generating content
for the case of blocked. In either case, we can distinguish
between the blocked and non-blocked states using the RTT
measurements.

4.2. Improving RTT Distinguishability

We present three techniques that can make the differ-
ences in the RTTs more prominent, i.e., these are the ways
to make the timing attack more successful.
Change of content size. The first technique is to place as
much information as possible on the user profile pages of the
signaling accounts. This technique can increase the time to
load the profile page when the signaling account of the page
is visible to the target, i.e., the signaling account does not
block the target. We performed a simple experiment using
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Figure 5. Distributions of RTTs for blocking and non-blocking accounts,
after filling the Twitter user profile page with content

Twitter. We prepared two Twitter accounts, one with the
default setting and another with the maximum amount of
content (texts and URL links) that appears on the profile
page. Figure 5 shows the RTT distributions after filling
the profile page with large amounts of content. Comparing
this with Figure 4 (b) which shows the RTT distributions
before adding the content, we now have a clear difference
between blocked and non-blocked RTTs, suggesting that this
technique can dramatically improve their distinguishability.

Use of different pages. Another technique is to make use
of various pages other than the user profile page. In many
cases, the page subject to blocking is the user profile page,
which displays the user’s basic information or recent posts.
However, depending on the service or their implementation,
there are cases where observable differences do not appear
on the profile page but do appear on other pages. For
example, on eBay, a user cannot prohibit another user from
accessing their profile page; however, a user can prohibit
another user from bidding on the items they list. In other
words, the content on the item page would yield a difference
depending on whether the viewing user is blocked by the
owner of the item. Leveraging this fact, by preparing an
item beforehand and making the victim send requests to the
item page instead of the profile page, the attacker would be
able to observe the RTT difference required for the attack.

Similarly, Flickr does not prohibit a blocked user from
viewing the blocker’s profile page, but it does prohibit the
blocked user from sending a message to the blocker. More
specifically, there is a page for sending a messages to other
users and, if the sender is not blocked from the receiver, a
text area and a submit button are displayed on the page;
however, if blocked, these objects are not shown and a
warning message is displayed. Such a difference may also
yield the RTT difference necessary for our attack.

In addition, some pages with AJAX-based implemen-
tation have a structure where after requesting and ren-
dering the initial HTML content, they request additional
content, e.g., a JSON content, from another URL us-
ing JavaScript’s XMLHttpRequest. In some services, the
blocked/non-blocked difference is only present in the JSON
data that is acquired afterwards, instead of in the HTML
content acquired first. The problem with this situation is
that the RTT measurement script used for cross-site timing
attacks does not actually render the acquired page content;
therefore, the RTT of the content acquired afterward from
JavaScript cannot be measured. In such cases, the attacker
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TABLE 2. SOCIAL WEB SERVICES WITH USER-BLOCKING MECHANISM.
∆0.05 SHOWS THE DIFFERENCE IN 5-PERCENT TILE VALUES FOR

BLOCKED/NON-BLOCKED RTT MEASUREMENTS. DIST. IS THE
DISTINGUISHABLITY SHOWING Y WHEN THE p-VALUE LESS THAN 0.01.

# OF USERS ARE FROM VARIOUS WEB RESOURCES AS OF MAY 2017

Service Category # users ∆0.05 p-value Dist.
Facebook Social 1.96B 212 ms <0.0001 Y
Instagram Photo 700M 29 ms <0.0001 Y
Tumblr Microblog 550M 43 ms <0.0001 Y
Google+ Social 540M 1,080 ms <0.0001 Y
Twitter Microblog 328M 312 ms <0.0001 Y
eBay Shopping 167M 589 ms <0.0001 Y
PornHub Porn 75M 9 ms 0.0034 Y
Medium Forum 60M 332 ms <0.0001 Y
Xbox Live Game 52M 110 ms <0.0001 Y
Ashley Madison Dating 52M 8 ms 0.0097 Y
Roblox Game 48M 98 ms <0.0001 Y
Xvideos Porn 47M 16 ms <0.0001 Y
Quora Forum 190M 5 ms 0.4561 N
Flickr Photo 122M 1 ms 0.2678 N
DeviantArt Art 65M 11 ms 0.0674 N
Meetup Social 30M 9 ms 0.3878 N

must directly send requests to the URL for the JSON data.
In our investigation, we found that Tumblr and Xbox.com
had this structure, but we were able to make the attack
feasible by switching the request destination to the JSON
URL instead of the HTML URL.

4.3. Distinguishability of RTTs

We tested whether the RTTs for blocking and non-
blocking accounts were statistically distinguishable. To this
end, we leveraged the Mann-Whitney U test, which is a
nonparametric statistical test used to compare differences
between two independent samples; it tests whether a ran-
domly selected value from one sample is less than or greater
than a randomly selected value from another sample. For our
experiments, we picked 16 popular social web services. For
each service, we measured the RTTs between blocking/non-
blocking accounts and the blocked account. We applied
the Mann-Whitney U test and computed the p-values. The
results are summarized in Table 2. The results show that
all services have low p-values and imply that the distribu-
tions are distinguishable in 12 out of 16 services when the
significance level is 0.01.

5. User Identification Attack

In this section, we first formulate the user identification
attack, which works on the basis of the two building blocks,
user-blocking and cross-site timing attack. The attack in-
troduces two functions, encoding and decoding, which are
the functions an attacker can arbitrarily set to map target
users and leaking information (RTTs). Next, we describe
the techniques we developed for the timing attack. Finally,
we present two extensions of the attack. These extensions
aim to make the attack more successful.

5.1. Formulation

Let m and N denote the numbers of the signaling
and target accounts, respectively. We configure m as the
minimum integer value that satisfies 2m ≥ N . If an attacker
wants to target one million of accounts, m is configured to
m = 20.

In the setup phase, an attacker creates a table that maps
target user accounts to bit arrays with a length of m. Let
Ui (i = 1, . . . , N) be the target user accounts. For each
Ui, the table has a bit array entry, Bi = {b1b2 . . . bm}, where
bj ∈ {0, 1} corresponds to a bit. We refer to the rule that
maps Ui into Bi as encoding, i.e.,

Bi = encode(Ui).

Next, we configure the signaling accounts, Sj (j =
1, . . . ,m) as follows. Let θij ∈ {0, 1} (i = 1, . . . , N, j =
1, . . . ,m) be an indicator function that satisfies

θij =

{
1 if bij = 1 ,

0 else,

where bij is the j-th bit of the bit array Bi. Then, for each
signaling account, Sj , the account is configured to block
the user Ui if θij = 1. Because each bit takes the value
bij = 1 with a probability of 0.5, each signaling account
needs to block approximately N/2 target accounts. One
may instantly come up with a defense that poses a limit on
the number of user-blocks an account can have. To thwart
such a countermeasure, we propose a technique described
in Section 5.3.

In the attack phase, the attacker sets up a malicious
website and lets target users access it, following our threat
model. As described in the previous section, using the
timing attack, the website can secretly measure RTTs for
the m of signaling accounts. Note that measurements can be
parallelized to speed up the process. Let Rj = {R1, R2, . . .}
be the sequence of RTT measurements obtained for the
signaling account Sj . Using the techniques that will be
described in the next subsection, we estimate whether or
not the target user is blocked by Sj . Let b̂j ∈ {0, 1} denote
the estimate of the blocked/non-blocked (1/0) from the RTT
measurements, i.e.,

b̂j = est(Rj).

Using the entire estimates, we have the estimate of B as
B̂ = {b̂1 . . . b̂m}. Finally, we identify the target user using
the table created in the setup phase; i.e.,

Û = decode(B̂).

In the next subsection, the estimation, b̂j = est(Rj), is
described in detail.

5.2. Estimating Blocked/Non-blocked Status

Prior to the actual attack, we determine whether or not a
visitor of the website has been included in the target list, i.e.,
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we employ a membership test. To this end, we prepare the
following two reference accounts: a closed account, which
blocks all users included in the list of target users, and an
open account, which does not block any users at all. We
first measure the RTTs for each of the closed and open
accounts. The measurements consist of k0 trials for each
account, where we use multiple trials because the decision
based on a one-shot measurement may have errors due to
jitter in the RTTs. The idea is to compare the measured
RTTs for closed/open accounts to see if they are significantly
different. If we observe a significant difference, we can
conclude that the visitor has been listed and continue the
attack; otherwise, the visitor has not been listed and the
attack procedure is terminated.

To determine if the measured RTTs are for the closed
or open accounts, we again leverage the Mann-Whitney
U test. Because the computation of the U test is simple
and lightweight, the membership test can be completed
immediately after we collect the RTTs. In this study, we
adopted a significance level of α = 0.01. We also need to
configure the parameter k0. As shown in the next section, we
empirically derived a conservative value of k0 as k0 = 30,
which worked for various social web services.

After the attacker determines that the visitor is likely
listed, the attacker moves to the next step. Let C0.05 and
O0.05 be the 5th-percentiles of the RTT values measured
for the closed and open accounts, respectively. We adopt
the 5th-percentile as the threshold to eliminate outliers. Note
that, even though we could use the minimum values for the
RTTs as does the pathchar algorithm does [10], we observed
that the RTTs could include small outliers, which could be
caused by server-side mechanisms such as data caching or
load balancing. These values are used as the thresholds to
estimate the blocked / non-blocked state, i.e., for a measured
RTT sequence for a signaling account Sj , we compute the
5th-percentile of Rj as R0.05j . We do not necessarily make
k, the number of trials Sj , equal to k0. An attacker can adjust
the k according to the his/her requirements for the trade-offs
between accuracy and speed. If the obtained R0.05j is closer
to C0.05, the attacker estimates the visitor has been blocked
by the signaling account Sj . Otherwise, s/he estimates the
visitor has not been blocked by the signaling account; i.e.,

b̂j =

{
1 if |R0.05j − C0.05| < |R0.05j −O0.05|,
0 else.

By continuing this process for all j ∈ {1, . . . ,m},
the attacker can estimate the bit array of the visitor as
B̂ = {b̂1 . . . b̂m}. Finally, the bit array can be decoded into
a user ID, Û = decode(B̂), using the procedure we have
shown in the previous subsection. Despite the simplicity of
the procedure shown above, as we show later, it can estimate
the closed/open states very accurately.

5.3. Extensions

Here, we introduce two extensions of the attack, error-
correction coding and user-space partitioning, which aim to

further improve the accuracy in noisy environments and to
enhance the size of the target when the number of blocks
per account is limited, respectively.

Error-correction Coding. Under a stable environment, ac-
curately classifying a bit is not difficult since sufficient sig-
nificant difference between blocked/non-blocked is present.
This will also be shown later in Section 6. On the other
hand, abnormal RTTs due to some irregular factors such as
temporary server overload may lead to a bit-error. Needless
to say, the infrastructures used in services such as those
listed in Table 2 which host 30 million to 2 billion users
tend to be quite resilient against such failures; nevertheless,
we can still apply error-correction algorithm in order to
eliminate even the slight possibility of identification failure
due to noise.

In this paper, we adopt a Reed-Solomon code, which
has a high error-correction capability and is relatively easy
to implement. In fact, as we will demonstrate later, the
use of the Reed-Solomon algorithm actually contributes to
improving the estimation accuracy in a noisy environment.
Note that other error-correction algorithms could be used
for this purpose. To select the most suitable error-correction
algorithm, one must take into account several factors such
as the error probability distribution, the error characteristics
such as bursts, and the requirements of the available com-
puting resources. In this paper, we are focused on the proof
of concept; therefore, we consider choosing the best error-
correction algorithm to be out of the scope of this study.

The Reed-Solomon algorithm can correct up to K/2
symbol errors, where K is the number of redundant symbols
and r (bits) is the size of the symbol. Because the number
of bits initially allocated to each user is m, the number of
signaling accounts that needs to be prepared by the attacker
is m+ rK, i.e., the attacker needs to prepare an additional
rK extra signaling accounts. In the setup phase, the attacker
first encodes the bit arrays allocated to each user using a
Reed-Solomon encoder, and then blocks the accounts from
the signaling accounts according to the bit values of the
newly encoded bit array. In the attack phase, by decoding
the bit arrays obtained via the cross-site timing attack using
the Reed-Solomon decoder, the attacker can obtain an error-
corrected bit array.

User-space Partitioning. As described in Section 2.2, sim-
ply enforcing a limit on the number of blocks would violate
a user’s right to block and may result in a serious degra-
dation of the service quality. For services that still enforce
a limit despite this negative impact, the technique shown
below would be effective. Letting this limit to be L, the
number of candidate target users covered for identification
is also limited to L when using the procedures we have
introduced up to this point. To lift this limitation, we can
employ a technique we call user-space partitioning, which
in this case splits candidate users into S user spaces each
containing L users, allowing us to cover up to LS users in
total.

In the setup phase, for each user space j ∈ {1, . . . , S},
an attacker prepares a reference account that blocks all
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users belonging to the j-th user space and the dlog2 Le
of signaling accounts that are used to map the targets in
the space. We also prepare the two reference accounts,
the closed and open accounts, which are used as the ba-
sis of the RTT-based blocking/non-blocking estimation. In
total, the number of signaling/reference accounts required is
Sdlog2 Le and S + 2, respectively.

In the attack phase, the attacker (1) identifies which user
space the target user belongs to and then (2) identifies the
target in the user space. In step (1), as in the procedures
described in the previous subsection, for each of reference
account, k requests are launched to determine the user
space to which the target belongs. Note that the RTT values
obtained here can be reused as the training data in step (2).
In step (2), for each of the L users in the user space found
in step (1), the same identification process is performed as
explained earlier. Note that, because we use a different set
of signaling accounts for each user space, the request URL
for the cross-site timing attack must be changed depending
on the outcome of step (1); however, this can be handled
with conditional branches in the JavaScript code.

6. Field Experiments

In this section, we perform the field experiments.
We first evaluate the key success factor of the attack –
RTT measurement, which plays a vital role in classifying
blocked/non-blocked status using the cross-site timing attack
(Section 6.1). Next, we evaluate the feasibility of our user
identification attack; namely, we study the identification
success rate (Section 6.2) and time to complete the attack
(Section 6.3).

6.1. Accuracy of Bit Array Estimation

Due to space and time constraints, we evaluated the
accuracy using RTT values experimentally measured for the
following three services: Facebook, Twitter, and Tumblr. As
shown in Table 2, these services have the top number of
users and, at the same time, had no limitations such as
the limit on the number of blockable users at the time
of the experiment. In addition, as mentioned in Section 4,
each of these three services had different characteristics in
the blocked/non-blocked RTT difference: relatively large,
medium, and small, respectively.

The experiment was conducted by executing the
JavaScript code on Google Chrome installed on a con-
sumer laptop PC and measuring the RTT. We prepared
the following three different network environments: wired
LAN, Wi-Fi, and tethering. The wired LAN and Wi-Fi are
connected to a commercial Internet Service Provider, and
we assume that this is the environment of PC users who are
the main targets of our attack. Moreover, to prove that our
attack is feasible even in crude environmental conditions,
we also tested the attack on a tethering network hosted on
an Android device connected to a 4G network provided by
a mobile network carrier.
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Figure 6. Relationship between the number of trials (k0), and TPR/TNR.

Membership Test. We first tested the accuracy of the mem-
bership test. We measured the RTT for each of the closed
and open accounts. As mentioned earlier, the measured
RTT values are used for (1) the membership test and (2)
deriving the thresholds for the bit classification, which will
be described later. Note that an attacker needs to calibrate
the thresholds before launching the attack because the RTT
values depend on the geographical location and network
environment.

We repeated the following experiment 100 times. While
logged on to a target and non-target account, we launched
k0 trials for each account and decided whether or not the
account was included on the list by applying the Mann-
Whitney U test. We refer to the true positive rate (TPR) as
the ratio of correctly deciding that the target was included
in the target, and the true negative rate (TNR) as the ratio
of correctly deciding that the target was not included on the
target list.

Figure 6 shows the relationship between k0 and
TPR/TNR. When k0 is small, we have a small number of
samples to estimate the states. Nevertheless, thanks to the
strong distinguishability of the RTT distributions, TNR was
0.97 for all k0, i.e., there were very few false negatives,
which are events where the target account was estimated as
not being listed. Second, for TPR, we saw degradation in the
accuracy when k0 was small, especially for Tumblr. As k0
increases, however, the TPR approaches 1.0. When choosing
the value of k0, it is preferable that the accuracy is consistent
and that we see a sufficient difference in the samples. If
k0 is large, the accuracy will increase but the number of
trials will also increase and the time needed for an attack
would become too long. In this experiment, we empirically
chose k0 = 30, which achieved perfect estimations for all
the services. We will use the values of B0.05 and N0.05

calculated from this k0 as the thresholds used in the next
step.

The measured RTT values can be affected by vari-
ous external factors such as network latencies or the type
of browser. We studied how these factors affected the
TPR/TNR. Table 3 shows the results. The number of trials
was set to k0 = 30.
Single Bit Classification. Next, we evaluated the accuracy
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TABLE 3. TPR AND TNR FOR UNDER VARIOUS CONDITIONS.

Facebook Twitter Tumblr
TPR TNR TPR TNR TPR TNR

Chrome/Wired 1.00 0.99 1.00 0.98 1.00 0.99
Wireless 1.00 0.98 1.00 0.98 1.00 0.99
Tethering 1.00 0.98 1.00 0.97 1.00 1.00
Firefox 1.00 0.98 1.00 1.00 1.00 1.00
IE 1.00 0.98 1.00 0.98 1.00 1.00

TABLE 4. ACCURACY OF CLASSIFYING A SINGLE BIT FOR
WIRED(TOP), WI-FI(MIDDLE), AND TETHERING(BOTTOM)

Facebook Twitter Tumblr
k TBR TNBR TBR TNBR TBR TNBR
1 1.00 0.98 0.99 0.99 0.67 0.99
3 1.00 1.00 1.00 0.99 0.89 0.99
5 1.00 1.00 1.00 0.97 0.95 0.98
10 1.00 1.00 1.00 1.00 0.98 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 0.98 0.98 0.99 0.84 0.99
3 1.00 1.00 1.00 0.99 0.98 1.00
5 1.00 1.00 1.00 0.99 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 0.97 0.98 0.99 0.68 0.99
3 1.00 0.99 1.00 0.98 0.92 0.99
5 1.00 0.98 1.00 0.97 0.98 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00

of classifying a single bit into blocking or non-blocking.
Again, we used three social web services, Facebook, Twitter,
and Tumblr. For each service, we performed k trials of
RTT measurements for each of two signal accounts with
blocked/non-blocked states. We continued this process for
100 times and took the mean values of the following
metrics. We refer to the true blocking rate(TBR)/true non-
blocking rate(TNBR) as the rate of correctly detecting the
blocking/non-blocking user as a blocking/non-blocking user,
respectively. Table 4 shows the results. When k ≥ 20,
the detection becomes perfect for all the three services.
Moreover, in a stable environment such as Facebook/Wired,
the classification succeeds perfectly even with k = 3.

6.2. Attack Success Rate in the Wild

We now show the result of our experiment conducted
in an environment imitating an actual attack scenario in the
wild. We set the length of a bit array to m = 24, which
can cover over 16 million users. In addition, we applied
a Reed-Solomon code with a block length of 4 bits with
eight redundant bits, which enables it to correct one block
of error. According to the above setting, we prepared 34
accounts in total, which included 32 signaling accounts, a
closed account, and an open account, with the appropriate
blocking done against the users on the target list.

Regarding the targets, we assigned a random bit array of
length 24 to each of the 10 social accounts we actually own.
We encoded these bit arrays using the Reed-Solomon code

TABLE 5. ACCURACY OF THE USER IDENTIFICATION ATTACK.

Facebook/wired Twitter/WiFi Tumblr/tethering
TNR 1.00 (20/20) 1.00 (20/20) 0.95 (19/20)
TPR 1.00 (20/20) 1.00 (20/20) 1.00 (20/20)
IDR 0.95 (19/20) 1.00 (20/20) 1.00 (20/20)
IDR/EC 1.00 (20/20) 1.00 (20/20) 1.00 (20/20)

and calculated the bit arrays assigned as the redundant bits.
We prepared 10 additional accounts which are not included
in the list. For each of the 10 accounts on the target list and
the 10 accounts on the non-target list, we logged in to and
accessed the attacker’s website and evaluated if the account
was correctly identified. We repeated the visit two times per
account, resulting in a total of 40 identification trials.

As the parameters for the number of trials, we selected
k = 30, which we experimentally determined yielded good
accuracy. The service and network environment pairs we
chose were Facebook/Wired LAN, Twitter/Wireless LAN,
and Tumblr/Tethering. We refer to the TPR as the rate of
correctly identifying a target to be included on the list, and
the TNR as the rate of correctly identifying a non-target to
be not included on the list. In addition, of the users who were
identified as being included on the target list, we refer to
the identified rate (IDR) as the rate of correctly identifying
the user without the error-correction code, and refer to the
identified rate with error correction (IDR/EC) as a similar
figure but with error correction. In Table 5, we show the
classification accuracy we obtained in this experiment.

The result shows that the experiment succeeded with
extremely high accuracy. This was expected from the good
results we obtained from the experiments in Section 6.1. For
Facebook/Wired, there was one failure case which identified
the target as a wrong user. Examining the network log
for this case revealed that some requests to one of the
signaling accounts had returned 502 response code due to
temporary server error. Our script measures the RTT even if
an error code is returned, but since no content is returned,
the response time would not likely be the one desired.
This occurred with 3 of the requests over only 1 second
of duration, but the RTT value had dropped to about 1/5
of the true RTT which was enough to cause a bit error.
Nevertheless, applying the error-correction algorithm, we
were successfully able to correct this bit which resulted in
the success of identification. Note that, because we adopt
the 5th-percentile, our attack is resilient to outliers which
are too late, but it is prone to those which are too early.

Another case of failure was for Tumblr/Tethering, where
a non-target user was incorrectly identified as a target. This
is a rare case where a significant difference of around p <
0.01 happened to occur when comparing the two sets of
30 non-blocked requests. This example also benefited from
the error-correction algorithm; without error-correction this
visitor would have been identified as another user, but with
Reed-Solomon code, although the error was not correctable
due to too many errors, the error was still detectable. In such
a case, we can still prevent mis-identification by concluding
that the membership test failed and restarting the test.
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6.3. Time to Complete the Attack

The shorter the time required for the attack, the more
feasible the threat is. While the total number of requests
can be calculated beforehand, the time required to complete
these trials is dependent on the actual RTT; therefore, it
needs to be evaluated experimentally. Figure 7 shows the
relationship between the number of trials and the required
time for each service.

The “upper bound” value shown for each service as-
sumes the request with whichever has the larger of the
blocked/non-blocked RTT values, that is, it assumes the case
with the longest time needed for identification; i.e., it is the
worst case. Conversely, the “lower bound” value assumes
the request with whichever has smaller value of the two,
that is, it assumes the case with the shortest time needed
for identification; i.e., it is the most optimistic case. The
number of trials issued in parallel was set to 6, which is the
default maximum number of concurrent connections allowed
on major browsers such as Chrome, IE, and Firefox.

The total number of requests needed to make an m-bits
decision, or in other words, to identify the target within 2m

users, is (2 +m)k. For example, for m = 24, or targeting
16 million users, the total number of requests needed is
(2+24)×30 = 780 when k = 30. This would require 20–50
seconds for Facebook, 32–98 seconds for Twitter, and 64–
68 seconds for Tumblr. According to Table 4, in the case of
Twitter, we have sufficient accuracy even with k = 10. The
number of necessary trials is 300 with this setting, and the
time required is 12–37 seconds. Moreover, we can observe
that we can achieve sufficient accuracy even with k = 3 on
Facebook. The total number of requests is 132 which only
takes 4–8 seconds.

7. Discussion

In this section, we discuss the attack’s principle, practical
aspects, known limitations, and ethical considerations.

7.1. Principle of the Attack

We argue that the most fundamental assumption of our
attack is the presence of the visibility control property in
the system, that is, “given a multi-user web service, there
exists a way for a (rogue) user to control what other users
see, individually for each user”. To be more formal, the
part “what other users see” can be replaced with “any
observable side-effect of the system caused by a certain
action taken by a user”. This assumption combined with
a timing side-channel attack, which enables the attacker to
steal this information from outside the system, is our attack’s
big picture. Because closing a side channel completely is
well-known to be difficult, we believe that this visibility-
control assumption is the main principle of this attack. In the
case of our scenario, the ability to build signaling accounts
using user blocking corresponds to this principle.

We stress that other services under this assumption, even
those without user blocking but with a similar mechanism
such as group invitations or file access permissions, may
also be subject to a similar class of attack. Still, the social
web/user-blocking example that we used in this paper is by
far the most practical application. This is likely because it
satisfies several additional conditions: (1) the control can
be done without the target’s approval or notification and
(2) the control can be done at a fine granularity, i.e., the
different bits of information assignable per user is large.
More specifically in our case, condition (1) is almost always
achieved as an inherent nature of user blocking and condi-
tion (2) is achieved with unlimited granularity, in theory, via
the creation of an arbitrary number of signaling accounts.
Even though we omit further discussions concerning the
presence of other such properties or the exploitability of
similar systems, we believe that there may be a need for
further study concerning this subject.

7.2. Practical Aspects

Here we describe some of the applications and character-
istics that extend and strengthen our attack from a practical
perspective.
Identity Linking. User identification is only threatening
if the identity is linked with another piece of information
meaningful to the attacker. In the case of our attack, the
most basic form of linking can take the form of linking
the user’s identity with the fact that the user has visited
the website prepared for the attack. In this case, if the
web content reflects the visitor’s preference in any way, it
may become a privacy concern. This is suitable not only
for advertisement or access analyses, but also for various
social engineering attacks or for blackmailing those who
have accessed sites hosting pornographic content or illegal
content such as pirated software. In addition, our attack
can be implemented to reveal accounts on multiple services
simultaneously and linking these accounts together could
significantly worsen the impact of a privacy leak.

Another form of linking occurs when a person is induced
to access the web server via an extra hop through another
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medium, resulting in a linking between the target’s identity
and the medium used. For example, on a social web service
where the target’s identity is already known, an attacker can
send the target a message containing the URL of the web
server. Note that this would allow the attacker to link even
the web services which our attack cannot be applied to.
Similarly, we can link non-web services, such as email or
mobile text messages, which would result in linking an email
address or phone number with a social account. Further,
we can also link the target’s physical identity, such as the
target’s physical presence or their residence, by placing or
mailing a physical object, e.g., a poster or a flier, with URL,
QR code or NFC tags printed on them. Note that, even
though it may appear that revealing additional identities
of a target when the target’s other identities are already
known is not so significant, it could lead to the identification
of a target’s anonymous account that cannot otherwise be
discovered in a straightforward way.

Group Identification. Even though we have focused on
the goal of user identification in this paper, we can easily
extend this goal to group identification, that is, identifying
not the user’s exact identity but more general properties
such as gender, nationality, or interests. The attacker could
map each user to a bit array corresponding to the target
attribute collected from the structured information available
on the social web service. Note that this can be seen as a
generalization of the user-space partitioning described pre-
viously, where a user space corresponds to a group of users
with an arbitrary size mapped to a certain attribute. Group
identification can be used by advertisement providers to
track the visitor’s attributes without unnecessarily revealing
their user account. Note that the number of bits required
for group identification would typically be much lower than
that for user identification, making this attack significantly
easier to execute than user identification.

Authentication-backed Identification. One major strength
of our approach is that it is backed by the identity informa-
tion guaranteed by the authentication system of the service,
making it resilient against spoofing or misidentification, both
of which many other methodologies suffer from. To give a
simple example, when using an IP address for identification
or even tracking, IP spoofing or ambiguity due to NAT or
dynamic IP would interfere with this process. Note that so-
cial web service accounts are increasingly used as a building
block in the modern web’s authentication infrastructure. It is
still possible to perform spoofing and one way is to create an
account trying to mimic one’s identity; however, scrutinizing
the account content would usually easily reveals whether
it is a spoofed account. Another way is to use a stolen
account, but in this case, the victim user should be worried
about much more serious problems than privacy leakage. In
addition, because authentication is independent of the en-
vironment, it enables cross-environment (e.g., cross-device
and cross-browser) identification and tracking, which is
often difficult to achieve using other approaches.

7.3. Limitations

Login State Persistence. Our attack relies heavily on the
assumption that the target user’s service login state is alive
while the user browses other websites. This assumption is
reliant on the web cookie mechanism; therefore, the cookie’s
expiration time or the user configuring the browser to clear
cookies on closing the browser may affect the availability
of our attack. Social web services, fortunately, tend to set
a relatively long or even no expiration time, as seen in the
commonly available “keep me logged in” features [11]. This
is likely due to the incentives to service providers from
a marketing perspective, e.g., tracking and advertisement,
contrary to security-critical services such as Internet banking
that set a short expiration time. In addition, users would
lose the convenience of being able to access the service
without the need to login every time, which may be a
disappointing trade-off, especially for social web services
which often assumes constant usage. Note that, simply de-
termining whether a user is logged in to certain services can
be accomplished in much more lightweight ways [12], which
can also be used in our attack to pre-select the services to
be targeted.
Mobile Platform. A non-negligible portion of users today
access social web services from their mobile devices, so
whether or not the attack is feasible in this realm is an
important question to explore. For recent mobile platforms
such as Android and iOS, the mechanics of most web
browsers as well as the effective performance of the hard-
ware and network are not significantly different from those
of a PC; therefore, they are expected to yield sufficient RTT
differences making our attack feasible. We partially proved
this in our experiment with the tethering environment. The
primary concern instead is the unique software ecosystem
of mobile devices: many services encourage users to use a
service-dedicated app instead of a browser to access their
service. Even though some collaborative features such as
social plug-ins or single sign-on may still urge some mobile
users to log on via a browser, this ecosystem will surely
limit the target coverage of our attack to a certain degree.
We believe that a possible attack vector for this scenario
which may need an attention might be an exploitation of
a mobile platform-specific side channel, e.g., Android’s
Intent and shared memory [13], to bypass the app sandbox,
analogical to how our attack exploited a browser timing
side channel to bypass the same-origin policy, but we leave
further discussions on this for a future study.
Limits on Blocking. For most services, limitations on the
total number of users allowed to be blocked or the rate at
which blocking requests can be issued from a single account
are not explicitly stated. We have experimentally confirmed
that at least ten million users on Twitter and three million
users on Facebook and Tumblr were actually blockable over
five days using a single account, and only DeviantArt and
eBay seems to have had a limit on the maximum number
of blocks per account. Also, Instagram appears to have
had a limitation on the rate, i.e, the number of accounts
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that can be blocked per minute. As we have shown in
Section 2.2, neither disabling blocking nor posing a limit on
it, is desirable from the viewpoints of the actual usage of the
service and users’ expectations. However, having limits on
the total number of users to be blocked blocking may inter-
fere with the process of building a high-coverage signaling
account. Still, user-space partitioning would help alleviate
this limitation and much of the effort for building signaling
accounts is required just once, implying that attackers are
not so exceedingly time-constrained when performing this
task.
Length of Visit. As shown in Section 6, the attack can be ex-
ecuted in a realistically short time. In certain circumstances,
however, such as when the RTT is high or when there is
a need to use user-space partitioning, which increases the
number of requests, it may be difficult to keep the user
on the same webpage long enough for the JavaScipt code
to finish. Even if the attack duration is short, because the
behavior of a user is often unpredictable, a shorter attack is
always preferable. A trivial approach to this problem is to
prepare webpage content that is sufficiently “attractive” to
cause the users to stay longer, but this is very user specific.
Another solution is to save and restore the attack state
between multiple attack sessions. By having the JavaScript
code send partial results to the server as it attacks, even
if the attack terminates before finishing, the attack can be
resumed at another session from where it left off. Training
data may be reused or not depending on the “distance”
between each attack session, e.g., the time elapsed between
sessions. Another solution is to open pop-up windows in the
background or a tab and execute the attack there, hoping that
the user would not notice or care to close it immediately.

7.4. Ethics

To evaluate the feasibility and impact of the attack
techniques on social web service users, experimenting with
attacks on actual social web services cannot be avoided. All
attacks in our experiment were checked manually and only
generated a restricted amount of request. As a result, our
experiment was carefully controlled and only generated a
restricted amount of traffic (requests), which did not increase
the workload of the sites and did not undermine the quality
of their services. Furthermore, our experiment performed
against our own accounts. Therefore, actual users of the
services we examined were not directly involved in our
attacks.

8. Defense

In this section, we discuss defensive measures that can
be taken against our attack. We emphasize that all ap-
proaches we are currently aware of either cause a serious
degradation in the service quality or require considerable
amounts of time and effort before being implemented or
widely adopted. Nevertheless, we believe that raising the
bar for an attacker would still be beneficial to the public.

8.1. Server-side Defenses

Token Validation. Token-based defenses are widely adopted
to prevent CSRF attacks in general. The server appends a
one-time random string, or token, to each URL link gener-
ated and verifies it when the link is accessed. This prevents
any third-party from generating a valid link; therefore, the
attacker will not be able to receive valid responses contain-
ing information useful for the attack as long as the token-
checking process is applied before the block checking at the
server side. A major drawback of this defense is that legit-
imate requests are also affected and result in consequences
such as breaking search engine results or prohibiting any
means of link sharing, including those on blog posts and
emails. A promising approach which introduces an attack-
resilient placeholder page in front of the website has been
proposed [8], but it still requires a change in the system
architecture design and also the delay caused by the extra
hop may negatively affect the user experience.

Response Time Control. The server could adjust the re-
sponse time to minimize the block/non-block RTT differ-
ence. One approach is to artificially equalize the response
times by adding delays to whichever has the shorter response
time. Another approach is to randomize the response time
by injecting delays of random lengths. However, either ap-
proach would impose a non-negligible performance degrada-
tion experienced by the user. In general, this type of timing
side-channel defense is difficult to perfect; the profound
study results in this area provide advanced attackers with
various ways to amplify such differences at the cost of some
increased effort, as we also have exemplified in this paper.
In addition, the network delay is often uncontrollable from
the service side so a perfect control is difficult to attain from
the server side. Note that such types of server-side defenses
are often thwarted by other timing side-channel approaches,
such as those leveraging the content cache [8].

Usage Restriction. Our attack, when implemented in a
straightforward manner, may exhibit behavioral character-
istics not usually seen in the normal usage of the service.
One case of such an anomaly would occur in the preparation
process of a signaling account, which requires a massive
number of blocking requests to be issued within a short
time. Another is in the process of launching the attack from a
browser, which causes an abnormal number of GET requests
to be issued. The service can either restrict this in the form
of the rate limit, CAPTCHA, or some means of heuristic
anomaly detection. However, these defenses are expected
to function only as a mild mitigation, because advanced
attackers have historically been able to circumvent these
types of defenses. The most extreme form of restriction is
to remove the user-blocking capability from the service. All
these types of restriction-based measures, however, lead to
an undermining of the ability to suppress those who truly
needs to be blocked, which may result in a degradation of
the service quality.
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8.2. Client-side Defenses

User. Defenses that can be taken by a user alone are limited
to quite trivial measure. One approach is to isolate the
browsing environment in which the web service is used,
from that used for other purposes. This can be done, for
example, by using the private browsing feature commonly
available in modern browsers, logging out of the service
when not in use, or simply using a different browser. An-
other approach is to restrict the execution of JavaScript using
browser plug-ins such as NoScript, which would severely
impair the attacker’s capability to carry out such an attack.
Obviously, all of these measures greatly increase the user’s
cost of not only using the service but also web browsing
in general. Further, it would deactivate some features such
as social plug-ins or advertisements that benefit both of the
user and the service provider.
Web Browser. Equalizing the response times, for example,
by injecting delays to the processing time, is also a possible
measure that can be taken on the browser side. Further,
the detection of anomalies such as frequent errors resulting
from failed rendering may be another option. However,
these approaches are often only viable for a certain class of
timing side channels; they tend to be thwarted eventually
by other newly developed timing attacks using different
approaches, as exemplified by the attack using the browser
cache mentioned in another study [8].

9. Related Work

We present previous studies concerning timing attacks,
which is the fundamental technique of our method uses to
compromise user’s privacy. In addition, we introduce other
side-channel leaks based on the browser functionality and
methods to identify and track users.

9.1. Web-based Timing Attacks

A timing attack is one type of side-channel attack that
has been studied primarily in cryptography for more than
two decades. It typically exploits the execution time or
power consumption of a cryptosystem to infer secret key
and private information [14], [15]. Studies of timing attacks
have expanded to web-based systems regardless of the cryp-
tosystem that exploits the communication time and size of
the web content. Bortz et al. presented a pioneer work on
web-based timing attacks; they classified web-based timing
attacks into direct timing and cross-site timing [4]. Our
proposed method is classified as a web-based cross-site
timing attack.

A direct timing attack directly measures the response
times from a system, e.g., a website, to extract private
information from a system. Bortz et al. proposed a method
to expose valid user names and the number of private photos
from a website by measuring the response time of HTTP [4].

Cross-site timing attacks indirectly measure the response
times or content size of web on a browser to extract pri-
vate information from a browser or website. It enables a

malicious website to obtain information about the target
browser’s view of another website using cross-site content
that often violates the same-origin policy [16]. Methods to
break the same-origin policy and their countermeasures have
been presented since 2000 [17], [18], [19], [20]; however,
the many of cross-origin techniques are still effective on
modern web browsers. Liang et al. leveraged several CSS
features to indirectly monitor the rendering of a target
resource [21]. Goethem et al. proposed a cache-based tim-
ing attack using HTML5 functionalities, which can bypass
the same-origin policy, to estimate the size of a cross-
origin resource [8]. Gelernter et al. presented a cross-site
search attack on well-known web services to distinguish
between the loading time of empty and full responses,
which enables an attacker to distinguish sensitive data of
target users in the records of the web services [22]. Jia et
al. demonstrated a geo-location inference attack on well-
known web services, by using the load time of location-
sensitive resources left by geography-specific websites (e.g.,
Google’s local domain) [23]. Our method is not new in the
context of cross-site attacks; however, the idea is unique
in that user blocking, which is a fundamental functionality
of social webs, can be used to distinguish between blocked
and, consequently, to identify their social accounts.

9.2. Side-channel Leaks on Browsers

A side-channel attack on a browser without timing fea-
tures is another class of privacy attack. To infer the status of
a cross-origin resource, Lee et al. developed a URL status
identification attack using ApplicationCache that ex-
ploits cross-origin resource caching [12] and they suggested
advanced privacy threats using this attack, e.g., login status
determination and internal web server probing. A history-
stealing attack is a typical attack that extracts the browsing
history of URLs [9], [24]. This attack depends on the
fact that a web browser handles CSS properties of URL
hyperlinks differently depending on whether the URL was
previously accessed by the web browser [25], which leads
to allowing a client-side script to access such properties.
To fix this, Baron proposed a solution that blocks scripts
from accessing the CSS properties of hyperlinks, and all
popular browsers (e.g., Firefox, Chrome, Safari, and IE)
have adopted this solution. As a result, this type of history
stealing attack no longer works in the latest versions of these
browsers [26], [27].

9.3. Social Account Identification

While various methods have been proposed to effectively
track browsers on the Internet (e.g., cookies, browser cache,
and browser fingerprints [28], [29], [30]), these tracking
methods focus on identifying distinct browsers rather than
the user of the browsers. The goal of our proposed method
is to identify the user (i.e., the social account) which differs
from the above browser tracking methods. Many of the
studies introduced in Sections 9.1 and 9.2 mentioned that
their proposed methods could be used for inferring the status
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of social account or identifying social account [4], [9], [12].
The difference of response time of login page was used
for inferring account validity [4]. With a similar motivation,
conditional redirections of the HTTP URLs was used for
distinguishing whether a victim web browser is logged in to
the web service [12]. The combination of group membership
information, e.g., group ID or group directory in browser’s
access history, was used for identifying a social account [9].
These differences are extracted from previously provided
pages, e.g., login pages and group membership pages. In
contrast, our method is unique in that an attacker can fully
control the visibility of pages in order to create discriminable
differences.

10. Conclusion

This work presents a practical side-channel attack that
identifies the social account of a user visiting the attacker’s
website. It exploits the user-blocking mechanism, or the vis-
ibility control property, commonly available in most social
web services today to create a controllable side channel
that provides the attacker with complete and flexible control
over the leaked information, be it informative enough to
uniquely identify the user or be it highly resilient to noise.
With experiments, we demonstrated that our attack is in fact
applicable to current mainstream social web services today
and we argued that defending against this threat would not
be easy without imposing a negative impact on the relevant
services. It is ironic that the blocking feature designed to
suppress harmful users can now be turned against harmless
users; some form of mitigation is urgent and a reworking of
the design of this feature is suggested as a future work.
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