
Microsoft leaks TLS private key for cloud
ERP product

… and it’s still in use more than 100 days
after the initial report
At my old job I was working as a software developer customising the

Microsoft ERP product Dynamics 365 for Operations (formerly known

as Dynamics AX). To provide some context: ERP stands for Enterprise

Resource Planning and is software which supports all critical core

business processes of a company like purchasing, manufacturing,

product planning, sales, �nance and many others by integrating those

into one application with a single database.

Last year Microsoft started to o�er it’s ERP product as a web-based

cloud hosted SaaS solution. The software is hosted in Azure on a VM

managed by Microsoft. It’s accessible through a comprehensive control

panel (Life Cycle Services) which empowers the user to manage every

single aspect of the environment, like the deployment of changes to the

software or applying updates.

One quite useful feature is direct RDP access to the machine running

the software to debug issues with the application. A normal

deployment is divided into at least three systems: development, user

acceptance testing (also referred to as “sandbox”) and production. The

user acceptance system mirrors the exact setup of the production

environment with a single exception: while there’s no way to access the

production servers besides through the web interface, the sandbox

environment o�ers administrative RDP access. And that’s where the
fun begins ;-)

After a long work day while being o� the clock I accessed a sandbox

environment via RDP to take a look and learn how Microsoft would

setup a server hosting such a business critical application. The

hostname for a sandbox environment is

customername.sandbox.operations.dynamics.com. A quick glance at the

certi�cates inside the built-in “Certi�cate Manager” revealed something

shocking:



Sitting there in plain sight was a valid TLS certi�cate for the common

name *.sandbox.operations.dynamics.com and the corresponding
private key — by the courtesy of Microsoft IT SSL SHA2 CA! This
certi�cate is shared across all sandbox environments, even those
hosted for other Microsoft customers. It’s used to encrypt the web
tra�c between the users of the software and the server. All you
need to extract this certi�cate is access to ANY sandbox
environment.

I still could not believe my eyes, so clearly the next goal was to export

the private key to make sure it’s actually possible to export it and use it

outside the system. In Windows the private keys are marked as non-

exportable by default and the Certi�cate Manager refuses to export

those. A short C++ program hooking the internal certi�cate API

functions called to check whether a certi�cate is exportable and a

couple minutes later, I had the private key in my hands.

The implications of this are far reaching: an attacker, which has the

ability to listen and/or interject himself between the connection from

the user to the server (man in the middle), can impersonate the server

and thus read all communication in clear text. Furthermore an attacker

can modify the communication and thus insert malicious content. Since

the attacker can use the original TLS certi�cate, there’s no warning or

error on the client side. Just the green padlock indicating a secure

connection. The users of this user acceptance (sandbox) systems are

high value targets. They are usually in key positions at the respective

organisation and have access to valuable information. The sandbox

system itself often also contains sensitive information to make the test

more realistic. There is even a feature to copy the production database



into the sandbox environment to enable this use case. This opens the

door for data theft and industrial espionage.

Since the setup of the sandbox system is a copy of the production setup

(with the additional RDP access), it’s fair to assume that the same issue

exists on the even more critical production system. A quick look at the

certi�cate served by customername.operations.dynamics.com reveals,

that it’s a wild card certi�cate, too (*.operations.dynamics.com). Since

it’s possible to deploy code to a production system, it should be possible

to deploy a piece of code ex�ltrating the wild card certi�cate. Because

there’s no way anybody would let me deploy this on a customer live

production environment and there’s no chance to acquire one of those

environments for simple testing (licensing issues, huge upfront

investment), my research had to stop there.

With the keys to the kingdom in hand, it was time to contact the

Microsoft Security Response Center (MSRC) via PGP-encrypted mail

(secure@microsoft.com). While I couldn’t believe that the TLS

certi�cate was exposed like this, the communication with Microsoft

was even more disturbing:

I’ve sent this initial successful message on 08/17/17:

Hello,

I’ve noticed a vulnerability in the Microsoft managed Azure hosted

Dynamics 365 for Operations environments.

Each separate customer environment (called AOS in the Dynamics

world — Windows Server 2012 R2 — IIS, accessible by MS customers via

RDP) uses the same wildcard server certi�cate (including the private

key) for the domain *.sandbox.operations.dynamics.com, meaning the

service hosted for Acme Inc. at

acme.sandbox.operations.dynamics.com uses the same TLS wildcard

certi�cate as Evil Inc. hosted at evil.sandbox.operations.dynamics.com.

Reproduction steps / possible attack scenario:

mailto:secure@microsoft.com
https://medium.com/r/?url=http%3A%2F%2Fsandbox.operations.dynamics.com%2F
https://medium.com/r/?url=http%3A%2F%2Facme.sandbox.operations.dynamics.com%2F
https://medium.com/r/?url=http%3A%2F%2Fevil.sandbox.operations.dynamics.com%2F


Involved parties:  

 — Bob working as CFO at ACME Inc, Environment hosted at

acme.sandbox.operations.dynamics.com 

 — Attacker Eve trying to steal ACMEs trade secrets working at the

competitor Evil Inc, Environment hosted at

evil.sandbox.operations.dynamics.com

Steps: 

 1. Attacker Eve visits lcs.dynamics.com and acceses the Azure VM

hosting the environment of Evil Inc using the provided RDP �le and

Administrator credentials — this is the intended way to access your own

environment. 

 2. Attacker Eve uses the tool “mimikatz” on this VM to export the

public and private key pair of the wildcard certi�cate for

*.sandbox.operations.dynamics.com — Eve has rightfully full

administrative access on the hosted azure environment so this is no

issue 

 3. Attacker Eve uses this certi�cate for a man in the middle attack

against Bob and poses as acme.sandbox.dynamics.com 

 4. Bob access the acme.sandbox.operations.dynamics.com

environment, the tra�c gets MITMd by Eve. The attacker has full access

to the data being transmitted. Since Dynamics 365 for Operations is an

ERP System, it’s a high value target. Bob doesn’t see any di�erence,

since the certi�cate in use is a legitimate one.

Mitigation: 

 During the creation of the environment issue an individual certi�cate

unique for each customer environment.

I haven’t checked the production environment because of legal and

ethical reasons, however visiting acme.operations.dynamics.com also is

being served with a wild card certi�cate issued for

*.operations.dynamics.com. Since Eve could deploy code to the

production environment, it should be possible to extract this certi�cate,

too.

https://medium.com/r/?url=http%3A%2F%2Facme.sandbox.operations.dynamics.com%2F
https://medium.com/r/?url=http%3A%2F%2Fevil.sandbox.operations.dynamics.com%2F
https://medium.com/r/?url=http%3A%2F%2Flcs.dynamics.com%2F
https://medium.com/r/?url=http%3A%2F%2Fsandbox.operations.dynamics.com%2F
https://medium.com/r/?url=http%3A%2F%2Facme.sandbox.dynamics.com%2F
https://medium.com/r/?url=http%3A%2F%2Facme.sandbox.operations.dynamics.com%2F
https://medium.com/r/?url=http%3A%2F%2Facme.operations.dynamics.com%2F
https://medium.com/r/?url=http%3A%2F%2Foperations.dynamics.com%2F


Please let me know if i can be of any assistance. Furthermore, please

keep me updated about the status.

Best regards, 

 Matthias Gliwka

Later I’ve sent a follow up email containing an encrypted copy of the

previously extracted private key.

Having not received a initial response informing me that somebody at

Microsoft received my report, three days later I’ve sent a follow up mail

asking for con�rmation, that they got my report. Five days after my

initial report I receive this answer:

Hello,

Thank you for following up on this thread. From how I am interpreting

this report, it sounds as though the attacker has already received or

bypassed admin credentials. As such, this typically would not meet the

bar for security servicing.

Can you provide a scenario where the attacker does not have, or did not

bypass, admin credentials — or, a case where the admin credentials

were somehow stolen?

Regards,

MSRC

I’ve replied with a more detailed explanation of the problem, but until

today never got any response on this email thread. Anticipating that I

would never get any answer on this thread (which proved to be true) I

tried to reach out to an individual working at the PKI Operations team

inside Microsoft, which manages the public CA and compliance work.

I’ve sent out my mail detailing the problem on 08/23/17 in hope that

PKI Operations could reach out to MSRC and make them aware of this



issue. On the same day I’ve got a very friendly response notifying me

that he’s reaching out to MSRC. A day later I get this response:

Wanted to update you that I’ve been chatting with a senior manager in

MSRC. He isn’t able to �nd your case based on the number you gave

below. Any chance you have the actual case number?

I did not yet receive a case number from the MSRC team, all I had until

now was only the CRM ticket number in the subject line. Did I maybe

make a mistake while copy-pasting the CRM ticket number in the

previous mail? To make sure it’s the correct number I forwarded the

reply I’ve got from the MSRC team (see above) with the ticket number

in the subject line to the individual at PKI Operations. He informed me,

that the MSRC team could not �nd my mail. So we agreed that I would

send a neI did not yet receive a case number from the MSRC team, all I

had until now was only the CRM ticket number in the subject line. Did I

maybe make a mistake while copy-pasting the CRM ticket number in

the previous mail? To make sure it’s the correct number I forwarded the

reply I’ve got from the MSRC team (see above) with the ticket number

in the subject line to the individual at PKI Operations. He informed me,

that the MSRC team could not �nd my mail. So we agreed that I would

send a new mail to the MSRC mailbox (secure@microsoft.com) from a

di�erent mail address.w mail to the MSRC mailbox

(secure@microsoft.com) from a di�erent mail address.

This time around I actually got a case number a few hours later:

Thank you very much for your report.

I have opened case 40397 and the case manager, Sean will be in touch

when there is more information.

[…]

If at any time you have questions or want to share more information,

please respond to this message.

Regards,

mailto:secure@microsoft.com
mailto:secure@microsoft.com


Microsoft Security Response Center

With the new case number I’ve contacted the very helpful individual at

PKI Operations and two days later got this response:

Update, the folks at MSRC still aren’t able to �nd this case, but the

manager involved a bunch more people, so we are all looking into this

υ

A day later the individual at PKI Operations informed me that MSRC

has found the mail and is actively engaged.

Since I still haven’t heard from MSRC a week later, I’ve continued to

follow up on a weekly basis.

To be clear: I did not expect resolution of the problem within a
couple of weeks, all I wanted was a simple response like “Yep,
we’ve got your mail and a human is looking into it” directly from
the MSRC team.

There’s so many stories online like this one, where the ticket did not get

any attention for years. Since Dynamics 365 for Operations is business

critical software and the data transferred over the TLS connection is of

very sensitive nature I wanted to make sure that somebody is actually

working on this problem.

At the end of September after various follow up mails, I still have not

received a single response from MSRC on both threads. So I’ve sent

them an mail detailing that this would be my last attempt to contact

them and a full disclosure would trigger, if they would not respond

within the next 10 days.

Ten days later having received no response from MSRC out of

desperation I’ve tried to contact the regular Microsoft support using

their online chat feature in hope they could get me in touch with

someone in the organisation or at least forward a message to them. I’ve

detailed what happened until now and explained, that I’m trying to

reach the MSRC team. A few minutes later, I’ve received this phone

number from the support: (562) 981–7600. Could that be the real

deal? A call to this number revealed, that it belongs to the Marine Spill

Response Corporation (MSRC), the largest, dedicated oil spill and

https://medium.com/r/?url=https%3A%2F%2Farstechnica.com%2Finformation-technology%2F2015%2F03%2Fmicrosoft-takes-4-years-to-recover-privileged-tls-certificate-addresses%2F
https://medium.com/r/?url=https%3A%2F%2Fwww.msrc.org%2F


emergency response organization in the United States. I’m sure a

leaked TLS certi�cate is a serious o�ense, but is a di�erent kind of leak

which needs a di�erent kind of expertise to be handled ;-)

In a last ditch e�ort I even tried to reach out to them via twitter.

I’ve almost given up at this point in time, but to my surprise I received a

response on twitter followed by a mail a couple of days later ensuring

me that “the servicing team for this endpoint [is] expressly committed

to �xing this issue as soon as possible. I will keep you posted with

updates.”

At this point it should be clear to the reader, that neither of those things

happened till this date. The certi�cate is still out there in use — more

than 100 days after the initial discovery. My last follow-up remained

unanswered.

The timeline: 

08/14/17 — Initial discovery of the leaked certi�cate 

08/17/17 — First successful contact to MSRC (thread #1) 

08/22/17 — Response from MSRC, detailing that it doesn’t meet the

bar for security servicing (thread #1). Last mail from MSRC on this

thread. 

08/22/17 — Mail sent to MSRC detailing why this issue should be dealt

with (thread #1) 

08/23/17 — First mail to individual at PKI Operations 

08/23/17 — Response from PKI Operations 

08/24/17 — Response from PKI Operations that MSRC is not able to

�nd my case 

08/24/17 — Forwarded MSRC mail (thread #1) to PKI Operations 

08/25/17 — Response from PKI Operations that MSRC is still trying to

�nd the mail 

08/25/17 — O�ered to re-send the mail to MSRC using a di�erent mail

@msftsecresponse Reported a leaked TLS private key
for a cloud product >45 days ago - still no response.
Can you take a look? Case #40397

Matthias Gliwka
@cerebuild

https://twitter.com/msftsecresponse
https://twitter.com/cerebuild
https://twitter.com/cerebuild/status/915697858313154560


address to PKI Operations 

08/25/17 — Sent problem description to MSRC again (thread #2) 

08/25/17 — Received a reply from MSRC with a case number (thread

#2). This was the last mail received from MSRC on this thread. 

08/26/17 — Forwarded mail with the case number to PKI Operations 

08/28/17 — Received mail from PKI Operations detailing that MSRC

was still looking for the new case (thread #2) 

08/29/17 — Received mail from PKI Operations that MSRC found the

mail. 

01/09/17 — Received mail from individual at PKI Operations that he’s

dropping o� this, because MSRC is “actively engaged” 

07/09/17 — Follow-up with MSRC (thread #2) — No response 

12/09/17 — Follow-up with MSRC (thread #2) — No response 

18/09/17 — Follow-up with MSRC (thread #2) — No response 

26/09/17 — Follow-up with MSRC (thread #2) — No response 

04/10/17 — Tweet to @msftsecresponse 

10/10/17 — Finally got the �rst response via Twitter + mail 

11/15/17 — Last follow-up 

11/28/17 — Full Disclosure


