

USEPA Technical Support Project Meeting

07 Nov 01

Some History

- Source (5 landfill cells and a kettle hole) used for waste disposal:
 - 1947, 1951, 1957 (NWOU 40 acres)
 - 1970, post-1970, kettle hole (50 acres)
- Waste disposal practices at landfill ceased in 1989
- Landfill closed in 1993
- 1970 cell, post-1970 cell, and kettle hole capped in 1995

LF-1 Plume

- Groundwater plume ~ 17,300 ft long, 5,500 ft wide, and averages 35 feet thick with a max thickness of 125 feet.
- The plume is ~150-300 ft below ground and 50-200 ft below the water table along most of its length

Remedial Design

- Treat areas of higher contaminant concentration in the northern and southern lobes of the plume while relying on natural attenuation to reduce contaminant mass and concentrations in the central part of the plume
 - extraction, treatment, and infiltration (ETI) system
 - monitored natural attenuation (MNA)
- Design to remove 75 to 80% of the COC mass crossing the base boundary

LF-1 Treatment System

Primary Contaminants: TCE, PCE, CCl ₄
Date In Operation: August 1999
of Extraction Wells: 5
Type of System: ETI
Treatment Rate: Million gallons per day: 1.01
Volume Treated, through Dec. 2000 Million gallons: 456

LF-1 (Hydro)Geology

- Sediments/soils are primarily fineand silts, till overlying bedrock
- Single source aquifer
- Groundwater flows mainly west from source area to Buzzards Bay (Red Brook and Squeteague Harbors)
- Horizontal flow gradient: 0.001 to 0.007 ft/ft (steeper gradients observed in moraine area)
- Hydraulic conductivity varies from 13 to 350 ft/day (depending on moraine or outwash)
- Horizontal flow velocities range from 0.1 to 3 ft/day (depending on moraine or outwash)

LF-1 COCs

• Carbon Tetrachloride (CCl₄)

- Conc Range: ND 42 ug/L (Aug 99, 27MW0023A)
- Apr 01 27MW0023A @ 0.09 ug/L
- 2001 Highest Conc: 10 ug/L (Apr 01, 27MW0092A)
- Trichloroethylene (TCE)
 - Conc Range: ND 150 ug/L (Aug 99, 27MW0031A)
 - Apr 01 27MW0031A @ 84 ug/L
 - 2001 Highest Conc: 100 ug/L (Jan 01, 27MW0031A)
- Perchloroethylene (PCE)
 - Conc Range: ND 67 ug/L (Dec 98, 27MW0102A)
 - Apr 01 27MW0102A @ 27 ug/L
 - 2001 Highest Conc: 30 ug/L (Apr 01, 27MW0035)

The use of naturally occurring attenuation processes* combined with environmental monitoring to remediate contaminated groundwater.

 * Attenuation processes include: biodegradation, hydrolysis, dispersion, dilution, sorption, volatilization

Lines of Evidence forMRNatural Attenuation

- Plume is shrinking, stable, or growth is slower than expected
- Time vs. contaminant concentration trends at source area and along flowpaths
- Presence and distribution of geochemical and biochemical indicator parameters (e.g., oxygen, nitrate, sulfate, iron II, methane) and "daughter products"
- Correlation of indicator parameters with areas of contaminant mass loss
- Direct microbiological evidence (e.g., microcosm studies)
- Indirect microbiological evidence (PLFA analysis to show that appropriate bacteria are present in the aquifer)

Focused Feasibility Study

- Focused feasibility study (FSS) initiated in 1998
- Groundwater samples analyzed for VOCs, TOC, Methane, Ethane, Ethene, Nitrate, Sulfate, Chloride, DO, ORP
- Soil samples analyzed for VOCs and TOC

- Landfill cap appears to have reduced leaching of contamination
 - 27MW0016: total VOC concentration at 315 ug/L (1989-1990) reduced to 3.9 ug/L (1997)
 - 27MW0031: highest total VOC concentration of 211 ug/L detected since 1998
- Landfill leachate (elevated TOC), present in groundwater plume, serves as electron donors

- Electron acceptors such as DO and sulfate are depleted
- Elevated concentrations of metabolic byproducts present in plume i.e. methane, ethene, Fe (II), carbon dioxide, alkalinity, and chloride
- Degradation products also present in the plume i.e. cis-1,2-DCE and vinyl chloride
- ORP of impacted groundwater is lower than background

M

Biodegradation Rates

- Biodegradation rate constants were approximated for total VOCs across three flow paths
- Determined that rates in center of the plume were higher than the rest of the plume
 - Used as an explanation for the observed bifurcation of the northern and southern lobes
- Biodegradation rates ranged from 0.00015 to 0.0004 days⁻¹, corresponding to half lives of 4.9 to 12.8 years

FFS Conclusions

- There is strong evidence for reductive dechlorination of chlorinated organics in the plume
- Natural attenuation alone could treat the plume and that no significant benefit would be gained by installation of an active treatment system

Long Term Monitoring

- Continued collecting chemical and hydraulic data through a long term monitoring (LTM) program
- Refined flow paths through additional modeling
- Suggested different contributing source areas and/or release events
- Refined contaminant zones

LTM - MNA

- 26 wells sampled quarterly for evaluating MNA in the central portion of the plume
- Wells sampled for VOCs, MNA parameters, and field parameters

LTM - MNA Conclusions*

- Biodegradation generally appears to be more significant in the southern plume lobe than in the northern or central lobes based on:
 - Higher methane concentrations
 - Lower sulfate concentrations
 - More strongly reducing conditions
 - Higher cis-1,2-DCE (a degradation product) concentrations
- Central lobe contains smaller areas of PCE which appear to be related to a small or declining source term rather than to biodegradation
- * Year 2000 Annual Report

LTM - MNA Conclusions*

- Northern lobe contains elevated levels of TCE and demonstrates little evidence that microbially- driven attenuation is significant
- Bifurcation of northern and southern lobes due to geology and different contributing source areas

MNA Recommendations*

• Install additional monitoring wells along the extraction fence to supplement the existing monitoring network

• Refocus the LTM-MNA monitoring well network for chemical sampling on the plume areas where MNA and concentration changes are occurring more rapidly

• Continue LTM/LTO

* Year 2000 Annual Report

MNA (cont)

- A remedial strategy that incorporates the fact that contaminants will naturally attenuate through physical, chemical, and especially biological processes.
 - Different from "no action" alternative
 - Is only appropriate at sites where the rate of natural attenuation is sufficient to meet remedial objective
 - Depends on extensive monitoring and institutional controls to ensure protection of human health and the environment
 - Management of a known condition of contamination

Natural Attenuation under Sequential Anaerobic-Aerobic Conditions

- Most common at sites with regional aerobic groundwater and anthropogenic carbon source present
- Highly chlorinated VOC concentrations declining near source area under anaerobic conditions, replaced by breakdown products
- Breakdown products decline downgradient under more aerobic conditions
- Depletion of oxygen and nitrate in source area
- Appearance of methane and Fe II in source area, disappearing downgradient

• Chlorinated solvents can be transformed by:

- Use of the solvent as an electron acceptor appears to be the most important mechanism in LF-1
- Use of the solvent as an electron donor
- Cometabolism degradation resulting from exposure to a catalytic enzyme fortuitously produced during and unrelated process

Reductive Dechlorination

- Chlorinated hydrocarbons act as electron acceptors – the chlorine atom is replaced by a hydrogen atom
 - The hydrogen atom comes from fermentation of other substrates (electron donors)
- Evidence of occurrence includes production of degradation products and metabolic byproducts

M

e⁻ Donors and Acceptors

- Driving force behind biodegradation is electron transfer from donors to acceptors
- Results in oxidation of electron donors and reduction of electron acceptors
 - Donors: natural organic carbon, petroleum hydrocarbons, light chlorinated hydrocarbons (i.e. VC and DCE or DCA), landfill leachate
 - Acceptors: oxygen, nitrate, Fe(III), sulfate, carbon dioxide, heavy chlorinated hydrocarbons (PCE, TCE, TCA, PCBs, etc)

Oxygen

- Areas of low DO (<0.5 mg/L) in LF-1 plume
- Background DO at 11 mg/L
- Nitrate
 - Nitrate concentrations primarily nondetect in plume; highest concentration was 0.68 mg/L
 - Background concentrations low or nondetect
 - Denitrification not occurring to any measurable extent in LF-1
 - Not competing with reductive dechlorination

• Fe (III) –

- Reduced to Fe (II)
- Elevated concentrations (up to 18 mg/L) of Fe (II) relative to background present in plume
- Sulfate
 - Sulfate reduction not occurring to any measurable extent in LF-1

Methane

- Organic carbon is being degraded via methanogenesis
- Concentrations up to 4.4 mg/L in plume: suggests strongly reducing conditions favorable to support reductive dechlorination in plume

Carbon dioxide

- Concentrations up to 190 mg/L in plume: suggests microbial activity is occurring
- Supported by elevated alkalinity concentrations
- Degradation Products:
 - Cis-1,2-DCE, vinyl chloride, chloride, ethene and ethane are present in LF-1

- Anaerobic biodegradation can occur by denitrification, manganese reduction, Fe(III) reduction, sulfate reduction, methanogenesis
- Reductive dechlorination may dominate if subsurface conditions favor the use of electron acceptors
- Rate decreases as degree of chlorination decreases

Reductive Dechlorination Half Reactions

 $C_2Cl_4 + H_2 \rightarrow C_2HCl_3 + H^+ + Cl^ C_2HCl_3 + H_2 \rightarrow C_2H_2Cl_2 + H^+ + Cl^ C_2H_2Cl_2 + H_2 \rightarrow C_2H_3Cl_2 + H^+ + Cl^-$

 $C_2Cl_4 + 3H_2 \rightarrow C_2H_3Cl + 3H^+ + 3Cl^-$ 166 g/mol 62.5 g/mol

 100 ug PCE * mol PCE *
 1 mol VC *
 62.5 g VC = 37.7 ug VC

 L
 166 g PCE
 1 mol PCE
 mol VC
 L