
Classloading and Type Visibility in OSGi

M ti Li tMartin Lippert
akquinet it-agile GmbH

martin.lippert@akquinet.de

© 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license | November 4th, 2008

Overview

• Introduction to classloading• Introduction to classloading
What is classloading?
How does classloading work?
What does classloading mean for daily development?

• Classloading in OSGi
What is different?What is different?
Dependency and visibility
Advanced classloading in OSGi
Some Equinox specifics

• Conclusions

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

What is Classloading?

• Classloaders are Java objects• Classloaders are Java objects
• They are responsible for loading classes into the VM

Every class is loaded by a classloader into the VMy y
There is no way around

• Every class has a reference to its classloader object
Obj t tCl () tCl L d ()myObject.getClass().getClassLoader()

• Originally motivated by Applets
To load classes from the server into the browser VM

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader API
public abstract class ClassLoader {public abstract class ClassLoader {p {

public Class<?> loadClass(String name)

public URL getResource(String name)

p {

public Class<?> loadClass(String name)

public URL getResource(String name)p g (g)
public Enumeration<URL> getResources(String name)
public InputStream getResourceAsStream(String name)

public final ClassLoader getParent()

p g (g)
public Enumeration<URL> getResources(String name)
public InputStream getResourceAsStream(String name)

public final ClassLoader getParent()p g ()

public static URL getSystemResource(String name)
public static Enumeration<URL> getSystemResources(String name)
public static InputStream getSystemResourceAsStream(String name)

p g ()

public static URL getSystemResource(String name)
public static Enumeration<URL> getSystemResources(String name)
public static InputStream getSystemResourceAsStream(String name)p p g y g
public static ClassLoader getSystemClassLoader()

...
}

p p g y g
public static ClassLoader getSystemClassLoader()

...
}

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Implicit class loading

public class A {
public void foo() {

public class A {
public void foo() {

B b = new B();
b.sayHello();

}

B b = new B();
b.sayHello();

}
causes the VM to load
class B using the

}}
class B using the
classloader of A

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Dynamic class loading

public void foo() {
ClassLoader cl =

public void foo() {
ClassLoader cl =

this.getClass().getClassLoader();
Class<?> clazz = cl.loadClass("A");
Object obj = clazz.newInstance();

this.getClass().getClassLoader();
Class<?> clazz = cl.loadClass("A");
Object obj = clazz.newInstance();

...
}
...

}}}

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Hierarchical classloaders

• Classloaders typically have a parent classloader• Classloaders typically have a parent classloader
Chained classloading

• If a classloader is invoked to load a class, it first calls
the parent classloader

P t fi t t tParent first strategy
This helps to prevent loading the same class multiple times

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader hierarchy

Classloader A A.jar

Class A

Classloader AClassloader A A.jarA.jar

Class AClass A

parentparentparent

Classloader B
B.jar

Class BClassloader BClassloader B
B.jarB.jar

Class BClass B

loaderB.loadClass("A");loaderB.loadClass("A");loaderB.loadClass("A");

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type compatibility

Classloader AClassloader A A.jar

Class A

A.jarA.jar

Class AClass A

parentparent
loaderA.loadClass("A");loaderA.loadClass("A");

Classloader BClassloader B
B.jar

Class B

B.jarB.jar

Class BClass B

Returns the same class object as
loaderB.loadClass("A")

Returns the same class object as
loaderB.loadClass("A")

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Defining vs. Initiating classloader

Defining loader

Initiating loader

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type compatibility II

Classloader A A.jar

Class A

Classloader A A.jar

Class A

Class B

parent

Classloader B2Class B

parent

Classloader B1 Class B

parent

Classloader B2Class B

parent

Classloader B1
B.jar

Classloader B2
B.jar

Classloader B1
B.jar

Classloader B2
B.jar

Classloader B1

loaderB1.loadClass(“A”) == loaderB2.loadClass(“A”)
loaderB1.loadClass(“B”) != loaderB2.loadClass(“B”)

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type compatibility III
Class AClass A

Classloader A A.jar

Class A

parentparent

Classloader A A.jar

Class A

parentparent

B jar

Class B

parent

Classloader B2
B jar

Class B

parent

Classloader B1
B jar

Class B

parent

Classloader B2
B jar

Class B

parent

Classloader B1

Object b1 = loaderB1.loadClass(“B”).newInstance();

B.jarB.jar B.jarB.jar

b1 !instanceof loaderB2.loadClass(“B”)

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Remember: a class is identified by its name (including the
package name) AND its defining classloader !!!

Remember: a class is identified by its name (including the
package name) AND its defining classloader !!!

Type compatibility IV
Class AClass A

Classloader A A.jar

parentparent

public interface A {}
Classloader A A.jar

parentparent

public interface A {}

B.jar

Class BClassloader B2
B.jar

Class B Classloader B1
public class B implements A {} B.jar

Class BClassloader B2
B.jar

Class B Classloader B1
public class B implements A {}

A anA = loaderB1.loadClass(“B”).newInstance();

jj public class B implements A {} jj public class B implements A {}

A anA loaderB1.loadClass(B).newInstance();
A anotherA = loaderB2.loadClass(“B”).newInstance();
anA = anotherA; (Assignment)

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

The default setting

Bootstrap ClassloaderBootstrap Classloader loads JVM classes (rt.jar)

Extension ClassloaderExtension Classloader loads classes from the
JRE ext folderJRE ext folder

loads classes from yourSystem ClassloaderSystem Classloader loads classes from your
application classpath

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

A typical setting…

rtrt

bcelbcel

contentcontent

oracleoracle

dbcpdbcp

jsonjson

log4jlog4j

jcejce

jssejsse

namingnaming

corecore

aspectjrtaspectjrt

logginglogging

axisaxis

resourceresource

pluginplugin

marketingmarketing

commonscommons

guiappguiapp

poipoi

lucenelucene

springspring

asmasm

hibernatehibernate

cglibcglib

jdomjdom

utilsutils

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Threads context classloader
Thread currentThread() getContextClassLoader()Thread.currentThread().getContextClassLoader()
Thread.currentThread().setContextClassLoader(..)

• Typically used in libraries to access the context in
which the library is called

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader.loadClass vs. Class.forName

Cl l d l dCl () caches the loaded class•Classloader.loadClass() caches the loaded class
object and returns always the same class object

This is done by the defining classloader
This ensures that each classloader loads the same class only
once

•Class.forName() calls the normal classloaderClass.forName() calls the normal classloader
hierarchy to load the class (same happens as above)

But caches the class object within the initiating
classloaderclassloader
In standard cases no problem but can be tricky in dynamic
environments

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloading is dynamic

• You can create classloaders at runtime• You can create classloaders at runtime
• You can trigger them to load a specific class

• For example:
What app/web servers do for hot deployment

S l th l l di h i i th• Some people say the classloading mechanism is the
only real innovation in the Java programming language

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloading in OSGi

• “OSGi is a service framework”• OSGi is a service framework

• What is necessary:What is necessary:
Dependencies between bundles

Import- and Export-Package, Require-Bundle
Dynamic Bundle LifecycleDynamic Bundle Lifecycle

Install, Update, Uninstall bundles

• Realized via specialized classloading

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader per bundle

• One classloader per bundle• One classloader per bundle
Controls what is visible from the bundle
Controls what is visible from other bundles

Class AClass AClass AClassloaderClassloader
Bundle ABundle ABundle A

Bundle B

Class B

Bundle BBundle B

Class BClass BClassloaderClassloader

Bundle C

Class C

Bundle CBundle C

Class CClass CClassloaderClassloader

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader per bundle

• Effects• Effects
No linear class path for your application anymore
Instead class path per bundle
No real parent hierarchy anymore

• Classloader parent setting• Classloader parent setting
Default: Bootstrap classloader
Can be parameterized via system property

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Dependencies via delegation
Export Package: mypackageAExport Package: mypackageA

Bundle A

Class A

Bundle ABundle A

Class AClass A
Export-Package: mypackageAExport-Package: mypackageA

Class BClass BClass BImport-Package: mypackageA,
mypackageC
Import-Package: mypackageA,
mypackageC Bundle BBundle BBundle BmypackageCmypackageC

Bundle C

Class C

Bundle CBundle C

Class CClass C Export-Package: mypackageC
Import-Package: mypackageA
Export-Package: mypackageC
Import-Package: mypackageA

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type Visibility I

Bundle A

Class A

Bundle ABundle A

Class AClass A
Export-Package: mypackageAExport-Package: mypackageA

Bundle B

Class B

Bundle BBundle B

Class BClass BImport-Package: mypackageAImport-Package: mypackageA

A anA = new A();A anA = new A();

A anA = new A();A anA = new A();

A anA new A();A anA new A();

class A is loaded only once by class A is loaded only once by class A is loaded only once byclass A is loaded only once by

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

bundle A (the bundles
classloader)

bundle A (the bundles
classloader)

class A is loaded only once by
bundle A (its defining classloader)

class A is loaded only once by
bundle A (its defining classloader)

Type Visibility II

Bundle A

Class A

Bundle ABundle A

Class AClass A
Export-Package: mypackageAExport-Package: mypackageA

Bundle B

Class B

Bundle BBundle B

Class BClass BImport-Package: mypackageAImport-Package: mypackageA

A anA = new A();A anA = new A();

A anA = new A();A anA = new A();

A anA new A();A anA new A();
class is loaded

successfully (if requested
inside bundle A)

class is loaded
successfully (if requested

inside bundle A) bundle B remains in state “installed” bundle B remains in state “installed”

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

(not resolved), no loading of type A
possible

(not resolved), no loading of type A
possible

Type Visibility III

Bundle A

Class A

Bundle ABundle A

Class AClass A
Export-Package: mypackageAExport-Package: mypackageA

Bundle B

Class B

Bundle BBundle B

Class BClass BImport-Package: mypackageAImport-Package: mypackageA

A anA = new A();A anA = new A();

A anA = new A();A anA = new A();

A anA = new A();A anA = new A();

class is loaded class is loaded A anA new A();A anA new A();
successfullysuccessfully

ClassNotFoundExceptionClassNotFoundException

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

pp

Type Compatibility revisited I

Bundle A

Class A

Bundle ABundle A

Class AClass A
Export-Package: mypackageAExport-Package: mypackageA

Bundle B

Class B

Bundle BBundle B

Class BClass BImport-Package: mypackageAImport-Package: mypackageA

A anotherA = new A();A anotherA = new A();

A anA = new A();A anA = new A();

A anotherA new A();A anotherA new A();

exactly the same typeexactly the same typeexactly the same typeexactly the same type

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

exactly the same typeexactly the same typeexactly the same typeexactly the same type

Type Compatibility revisited II
Export Package:Export Package:Export Package:Export Package:

Bundle A

Class A

Export-Package:
mypackageA;version=“2.0.0"

Bundle A

Class A

Export-Package:
mypackageA;version=“2.0.0"

Bundle A

Class A

Export-Package:
mypackageA;version="1.0.0"

Bundle A

Class A

Export-Package:
mypackageA;version="1.0.0"

Import-Package:
mypackageA;version=“2 0 0"
Import-Package:
mypackageA;version=“2 0 0"

Import-Package:
mypackageA;version=“1 0 0"
Import-Package:
mypackageA;version=“1 0 0"

Bundle C

Class C
mypackageA;version= 2.0.0

Bundle C

Class C
mypackageA;version= 2.0.0

Bundle B

Class B
mypackageA;version= 1.0.0

Bundle B

Class B
mypackageA;version= 1.0.0

A anA = new A();A anA = new A(); A anA = new A();A anA = new A();

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Completely different and incompatible typesCompletely different and incompatible typesCompletely different and incompatible typesCompletely different and incompatible types

Type Compatibility revisited III
Bundle A

Type A

Bundle ABundle A

Type AType A

public interface A {}public interface A {} Bundle ABundle ABundle A

Bundle B

Class B

Bundle BBundle B

Class BClass B public class B impl A {}public class B impl A {}

public interface A {}public interface A {}

Class CClass CClass C

Bundle BBundle BBundle B

public class C impl A {}public class C impl A {}

Bundle CBundle CBundle C

Bundle D

Class D

Bundle DBundle D

Class DClass D
A myA = createServiceA();A myA = createServiceA();

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Static type of myA is A, dynamic type of myA
could be B or C

Static type of myA is A, dynamic type of myA
could be B or C

ClassNotFoundException

• Typical reasons for a ClassNotFoundException:• Typical reasons for a ClassNotFoundException:
Dependency to declaring bundle not defined
Type is not visible (not exported)

• Dynamically generated classes
ProxiesProxies
CGLib
…

• Serialisation

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Libraries

• What happens if a library needs
org.hibernate

B dl
org.hibernate

B dl• What happens if a library needs
to load classes from its clients?

e.g. persistence libraries?

BundleBundle

• Cyclic dependencies are not
allowed and maybe even not

Import-Package:
org hibernate
Import-Package:
org hibernateallowed and maybe even not

what you want
Bundle A

Class A

Bundle ABundle A

Class AClass A

org.hibernateorg.hibernate

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Register classes

• Register types the library need via an API• Register types the library need via an API
E.g.
Hibernate.registerClass(Class clientClass)

• This allows the lib to create objects of those types without
loading those classes directlyg y

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

DynamicImport-Package

• Works similar to Import DynamicImport-Package: *DynamicImport-Package: *• Works similar to Import-
Package, but

wiring does not happen at resolve

org.hibernate
Bundle

org.hibernate
Bundle

y p gy p g

instead at first access to such a
type

• Wildcards possibleWildcards possible
* allows a bundle to see
“everything”
Should be used very rarely as Class AClass AClass A

Import-Package:
org.hibernate
Import-Package:
org.hibernate

Should be used very rarely, as
a “last resort” Bundle ABundle ABundle A

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Equinox buddy loading I

• Equinox provides so called “Buddy Loading”• Equinox provides so called Buddy Loading

“I am a buddy of hibernate. Hibernate is allowed to
access my types”

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Equinox buddy loading II
Eclipse-BuddyPolicy: registeredEclipse-BuddyPolicy: registered

org.hibernate
Bundle

org.hibernate
Bundle

Allows org.hibernate bundle to
execute successfully
loadClass(“A”)

Allows org.hibernate bundle to
execute successfully
loadClass(“A”)

Allows org.hibernate bundle to
execute successfully
loadClass(“A”)

Allows org.hibernate bundle to
execute successfully
loadClass(“A”)

Cl ACl ACl A

Eclipse-RegisterBuddy:
org.hibernate

Eclipse-RegisterBuddy:
org.hibernate

Bundle A

Class A

Bundle ABundle A

Class AClass A

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

A anA = new A();A anA = new A();

Equinox buddy loading III

• Important difference:• Important difference:
Buddy loading can load all classes from a buddy bundle
not only exported types

• Its just a workaround for libraries and other existing
code that does not behave correctly within the OSGicode that does not behave correctly within the OSGi
world

• Take care: you could loose consistency

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

CGLibCGLib

Generated Proxies
BundleBundle

SpringSpring• Situation: Spring
Bundle
Spring
Bundle

• Situation:
Ask the Spring bundle for a bean

• What does Spring?p g
Creates a proxy for the bean using the
classloader of bundle A using CGLib

• The result

Class AClass AClass A

• The result
The proxy type needs to be loaded by a
classloader that is able to see types from
bundle A and CGLib

Bundle ABundle ABundle A
bundle A and CGLib

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

The loading sequence

1 Try the parent for “java ” packages1. Try the parent for java. packages
2. Try the parent for boot delegation packages
3 Try to find it from imported packages3. Try to find it from imported packages
4. Try to find it from required bundles
5. Try to find it from its own class path
6. Try to find it from dynamic import
7. Try to find it via buddy loading

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Garbage Collection for Classloaders

• You could expect that the classloader of a bundle gets• You could expect that the classloader of a bundle gets
garbage collected if the bundle is stopped or
uninstalled

• This is not automatically the case!!!

• You need to ensure that all objects from those classes
loaded by this classloader are no longer referencedloaded by this classloader are no longer referenced

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

What does this mean?

• Example:• Example:
You request an OSGi service and get an OSGi service back
The service you get is provided by bundle A
Next you uninstall bundle A

If you stay with your object reference to the service• If you stay with your object reference to the service,
the classloader of A can never be collected

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Service Tracker helps

• Use a Service Tracker• Use a Service-Tracker

• Takes care ofTakes care of …
holding the reference for performance reasons
As long as the service is available
B t l !But no longer!

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

“High Performance Classloading”

• Classloading consumes a remarkable amount of time• Classloading consumes a remarkable amount of time
at startup

• OSGi allows to highly optimize classloadingg y p g
Finding the right class
Highly optimized implementations available
Avoid dynamic importAvoid dynamic import

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloading Hooks

• Equinox provides a hook mechanism• Equinox provides a hook mechanism
To enhance and modify the behavior of the runtime

• Examples
Modify bytecode at load-time
Intercept bundle data accessIntercept bundle data access

• Eat your own dog food
Some Equinox features are implemented using those hooks
e.g. Eclipse-LazyStart

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Conclusions

• Changing the viewpoint from the linear classpath to a• Changing the viewpoint from the linear classpath to a
per-bundle classpath

• Clearly defined dependencies and visibilitiesy p
Real modularity
Classloading only implementation detail

• Use OSGi in a clean and correct way and you
never need to think about classloading at allg

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Thank you for your attention!

Q&AQ&A

Martin Lippert: martin.lippert@akquinet.de

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

