[2] Lemma Two: differentiating quantize $_k(r_{i_\ell})$ yields 1 under condition of Expectation of a Straight-Through Estimator.

Chromium OSX

https://github.com/ppwwyyxx/tensorpack/issues/31#issuecomment-254919972

- (1) Given quantize_k(r_{i_l}) = (1 / (2^k-1)) * round((2^k 1) r_{i_l}).
- (2) Consider ~quantize_k $(r_{i_r}) = (1/(2^k-1)) * ((2^k-1)r_{i_r}) = r_{i_r}$.
- (3) \sim quantize $'_k(r_{i_i}) = 1$.
- (4) Observation: in the absence of a *round()* function the two scale factors cancel and the derivative is 1. Can we make the *round()* function "disappear" in some justified fashion?
- (5) Note that the $round(r_{i_\ell})$ function adds some number $n \in [-0.5, 0.5]$ to r_{i_ℓ} to round r_{i_ℓ} to the nearest integer
- (6) If n = 0, then quantize $k(r_{i_\ell}) = quantize k(r_{i_\ell}) = 1$.
- (7) if $n \neq 0$, then our outer scale factor of $1/(2^k-1)$ is technically multiplying the result of $(2^k-1)(r_{i_\ell}+n)$, and thus the scale factors do not cancel.
- (8) Note that the probability of $n \neq 0$ is low, and so any individual call to quantize_k() is unlikely to result in a case where we can ignore the round() function.
- (8) However, under assumption that n is drawn uniformly and at random from [-0.5, 0.5], the expectation E(n) = 0.
- (9) *:. under expectation E(n) = 0, quantize $k'(r_i) = -quantize k'(r_i) = 1.**$

[2] Lemma Two: differentiating quantize $_k(r_{i_\ell})$ yields 1 under condition of Expectation of a Straight-Through Estimator. Firefox 49.0.2 OSX

https://github.com/ppwwyyxx/tensorpack/issues/31#issuecomment-254919972

- (1) Given quantize_k(r_{i}) = (1 / (2^k-1)) * round((2^k 1) r_{i}).
- (2) Consider ~quantize_k $(r_{i_r}) = (1/(2^k-1)) * ((2^k-1)r_{i_r}) = r_{i_r}$.
- (3) \sim quantize $'_k(r_{i,}) = 1$.
- (4) Observation: in the absence of a *round()* function the two scale factors cancel and the derivative is 1. Can we make the *round()* function "disappear" in some justified fashion?
- (5) Note that the $round(r_{i_\ell})$ function adds some number $n \in [-0.5, 0.5]$ to r_{i_ℓ} to round r_{i_ℓ} to the nearest integer.
- (6) If n = 0, then quantize $k(r_i) = -quantize k(r_i) = 1$.
- (7) if $n \neq 0$, then our outer scale factor of $1/(2^k-1)$ is technically multiplying the result of $(2^k-1)(r_{i_\ell}+n)$, and thus the scale factors do not cancel.
- (8) Note that the probability of $n \ne 0$ is low, and so any individual call to quantize_k() is unlikely to result in a case where we can ignore the round() function.
- (8) However, under assumption that n is drawn uniformly and at random from [-0.5, 0.5], the expectation (n) = 0.
- (9) *:. under expectation (n) = 0, quantize $(r_i) = \text{-quantize}(r_i) = 1.**$