
We Still Don’t Have Secure Cross-Domain Requests:
an Empirical Study of CORS

It hasnt been published, please keep it secret and do
not disseminate. Thank you.

Abstract
The default Same Origin Policy essentially restricts ac-
cess of cross-origin network resources to be “write-
only”. However, many web applications require “read”
access to contents from a different origin, so develop-
ers have come up with workarounds, such as JSON-
P, to bypass the default Same Origin Policy restriction.
Such ad-hoc workarounds leave a number of inherent
security issues. CORS (cross-origin resource sharing)
is a more disciplined mechanism supported by all web
browsers to handle cross-origin network accesses. This
paper presents our empirical study about the real-world
uses of CORS. We find that the design, implementation,
and deployment of CORS are subject to a number of new
security issues: 1) CORS relaxes the cross-origin “write”
privilege in a number of subtle ways that are problematic
in practice; 2) CORS brings new forms of risky trust de-
pendencies into web interactions; 3) CORS is generally
not well understood by developers, possibly due to its in-
expressive policy and its complex and subtle interactions
with other web mechanisms, leading to various miscon-
figurations. Finally, we propose protocol simplifications
and clarifications to mitigate the security problems un-
covered in our study.

1 Introduction

Same origin policy (SOP) is the foundation for client-
side web security. It guards web resources from being
accessed by scripts from another origin. The default SOP
does not provide an explicit access control authorization
mechanism to share cross-origin network resources. Un-
der the SOP, client-side scripts are free to send GET or
POST requests to third-party servers by referencing other
websites’ resources or submitting cross origin forms, but

they have no simple and safe mechanism to read those
responses, even from an origin willing to share. Because
many web applications have the need to read cross-origin
network resources and browsers did not have any good
support for it, developers proposed some ad-hoc mecha-
nism to serve the need. For example, JSON-P [12] uses
the exception that an imported cross-origin JavaScript
is accessible to workaround the restriction. But such a
workaround approach introduces a number of inherent
security issues.

Cross origin resource sharing (CORS) is proposed to
solve the problems of JSON-P, and to provide a proto-
col support of authorized access cross-origin network
resources. This protocol has been adopted by major
browsers (e.g., Chrome, Firefox, IE) since 2009, and has
been widely used in mainstream websites. Our work
aims to provide a comprehensive security analysis of
CORS in its protocol design, implementation, and de-
ployment process, and to identify new types of security
issues about the deployments of CORS in real websites.

The issues we found in this study can be classified into
three categories: a) Overly permissive cross origin send-
ing permissions. The CORS protocol enables new de-
fault sending permissions inadvertently, giving attackers
more capabilities that lead to new security issues. We
found that by leveraging this relaxed sending permission,
an attacker could exploit previously unexloitable CSRF
vulnerabilities, remotely infer victim’s accurate cookie
size of any website, or use a victim’s browser as a step-
stone to attack binary protocol services inside victim’s
internal network. b) Inherent security risks of CORS.
The functionality of CORS needs resource servers to
trust third-party domains and share resources. Such a
trust dependency on third-party websites increases at-
tack surfaces and introduces new security risks. We
found that an attacker can leverage this inherent risk to
launch MITM attack against HTTPS sites or steal se-
crets on strongly secured target sites by exploiting vul-
nerabilities on weak websites. c) Complex CORS details

1



and various misconfigurations. While CORS’s general
process is simple, there are certain error-prone details
leading to a number of misconfigurations and security
issues in the real world. By conducting a large-scale
measurement on Alexa top 50,000 websites including
their 97,199,966 distinct sub-domains, we found inse-
cure CORS misconfigurations in 132,476 sub-domains,
accounting for 27.5% of all the CORS configured sub-
domains. Some of these domains serve popular websites,
such as sohu.com(Alexa 18), mail.ru(Alexa 50), so-
gou.com(Alexa 183), fedex.com, washingtonpost.com.
These misconfigurations could cause privacy leakage, in-
formation theft and even account hijackings.

We further delve into these security issues and ana-
lyze the underlying causes behind them. We found that,
although some are developer’s mistakes, many security
issues are caused by various error-prone details in the
CORS protocol design and implementation. We propose
some improvements and mitigation measures to address
these problems.

To sum up, this paper makes the following contribu-
tions:

• We conducted a comprehensive security analysis on
CORS protocol in its design, implementation, and
deployment process.

• We discovered a number of new CORS security
issues and demonstrated their consequences with
practical attacks. For example, remotely exploiting
victim’s internal binary-protocol services, remotely
obtaining victim’s accurate cookie size on any web-
site.

• We conducted a large-scale measurement of CORS
configurations in popular websites, and found
27.5% of all the CORS configured domains have
insecure misconfigurations.

• We analyzed the underlying design reasons behind
those security issues, and proposed protocol simpli-
fications and clarifications to mitigate them.

We organize the rest of this paper as follows. Section 2
describes the development of cross origin network access
and CORS. In Section 3 we present an overview of this
study, including methodology and summary of discov-
ered CORS issues. In the next three sections (Section 4
to 6), we detail three categories of CORS security is-
sues separately and also demonstrate their security im-
plications with case studies. We discuss root causes and
protocol simplifications in Section 7 and related research
regarding CORS and SOP security in Section 8. We con-
clude in Section 9.

2 Background

Cross-origin resource access can be classified into two
categories: cross-origin local resources access (e.g., for
DOM, cookie) and cross-origin network resources access
(e.g., for XMLHttpRequest). The former has been stud-
ied in previous research [24, 38], and the latter is the fo-
cus of this paper. More specifically, we study the ac-
cess control mechanisms for both sending cross-origin
requests and reading cross-origin responses.

2.1 Cross-Origin Network Access
Cross-origin reference is a core feature of the web at its
birth, and there is no explicit cross-origin access con-
trol mechanisms built into the HTTP protocol. In other
words, any website can refer to resources of any other
website using HTML tags, implying that any website can
manipulate a visitor’s browser into issuing GET requests
to any resource servers. This does not directly cause
security concerns when HTML does not support active
content. Contents retrieved by HTTP requests are ren-
dered by the browser. Websites referring the resources
do not have direct access to the contents.

JavaScript changes the threat model of the Web, and
introduces significant risks to the cross-origin access. In
order to ensure that different web applications cannot in-
terfere with each other, Netscape introduced the Same
Origin Policy (SOP), the fundamental isolation strategy
for client-side web application security. This policy de-
fines the security boundary of a resource by its origin,
the URI scheme/host/port tuple. Although SOP prevents
JavaScript from reading the response of a cross-origin re-
quest (except a few cases such as imported script), it does
not prevent client-side JavaScript from sending cross-
origin POST requests (e.g., using automatic form sub-
mission without user awareness). While this permissive
sending capability provides rich features for Web inter-
actions, it also introduces security problems.

2.2 The Risks of Cross-Origin Sending
Automatic submission of POST requests provides more
permissions to a malicious website, enabling two types
of attacks.

The first category of attacks is Cross Site Request
Forgery (CSRF) [35]. CSRF is a serious threat to the
Web, and has been an OWASP top-10 security issue since
2007 [20]. Besides the possibility of automatic POST
submission, two other mechanisms in web lead to the
severity of CSRF. First, POST is the standard method for
non-idempotent request that changes server state. Sec-
ond, cookies are commonly used in web applications as
authentication tokens, attached by default with HTTP re-

2



quests. Combining the three factors, a malicious website
can control a victim’s browser to issue POST requests
with the victim’s identity to other websites. Without suf-
ficient application-level defenses, this could cause disas-
trous consequences, such as automatic money transfer-
ring from the victim to the attacker account.

The second category is HTML Form Protocol At-
tack (HFPA) [28]. HFPA allows an adversary to use a
victims’ browser as a stepping-stone to attack text-based
protocol services (such as SMTP) otherwise unreach-
able, e.g., located within an internal network. By care-
fully crafting HTML forms, an attacker can encapsulate
other textual protocol data into the body of cross-origin
POST requests. Since textual protocol implementations
are often permissive in accepting input, they simply ig-
nore the unknown lines in POST requests and execute the
known commands crafted by an attacker. Below is an ex-
ample showing how SMTP commands are encapsulated
into a POST request:

POST / HTTP/1.1

Host: 192.168.1.1

Content-type: multipart/form-data; boundary=--123

--123

Content-Disposition: form-data; name="foo"

HELO example.com

MAIL FROM:<somebody@example.com>

RCPT TO:<recipient@example.org>

--123--

There are currently no effective protocol-level solution
for these two types of attacks. Proposed solutions for
CSRF attacks, such as Origin header [7] and same-site
cookies [16], are not widely deployed due to incomplete
browser support. The mainstream CSRF defense still re-
lies on CSRF tokens, implemented by individual web ap-
plications. To mitigate HFPA attacks, browsers restrict
port numbers in cross-origin requests, e.g., by disallow-
ing cross-origin requests to port 25 to protect SMTP ser-
vices. However, such blacklisting approaches are incom-
plete, since services may be configured to use different
port numbers, and new services are constantly emerging.
Thus, browsers often block only a small subset of port
numbers, leaving the majority of them exposed. For ex-
ample, Chrome disables 63 port numbers in total, while
Edge and IE browser only forbid 8 of them. None of the
browsers protect port 6379 (redis) or 11211 (memcache),
for example, leaving those services vulnerable to HFPA
attacks [10].

2.3 The Need for Cross-Origin Reading
Many web applications need JavaScript to have the
capability to read responses of cross-origin resources.
Initially developers invented JSON-P (JSON with

Padding) [12] to bypass SOP, by leveraging the excep-
tion that an imported cross-origin JavaScript using the
<script> tag is accessible to the hosting page. A re-
sources server can encapsulate shared data in JSON for-
mat into JavaScript by padding, and a third-party domain
can include the JavaScript through <script> tag to ob-
tain the embedded data. Although JSON-P solves some
cross-origin resource sharing problems, it still has limi-
tations. For example, it only supports resource sharing
through cross-origin GET requests and doesn’t support
other methods such as POST. Further, it introduces two
inherent security problems [9, 21]. First, importing a
third-party JSON-P resource requires complete trust of
the third-party. Because JSON-P resource is executed
immediately as JavaScript; the importing origin cannot
perform any input validation on the content. Second, a
JSON-P resource needs to have application-level access
control to prevent unauthorized read, which complicate
web application implementations.

In order to provide a safer and more powerful solu-
tion for authorized cross-origin resource sharing, W3C
designed Cross-Origin Resource Sharing (CORS) [31]
protocol to replace JSONP. Since the first proposal in
2005, CORS has had several iterations in terms of proto-
col design. In August 2011, CORS was included in Fetch
standard [30] by Web Hypertext Application Technol-
ogy Working Group(WHATWG) [33], another web stan-
dard organization founded by browser vendors including
Mozilla, Opera and Apple. Since then, CORS was inde-
pendently updated in the Fetch standard, and has minor
differences from the W3C standard. Browser vendors
such as Mozilla gave priority to the WHATWG’s stan-
dard [4], resulting in the obsolescence of W3C CORS
standard in August 2017 [5]. Today, CORS is im-
plemented in all major browsers and is still evolving.
Figure 1 summarizes the development history of cross-
origin access and CORS.

2.4 The Complexity of CORS

In general, CORS consists of three steps:

1. A domain issues a cross-origin request to a resource
server. For each CORS request, an Origin header is
automatically added by the browser to indicate the
origin of the requesting domain.

2. The resource server generates an access control
policy in HTTP response headers (Access-Control-
Allow-Origin) indicating the origins allowed to read
its resources.

3. The browser enforces the received access control
policy by checking if the requesting origin matches

3



1991 1994 1997 2000 2003 2006 2009 2012 2015 2018
●

●

●

●

●

●

●

●

●

●

●

HTML proposed

JS and SOP introduced

CSRF vulnerablity discovered

US−CERT vulnerablility note on HFPA attacks

JSONP proposed

JSONP vulnerablity discovered

First CORS draft submitted

CORS shipped by IE, Chrome, Firefox, Safari

CORS included in WHATWG's Fetch standard

CORS accepted as W3C recommendation

W3C CORS proposed obsolete

Figure 1: Timeline of cross-origin network access and CORS development.

the allowed origins as specified by Access-Control-
Allow-Origin header. Only if yes is the requesting
domain allowed to read the response content.

CORS may seem straightforward, but its details are
complex. In addition to the access control for ori-
gins, CORS also provides fine-grained access control for
HTTP methods, HTTP headers, and credentials (includ-
ing cookies, TLS client certificates, and proxy authen-
tication information). Partly for backward compatibility,
CORS classifies cross-origin requests into two categories
based on request methods and headers, simple requests
and non-simple requests. A simple request must satisfy
all of the following three conditions. Otherwise, a re-
quest is considered non-simple.

a) Request method is HEAD, GET or POST.

b) Request header values are not customized, except
for 9 whitelisted headers: Accept, Accept-
Language, Content-Language, Content-Type,
DPR, Downlink, Save-Data, Viewport-Width, and
Width.

c) Content-Type header value is one of three spe-
cific values: “text/plain”, “multipart/form-data”,
and “application/x-form-uri-encoded”.

A simple cross-origin request is considered safe
and will be sent out directly by the browser. A
non-simple request is considered dangerous, thus
requires a preflight request to obtain permission
from the resource owner to send the actual cross-
origin request. The preflight request is initi-
ated with an OPTIONS method, and includes Ori-
gin, Access-Control-Request-Method, Access-Control-
Request-Headers headers. The resource server in-
cludes Access-Control-Allow-Origin, Access-Control-
Allow-Method and Access-Control-Allow-Headers in its

HTTP response to indicate the allowed origins, meth-
ods, and headers respectively. The browser then checks
whether the policy in the response headers allow for
sending the actual cross-origin request.

To reduce the performance impact due to preflight re-
quests, CORS provides the Access-Control-Max-Age re-
sponse header to allow a browser to cache the results of
preflight requests. Further, additional features are also
defined, e.g., Access-Control-Allow-Credentials controls
whether or not a cross-origin request should include cre-
dentials such as cookies.

3 Overview of CORS Security Analysis

Essentially, the CORS protocol is an access control
model regulating access to cross-origin network re-
sources (including sending requests and reading re-
sponses) between browsers and servers. In this model,
a requesting website script initiates a resource access re-
quest from a user’s browser, which automatically adds
an Origin header to indicate the requester’s identity; then
the third-party website returns the access control policy;
Finally, the browser enforces the access control policy to
determine whether the requester can access the requested
network resources. This section presents an overview of
our study.

3.1 Threat Model
We consider two types of attackers: web attackers and
active network attackers. Web attackers only need to
trick a victim into clicking a link to execute malicious
JavaScript in the victim’s browser, while active network
attackers need to manipulate the victim’s network traffic.
Unless otherwise specified, attacks in this paper can be
launched by web attackers.

4



3.2 Methodology
We studied specifications including W3C’s CORS stan-
dard [31], WHATWG’s Fetch standard [30], and CORS-
related discussions in W3C mailing lists [15] to learn
how CORS is designed and its security considerations.
We also examined CORS implementations including 5
major browsers and 11 popular open-source web frame-
works to understand how CORS features are imple-
mented in practice. In the course of doing so, we iden-
tified potential interactions between CORS features and
known attacks (specific and general) and their implica-
tions.

Furthermore, we measure CORS policies of real-
world websites to evaluate CORS deployment in the
wild. We conducted a large scale measurement on Alexa
Top 50,000 websites, including their 97,199,966 distinct
sub-domains. For each domain, we sent cross-origin
requests with different requesting identities to examine
their CORS policies in response headers.

3.3 Summary of Analysis Results
Through the analysis, we found a number of CORS-
related security issues, which we can classify into three
high-level categories, per Table 1.

1) Incomplete reference monitor. CORS allows
“simple” requests to be sent freely by default, to keep
consistent with previous policy (cross-origin GET and
POST requests are allowed by default). Yet, the scope
of simple CORS requests is in fact beyond previous ca-
pabilities in a number of subtle ways. It turns out that
the new by-default sending capability of CORS can be
exploited by web attackers to launch a variety of attacks
that are previously not able to carry out in a web attacker
setting.

2) Trust dependency. A domain with strong security
mechanisms may allow CORS access from a weaker do-
main. A web/network attacker can compromise a weak
domain and issue CORS requests to obtain sensitive in-
formation from the strong security domain.

3) Policy complexity. Because the CORS itself policy
cannot be expressed in the simple form, many websites
implement error-prone dynamic CORS policy generation
at the application level. We found that a variety of mis-
configurations of CORS policies are due to these com-
plex policies.

In the following three sections, we will describe these
three categories of problems in detail.

4 Overly Permissive Sending Permission

The cross-origin sending permission of default SOP al-
ready poses significant security challenges, leading to

vulnerabilities such as CSRF and HFPA attacks (Sec-
tion 2.2). Absent consideration of backward compatibil-
ity, CORS could have addressed all cross-origin access
to solve and unify the defenses against CSRF, HFPA, and
other cross-origin network resource access at the proto-
col level. But instead CORS kept compatibility with the
previous policy.

CORS allows “simple” requests to be sent freely by
default in its new JavaScript interfaces (e.g., XML-
HttpRequest Level2, fetch). However, these new inter-
faces (referred to as “CORS interfaces” subsequently) in
fact implicitly further relax sending permissions, unin-
tentionally allowing malicious customization of HTTP
headers and bodies in CORS simple requests.

4.1 Crafting Request Headers

Before the advent of CORS, cross-origin requests could
only be sent using header fields and values fixed by the
browser. CORS interfaces provide new capabilities that
allow JavaScript to modify 9 CORS whitelisted headers
(See Section 2.4). Further, CORS imposes few limita-
tions on the values and sizes of these headers. Thus, an
attacker can craft these headers with malicious content to
deliver attack payloads.

CORS imposes few limitations on header val-
ues. RFC 7231 [22] provides clear BNF format re-
quirements for 4 out of 9 CORS whitelisted head-
ers: Accept, Accept-Language, Content-Language and
Content-Type. For example, standard-compliant Accept
header values should be like “text/html,application/xml”.
CORS imposes no format restrictions on any whitelisted
headers, except Content-Type. CORS works on the
top of HTTP, so when implementing CORS interfaces,
browsers should restrict at least those 4 whitelisted
header values according to HTTP’s BNF rules. How-
ever, in our testing of five mainstream browsers (Chrome,
Edge, Firefox, IE, Safari), all except Safari lack any
restrictions on any headers other than Content-Type.
For example, their values can be set to “(){:;};”, an at-
tack payload for exploiting the Shellshock vulnerabil-
ity [17]. Safari restricts the values of Accept, Accept-
Language and Content-Language, disallowing some de-
limiter characters like “(”,“{”.

In addition, although the five browsers follow CORS
standards in limiting Content-Type to three specific val-
ues (“text/plain”, “multipart/form-data”,“application/x-
form-url-encoded”), these restrictions can be bypassed.
We found that all of them prefix-match the three values
and ignore the remaining values beyond the first comma
or semicolon. Thus, an attacker can still craft malicious
content in Content-Type headers by appending an attack
payload to a valid value.

These implementation flaws open new attack surface

5



Table 1: Overview of CORS security problems
.

Categories Problems Attacks

Overly permissive
sending permission

Overly permissive header formats and values RCE via crafting headers
Few limitations on header size Infer privacy information for any website

Overly flexible body format File upload CSRF
Few limitations on body value Attack binary protocol services

Risky trust dependency HTTPS domain trust their own HTTP domain MITM attacks on HTTPS websites
Trust in other domains Information theft or account hijacking

Policy complexity
Poor expressiveness of access control policies Information theft or account hijacking

Forgeable “null” Origin values Information theft or account hijacking
Security mechanism complexity Information theft or account hijacking

Complex interactions with caching Cache poisoning

in that a web attacker can manipulate a victim’s browser
to craft exploitation payloads using a CORS “simple” re-
quest, using the browser as stepping-stone to compro-
mise vulnerable yet nominally internal-only services.

Case study: In order to demonstrate the threat, we
conducted an experiment to exploit an internal service
by crafting a malicious Content-Type header. We set up
a Apache Struts environment in our local network, one
with the s2-045 vulnerability (CVE-2017-5638) [18].
This vulnerability was caused by incorrect parsing of
Content-Type header, and led to remote code execution.
As the vulnerable service was deployed in our internal
network, it is supposed to be unexploitable by web at-
tackers from an external network. However, with the
help of CORS, we confirmed that an attacker can set up
a web page that sends cross-origin requests with crafted
malicious payload via a Content-Type header. Once an
intranet victim visits this page, the vulnerability is trig-
gered. In our experiment, this attack enabled us to obtain
a shell on the internal server.

CORS imposes few limitations on header sizes.
There is no explicit limit on request header sizes in ei-
ther the HTTP or CORS standards. We tested five ma-
jor browsers and found all of them allow for at least
16MB of one or more headers in CORS interfaces. When
we set headers to very large values (e.g., 1 GB), the
browsers produced “not enough memory” errors, rather
than “header size too large” errors. This is much larger
than request size limit enforced by other web compo-
nents (e.g., web servers). Table 2 summarizes different
header size limitations for five major browsers and pop-
ular web servers in default configurations.

Case Study: web attackers can exploit header size
differences between browsers and web servers to launch
side-channel attacks, remotely determining the presence
of a victim’s cookies on any website. To carry out
this attack, an attacker first measures the header size
limit of a target web server by directly issuing requests

Table 2: Header size limitations for browsers and servers
(single/all headers)

.
Browser Limitation Server Limitation
Chrome >16MB/>16MB Apache 8KB/<96KB
Edge >16MB/>16MB IIS 16KB/16KB
Firefox >16MB/>16MB Nginx 8KB/<30KB
IE >16MB/>16MB Tomcat 8KB/8KB
Safari >16MB/>16MB Squid 64KB/64KB

with increasing-size headers until receiving a 400 Bad

Request response. Then the attacker sends “simple” re-
quest in the victim’s browser with crafted header values
so that the header size is slightly smaller than the mea-
sured limit. If a cookie is present, the cookie will be
automatically attached in the request. The total header
size will exceed the limitation, resulting a 400 Bad

Request response. In the absence of cookies, the target
server will return a 200 OK response.

In fact, the attacker cannot directly observe whether
a response is 200 or 400 because browsers have nor-
malized such low-level information for security consid-
erations. However, the attacker can utilize timing side-
channels to differentiate the response status. One general
timing channel is response time. If the attacker issues the
“simple” request towards a large file or a time-consuming
URL, a 200 response will be significantly slower than a
400 response. In Chrome, the Performance.getEntries()
API directly exposes whether or not a request is success-
ful: if a response has status code 400, the API will return
empty response time.

Attackers can further infer more details about victim’s
cookies, such as the size of cookies with specific path
attribute by comparing cookie size under different direc-
tories, or the size of cookies with the secure flag by com-
paring the cookie size in HTTP and HTTPS requests.
As web applications usually use different amounts and

6



attributes of cookie to keep different states for clients,
cookie size information in different dimensions can po-
tentially indicate a victim’s detailed status on target web-
site, such as whether the user has visited, logged-in, or is
administrator on the target website.

The presence of a cookie can leak private informa-
tion about the victim. For example, an attacker might
remotely infer the victim’s health conditions by looking
for visits to particular disease or hospital websites; infer
political preferences by visits to candidate websites; or
infer financial considerations by whether the victim has
an account on lending or investment websites.

4.2 Crafting Request Bodies

Before CORS, JavaScript could only send cross-origin
POST requests via automatic form submission. The
browser will automatically encode the body of a request
before sending, limiting the format and value of POST
body data. CORS allows JavaScript to issue cross-origin
“simple” requests with neither format nor value limita-
tions on request bodies, allowing attackers to craft binary
data in any format.

CORS lacks limits on body format. Standard HTML
forms restrict the format of POST data. HTML form
data is automatically encoded by browsers in three en-
coding types: “application/x-www-form-urlencoded”,
“text/plain”, or “multipart/form-data”. For the first type,
the browser separates the form data with “=” and joins it
with “&”, such as “name1 = value1&name2 = value2”;
for the second, the browser splits the form data with
“=” and joins it with CRLF; for the third, the browser
divides each instance of form data into different sec-
tions, each separated by a boundary string and a Content-
Disposition header like Content-Disposition: form-data;
name = “title”; filename = “myfile”.

CORS does not impose any format restrictions on re-
quest bodies. We tested five browsers and found that all
of them allow JavaScript to send cross-origin requests
with body data in any format. Such flexibility in com-
posing request body can lead to new security problems.

Case Study: We show that an attacker can exploit a
file upload CSRF vulnerability which was previously un-
exploitable. In an HTML form, the “filename” attribute
of file select control cannot be controlled by JavaScript,
and is automatically set by browsers only if the user
makes a selection in the file dialog. Before CORS,
checking the presence of “filename” attribute on server-
side is sufficient to prevent file upload CSRF. However,
CORS breaks this defense, allowing attackers to craft the
body to set “filename” attribute therefore able to launch
file upload CSRF attacks. We found such a case in
the personal account pages of JD.com (Alexa Rank 20),
which has CSRF defenses in every input place except for

uploading a file to change the user’s avatar. This vul-
nerability is unexploitable without CORS. We confirmed
that, with CORS, an attacker can exploit this CSRF vul-
nerability to modify the victim’s avatar.

CORS has few limitations on body values. Be-
fore CORS, browsers restrict binary data in the body
of cross-origin POST requests by filtering or convert-
ing some special values. For example, in Firefox, Edge
and IE, form data is truncated by “\x00” and the data
after “\x00” will not be sent. In Chrome and Safari, a
“\x0a\x0d” sequence is converted to a single character
“\x0d”. This limits an attacker’s ability to accurately
construct malicious binary data. However, both CORS
standards and CORS interfaces in browsers impose no
limitations on the values of request body, which gives
attacker greater flexibility.

Case Study: We found that it is possible with the
new flexibility to exploit binary-based protocol services.
Apple Filing Protocol (AFP) [34] is a file-sharing pro-
tocol from Apple that provides file sharing services for
MacOS. It is a binary-based protocol with its own data
frames and formats. We tested the MacOS built-in AFP
server and found that it always parses data using 16-byte
alignment, ignoring any unrecognized 16-byte frames
and continuing to parse the next 16-byte frame. Before
CORS, this protocol is not vulnerable to HFPA attacks
due to the format and value limitations of HTML form.
By taking advantage of the CORS interfaces, an attacker
can craft a cross-origin request, making its header size a
multiple of 16 bytes, which is ignored by the AFP server,
and constructing its binary body in AFP protocol format
for communication with the AFP Server. We demon-
strated this attack in our experiments: by sending a cross-
origin request from a public website, we can create new
files on an AFP server located in our otherwise-protected
intranet.

5 Risky Trust Dependency

CORS provides web developers an authorization channel
to relax the browser’s SOP and share contents with other
trusted domains. However, this trust relationship makes
the target site dependent on the security of third-party
websites, increasing attack surfaces. An attacker can first
enter a weakly secured trusted domain, and then abuse
this trust relationship to attack a strongly secured target
site.

We study two typical types of trust relationship and
the risks they pose:1) HTTPS site trusting their own
HTTP domain. 2) Trusting other domains. In the first
case, an active network attacker can read sensitive infor-
mation and launch CSRF attacks against HTTPS web-
sites by hijacking HTTP website contents. In the sec-
ond case, a web attacker can carry out similar attacks on

7



a strongly secured website by exploiting XSS vulnera-
bilities on a weak website. Furthermore, our measure-
ments on popular websites showed that those two risks
were largely overlooked by developers. We found that
about 12.7% CORS-configured HTTPS websites (e.g.,
fedex.com) trust their own HTTP domain, and 17.5%
CORS-configured websites (e.g., mail.ru) trusted all of
its subdomains.

5.1 HTTPS Site Trust HTTP Domain
HTTPS is designed to secure communication over inse-
cure networks. Therefore, a man-in-the-middle attacker
cannot read the content of an HTTPS website. However,
if an HTTPS site is configured with CORS and trusts its
own HTTP domain, then an MITM attacker can first hi-
jack the trusted HTTP domain, and then send a cross-
origin request from this domain to the HTTPS site, and
indirectly read the protected content under the HTTPS
domain.

Case Study: Fedex.com (Alexa Rank 470), has fully
deployed HTTPS and enabled the secure and httponly
flag in its cookies to protect against MITM attacks. But
it configures CORS and trusts its HTTP domain, so an
MITM attacker can first hijack the HTTP domain and
then send cross-origin requests to read the HTTPS con-
tent. We verified this attack in our experiments: it al-
lowed attackers to read detailed user account informa-
tion, such as user names, email addresses, home ad-
dresses, credit cards on Fedex.com.

5.2 Trusting Other Domains
Other domains can be divided into two types, their own
subdomains and third-party domains.

Trusting all of its own subdomains. The harm of
cross-site scripting (XSS) vulnerability [36] on a subdo-
main is often limited, because it cannot read sensitive
contents on other important subdomains directly due to
SOP restrictions, nor steal cookies that use the httponly
flag. But if an important subdomain is configured with
CORS and trusts other subdomains, the harm of a subdo-
main XSS can be enhanced.

Case study: Russia’s leading mail service mail.ru
(Alexa global rank 50) provides strong security protec-
tion for the primary domain (https://mail.ru), such as de-
ploying CSP (Content Security Policy) [27] to prevent
XSS, and enabling httponly flag in its cookies. But its
primary domain is configured to trust any subdomain,
and mail.ru subdomains are less secured, so an attacker
can exploit any XSS vulnerability present on its subdo-
mains to read the contents of the primary domain.

We verified this attack as follows. We
found an XSS vulnerability on its subdomain,

https://lipidium.lady.mail.ru. By exploiting1 this
XSS vulnerability, we could successfully read sen-
sitive content of the top domain, including the user
name, email address, and the number of unread mails
information.

Trusting third-party domains. If a secure site is con-
figured with CORS and trusts a third-party domain, an
attacker could exploit the vulnerability on the third-party
domain to indirectly attack the secure site.

Case study: The Korean e-commerce site
(faceware.cafe24.com) and the Chinese house dec-
oration website (www.jiazhuang.com) trust third-party
websites crossdomain.com and runapi.showdoc.cc
respectively, but the third-party websites have security
issues. crossdomain.com’s domain name has expired
and can be registered by anyone, and runapi.showdoc.cc
has an XSS vulnerability on its site. So an attacker
could exploit these vulnerabilities on third-party sites to
indirectly attack the target sites.

5.3 CORS Measurement
To understand the real-world impact of the aforemen-
tioned problems, we conducted measurements of CORS
deployments on popular sites. We targeted the Alexa Top
50,000 domains and extracted all of their subdomains
from an open-to-researchers passive DNS database [1]
operated by a large security company [2]. In total, we
collected 97,199,966 different subdomains over 49,729
different SLDs.

For each subdomain, we repeatedly changed the
Origin header value to different error-prone values in
different testing requests, and inferred their CORS
configurations according to response headers. For
example, to understand whether an HTTPS domain
(e.g., https://example.com) trusts its HTTP domain,
we set the request Origin header to be “Origin:
http://example.com”. If the response headers from the
HTTPS domain contains “Access-Control-Allow-Origin:
http://example.com”, we know that the HTTPS domain
trusts its HTTP domain. We use the same approach in
other subsections.

We found that 481,589 domains were configured with
CORS, of which 61,347 HTTPS domains (about 12.7%)
trusted the HTTP domain and 84,327 domains (about
17.5%) trusted any of its own subdomains, as shown in
Table 3.

We further investigate the reasons behind the high pro-
portion of these two security risks. By analyzing CORS
standards, web frameworks, and web software, we found
three reasons for the first risk: 1) The standards don’t ex-
plicitly emphasize the security risk. 2) Some web frame-

1Note, this exploitation was wholly contained to manipulating our
own browsers; no third party was manipulated via XSS.

8



Table 3: Measurement of insecure CORS configurations
.

Categories Count Percentage Examples
HTTPS trust HTTP 61,347 12.7% fedex.com, global.alipay.com, www.yandex.ru

Trust all subdomains 84,327 17.5% mail.ru, mobile.facebook.com, payment.baidu.com
Reflecting origin 15,902 3.3% account.sogou.com, analytics.microsoft.com, account.nasdaq.com

Prefix match 1,876 0.4% tv.sohu.com, myaccount.realtor.com, manage.renren.com
Suffix match 32,575 6.8% m.hulu.com, www.php.net, account.zhihu.com

Substring match 430 0.1% subscribe.washingtonpost.com, hrc.byu.edu
Not escaping “.” 890 0.2% www.nlm.nih.gov, about.bankofamerica.com

Trust null 3,991 0.8% mingxing.qq.com, aboutyou.de, login.thesun.co.uk
Total 132,476 27.5%

works fail to check protocol types. For example, the pop-
ular web framework django-cors-headers only checks
the domain and neglects the protocol type when examin-
ing a request’s Origin header in order to return the CORS
policy. 3) Some web applications allow both http and
https protocol types for better compatibility. We ana-
lyzed the popular CMS software Wordpress and found
that its trust list was hard-coded to allow both HTTP and
HTTPS domains when returning CORS policies. This
approach improves compatibility and can make Word-
press run in both HTTP and HTTPS environment with-
out any extra configuration, but it introduces new secu-
rity risks.

We also do not find any explicit security warnings for
the second risk (trusting third-party domains) in either of
the standards (W3C or Fetch). Another reason for the
second risk is that trusting arbitrary third-party subdo-
mains simplifies web developer configuration, especially
when a resource needs to be shared among multiple dif-
ferent subdomains.

6 Complex Policies and Misconfigurations

The core function of CORS is that the policies gener-
ated by resource servers instruct client browsers to relax
SOP restrictions and share cross-origin resources. If the
server-side policies are incorrect, it may trust an unin-
tended domain, bypassing the browser’s SOP enforce-
ment. To understand this risk, we analyzed open-source
web framework implementations and real-world CORS
deployments. We discovered a number of CORS mis-
configuration issues. We found that 10.4% of CORS-
configured domains trust attacker-controllable sites. We
also found that 7 out of 11 popular CORS frameworks
undermine CORS’s security mechanisms and could gen-
erate insecure policies.

While some mistakes were caused by negligence, oth-
ers arose due to the complex details and pitfalls in
CORS’ design and implementation, which make CORS

unfriendly to developers and prone to misconfigurations.
We can classify the reasons into four categories: 1) The
expressiveness of access control policy is poor. Many
websites need to implement error-prone dynamic CORS
policy generation at the application-level. 2) Origin null
value could be forged in some corner cases. 3) Devel-
opers do not fully understand the CORS security mech-
anisms, leading to misconfigurations. 4) Interactions be-
tween CORS and web caching bring new complexity.

6.1 Poor Expressiveness of CORS Policy

The W3C CORS standard states that an Access-Control-
Allow-Origin header value can be either an origin list,
“null”, or “*”, whereas in the WHATWG’s Fetch stan-
dard, it can only be a single origin, “null”, or “*”. Our
test on five major browsers shows that they all comply
with the WHATWG’s Fetch standard.

This access control policy is not expressive enough
to meet common web developer usage patterns. For
example, it is difficult for web developers to share re-
sources across multiple domain names through simple
server configurations. Instead, they need to write spe-
cific code or use the web framework to dynamically gen-
erate different CORS policies for requests from different
origins. This approach increases the difficulty of CORS
configuration, and is error-prone in practice. We found a
number of misconfigurations are rooted in this category.

In general, we can classify the misconfigurations into
two sub-categories: 1) blindly reflect requester’s origin
in response headers; 2) attempt to validate requester’s
origin but make mistakes.

1). Reflecting origin. When web developers have to
dynamically generate polices, the simplest way to con-
figure CORS is to blindly reflect the Origin header value
in Access-Control-Allow-Origin headers in responses.
This configuration is simple, but dangerous, as it is
equivalent to trusting any website, and opens doors for
attacker websites to read authenticated resources. In

9



our measurement, 15,902 websites (about 3.3%) out of
481,589 CORS-configured websites have this permissive
configuration, including a number of popular websites
such as account.sogou.com, analytics.microsoft.com,
account.nasdaq.com.

2). Validation mistakes. Due to the poor expres-
siveness of CORS policies, web developers have to dy-
namically validate the request Origin header and gen-
erate corresponding CORS policies. We find the val-
idation processes prone to errors, resulting in trusting
unexpected attacker-controllable websites. These er-
rors can be classified into four types. i) Prefix match-
ing: When a resource server checks whether the Origin
header value matches a trusted domain, it trusts any do-
main prefixed with the trusted domain. For example,
a resource server wants to trust example.com, but for-
gets the ending character, resulting in allowing exam-
ple.com.attacker.com. We found this mistake on pop-
ular websites like tv.sohu.com, myaccount.realtor.com.
ii) Suffix matching: When a resource server checks
whether the Origin header value matches any subdo-
main of a trusted domain, the suffix matching is incom-
plete, accepting any domain ending with the trusted do-
main. For example, www.example.com wants to allow
any example.com subdomain, but it only checks whether
the Origin header value ends with “example.com”, lead-
ing to allow attackexample.com, which can registered
by attackers. Such mistakes are found on websites like
m.hulu.com. iii) Not escaping ‘.’: For example, exam-
ple.com wants to allow www.example.com using regular
expression matching, but its configuration omits escap-
ing “.”, resulting in allowing wwwaexmaple.com. Web-
sites like www.nlm.nih.gov are found to make this mis-
take. iv) Substring matching: We also found that some
websites like subscribe.washingtonpost.com have val-
idation mistakes, resulting allowing ashingtonpost.co,
which can be registered by anyone. In our measure-
ment, a total of 50,216 domain names (about 10.4%)
were found to have these validation mistakes, as shown
in Table 3.

6.2 Origin Forgery

An important security prerequisite for CORS is that the
Origin header value in a cross-origin request cannot be
forged. But this assumption does not always hold in re-
ality.

The Origin header was first proposed for defense
against CSRF attacks [7]. RFC 6454 [6] states that if a
request comes from a privacy-sensitive context, the Ori-
gin header value should be null, but it does not explicitly
define what is a privacy-sensitive context.

CORS reuses the Origin header, but CORS stan-
dards also lack clear definition of null value. In

Table 4: Different CORS framework implementations
.

Framework * and “true”
to reflection no Vary

ASP.net CORS (ASP.net) Yes
Corsslim (PHP) Yes
Django-cors-headers

(Python) Yes

Flask-cors (Python) Yes
Go-cors (Golang) Yes
Laravel-cors (PHP) Yes
NelmioCorsBundle (PHP) Yes
Plack::Middleware
::CrossOrigin (Perl) Yes Yes

Rack-cors (Ruby)
Tomcat CORS filter (Java) Yes
Yii2 CORS filter (PHP) Yes

browser implementations, null is sent from multiple
different sources, including local file pages, iframe
sandbox scripts. When developers want to share
data with local file pages (e.g., hybrid applications),
they configure “Access-Control-Allow-Origin: null” and
“Access-Control-Allow-Credentials: true” on their web-
sites. However, an attacker can also forge the Ori-
gin header with null value from any website by using
browser’s iframe sandbox feature. Thus, sites configured
with “Access-Control-Allow-Origin: null” and “Access-
Control-Allow-Credentials: true” can be read by any do-
main in this way. In our measurement, we found 3,991
domains (about 0.8%) with this misconfiguration, in-
cluding mingxing.qq.com, aboutyou.de.

6.3 Complexity of Security Mechanisms

For web developers’ convenience, CORS allows Access-
Control-Allow-Origin to be configured with the wildcard
“*”, which allows any domain. Given these overly-
loose permissions, CORS later added an additional se-
curity mechanism: “Access-Control-Allow-Origin: *”
and “Access-Control-Allow-Credentials: true” cannot be
used at the same time. This means that “Access-Control-
Allow-Origin: *” can only be used to share public re-
sources.

We found this security mechanism is not well-
understood by either application developers or frame-
work developers: 1) Many application developers were
not aware of this additional requirement and still con-
figured both “Access-Control-Allow-Origin: *” and
“Access-Control-Allow-Credentials: true”. In our mea-
surement, 7,444 out of 481,589 CORS-configured do-
mains (about 1.5%) manifested this mistake, including

10



popular domain names such as api.vimeo.com, secu-
rity.harvard.edu. 2) To avoid the above configuration er-
rors, some web frameworks actively convert the combi-
nation into reflecting origin. This causes the protocol se-
curity mechanism to be bypassed, allowing any domain
to read authenticated resources. We analyzed 11 popular
CORS middleware and found that 7 of them converted
this combination to reflecting origin, as shown in Table 4.

In addition, this mechanism also increased browser
complexity. We tested five major browsers and found
that they have implementation pitfalls on this is-
sue. Browsers are supposed to be always return er-
ror when a server replies “Access-Control-Allow-Origin:
*” and “Access-Control-Allow-Credentials: true” for
a credential-included cross-origin request. However,
we found that this configuration combination can pass
the browser’s security check when they are in the re-
sponse for preflight requests. Thus, if a web site mis-
configured “Access-Control-Allow-Origin: *”, “Access-
Control-Allow-Credentials: true” and “Access-Control-
Allow-Method: DELETE”, an attacker can still pass the
preflight check and send a cross-origin DELETE request
with credentials for that site.

6.4 CORS and Cache

There is another error-prone corner case when CORS in-
teracts with an HTTP cache. When a resource server
needs to be shared with multiple domain names, it needs
to generate different CORS policies for different request-
ing domains. But most web proxies cache HTTP con-
tents only based on URLs, without taking into consider-
ation the associated CORS policies. If a resource shared
with multiple domains is cached with CORS policy for
one domain, others domains will not be able to access the
resource because of CORS policy violation. For exam-
ple, a resource from c.com needs to be shared with both
a.com and b.com from browsers sharing a same cache. If
the resource is first accessed by a.com and is cached with
header “Access-Control-Allow-Origin: a.com”, b.com
will not be able to access the resource since the cached
content has a CORS policy that does not match with
b.com.

HTTP provides the Vary header for this situation. A
resource server needs to configure “Vary: Origin” in its
response headers, which instructs web caches to cache
HTTP contents based on both URLs and Origin header
value. Thus, when a server returns different CORS poli-
cies for different requesting domains, these resources
will be cached in different entries.

Many developers are not aware of this corner case.
In our measurements, 132,987 domains (about 27%) al-
lowed for multiple different domains, but didn’t config-
ure “Vary: Origin”, such as azure.microsoft.com and

global.alipay.com. We analyzed 11 samples of CORS
middleware, finding 4 that were not aware of this issue
and did not generate Vary headers, as shown in Table 4.

6.5 Responsible Disclosure

We are in the process of reporting all vulnerabilities to
the affected vendors. Some websites (e.g., sohu.com,
mail.ru) have acknowledged and fixed the issues.

7 Discussion

We first analyze the underlying causes behind the CORS
security issues and then propose corresponding mitiga-
tion and improvement measures.

7.1 Root Cause

Backward compatibility needs to be just right. Al-
though backward compatibility is important in designing
new systems, over consideration can deteriorate system
security and increase burden in system development and
deployment. Prior to CORS, cross origin request attacks
have become serious problems for web security. To keep
backward compatibility, CORS can choose not to solve
the existing form submission problem, but it is not nec-
essary to allow default sending permission in its newly
opened interfaces. Although CORS made attempt to re-
strict the default sending permission such as restricting
Content-Type to three white-list values, it unintention-
ally relaxed the permissions in subtle ways, leading to
various new cross-origin attacks.

Under web rapid iterative development model,
new protocols aren’t fully evaluated before deployed.
New features are quickly implemented by browsers and
shipped to users before they are fully evaluated, some
immature design are difficult to change after these fea-
tures are widely used in Web. Starting in the second
half of 2008, CORS protocol has major changes and is
still under discussion in the W3C. Due to web develop-
ers’ requirements or browsers’ competitions, in January
2009, some vendors have implemented this immature
protocol into browsers as new features, which include
some immature design, such as CORS policies only sup-
port a single origin [8]. Although the new CORS stan-
dard in 2010 required Access-Control-Allow-Origin to
support origin list [29], these requirements haven’t been
supported in any browsers. One reason is compatibil-
ity issues. Browser modification could lead to different
versions of browsers supporting different levels of ac-
cess control policies, CORS configuration will be further
complicated. Another reason is that, currently web de-
velopers can dynamically generate CORS configuration

11



to complete their goals. Therefore, this design kept un-
changed, which increased web developers configuration
difficulty.

The protocol security considerations haven’t been
effectively conveyed to the developers. The CORS pro-
tocol has many error-prone corner cases in its design
and implementation, as presented in Section 5 and Sec-
tion 6, but these cases are not effectively conveyed to
developers. An important reason is that these security
risks aren’t clearly highlighted in the two CORS speci-
fications. First, the W3C CORS standard lacked timely
updates, its latest version was still in 2014 [31]. In Au-
gust 2017, the W3C CORS standard was proposed for
obsolescence in the W3C mailing list [5], suggesting the
use of WHATWG’s Fetch standard. Web developers who
didn’t subscribe to the W3C mailing list would likely still
take W3C CORS standard to be the latest standard. Sec-
ond, WHATWG’s Fetch standard had no separate secu-
rity consideration section and did not emphasize these
security risks either.

7.2 Improvement for CORS

We found the CORS protocol can be improved in four
aspects:

The default sending permission should be more re-
strictive. A fundamental cause for cross origin request
attack is that a browser allows to directly send cross ori-
gin requests, which could contain malicious data, with-
out asking permission from the server.

One solution is to send a preflight request for all
cross origin requests that allow users to modify headers
and body, and then send the real request after negotiat-
ing with the server. To reduce the additional preflight
round trip, developers can use Access-Control-Max-Age
to cache preflight requests. Note the “always-preflight”
solution may break websites that deploy CORS yet not
support preflight, e.g., those supporting only CORS sim-
ple request. While not many, those sites do exist based
on our experiments.

Another mitigation is to limit the format and value
of white-list headers and bodies in CORS simple re-
quests, similar to restricting Content-Type header to take
only three specific values. However, this approach also
increases the complexity of CORS protocol and may
bring unexpected security troubles. For example, orig-
inally, CORS limited Content-Type to three specific val-
ues excluding “application/json”, so many web appli-
cations used this restriction as CSRF defenses against
JSON APIs. Later, Chrome opened new API SendBea-
cons() for new features, which can send “Content-Type:
application/json” in cross origin requests directly [32].
This behavior break many websites’ CSRF defense and
brought controversy [3].

CORS configuration should be simplified. The poor
expressiveness of CORS policy increase the configura-
tion complexity, web developers have to dynamically
generate corresponding CORS policies, which are prone
to mistakes. Therefore, browsers should support ad-
vanced CORS policies, such as origin list, subdomain
wildcard, to simplify developers’ CORS configuration in
common usages.

The null definition should be clear. In CORS stan-
dards, the null value definition is not clear, and in actual
practice, browsers send null values in different sources.
Developers who don’t know this corner cases may mis-
configure CORS. Therefore, the CORS standard needs
to clearly define null values, preferably using different
values for different sources.

Security risks should be clearly summarized in
standards. The standard should explicitly point out the
risk of trust dependencies brought by CORS. Also, many
CORS misconfigurations are caused by various subtle
corner cases. These security risks should be clearly de-
livered to developers, for example, summarizing best
practices for CORS configuration, highlighting various
CORS error-prone details, and updating them in the lat-
est CORS standards.

8 Related Work

CORS is a relatively new web security mechanism. Al-
though a few researchers have found some CORS secu-
rity issues [37, 23, 11, 14, 13], there is no systematic
study and assessment for CORS security. Our work aims
to fill in this gap, providing a comprehensive security
analysis of CORS in design, implementation and deploy-
ment process. Through this analysis, we discovered a
number of previously unknown security issues. We be-
lieve our study can help the community have a deeper
understanding of CORS security and know the status quo
better.

8.1 Cross-Origin Sending Problems

A few researchers noticed some cases about CORS-
related security issues [37, 23], but they only briefly
touched individual cases rather than studied CORS sys-
tematically. Wilander opened an issue on Github [37],
suggesting that Fetch standard should restrict Accept,
Accept-Language, and Content-Language value accord-
ing to RFC 7231, as an attacker may abuse these three
headers to delivery malicious payloads. We found that
even though Safari adopted his advice to limit the three
headers from using some insecure values, this problem
was still not completely solved. Revay found POST body
format was relaxed in XMLHttpRequest API, which

12



could lead to file upload CSRF [23], and we further pro-
vided a real world case to demonstrate this threat. In
summary, a few researchers found some new security
issues brought by CORS, but none provide an overall
study on this problem. We systematically studied the
new permissions introduced by CORS and their secu-
rity risks, and further demonstrated their harmful con-
sequences with practical attacks.

8.2 CORS Misconfiguration Problems
We were aware of some known CORS misconfigura-
tions attacks and studies [11, 14, 13, 19]. Gurt found
a CORS configuration mistake in the one of Facebook
Message domain, resulting in any malicious web sites
can read victim’s chat information [11]. Kettle dis-
covered and summarized various CORS misconfigura-
tions he encountered in his penetration testing experi-
ence [14]. Inspired by his work, and we studied and
measured CORS misconfiguration semantically, and fur-
ther analyzed their root causes. Johnson measured the
reflecting origin misconfiguration in the Alexa top 1M
sites [13], and Mller [19] measured different misconfig-
urations mentioned in Kettle’s work. With the help of
passive DNS database, we further performed an in-depth
evaluation on their different subdomains. We also an-
alyzed different CORS frameworks to understand those
misconfigurations.

8.3 Other Cross-Origin Problems
From a broad perspective, our work can also be viewed
as an analysis of access control policies in the Web.
Singh studied inconsistent access control policies for
different resources in web browsers, but not including
CORS [25]. Schwenk tested the SOP for DOM between
different browsers and found many inconsistencies [24].
Zheng studied the SOP for cookies and found that vari-
ous cookie-related security issues [38]. Son studied the
usage of PostMessage, a client-side cross-origin commu-
nication mechanism, on the Alexa top 10,000 websites
and found many vulnerable websites [26].

9 Conclusion

We conducted an empirical security study on CORS. We
examined CORS specifications and implementations in
both browsers and Web frameworks, and discovered a
number of new security issues. By conducting an large
scale measurement on CORS deployment in real-world
websites, we found that CORS was not well-understood
by developers, 27.5% of all the CORS configured do-
mains had insecure misconfigurations. We further an-
alyzed the underlying reasons behind these issues and

found that while some are developer’s negligence, many
security issues are rooted in the CORS protocol design
and implementations. Finally, we proposed some im-
provements and clarifications to address these problems.

The reality of CORS security is an unfortunate epit-
ome of web security. As the Web keeps adding new, in
many cases, premature features, unexpected interactions
cause new security threats. Mitigation of new threats fur-
ther require new features, which if not designed properly
will again introduce new risks. Backward compatibility
further complicate the problem. We hope that web com-
munity can take more principled approach to security in
future web protocol design and implementation.

References
[1] 360, Q. Network security research lab at 360. http://netlab.

360.com/, 2017. [accessed Feb-2018].

[2] 360, Q. Qihoo 360 technology co. ltd. http://www.360.cn/,
2017. [accessed Feb-2018].

[3] AYREY, D. Json api’s are automatically protected against
csrf, and google almost took it away. https://github.com/

dxa4481/CORS, 2017. [accessed Feb-2018].

[4] BARON, D. W3c proposed recommendation: Html5.
https://groups.google.com/forum/#!msg/mozilla.

dev.platform/BnY1261cNJo/MdkaT_EX6M0J, 2014. [ac-
cessed Feb-2018].

[5] BARON, D. Transition request: Proposed obsolete for
cors. https://lists.w3.org/Archives/Public/

public-webappsec/2017Aug/0010.html, 2017. [accessed
Feb-2018].

[6] BARTH, A. Rfc 7231-the web origin concept. december 2011.
URl: https://tools.ietf.org/html/rfc6454 (2011).

[7] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust
defenses for cross-site request forgery. In Proceedings of the
15th ACM conference on Computer and communications secu-
rity (2008), ACM, pp. 75–88.

[8] BATEMAN, A. Access-control-allow-origin: * and ascii-
origin in ie8. https://lists.w3.org/Archives/Public/

public-webapps/2009JanMar/0090.html, 2009. [accessed
Feb-2018].

[9] GROSSMAN, J. Advanced web attack techniques using
gmail. http://blog.jeremiahgrossman.com/2006/01/

advanced-web-attack-techniques-using.html, 2006.
[accessed Feb-2018].

[10] GRGOIRE, N. Trying to hack redis via http requests. http:

//www.agarri.fr/kom/archives/2014/09/11/trying_

to_hack_redis_via_http_requests/index.html, 2014.
[accessed Feb-2018].

[11] GURT, Y. Critical issue opened private chats of facebook messen-
ger users up to attackers. https://www.bugsec.com/news/

facebook-originull/, 2013. [accessed Feb-2018].

[12] IPPOLITO, B. Remote json - jsonp. http://bob.ippoli.to/
archives/2005/12/05/remote-json-jsonp/, 2005. [ac-
cessed Feb-2018].

[13] JOHNSON, E. Misconfigured cors, stealing user data from the
alexa 1m. https://ejj.io/misconfigured-cors/, 2016.
[accessed Feb-2018].

13



[14] KETTLE, J. Exploiting cors misconfigurations for bitcoins
and bounties. http://blog.portswigger.net/2016/10/

exploiting-cors-misconfigurations-for.html, 2016.
[accessed Feb-2018].

[15] MAIL LISTS, W. Public-webapps@w3.org mail
archives. "https://lists.w3.org/Archives/Public/

public-webapps/", 2018. [accessed Feb-2018].

[16] MIKE WEST, M. G. Same site. https://tools.ietf.org/

html/draft-west-first-party-cookies-07, 2016. [ac-
cessed Feb-2018].

[17] MITRE. Cve-2014-6271. https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2014-6271, 2014. [ac-
cessed Feb-2018].

[18] MITRE. Cve-2017-5638. https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2017-5638, 2017. [ac-
cessed Feb-2018].

[19] MLLER, J. Cors misconfigurations on a large scale.
https://web-in-security.blogspot.com/2017/07/

cors-misconfigurations-on-large-scale.html, 2017.
[accessed Feb-2018].

[20] OWASP. Owasp top 10 secuirty issues. https://www.owasp.
org/index.php/Top_10_2007, 2007. [accessed Feb-2018].

[21] POPESCU, P. Practical jsonp injection.
https://securitycafe.ro/2017/01/18/

practical-jsonp-injection/, 2017. [accessed Feb-2018].

[22] RESCHKE, J., AND FIELDING, R. Rfc 7231-hypertext trans-
fer protocol (http/1.1): Semantics and content. june 2014. URl:
http://tools.ietf.org/html/rfc7231.

[23] REVAY, G. Here it is, the file upload
csrf. http://gerionsecurity.com/2013/04/

here-it-is-the-file-upload-csrf/, 2013. [accessed
Feb-2018].

[24] SCHWENK, J., NIEMIETZ, M., AND MAINKA, C. Same-origin
policy: Evaluation in modern browsers.

[25] SINGH, K., MOSHCHUK, A., WANG, H. J., AND LEE, W. On
the incoherencies in web browser access control policies. In Se-
curity and Privacy (SP), 2010 IEEE Symposium on (2010), IEEE,
pp. 463–478.

[26] SON, S., AND SHMATIKOV, V. The postman always rings
twice: Attacking and defending postmessage in html5 websites.
In Network and Distributed System Security Symposium (NDSS)
(2013).

[27] STAMM, S., STERNE, B., AND MARKHAM, G. Reining in the
web with content security policy. In Proceedings of the 19th inter-
national conference on World wide web (2010), ACM, pp. 921–
930.

[28] TOPF, J. The html form protocol attack. http://www.

remote.org/jochen/sec/hfpa/hfpa.pdf, 2001. [accessed
Feb-2018].

[29] VAN KESTEREN, A., ET AL. Cross-origin resource sharing.
W3C Working Draft 27 July 2010 (2010).

[30] VAN KESTEREN, A., ET AL. Fetch. https://fetch.spec.

whatwg.org/, 2011. [accessed Feb-2018].

[31] VAN KESTEREN, A., ET AL. Cross-origin resource sharing.
W3C Recommendation 16 January 2014 (2014).

[32] VELA, E. sendbeacon let’s you send post requests with arbitrary
content type. https://bugs.chromium.org/p/chromium/

issues/detail?id=490015, 2015. [accessed Feb-2018].

[33] WHATWG. Web hypertext application technology working
group. "https://whatwg.org/", 2018. [accessed Feb-2018].

[34] WIKIPEDIA. Apple filing protocol — Wikipedia, the free
encyclopedia. "https://en.wikipedia.org/wiki/Apple_

Filing_Protocol", 2018. [accessed Feb-2018].

[35] WIKIPEDIA. Cross-site request forgery — Wikipedia, the
free encyclopedia. "https://en.wikipedia.org/wiki/

Cross-site_request_forgery", 2018. [accessed Feb-2018].

[36] WIKIPEDIA. Cross-site scripting — Wikipedia, the free encyclo-
pedia. "https://en.wikipedia.org/wiki/Cross-site_

scripting", 2018. [accessed Feb-2018].

[37] WILANDER, J. Cors-safelisted request headers should be re-
stricted according to rfc 7231. https://github.com/whatwg/
fetch/issues/382, 2016. [accessed Feb-2018].

[38] ZHENG, X., JIANG, J., LIANG, J., DUAN, H.-X., CHEN, S.,
WAN, T., AND WEAVER, N. Cookies lack integrity: Real-world
implications. In USENIX Security Symposium (2015), pp. 707–
721.

14


