
Bug 1285848

 Related Components

RiceDeltaDecoderProtocolParserProtobuf BitBuffer
Decode ReadExponentialGolomb

ReadBits

RiceDeltaDecoder
- Input (see safebrowsing.proto here)

- Rice parameter: int32
- Encoded data: byte array
- First value: int64
- Num of entries (deltas): int32

- Output
- Decoded data: uint32 array

- The first value would be included in the array

- The array could be used to represent 4-byte prefixes (for addition) or removal indices
(for removal)

- Decoding result: boolean

https://dxr.mozilla.org/mozilla-central/rev/01748a2b1a463f24efd9cd8abad9ccfd76b037b8/toolkit/components/url-classifier/chromium/safebrowsing.proto#407

BitBuffer
- Copied from webrtc/base/bitbuffer.h/cc

- There is already a copy in gecko
- Slightly modified to adapt to safebrowsing codebase.

- In composition with RiceDeltaDecoder
- Only 2 functions would be called by RiceDeltaDecoder

- ReadExponentialGolomb
- ReadBits

BitBuffer
- ReadExponentialGolomb

- Count the number of 12 until the first 02 appears in the bit stream
- Would consume all the leading 1’s and the first appeared 0
- E.g. 1102 => returns 2, 110002 => returns 2, 11101112 => returns 3
- The original implementation is to count the number of 02 instead of 12

- This is the main part that I made the change to it.

- ReadBits(K)
- Read in K bits and interpret to uint32 in big endian.
- Would consume K bits.

- In the real use case, only one bit would be read at a time bacause of the endianness issue
which will be mentioned later

An Example of Decoding
- Rice parameter (K): 7
- # of entries (deltas): 5
- Encoded data: “\x7C\xD5\xF5\xFC\x3A\x9E”

011111001101010111110101111111000011101010011110

7 C D 5 F 5 F C 3 A 9 E

011111001101010111110101111111000011101010011110
ReadExponentialGolomb => 0

ReadBits(7) => 124

REG => 2

ReadBits(7) =>87 ReadBits(7) => 95 ReadBits(7) => 14 ReadBits(7) => 79

REG => 2 REG => 2 REG => 1

0 << 7 + 124 2 << 7 + 87 2 << 7 + 95 2 << 7 + 124 1 << 7 + 124Deltas

An Example of Decoding
- However, google writes bits “reversely” to the byte stream.

- The bits needs be read from LSBit to MSBbit per byte !!

- Other than that, the algorithm is the same
- 1) Read the exponential part
- 2) Read K bits as the remainder part (but interpret to int32 in little endian)

011111001101010111110101111111000011101010011110

7 C D 5 F 5 F C 3 A 9 E

001111101010101110101111001111110101110001111001

REG => 0
ReadBits(7) => 62

REG => 1
ReadBits(7) =>117 ReadBits(7) => 61 ReadBits(7) => 71 ReadBits(7) => 2

REG => 0 REG => 2 REG => 3

001111101010101110101111001111110101110001111001
REG => 1

ReadBits(7) => 63

Per-byte reverse

An Example of Decoding
- The decoded integers are not the actual 4-byte prefixes or removal indices.
- Instead, they are the differences between each adjacent elements.
- For example

- Assume the removal indices are [4, 10, 77, 100, 124, 125]
- The actual values to be encoded are [6, 67, 23, 24, 1]

- To re-construct the most original values, we need deltas as well as the first
value!

