CakePHP Cookbook Documentation
Release 2.x

Cake Software Foundation

October 27, 2014

Contents

1 Getting Started

2 Blog Tutorial

Getting CakePHP 0 . e
Creating the Blog Database e e
CakePHP Database Configuration
Optional Configuration
A Note on mod_rewrite

3 Blog Tutorial - Adding a layer

Create a PostModel
Create a Posts Controller
Creating Post Views
Adding Posts
Data Validation
Editing Posts
Deleting Posts
Routes
Conclusion
Additional Reading

4 Installation

Requirements
License
Downloading CakePHP

Permissions
Setup
Development
Production.
Advanced Installation and URL Rewriting

13
13
13
14
17
18
20
22
23
24
25

33
33
33
34
34
34
35
36
36

10

11

Fire It Up o e e e e e e e e e e e

CakePHP Overview

Controllers

The App Controller o e e e e e e e
Request parameters L. e e e e e e
Controller actions e e e e e e e e e e
Request Life-cycle callbacks e
Controller Methods e e e e e e e e e
Controller Attributes e e e e e e e e
More on controllers e e e e e e e e e e e e e e e e e e

Views

View Templates o o e e e e e e e e e e e e
Using view blocks oL e e
Layouts o e e e e e e e e e e e
Elements L e e
Creating your own view Classes v v i e e e e e e e e e
View APL
More about VIEWS o it e e e e e e e e e e e e e

Models
Understanding Models e e e e e e e
Moreonmodels e e e e e

Core Libraries

General Purpose L e e e e e
Behaviors L e e e e e e e e e
Components L e e e e e e e e e e e e e e e e e
Helpers o e e e e e e e e e e e
ULIIEES e e e e e e e e e e e e e e

Plugins
How To Use Plugins e e e e e e e e e e e e e e e
How To Create Plugins e e e e e

Console and Shells

The CakePHP console
Creatingashell e
Shell tasks e e
Invoking other shells from yourshell oo L
Console outputlevels L e e e
Styling output L e e e e e e e e e e e e e e e
Configuring options and generatinghelp L o o oL
Routing inshells /CLL e e e e e e e

45
45
46
49

51
51
52
52
53
54
61
63

205
205
207

339
339
500
530
581
678

793
793
795

Shell APL . . . o o e e 815

MOT@ tOPICS © » v v v o o e 818
12 Development 835
Configuration e e e e e e e e e e e e e e e e e e 835
Routing e e 849
SESSIONS & . v v o o e e e e e e e e e e e e e e 867
EXceptions o e e e e 873
Error Handling e e e e 880
Debugging e 882
TeSting e e e e e e e e e e e 885
REST . . e 910
Dispatcher Filters o o o e e e e e 913
13 Deployment 919
Check your security o o i i i e e e e e e e e e e e e e e e e 919
Setdocument root L. e e e e e e e e e 919
Update core.php o o e e e e e e e e e e 919
Improve your application’s performance Lo Lo o 920
14 Tutorials & Examples 921
Blog Tutorial e e e e 921
Blog Tutorial - Adding alayer e 929
Simple Authentication and Authorization Application 941
Simple Acl controlled Application 948
Simple Acl controlled Application -part2 L e 955
15 Appendices 959
25 Migration Guide L. e e e 959
24 Migration Guide L. e e e e 964
23 Migration Guide L. L L e e e e e e e e 970
22 Migration Guide L. e e e 977
20 Migration Guide e e e e e e e e e e e 983
20Migration Guideo e e 994
Migration from 1.2 t0 1.3 L e e e e 1028
General Information L e 1048
16 Indices and tables 1051
Index 1053

CHAPTER 1

Getting Started

The CakePHP framework provides a robust base for your application. It can handle every aspect, from the
user’s initial request all the way to the final rendering of a web page. And since the framework follows the
principles of MVC, it allows you to easily customize and extend most aspects of your application.

The framework also provides a basic organizational structure, from filenames to database table names, keep-
ing your entire application consistent and logical. This concept is simple but powerful. Follow the conven-
tions and you’ll always know exactly where things are and how they’re organized.

The best way to experience and learn CakePHP is to sit down and build something. To start off we’ll build
a simple blog application.

CakePHP Cookbook Documentation, Release 2.x

2 Chapter 1. Getting Started

CHAPTER 2

Blog Tutorial

Welcome to CakePHP. You're probably checking out this tutorial because you want to learn more about how
CakePHP works. It’s our aim to increase productivity and make coding more enjoyable: we hope you’ll see
this as you dive into the code.

This tutorial will walk you through the creation of a simple blog application. We’ll be getting and installing
CakePHP, creating and configuring a database, and creating enough application logic to list, add, edit, and
delete blog posts.

Here’s what you’ll need:

1. A running web server. We’re going to assume you’re using Apache, though the instructions for using
other servers should be very similar. We might have to play a little with the server configuration, but
most folks can get CakePHP up and running without any configuration at all. Make sure you have
PHP 5.2.8 or greater.

2. A database server. We’re going to be using MySQL server in this tutorial. You’ll need to know enough
about SQL in order to create a database: CakePHP will be taking the reins from there. Since we’re
using MySQL, also make sure that you have pdo_mysql enabled in PHP.

3. Basic PHP knowledge. The more object-oriented programming you’ve done, the better: but fear not
if you’re a procedural fan.

4. Finally, you’ll need a basic knowledge of the MVC programming pattern. A quick overview can be
found in Understanding Model-View-Controller. Don’t worry, it’s only half a page or so.

Let’s get started!

Getting CakePHP

First, let’s get a copy of fresh CakePHP code.

To get a fresh download, visit the CakePHP project on GitHub: https://github.com/cakephp/cakephp/tags
and download the latest release of 2.0

https://github.com/cakephp/cakephp/tags

CakePHP Cookbook Documentation, Release 2.x

You can also clone the repository using git'. git clone git://github.com/cakephp/cakephp.git

Regardless of how you downloaded it, place the code inside of your DocumentRoot. Once finished, your
directory setup should look something like the following:

/path_to_document_root

/app

/1lib
/plugins
/vendors
.htaccess
index.php
README

Now might be a good time to learn a bit about how CakePHP’s directory structure works: check out the
CakePHP Folder Structure section.

Tmp directory permissions

Next we’ll need to make the app/tmp directory writable by the webserver. The best way to do this is to
find out what user your webserver runs as. You can run <?php echo exec ('whoami’); ?> inside
any PHP file your webserver can execute. You should see a username printed. Change the ownership of the
app/tmp directory to that user. The final command you run (in *nix) might look something like this:

chown -R www-data app/tmp

If for some reason CakePHP can’t write to that directory, you’ll see warnings and uncaught exceptions that
cache data cannot be written.

Creating the Blog Database

Next, let’s set up the underlying database for our blog. If you haven’t already done so, create an empty
database for use in this tutorial, with a name of your choice. Right now, we’ll just create a single table to
store our posts. We’ll also throw in a few posts right now to use for testing purposes. Execute the following
SQL statements into your database:

/+ First, create our posts table: */
CREATE TABLE posts (
id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
title VARCHAR (50),
body TEXT,
created DATETIME DEFAULT NULL,
modified DATETIME DEFAULT NULL
)

/* Then insert some posts for testing: */
INSERT INTO posts (title,body,created)
VALUES (’'The title’, ’'This is the post body.’, NOW());

"http://git-scm.com/

4 Chapter 2. Blog Tutorial

http://git-scm.com/

CakePHP Cookbook Documentation, Release 2.x

INSERT INTO posts (title,body,created)

VALUES ('A title once again’, ’"And the post body follows.’, NOW());
INSERT INTO posts (title,body,created)

VALUES (’'Title strikes back’, ’"This is really exciting! Not.’, NOW());

The choices on table and column names are not arbitrary. If you follow CakePHP’s database naming con-
ventions, and CakePHP’s class naming conventions (both outlined in CakePHP Conventions), you’ll be able
to take advantage of a lot of free functionality and avoid configuration. CakePHP is flexible enough to
accommodate even the worst legacy database schema, but adhering to convention will save you time.

Check out CakePHP Conventions for more information, but suffice it to say that naming our table ‘posts’
automatically hooks it to our Post model, and having fields called ‘modified’ and ‘created’ will be automag-
ically managed by CakePHP.

CakePHP Database Configuration

Onward and upward: let’s tell CakePHP where our database is and how to connect to it. For many, this is
the first and last time you configure anything.

A copy of CakePHP’s database configuration file is found in
/app/Config/database.php.default. Make a copy of this file in the same directory, but
name it database.php.

The config file should be pretty straightforward: just replace the values in the $default array with those
that apply to your setup. A sample completed configuration array might look something like the following:

public Sdefault = array(
"datasource’ => ’Database/Mysql’,
"persistent’ => false,
"host’” => ’localhost’,
"port’ => "',
"login’ => ’cakeBlog’,
"password’ => ’'cd4k3-rUl3z’,

"database’ => ’cake_blog_ tutorial’,
"schema’ => "',
"prefix’ => "',

"encoding’ => ’'utf8’
)i

Once you’ve saved your new database.php file, you should be able to open your browser and see the
CakePHP welcome page. It should also tell you that your database connection file was found, and that
CakePHP can successfully connect to the database.

Note: Remember that you’ll need to have PDO, and pdo_mysql enabled in your php.ini.

CakePHP Database Configuration 5

CakePHP Cookbook Documentation, Release 2.x

Optional Configuration

There are a few other items that can be configured. Most developers complete these laundry-list items, but
they’re not required for this tutorial. One is defining a custom string (or “salt”) for use in security hashes.
The second is defining a custom number (or “seed”) for use in encryption.

The security salt is used for generating hashes. Change the default Security.salt value in
/app/Config/core.php. The replacement value should be long, hard to guess and be as random
as you can make it:

J ok k
* A random string used in security hashing methods.
*/
Configure::write ('’ Security.salt’, ’'pl345e-P45s_7h3%xS@17!");

The cipher seed is used for encrypt/decrypt strings. Change the default Security.cipherSeed value
by editing /app/Config/core.php. The replacement value should be a large random integer:

J kA
* A random numeric string (digits only) used to encrypt/decrypt strings.
*/

Configure: :write ('’ Security.cipherSeed’, ’7485712659625147843639846751");

A Note on mod_rewrite

Occasionally new users will run into mod_rewrite issues. For example if the CakePHP welcome page looks
a little funny (no images or CSS styles), it probably means mod_rewrite is not functioning on your system.
Please refer to one of the sections below about URL rewriting for your webserver to get you up and running:

URL Rewriting
Apache and mod_rewrite (and .htaccess)

While CakePHP is built to work with mod_rewrite out of the box—and usually does—we’ve noticed that a
few users struggle with getting everything to play nicely on their systems.

Here are a few things you might try to get it running correctly. First look at your httpd.conf. (Make sure you
are editing the system httpd.conf rather than a user- or site-specific httpd.conf.)

These files can vary between different distributions and Apache versions. You may also take a look at
http://wiki.apache.org/httpd/DistrosDefaultLayout for further information.

1. Make sure that an .htaccess override is allowed and that AllowOverride is set to All for the correct
DocumentRoot. You should see something similar to:

Each directory to which Apache has access can be configured with respect
to which services and features are allowed and/or disabled in that
directory (and its subdirectories).

#

6 Chapter 2. Blog Tutorial

http://wiki.apache.org/httpd/DistrosDefaultLayout

CakePHP Cookbook Documentation, Release 2.x

First, we configure the "default" to be a very restrictive set of
features.
#
<Directory />
Options FollowSymLinks
AllowOverride All

Order deny,allow
Deny from all
</Directory>

2. Make sure you are loading mod_rewrite correctly. You should see something like:
LoadModule rewrite_module libexec/apache2/mod_rewrite.so
In many systems these will be commented out by default, so you may just need to remove the leading
symbols.
After you make changes, restart Apache to make sure the settings are active.

Verify that your .htaccess files are actually in the right directories. Some operating systems treat files
that start with *.’ as hidden and therefore won’t copy them.

3. Make sure your copy of CakePHP comes from the downloads section of the site or our Git repository,
and has been unpacked correctly, by checking for .htaccess files.

CakePHP root directory (must be copied to your document; redirects everything to your CakePHP
app):

<IfModule mod_rewrite.c>
RewriteEngine on

RewriteRule AEﬂapp/webroot/ [L]
RewriteRule (.*) app/webroot/l [L]
</IfModule>

CakePHP app directory (will be copied to the top directory of your application by bake):

<IfModule mod_rewrite.c>
RewriteEngine on

RewriteRule AEE‘ webroot/ [L]
RewriteRule (.%) webroot/[s 1 (L]
</IfModule>

CakePHP webroot directory (will be copied to your application’s web root by bake):

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule A(.*) index.php [QSA,L]
</IfModule>

If your CakePHP site still has problems with mod_rewrite, you might want to try modifying settings
for Virtual Hosts. On Ubuntu, edit the file /etc/apache2/sites-available/default (Iocation is distribution-
dependent). In this file, ensure that AllowOverride None is changed to AllowOverride

A Note on mod_rewrite 7

CakePHP Cookbook Documentation, Release 2.x

Al1l, so you have:

<Directory />
Options FollowSymLinks
AllowOverride All
</Directory>
<Directory /var/www>
Options Indexes FollowSymLinks MultiViews
AllowOverride All
Order Allow,Deny
Allow from all
</Directory>

On Mac OSX, another solution is to use the tool virtualhostx” to make a Virtual Host to point to your
folder.

For many hosting services (GoDaddy, landl), your web server is actually being served from a
user directory that already uses mod_rewrite. If you are installing CakePHP into a user direc-
tory (http://fexample.com/~username/cakephp/), or any other URL structure that already utilizes
mod_rewrite, you’ll need to add RewriteBase statements to the .htaccess files CakePHP uses (/.htac-
cess, /app/.htaccess, /app/webroot/.htaccess).

This can be added to the same section with the RewriteEngine directive, so for example, your webroot
.htaccess file would look like:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /path/to/cake/app
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ~ (.+*) index.php [QSA,L]
</IfModule>

The details of those changes will depend on your setup, and can include additional things that are not
related to CakePHP. Please refer to Apache’s online documentation for more information.

. (Optional) To improve production setup, you should prevent invalid assets from being parsed by
CakePHP. Modify your webroot .htaccess to something like:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /path/to/cake/app
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %${REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} !~/ (app/webroot/)? (img|css|js)/ (. *)
RewriteRule "~ (. *) index.php [QSA,L]
</IfModule>

The above will simply prevent incorrect assets from being sent to index.php and instead display your
webserver’s 404 page.

Additionally you can create a matching HTML 404 page, or use the default built-in CakePHP 404 by
adding an ErrorDocument directive:

2http://clickontyler.com/virtualhostx/

Chapter 2. Blog Tutorial

http://clickontyler.com/virtualhostx/
http://example.com/~username/cakephp/

CakePHP Cookbook Documentation, Release 2.x

ErrorDocument 404 /404-not-found

Pretty URLs on nginx

nginx does not make use of .htaccess files like Apache, so it is necessary to create those rewritten URLs in
the site-available configuration. Depending upon your setup, you will have to modify this, but at the very
least, you will need PHP running as a FastCGI instance.

server {
listen 80;
server_name www.example.com;
rewrite 7 (.%) http://example. coml permanent;

server {
listen 80;
server_name example.com;

root directive should be global
root /var/www/example.com/public/app/webroot/;
index index.php;

access_log /var/www/example.com/log/access.log;
error_log /var/www/example.com/log/error.log;

location / {
try_files $Suri Suri/ /index.php?S$Sargs;

location ~ \.phpEﬂ {
try_files Suri =404;
include /etc/nginx/fastcgi_params;

fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME S$document_rootS$fastcgi_script_name;

URL Rewrites on IIS7 (Windows hosts)

IIS7 does not natively support .htaccess files. While there are add-ons that can add this support, you can
also import htaccess rules into IIS to use CakePHP’s native rewrites. To do this, follow these steps:

1. Use Microsoft’s Web Platform Installer’ to install the URL Rewrite Module 2.0* or download it
directly (32-bit’ / 64-bit®).

3http://www.microsoft.com/web/downloads/platform.aspx
*http://www.iis.net/downloads/microsoft/url-rewrite
Shttp://www.microsoft.com/en-us/download/details.aspx 2id=5747
Shttp://www.microsoft.com/en-us/download/details.aspx?id=7435

A Note on mod_rewrite 9

http://www.microsoft.com/web/downloads/platform.aspx
http://www.iis.net/downloads/microsoft/url-rewrite
http://www.microsoft.com/en-us/download/details.aspx?id=5747
http://www.microsoft.com/en-us/download/details.aspx?id=7435

CakePHP Cookbook Documentation, Release 2.x

2. Create a new file called web.config in your CakePHP root folder.
3. Using Notepad or any XML-safe editor, copy the following code into your new web.config file...

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<system.webServer>
<rewrite>
<rules>
<rule name="Rewrite requests to test.php"
stopProcessing="true">
<match url=""test.php(.*)$" ignoreCase="false" />
<action type="Rewrite" url="app/webroot/test.php{R:1}" />
</rule>
<rule name="Exclude direct access to app/webroot/x*"
stopProcessing="true">
<match url=""app/webroot/ (.x)$" ignoreCase="false" />
<action type="None" />
</rule>
<rule name="Rewrite routed access to assets(img, css, files, js, favicon)"
stopProcessing="true">
<match url="" (img|css|files|js|favicon.ico) (.x)s$" />
<action type="Rewrite" url="app/webroot/{R:1}{R:2}"
appendQueryString="false" />
</rule>
<rule name="Rewrite requested file/folder to index.php"
stopProcessing="true">
<match url=""(.*)$" ignoreCase="false" />
<action type="Rewrite" url="index.php"
appendQueryString="true" />
</rule>
</rules>
</rewrite>
</system.webServer>
</configuration>

Once the web.config file is created with the correct IIS-friendly rewrite rules, CakePHP’s links, CSS, JavaS-
cipt, and rerouting should work correctly.

URL-Rewriting on lighttpd

Lighttpd does not support .htaccess functions, so you can remove all .htaccess files. In the lighttpd configu-
ration, make sure you’ve activated “mod_rewrite”. Add a line:

url.rewrite-if-not-file =(
"ACIAN2Tx) (\2(.4)) 28" => "/index.php?url=5$1&$3"

URL rewrite rules for Hiawatha

The required UrlToolkit rule (for URL rewriting) to use CakePHP with Hiawatha is:

10 Chapter 2. Blog Tutorial

CakePHP Cookbook Documentation, Release 2.x

UrlToolkit {
ToolkitID = cakephp
RequestURI exists Return
Match .* Rewrite /index.php

I don’t / can’t use URL rewriting

If you don’t want to or can’t use URL rewriting on your webserver, refer to the core configuration.

Now continue to Blog Tutorial - Adding a layer to start building your first CakePHP application.

A Note on mod_rewrite 11

CakePHP Cookbook Documentation, Release 2.x

12 Chapter 2. Blog Tutorial

CHAPTER 3

Blog Tutorial - Adding a layer

Create a Post Model

The Model class is the bread and butter of CakePHP applications. By creating a CakePHP model that will
interact with our database, we’ll have the foundation in place needed to do our view, add, edit, and delete
operations later.

CakePHP’s model class files go in /app/Model, and the file we’ll be creating will be saved to
/app/Model/Post .php. The completed file should look like this:

class Post extends AppModel ({
}

Naming conventions are very important in CakePHP. By naming our model Post, CakePHP can automat-
ically infer that this model will be used in the PostsController, and will be tied to a database table called
posts.

Note: CakePHP will dynamically create a model object for you if it cannot find a corresponding file
in /app/Model. This also means that if you accidentally name your file wrong (for example, post.php or

posts.php instead of Post.php), CakePHP will not recognize any of your settings and will use the defaults
instead.

For more on models, such as table prefixes, callbacks, and validation, check out the Models chapter of the
Manual.

Create a Posts Controller

Next, we’ll create a controller for our posts. The controller is where all the business logic for post interaction
will happen. In a nutshell, it’s the place where you play with the models and get post-related work done.
We’ll place this new controller in a file called Post sController.php inside the /app/Controller
directory. Here’s what the basic controller should look like:

13

CakePHP Cookbook Documentation, Release 2.x

class PostsController extends AppController {
public Shelpers = array(’Html’, 'Form’);

}

Now, let’s add an action to our controller. Actions often represent a single function or interface in
an application. For example, when users request www.example.com/posts/index (which is the same as
www.example.com/posts/), they might expect to see a listing of posts. The code for that action would look
something like this:

class PostsController extends AppController {
public Shelpers = array(’Html’, 'Form’);

public function index () {
Sthis->set ('posts’, S$this->Post->find(’all’));
}
}

By defining function index () in our PostsController, users can access the logic there by requesting
www.example.com/posts/index. Similarly, if we were to define a function called foobar (), users would
be able to access that at www.example.com/posts/foobar.

Warning: You may be tempted to name your controllers and actions a certain way to obtain a certain
URL. Resist that temptation. Follow CakePHP conventions (capitalization, plural names, etc.) and create
readable, understandable action names. You can map URLs to your code using “routes” covered later
on.

The single instruction in the action uses set () to pass data from the controller to the view (which we’ll
create next). The line sets the view variable called ‘posts’ equal to the return value of the find (" all’)
method of the Post model. Our Post model is automatically available at $this—>Post because we’ve
followed CakePHP’s naming conventions.

To learn more about CakePHP’s controllers, check out the Controllers chapter.

Creating Post Views

Now that we have our data flowing to our model, and our application logic and flow defined by our controller,
let’s create a view for the index action we created above.

CakePHP views are just presentation-flavored fragments that fit inside an application’s layout. For most
applications, they’re HTML mixed with PHP, but they may end up as XML, CSV, or even binary data.

A layout is presentation code that is wrapped around a view. Multiple layouts can be defined, and you can
switch between them, but for now, let’s just use the default.

Remember how in the last section we assigned the ‘posts’ variable to the view using the set () method?
That would pass data to the view that would look something like this:

// print_r (Sposts) output:

Array

14 Chapter 3. Blog Tutorial - Adding a layer

CakePHP Cookbook Documentation, Release 2.x

[
[title] => The title

[body] => This is the post body.
[created] => 2008-02-13 18:34:55
[modified] =>

[
[title] => A title once again

[body] => And the post body follows.
[created] => 2008-02-13 18:34:56
[modified] =>

[
[title] => Title strikes back

[body] => This is really exciting! Not.
[created] => 2008-02-13 18:34:57
[modified] =>

CakePHP’s view files are stored in /app/View inside a folder named after the controller to which they
correspond. (We’ll have to create a folder named ‘Posts’ in this case.) To format this post data into a nice
table, our view code might look something like this

<!-— File: /app/View/Posts/index.ctp ——>

<hl>Blog posts</hl>

<table>
<tr>
<th>Id</th>
<th>Title</th>
<th>Created</th>
</tr>
<!-- Here is where we loop through our Sposts array, printing out post infc -->
<?php foreach (Sposts as S$post): ?>

Creating Post Views 15

CakePHP Cookbook Documentation, Release 2.x

<tr>
<td><?php echo S$post[’Post’][’id’]; ?></td>
<td>
<?php echo $this->Html->link (Spost[’/Post’][’title’],
array (' controller’ => ’'posts’, ’‘action’ => ’'view’, Spost[’Post’]1[’'id’])); ?>
</td>
<td><?php echo S$post[’Post’][’created’]; ?></td>
</tr>

<?php endforeach; 7>
<?php unset (Spost); 2>
</table>

You might have noticed the use of an object called $this->Html. This is an instance of the CakePHP
HtmlHelper class. CakePHP comes with a set of view helpers that make things like linking, form output,
JavaScript and AJAX a snap. You can learn more about how to use them in Helpers, but what’s important to
note here is that the 1ink () method will generate an HTML link with the given title (the first parameter)
and URL (the second parameter).

When specifying URLs in CakePHP, it is recommended that you use the array format. This is explained
in more detail in the section on Routes. Using the array format for URLs allows you to take advantage of
CakePHP’s reverse routing capabilities. You can also specify URLSs relative to the base of the application in
the form of /controller/action/param1/param?.

At this point, you should be able to point your browser to http://www.example.com/posts/index. You should
see your view, correctly formatted with the title and table listing of the posts.

If you happened to have clicked on one of the links we created in this view (which link a post’s title to a URL
/posts/view/some_id), you were probably informed by CakePHP that the action hadn’t yet been defined. If
you were not so informed, either something has gone wrong, or you actually did define it already, in which
case you are very sneaky. Otherwise, we’ll create it in the PostsController now:

// File: /app/Controller/PostsController.php
class PostsController extends AppController ({
public Shelpers = array(’Html’, 'Form’);

public function index () {
Sthis->set ('posts’, S$this->Post->find(’all’));

}

public function view($id = null) ({
if (!'%id) {

throw new NotFoundException(_ (/' Invalid post’));
}
Spost = S$this->Post->findById ($id);
if (!Spost) {

throw new NotFoundException(__ ('Invalid post’));

}

Sthis->set (' post’, $post);
}

The set () call should look familiar. Notice we’re using £indById () rather than find ("all’) be-

16 Chapter 3. Blog Tutorial - Adding a layer

http://www.example.com/posts/index

CakePHP Cookbook Documentation, Release 2.x

cause we only want a single post’s information.

Notice that our view action takes a parameter: the ID of the post we’d like to see. This parameter is handed
to the action through the requested URL. If a user requests /posts/view/ 3, then the value ‘3’ is passed
as $id.

We also do a bit of error checking to ensure that a user is actually accessing a record. If a user requests
/posts/view, we will throw a NotFoundException and let the CakePHP ErrorHandler take over.
We also perform a similar check to make sure the user has accessed a record that exists.

Now let’s create the view for our new ‘view’ action and place it in /app/View/Posts/view.ctp

<!-—- File: /app/View/Posts/view.ctp ——>

<hl><?php echo h($post[’Post’][’title’]); 2?></hl>

<p><small>Created: <?php echo Spost[’Post’][’created’]; ?></small></p>
<p><?php echo h(Spost[’Post’][’'body’]); ?></p>

Verify that this is working by trying the links at /post s/ index or manually requesting a post by accessing
/posts/view/1.

Adding Posts

Reading from the database and showing us the posts is a great start, but let’s allow for adding new posts.
First, start by creating an add () action in the PostsController:

class PostsController extends AppController ({

public Shelpers = array(’Html’, 'Form’, ’Session’);
public Scomponents = array(’Session’);
public function index () {

Sthis->set ('posts’, S$this->Post->find(’all’));

}

public function view ($id) {
if (!S$id) {
throw new NotFoundException(__ (' Invalid post’));

Spost = $this->Post->findById($id);
if (!Spost) {
throw new NotFoundException(__ (/' Invalid post’));

Sthis->set ('post’, S$post);

public function add() {
if (Sthis->request->is(’'post’)) {
Sthis—->Post—->create () ;
if (Sthis->Post->save (Sthis->request—->data)) {

Adding Posts 17

CakePHP Cookbook Documentation, Release 2.x

Sthis—->Session->setFlash(__ ('’ Your post has been saved.’));
return Sthis->redirect (array(’action’ => ’'index’));
}

Sthis->Session->setFlash(__ (’Unable to add your post.’));

Note: S$this->request->is () takes a single argument, which can be the request METHOD (get,
put, post, delete) or some request identifier (a jax). It is not a way to check for specific posted data.

For instance, $this->request->is (' book’) will not return true if book data was posted.

Note: You need to include the SessionComponent - and SessionHelper - in any controller where you will
use it. If necessary, include it in your AppController.

Here’s what the add () action does: if the HTTP method of the request was POST, it tries to save the data
using the Post model. If for some reason it doesn’t save, it just renders the view. This gives us a chance to
show the user validation errors or other warnings.

Every CakePHP request includes a CakeRequest object which is accessible using $this->request.
The request object contains useful information regarding the request that was just received, and can be used
to control the flow of your application. In this case, we use the CakeRequest: :is () method to check
that the request is a HTTP POST request.

When a user uses a form to POST data to your application, that information is available in
$Sthis->request->data. You can use the pr () or debug () functions to print it out if you want
to see what it looks like.

We use the SessionComponent’s SessionComponent::setFlash () method to set a message
to a session variable to be displayed on the page after redirection. In the layout we have
SessionHelper::flash which displays the message and clears the corresponding session vari-
able. The controller’s Controller::redirect function redirects to another URL. The param
array ("action’ => ’index’) translates to URL /posts (that is, the index action of the posts con-
troller). You can refer to Router: :url () function on the API' to see the formats in which you can
specify a URL for various CakePHP functions.

Calling the save () method will check for validation errors and abort the save if any occur. We’ll discuss
how those errors are handled in the following sections.

We call the create () method first in order to reset the model state for saving new information. It does not
actually create a record in the database, but clears Model::$id and sets Model::$data based on your database
field defaults.

Data Validation

CakePHP goes a long way toward taking the monotony out of form input validation. Everyone hates coding
up endless forms and their validation routines. CakePHP makes it easier and faster.

"http://api.cakephp.org

18 Chapter 3. Blog Tutorial - Adding a layer

http://api.cakephp.org

CakePHP Cookbook Documentation, Release 2.x

To take advantage of the validation features, you’ll need to use CakePHP’s FormHelper in your views. The
FormHelper is available by default to all views at $this->Form.

Here’s our add view:

<!-— File: /app/View/Posts/add.ctp ——>

<hl>Add Post</hl>

<?php

echo $this—>Form->create (’Post’);

echo Sthis->Form->input ('title’);

echo Sthis—->Form—->input ('body’, array(’rows’ => "3"));
echo $this—->Form->end(’ Save Post’);

2>

We use the FormHelper to generate the opening tag for an HTML form. Here’s the HTML that
Sthis->Form->create () generates:

<form id="PostAddForm" method="post" action="/posts/add">

If create () is called with no parameters supplied, it assumes you are building a form that submits via
POST to the current controller’s add () action (or edit () action when id is included in the form data).

The $this—->Form—>input () method is used to create form elements of the same name. The first
parameter tells CakePHP which field they correspond to, and the second parameter allows you to specify a
wide array of options - in this case, the number of rows for the textarea. There’s a bit of introspection and
automagic here: input () will output different form elements based on the model field specified.

The Sthis—->Form—>end () call generates a submit button and ends the form. If a string is supplied as
the first parameter to end (), the FormHelper outputs a submit button named accordingly along with the
closing form tag. Again, refer to Helpers for more on helpers.

Now let’s go back and update our /app/View/Posts/index.ctp view to include a new “Add Post”
link. Before the <table>, add the following line:

<?php echo $this->Html->1ink (

"Add Post’,

array (' controller’ => ’'posts’, ’‘action’ => "add’)
); 2>

You may be wondering: how do I tell CakePHP about my validation requirements? Validation rules are
defined in the model. Let’s look back at our Post model and make a few adjustments:

class Post extends AppModel ({
public Svalidate = array(
"title’ => array (
"rule’ => "notEmpty’
) 14
"body’ => array (
"rule’ => "notEmpty’

Data Validation 19

CakePHP Cookbook Documentation, Release 2.x

The $validate array tells CakePHP how to validate your data when the save () method is called. Here,
I’ve specified that both the body and title fields must not be empty. CakePHP’s validation engine is strong,
with a number of pre-built rules (credit card numbers, email addresses, etc.) and flexibility for adding your
own validation rules. For more information, check the Data Validation.

Now that you have your validation rules in place, use the app to try to add a post with an empty title or body
to see how it works. Since we’ve used the FormHelper: : input () method of the FormHelper to create
our form elements, our validation error messages will be shown automatically.

Editing Posts

Post editing: here we go. You're a CakePHP pro by now, so you should have picked up a pattern. Make the
action, then the view. Here’s what the edit () action of the PostsController would look like:

public function edit ($id = null) ({
if (!sid) {
throw new NotFoundException(__ (/' Invalid post’));

Spost = $this—->Post->findById($id) ;
if (!Spost) {

throw new NotFoundException(__ (/' Invalid post’));
}
if (Sthis->request->is(array(’'post’, ’"put’))) {
Sthis->Post—>id = $id;
if (Sthis->Post->save (S$this->request->data)) {
Sthis—->Session->setFlash(__ (' Your post has been updated.’));
return S$this->redirect (array(’action’ => ’index’));
}
Sthis->Session->setFlash(__ ('Unable to update your post.’));
}
if (!S$this->request->data) {
Sthis—->request->data = S$post;

This action first ensures that the user has tried to access an existing record. If they haven’t passed in an $id
parameter, or the post does not exist, we throw a NotFoundException for the CakePHP ErrorHandler
to take care of.

Next the action checks whether the request is either a POST or a PUT request. If it is, then we use the POST
data to update our Post record, or kick back and show the user validation errors.

If there is no data set to $this->request—->data, we simply set it to the previously retrieved post.
The edit view might look something like this:

<!-— File: /app/View/Posts/edit.ctp ——>

<hl>Edit Post</hl>

20 Chapter 3. Blog Tutorial - Adding a layer

CakePHP Cookbook Documentation, Release 2.x

<?php

echo $this—->Form->create(’Post’);

echo $this->Form—>input (‘title’);

echo S$this—->Form—>input ('body’, array(’rows’ => '3"));
echo Sthis->Form->input (’id’, array(’'type’ => 'hidden’));
echo $this—>Form->end(’ Save Post’);

2>

This view outputs the edit form (with the values populated), along with any necessary validation error
messages.

One thing to note here: CakePHP will assume that you are editing a model if the ‘id’ field is present in the
data array. If no ‘id’ is present (look back at our add view), CakePHP will assume that you are inserting a
new model when save () is called

You can now update your index view with links to edit specific posts:

<!-— File: /app/View/Posts/index.ctp (edit links added) -->

<hl>Blog posts</hl>
<p><?php echo S$this->Html->1ink ("Add Post", array(’action’ => ’'add’)); ?></p>
<table>
<tr>
<th>Id</th>
<th>Title</th>
<th>Action</th>
<th>Created</th>
</tr>

<!-— Here’s where we loop through our $posts array, printing out post info —--—>

<?php foreach (Sposts as S$post): 2>
<tr>
<td><?php echo S$post[’Post’][’id"]; ?></td>
<td>
<?php
echo $Sthis->Html->1ink (
Spost ['Post’]["title’],
array (’'action’ => ’'view’, S$post[’Post’][’id’])
)
2>
</td>
<td>
<?php
echo $Sthis—->Html->1ink (
"Edit’,
array (’action’ => ’edit’, S$post[’Post’][’id'])
) i
?>
</td>
<td>
<?php echo Spost[’Post’][’'created’]; ?>
</td>
</tr>

Editing Posts 21

CakePHP Cookbook Documentation, Release 2.x

<?php endforeach; ?>

</table>

Deleting Posts

Next, let’s make a way for users to delete posts. Start with a delete () action in the PostsController:

public function delete (Sid) {

}

if (Sthis->request->is(’get’)) {
throw new MethodNotAllowedException();

if (Sthis->Post—->delete($id)) {
Sthis—->Session—->setFlash (
__("The post with id: %s has been deleted.’, h(S$id))
)i
return $this->redirect (array(’action’ => ’'index’));

This logic deletes the post specified by $id, and uses Sthis->Session->setFlash () to show the
user a confirmation message after redirecting them on to /posts. If the user attempts to do a delete using a
GET request, we throw an Exception. Uncaught exceptions are captured by CakePHP’s exception handler,
and a nice error page is displayed. There are many built-in Exceptions that can be used to indicate the
various HTTP errors your application might need to generate.

Because we’re just executing some logic and redirecting, this action has no view. You might want to update
your index view with links that allow users to delete posts, however:

<!—— File:

/app/View/Posts/index.ctp ——>

<hl>Blog posts</hl>

<p><?php echo S$this->Html->1ink (’Add Post’, array(’action’ => ’'add’)); ?2></p>
<table>
<tr>
<th>Id</th>
<th>Title</th>
<th>Actions</th>
<th>Created</th>
</tr>
<!-- Here’s where we loop through our $posts array, printing out post info --—>
<?php foreach (Sposts as S$post): ?>
<tr>
<td><?php echo S$post[’Post’]["id"]; ?></td>
<td>
<?php
echo $Sthis->Html->1ink (
Spost[’Post’] ['title’],
22 Chapter 3. Blog Tutorial - Adding a layer

CakePHP Cookbook Documentation, Release 2.x

array (’action’ => ’view’, S$post[’Post’][’id'])
) i
2>
</td>
<td>
<?php
echo $this->Form—>postLink (
"Delete’,
array (' action’ => ’"delete’, Spost[’Post’][’id’"]),
array (' confirm’ => ’"Are you sure?’)
)
2>
<?php
echo $Sthis->Html->1ink (
"Edit’, array(’action’ => ’'edit’, Spost[’Post’][’id’])
) ;
2>
</td>
<td>
<?php echo Spost[’Post’][’created’]; ?>
</td>

</tr>
<?php endforeach; ?>

</table>

Using postLink () will create a link that uses JavaScript to do a POST request to delete our post. Al-
lowing content to be deleted using GET requests is dangerous, as web crawlers could accidentally delete all
your content.

Note: This view code also uses the FormHelper to prompt the user with a JavaScript confirmation dialog
before they attempt to delete a post.

Routes

For some, CakePHP’s default routing works well enough. Developers who are sensitive to user-friendliness
and general search engine compatibility will appreciate the way that CakePHP’s URLs map to specific
actions. So we’ll just make a quick change to routes in this tutorial.

For more information on advanced routing techniques, see Routes Configuration.

By default, CakePHP responds to a request for the root of your site (e.g., http://www.example.com) using
its PagesController, rendering a view called “home”. Instead, we’ll replace this with our PostsController by
creating a routing rule.

CakePHP’s routing is found in /app/Config/routes.php. You'll want to comment out or remove the
line that defines the default root route. It looks like this:

Router: :connect (

I/I,

Routes 23

http://www.example.com

CakePHP Cookbook Documentation, Release 2.x

array (' controller’ => ’'pages’, ’"action’ => ’'display’, ’"home’)
)i

This line connects the URL °/” with the default CakePHP home page. We want it to connect with our own
controller, so replace that line with this one:

Router: :connect (’/’, array(’controller’ => ’'posts’, ’"action’ => 'index’));

This should connect users requesting ‘/’ to the index() action of our PostsController.

Note: CakePHP also makes use of ‘reverse routing’. If, with the above route defined, you pass
array (' controller’ => ’'posts’, ’'action’ => ’index’) to a function expecting an ar-

ray, the resulting URL used will be ‘/°. It’s therefore a good idea to always use arrays for URLSs, as this
means your routes define where a URL goes, and also ensures that links point to the same place.

Conclusion

Creating applications this way will win you peace, honor, love, and money beyond even your wildest fan-
tasies. Simple, isn’t it? Keep in mind that this tutorial was very basic. CakePHP has many more features to
offer, and is flexible in ways we didn’t wish to cover here for simplicity’s sake. Use the rest of this manual
as a guide for building more feature-rich applications.

Now that you’ve created a basic CakePHP application, you’re ready for the real thing. Start your own project
and read the rest of the Cookbook and API”,

If you need help, there are many ways to get the help you need - please see the Where to Get Help page.
Welcome to CakePHP!

Suggested Follow-up Reading

These are common tasks people learning CakePHP usually want to study next:
1. Layouts: Customizing your website layout
2. Elements: Including and reusing view snippets
3. Scaffolding: Prototyping before creating code
4. Code Generation with Bake: Generating basic CRUD code

5. Simple Authentication and Authorization Application: User authentication and authorization tutorial

Zhttp://api.cakephp.org

24 Chapter 3. Blog Tutorial - Adding a layer

http://api.cakephp.org

CakePHP Cookbook Documentation, Release 2.x

Additional Reading

A Typical CakePHP Request

We’ve covered the basic ingredients in CakePHP, so let’s look at how objects work together to complete
a basic request. Continuing with our original request example, let’s imagine that our friend Ricardo just
clicked on the “Buy A Custom Cake Now!” link on a CakePHP application’s landing page.

elpars)

H
Layout

-

o

View \
l——r | Elements ‘ 7
@ 1 Dispatcher 2 ’I Routes — 3

-

6
I

Components

H

Figure 3.1: Flow diagram showing a typical CakePHP request

Figure: 2. Typical CakePHP Request.
Black = required element, Gray = optional element, Blue = callback

1. Ricardo clicks the link pointing to http://www.example.com/cakes/buy, and his browser makes a re-
quest to your web server.

2. The Router parses the URL in order to extract the parameters for this request: the controller, action,
and any other arguments that will affect the business logic during this request.

3. Using routes, a request URL is mapped to a controller action (a method in a specific controller class).
In this case, it’s the buy() method of the CakesController. The controller’s beforeFilter() callback is
called before any controller action logic is executed.

4. The controller may use models to gain access to the application’s data. In this example, the controller
uses a model to fetch Ricardo’s last purchases from the database. Any applicable model callbacks,

Additional Reading 25

http://www.example.com/cakes/buy

CakePHP Cookbook Documentation, Release 2.x

behaviors, and DataSources may apply during this operation. While model usage is not required, all
CakePHP controllers initially require at least one model.

5. After the model has retrieved the data, it is returned to the controller. Model callbacks may apply.

6. The controller may use components to further refine the data or perform other operations (session
manipulation, authentication, or sending emails, for example).

7. Once the controller has used models and components to prepare the data sufficiently, that data is
handed to the view using the controller’s set() method. Controller callbacks may be applied before
the data is sent. The view logic is performed, which may include the use of elements and/or helpers.
By default, the view is rendered inside a layout.

8. Additional controller callbacks (like afterFilter) may be applied. The complete, rendered view
code is sent to Ricardo’s browser.

CakePHP Conventions

We are big fans of convention over configuration. While it takes a bit of time to learn CakePHP’s con-
ventions, you save time in the long run: by following convention, you get free functionality, and you free
yourself from the maintenance nightmare of tracking config files. Convention also makes for a very uniform
system development, allowing other developers to jump in and help more easily.

CakePHP’s conventions have been distilled from years of web development experience and best practices.
While we suggest you use these conventions while developing with CakePHP, we should mention that many
of these tenets are easily overridden — something that is especially handy when working with legacy systems.

Controller Conventions

Controller class names are plural, CamelCased, and end in Controller. PeopleController and
LatestArticlesController are both examples of conventional controller names.

The first method you write for a controller might be the index () method. When a request specifies a
controller but not an action, the default CakePHP behavior is to execute the index () method of that
controller. For example, a request for http://www.example.com/apples/ maps to a call on the index ()
method of the ApplesController, whereas http://www.example.com/apples/view/ maps to a call on
the view () method of the ApplesController.

You can also change the visibility of controller methods in CakePHP by prefixing controller method names
with underscores. If a controller method has been prefixed with an underscore, the method will not be
accessible directly from the web but is available for internal use. For example:

class NewsController extends AppController ({

public function latest () {
Sthis—>_findNewArticles () ;

}

protected function _findNewArticles () {
// Logic to find latest news articles

26 Chapter 3. Blog Tutorial - Adding a layer

http://www.example.com/apples/
http://www.example.com/apples/view/

CakePHP Cookbook Documentation, Release 2.x

}

While the page http://www.example.com/news/latest/ would be accessible to the user as usual, someone
trying to get to the page http://www.example.com/news/_findNewArticles/ would get an error, because the
method is preceded with an underscore. You can also use PHP’s visibility keywords to indicate whether or
not a method can be accessed from a URL. Non-public methods cannot be accessed.

URL Considerations for Controller Names

As you’ve just seen, single word controllers map easily to a simple lower case URL path. For example,
ApplesController (which would be defined in the file name ‘ApplesController.php’) is accessed from
http://example.com/apples.

Multiple word controllers can be any ‘inflected’ form which equals the controller name so:
» /redApples
* /RedApples
* /Red_apples
* /red_apples

will all resolve to the index of the RedApples controller. However, the convention is that your
URLSs are lowercase and underscored, therefore /red_apples/go_pick is the correct form to access the
RedApplesController: :go_pick action.

For more information on CakePHP URLs and parameter handling, see Routes Configuration. If you have
files/directories in your /webroot directory that share a name with one of your routes/controllers, you will
be directed to the file/directory and, not to your controller.

File and Class Name Conventions

In general, filenames match the class names, which are CamelCased. So if you have a class MyNiftyClass,
then in CakePHP, the file should be named MyNiftyClass.php. Below are examples of how to name the file
for each of the different types of classes you would typically use in a CakePHP application:

e The Controller class KissesAndHugsController would be found in a file named KissesAnd-
HugsController.php

* The Component class MyHandyComponent would be found in a file named MyHandyCompo-
nent.php

* The Model class OptionValue would be found in a file named OptionValue.php

* The Behavior class EspeciallyFunkableBehavior would be found in a file named EspeciallyFunk-
ableBehavior.php

* The View class SuperSimpleView would be found in a file named SuperSimpleView.php

* The Helper class BestEverHelper would be found in a file named BestEverHelper.php

Additional Reading 27

http://www.example.com/news/latest/
http://www.example.com/news/_findNewArticles/
http://example.com/apples

CakePHP Cookbook Documentation, Release 2.x

Each file would be located in the appropriate folder in your app folder.

Model and Database Conventions

Model class names are singular and CamelCased. Person, BigPerson, and ReallyBigPerson are all examples
of conventional model names.

Table names corresponding to CakePHP models are plural and underscored. The underlying tables for the
above mentioned models would be people, big_people, and really_big_people, respectively.

You can use the utility library ITnflector to check the singular/plural of words. See the /nflector for more
information.

Field names with two or more words are underscored: first_name.

Foreign keys in hasMany, belongsTo or hasOne relationships are recognized by default as the (singular)
name of the related table followed by _id. So if a Baker hasMany Cake, the cakes table will refer to the
bakers table via a baker_id foreign key. For a table like category_types whose name contains multiple words,
the foreign key would be category_type_id.

Join tables, used in hasAndBelongsToMany (HABTM) relationships between models, should be named after
the model tables they will join, arranged in alphabetical order (apples_zebras rather than zebras_apples).

All tables with which CakePHP models interact (with the exception of join tables) require a singular primary
key to uniquely identify each row. If you wish to model a table that does not already have a single-field
primary key, CakePHP’s convention is that a single-field primary key is added to the table. You must add a
single-field primary key if you want to use that table’s model.

CakePHP does not support composite primary keys. If you want to directly manipulate your join table data,
use direct query calls or add a primary key to act on it as a normal model. For example:

CREATE TABLE posts_tags (id INT(10) NOT NULL AUTO_INCREMENT, post_id INT(10)
NOT NULL, tag_id INT(10) NOT NULL, PRIMARY KEY (id));

Rather than using an auto-increment key as the primary key, you may also use char(36). CakePHP will
then use a unique 36 character UUID (String::uuid) whenever you save a new record using the Model::save
method.

View Conventions

View template files are named after the controller functions they display, in an underscored
form. The getReady() function of the PeopleController class will look for a view template in
/app/View/People/get_ready.ctp.

The basic pattern is /app/View/Controller/underscored_function_name.ctp.

By naming the pieces of your application using CakePHP conventions, you gain functionality without the
hassle and maintenance tethers of configuration. Here’s a final example that ties the conventions together:

* Database table: “people”

* Model class: “Person”, found at /app/Model/Person.php

28 Chapter 3. Blog Tutorial - Adding a layer

CakePHP Cookbook Documentation, Release 2.x

* Controller class: “PeopleController”, found at /app/Controller/PeopleController.php
* View template, found at /app/View/People/index.ctp

Using these conventions, CakePHP knows that a request to http://example.com/people/ maps to a call on the
index() function of the PeopleController, where the Person model is automatically available (and automati-
cally tied to the ‘people’ table in the database), and renders to a file. None of these relationships have been
configured by any means other than by creating classes and files that you’d need to create anyway.

Now that you’ve been introduced to CakePHP’s fundamentals, you might try a run through the Blog Tutorial
to see how things fit together.

CakePHP Folder Structure

After you’ve downloaded and extracted CakePHP, these are the files and folders you should see:
* app
* lib
* vendors
* plugins
* .htaccess
* index.php
* README
You’ll notice three main folders:
* The app folder will be where you work your magic: it’s where your application’s files will be placed.

* The lib folder is where we’ve worked our magic. Make a personal commitment not to edit files in
this folder. We can’t help you if you’ve modified the core. Instead, look into modifying Application
Extensions.

* Finally, the vendors folder is where you’ll place third-party PHP libraries you need to use with your
CakePHP applications.

The App Folder
CakePHP’s app folder is where you will do most of your application development. Let’s look a little closer
at the folders inside app.

Config Holds the (few) configuration files CakePHP uses. Database connection details, bootstrapping, core
configuration files and more should be stored here.

Console Contains the console commands and console tasks for your application. This directory can also
contain a Templates directory to customize the output of bake. For more information see Console
and Shells.

Controller Contains your application’s controllers and their components.

Additional Reading 29

http://example.com/people/

CakePHP Cookbook Documentation, Release 2.x

Lib Contains libraries that do not come from 3rd parties or external vendors. This allows you to separate
your organization’s internal libraries from vendor libraries.

Locale Stores string files for internationalization.
Model Contains your application’s models, behaviors, and datasources.
Plugin Contains plugin packages.

Test This directory contains all the test cases and test fixtures for your application. The Test /Case direc-
tory should mirror your application and contain one or more test cases per class in your application.
For more information on test cases and test fixtures, refer to the 7esting documentation.

tmp This is where CakePHP stores temporary data. The actual data it stores depends on how you have
CakePHP configured, but this folder is usually used to store model descriptions, logs, and sometimes
session information.

Make sure that this folder exists and is writable, or the performance of your application will be
severely impacted. In debug mode, CakePHP will warn you if the folder is absent or not writable.

Vendor Any third-party classes or libraries should be placed here. Doing so makes them easy to access
using the App::import(‘vendor’, ‘name’) function. Keen observers will note that this seems redundant,
as there is also a vendors folder at the top level of our directory structure. We’ll get into the differences
between the two when we discuss managing multiple applications and more complex system setups.

View Presentational files are placed here: elements, error pages, helpers, layouts, and view files.

webroot In a production setup, this folder should serve as the document root for your application. Folders
here also serve as holding places for CSS stylesheets, images, and JavaScript files.

CakePHP Structure

CakePHP features Controller, Model, and View classes, but it also features some additional classes and
objects that make development in MVC a little quicker and more enjoyable. Components, Behaviors, and
Helpers are classes that provide extensibility and reusability to quickly add functionality to the base MVC
classes in your applications. Right now we’ll stay at a higher level, so look for the details on how to use
these tools later on.

Application Extensions

Controllers, helpers and models each have a parent class you can use to define application-
wide changes. AppController (located at /app/Controller/AppController.php), Ap-
pHelper (located at /app/View/Helper/AppHelper.php) and AppModel (located at
/app/Model/AppModel .php) are great places to put methods you want to share between all
controllers, helpers or models.

Although routes aren’t classes or files, they play a role in requests made to CakePHP. Route defini-
tions tell CakePHP how to map URLSs to controller actions. The default behavior assumes that the URL
/controller/action/varl/var2 maps to Controller::action($varl, $var2), but you can use routes
to customize URLSs and how they are interpreted by your application.

30 Chapter 3. Blog Tutorial - Adding a layer

CakePHP Cookbook Documentation, Release 2.x

Some features in an application merit packaging as a whole. A plugin is a package of models, controllers
and views that accomplishes a specific purpose that can span multiple applications. A user management
system or a simplified blog might be a good fit for CakePHP plugins.

Controller Extensions (“Components”)

A Component is a class that aids in controller logic. If you have some logic you want to share between
controllers (or applications), a component is usually a good fit. As an example, the core EmailComponent
class makes creating and sending emails a snap. Rather than writing a controller method in a single controller
that performs this logic, you can package the logic so it can be shared.

Controllers are also fitted with callbacks. These callbacks are available for your use, just in case you need
to insert some logic between CakePHP’s core operations. Callbacks available include:

* afterFilter (), executed after all controller logic, including the rendering of the view
* beforeFilter (), executed before any controller action logic

* beforeRender (), executed after controller logic, but before the view is rendered

Model Extensions (“Behaviors™)

Similarly, Behaviors work as ways to add common functionality between models. For example, if you
store user data in a tree structure, you can specify your User model as behaving like a tree, and gain free
functionality for removing, adding, and shifting nodes in your underlying tree structure.

Models are also supported by another class called a DataSource. DataSources are an abstraction that enable
models to manipulate different types of data consistently. While the main source of data in a CakePHP
application is often a database, you might write additional DataSources that allow your models to represent
RSS feeds, CSV files, LDAP entries, or iCal events. DataSources allow you to associate records from
different sources: rather than being limited to SQL joins, DataSources allow you to tell your LDAP model
that it is associated with many iCal events.

Like controllers, models have callbacks:
¢ beforeFind()
« afterFind()
* beforeValidate()
e afterValidate()
¢ beforeSave()
* afterSave()
* beforeDelete()
« afterDelete()

The names of these methods should be descriptive enough to let you know what they do. You can find the
details in the models chapter.

Additional Reading 31

CakePHP Cookbook Documentation, Release 2.x

View Extensions (“Helpers”)

A Helper is a class that aids in view logic. Much like a component used among controllers, helpers allow pre-
sentational logic to be accessed and shared between views. One of the core helpers, JsHelper, makes AJAX
requests within views much easier and comes with support for jQuery (default), Prototype and Mootools.

Most applications have pieces of view code that are used repeatedly. CakePHP facilitates view code reuse
with layouts and elements. By default, every view rendered by a controller is placed inside a layout. Ele-
ments are used when small snippets of content need to be reused in multiple views.

32 Chapter 3. Blog Tutorial - Adding a layer

CHAPTER 4

Installation

CakePHP is fast and easy to install. The minimum requirements are a webserver and a copy of CakePHP,
that’s it! While this manual focuses primarily on setting up on Apache (because it’s the most commonly
used), you can configure CakePHP to run on a variety of web servers such as LightHTTPD or Microsoft IIS.

Requirements

e HTTP Server. For example: Apache. mod_rewrite is preferred, but by no means required.
» PHP 5.2.8 or greater.

Technically a database engine isn’t required, but we imagine that most applications will utilize one.
CakePHP supports a variety of database storage engines:

* MySQL (4 or greater)
* PostgreSQL

* Microsoft SQL Server
* SQLite

Note: All built-in drivers require PDO. You should make sure you have the correct PDO extensions in-
stalled.

License

CakePHP is licensed under the MIT license. This means that you are free to modify, distribute and republish
the source code on the condition that the copyright notices are left intact. You are also free to incorporate
CakePHP into any commercial or closed source application.

33

CakePHP Cookbook Documentation, Release 2.x

Downloading CakePHP

There are two main ways to get a fresh copy of CakePHP. You can either download an archived copy
(zip/tar.gz/tar.bz2) from the main website, or check out the code from the git repository.

To download the latest major release of CakePHP, visit the main website http://cakephp.org and follow the
“Download” link.

All current releases of CakePHP are hosted on GitHub'. GitHub houses both CakePHP itself as well as
many other plugins for CakePHP. The CakePHP releases are available at GitHub tags”.

Alternatively you can get fresh off the press code, with all the bug-fixes and up to the minute enhancements.
These can be accessed from GitHub by cloning the GitHub” repository:

git clone git://github.com/cakephp/cakephp.git

Permissions

CakePHP uses the app/tmp directory for a number of different operations. A few examples would be
Model descriptions, cached views and session information.

As such, make sure the directory app/tmp and all its subdirectories in your CakePHP installation are
writable by the web server user.

One common issue is that the app/tmp directories and subdirectories must be writable both by the web server
and the command line user. On a UNIX system, if your web server user is different from your command
line user, you can run the following commands just once in your project to ensure that permissions will be
setup properly:

HTTPDUSER="'‘ps aux | grep -E ’[alpache]| [h]ttpd]| [_lwww| [w]ww-data| [n]ginx’ | grer -v root | I
setfacl -R -m u:|$ |{HTTPDUSER}:rwx app/tmp
setfacl -R -d —m u:{HTTPDUSER} :rwx app/tmp

Setup

Setting up CakePHP can be as simple as slapping it in your web server’s document root, or as complex and
flexible as you wish. This section will cover the three main installation types for CakePHP: development,
production, and advanced.

* Development: easy to get going, URLSs for the application include the CakePHP installation directory
name, and less secure.

* Production: Requires the ability to configure the web server’s document root, clean URLs, very se-
cure.

"http://github.com/cakephp/cakephp
Zhttps://github.com/cakephp/cakephp/tags
3http://github.com/cakephp/cakephp

34 Chapter 4. Installation

http://cakephp.org
http://github.com/cakephp/cakephp
https://github.com/cakephp/cakephp/tags
http://github.com/cakephp/cakephp

CakePHP Cookbook Documentation, Release 2.x

* Advanced: With some configuration, allows you to place key CakePHP directories in different parts
of the filesystem, possibly sharing a single CakePHP core library folder amongst many CakePHP
applications.

Development

A development installation is the fastest method to setup CakePHP. This example will help you install
a CakePHP application and make it available at http://www.example.com/cake_2_0/. We assume for the
purposes of this example that your document root is set to /var/www/html.

Unpack the contents of the CakePHP archive into /var/www/html. You now have a folder in your doc-
ument root named after the release you’ve downloaded (e.g. cake_2.0.0). Rename this folder to cake_2_0.
Your development setup will look like this on the file system:

/var/www/html/
cake_2_0/

app/
1lib/
plugins/
vendors/
.htaccess
index.php
README

If your web server is configured correctly, you should now find your CakePHP application accessible at
http://www.example.com/cake_2_0/.

Using one CakePHP Checkout for multiple Applications

If you are developing a number of applications, it often makes sense to have them share the same CakePHP
core checkout. There are a few ways in which you can accomplish this. Often the easiest is to use
PHP’s include_path. To start off, clone CakePHP into a directory. For this example, we’ll use
/home/mark/projects:

git clone git://github.com/cakephp/cakephp.git /home/mark/projects/cakephp

This will clone CakePHP into your /home /mark/projects directory. If you don’t want to use git, you
can download a zipball and the remaining steps will be the same. Next you’ll have to locate and modify
your php.ini. On *nix systems this is often in /etc/php.ini, but using php -1 and looking for
‘Loaded Configuration File’, you can find the actual location. Once you’ve found the correct ini file, modify
the include_path configuration to include /home /mark/projects/cakephp/lib. An example
would look like:

include_path = .:/home/mark/projects/cakephp/lib:/usr/local/php/lib/php

After restarting your webserver, you should see the changes reflected in phpinfo ().

Note: If you are on windows, separate include paths with ; instead of :

Development 35

http://www.example.com/cake_2_0/
http://www.example.com/cake_2_0/

CakePHP Cookbook Documentation, Release 2.x

Having finished setting up your include_path your applications should be able to find CakePHP auto-
matically.

Production

A production installation is a more flexible way to setup CakePHP. Using this method allows an entire
domain to act as a single CakePHP application. This example will help you install CakePHP anywhere on
your filesystem and make it available at http://www.example.com. Note that this installation may require
the rights to change the DocumentRoot on Apache webservers.

Unpack the contents of the CakePHP archive into a directory of your choice. For the purposes of this
example, we assume you chose to install CakePHP into /cake_install. Your production setup will look like
this on the filesystem:

/cake_install/

app/
webroot/ (this directory is set as the '‘DocumentRoot ‘'
directive)

lib/

plugins/

vendors/

.htaccess

index.php

README

Developers using Apache should set the DocumentRoot directive for the domain to:

DocumentRoot /cake_install/app/webroot

If your web server is configured correctly, you should now find your CakePHP application accessible at
http://www.example.com.

Advanced Installation and URL Rewriting

Advanced Installation
Installing CakePHP with PEAR Installer

CakePHP publishes a PEAR package that you can install using the PEAR installer. Installing with the
PEAR installer can simplify sharing CakePHP libraries across multiple applications. To install CakePHP
with PEAR you’ll need to do the following:

pear channel-discover pear.cakephp.org
pear install cakephp/CakePHP

Note: On some systems installing libraries with PEAR will require sudo.

36 Chapter 4. Installation

http://www.example.com
http://www.example.com

CakePHP Cookbook Documentation, Release 2.x

After installing CakePHP with PEAR, if PEAR is configured correctly you should be able to use the cake
command to create a new application. Since CakePHP will be located on PHP’s include_path you
won’t need to make any other changes.

Installing CakePHP with Composer

Composer is a dependency management tool for PHP 5.3+. It solves many of the problems the PEAR
installer has, and simplifies managing multiple versions of libraries. Since CakePHP publishes a PEAR
package you can install CakePHP using composer®. Before installing CakePHP you’ll need to setup a

composer. json file. A composer.json file for a CakePHP application would look like the following:

{

"name": "example-—app",
"require": {
"cakephp/cakephp": "2.5.%"
by
"config": {
"vendor—-dir": "Vendor/"

}
}

Save this JSON into composer. json in the APP directory of your project. Next download the com-
poser.phar file into your project. After you’ve downloaded Composer, install CakePHP. In the same directory
as your composer . json run the following:

php composer.phar install

Once Composer has finished running you should have a directory structure that looks like:

example—app/
composer .phar
composer. json
Vendor/
bin/
autoload.php
composer/
cakephp/

You are now ready to generate the rest of your application skeleton:

Vendor/bin/cake bake project <path to project>

By default bake will hard-code CAKE__CORE__ INCLUDE_PATH. To make your application more portable
you should modify webroot/index.php, changing CAKE_CORE_INCLUDE_PATH to be a relative
path:

define (
"CAKE_CORE_INCLUDE_PATH',
ROOT . DS . APP_DIR . DS . ’'Vendor’ . DS . ’'cakephp’ . DS . ’'cakephp’” . DS

)

*http://getcomposer.org

Advanced Installation and URL Rewriting 37

"1lib’

http://getcomposer.org

CakePHP Cookbook Documentation, Release 2.x

Note: If you are planning to create unit tests for your application you’ll also need to make the above change
to webroot/test.php

If you’re installing any other libraries with Composer, you’ll need to setup the autoloader, and work around
an issue in Composer’s autoloader. In your Config/bootstrap.php file add the following:

// Load Composer autoload.
require APP . ’Vendor/autoload.php’;

// Remove and re-prepend CakePHP’s autoloader as Composer thinks it is the
// most important.

// See: http://goo.gl/kKVJO7

spl_autoload_unregister (array (' App’, ’'load’));

spl_autoload_register (array(’'App’, ’'load’), true, true);

You should now have a functioning CakePHP application installed via Composer. Be sure to keep the
composer.json and composer.lock file with the rest of your source code.

Sharing CakePHP Libraries with multiple Applications

There may be some situations where you wish to place CakePHP’s directories on different places on the
filesystem. This may be due to a shared host restriction, or maybe you just want a few of your apps to
share the same CakePHP libraries. This section describes how to spread your CakePHP directories across a
filesystem.

First, realize that there are three main parts to a CakePHP application:
1. The core CakePHP libraries, in /lib/Cake.
2. Your application code, in /app.
3. The application’s webroot, usually in /app/webroot.

Each of these directories can be located anywhere on your file system, with the exception of the webroot,
which needs to be accessible by your web server. You can even move the webroot folder out of the app
folder as long as you tell CakePHP where you’ve put it.

To configure your CakePHP installation, you’ll need to make some changes to the following files.
* /app/webroot/index.php
* /app/webroot/test.php (if you use the Testing feature.)
There are three constants that you’ll need to edit: ROOT, APP_DIR, and CAKE_CORE_INCLUDE_PATH.
* ROOT should be set to the path of the directory that contains your app folder.
* APP_DIR should be set to the (base)name of your app folder.
* CAKE_CORE_INCLUDE_PATH should be set to the path of your CakePHP libraries folder.

Let’s run through an example so you can see what an advanced installation might look like in practice.
Imagine that I wanted to set up CakePHP to work as follows:

38 Chapter 4. Installation

CakePHP Cookbook Documentation, Release 2.x

* The CakePHP core libraries will be placed in /usr/lib/cake.
* My application’s webroot directory will be /var/www/mysite/.
* My application’s app directory will be /home/me/myapp.

Given this type of setup, I would need to edit my webroot/index.php file (which will end up at
/var/www/mysite/index.php, in this example) to look like the following:

// /app/webroot/index.php (partial, comments removed)

if (!defined(’ROOT’)) {
define ('ROOT’, DS . "home’ . DS . 'me’);

if (!defined(’APP_DIR’)) {
define (’APP_DIR’, ’'myapp’);

if (!defined ('’ CAKE CORE_INCLUDE_PATH’)) {
define (/ CAKE_CORE_INCLUDE_PATH’, DS . ’usr’ . DS . ’'1lib’);
}

It is recommended to use the DS constant rather than slashes to delimit file paths. This prevents any missing
file errors you might get as a result of using the wrong delimiter, and it makes your code more portable.

Apache and mod_rewrite (and .htaccess)

This section was moved to URL rewriting.

URL Rewriting
Apache and mod_rewrite (and .htaccess)
While CakePHP is built to work with mod_rewrite out of the box—and usually does—we’ve noticed that a

few users struggle with getting everything to play nicely on their systems.

Here are a few things you might try to get it running correctly. First look at your httpd.conf. (Make sure you
are editing the system httpd.conf rather than a user- or site-specific httpd.conf.)

These files can vary between different distributions and Apache versions. You may also take a look at
http://wiki.apache.org/httpd/DistrosDefaultLayout for further information.

1. Make sure that an .htaccess override is allowed and that AllowOverride is set to All for the correct
DocumentRoot. You should see something similar to:

FEach directory to which Apache has access can be configured with respect
to which services and features are allowed and/or disabled in that
directory (and its subdirectories).

First, we configure the "default" to be a very restrictive set of
features.

SH FHR FHR FHR IR IR

Advanced Installation and URL Rewriting 39

http://wiki.apache.org/httpd/DistrosDefaultLayout

CakePHP Cookbook Documentation, Release 2.x

#

<Directory />
Options FollowSymLinks
AllowOverride All

Order deny,allow
Deny from all
</Directory>

. Make sure you are loading mod_rewrite correctly. You should see something like:

LoadModule rewrite_module libexec/apache2/mod_rewrite.so

In many systems these will be commented out by default, so you may just need to remove the leading
symbols.

After you make changes, restart Apache to make sure the settings are active.

Verify that your .htaccess files are actually in the right directories. Some operating systems treat files
that start with ‘.’ as hidden and therefore won’t copy them.

. Make sure your copy of CakePHP comes from the downloads section of the site or our Git repository,

and has been unpacked correctly, by checking for .htaccess files.

CakePHP root directory (must be copied to your document; redirects everything to your CakePHP
app):

<IfModule mod_rewrite.c>
RewriteEngine on

RewriteRule AEi‘app/webroot/ [L]
RewriteRule (.x) app/webroot/l [L]
</IfModule>

CakePHP app directory (will be copied to the top directory of your application by bake):

<IfModule mod_rewrite.c>
RewriteEngine on

RewriteRule AEZ‘ webroot/ (L]
RewriteRule (.*) webroot/Bﬂl [L]
</IfModule>

CakePHP webroot directory (will be copied to your application’s web root by bake):

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %${REQUEST_FILENAME} !-f
RewriteRule A(.*) index.php [QSA,L]
</IfModule>

If your CakePHP site still has problems with mod_rewrite, you might want to try modifying settings
for Virtual Hosts. On Ubuntu, edit the file /etc/apache?2/sites-available/default (location is distribution-
dependent). In this file, ensure that AllowOverride None is changed to AllowOverride
Al1l, so you have:

40

Chapter 4. Installation

CakePHP Cookbook Documentation, Release 2.x

<Directory />
Options FollowSymLinks
AllowOverride All
</Directory>
<Directory /var/www>
Options Indexes FollowSymLinks MultiViews
AllowOverride All
Order Allow,Deny
Allow from all
</Directory>

On Mac OSX, another solution is to use the tool virtualhostx’ to make a Virtual Host to point to your
folder.

For many hosting services (GoDaddy, landl), your web server is actually being served from a
user directory that already uses mod_rewrite. If you are installing CakePHP into a user direc-
tory (http://example.com/~username/cakephp/), or any other URL structure that already utilizes
mod_rewrite, you’ll need to add RewriteBase statements to the .htaccess files CakePHP uses (/.htac-
cess, /app/.htaccess, /app/webroot/.htaccess).

This can be added to the same section with the RewriteEngine directive, so for example, your webroot
.htaccess file would look like:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /path/to/cake/app
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule "~ (. *) index.php [QSA,L]
</IfModule>

The details of those changes will depend on your setup, and can include additional things that are not
related to CakePHP. Please refer to Apache’s online documentation for more information.

4. (Optional) To improve production setup, you should prevent invalid assets from being parsed by
CakePHP. Modify your webroot .htaccess to something like:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /path/to/cake/app
RewriteCond ${REQUEST_FILENAME} !-d
RewriteCond %${REQUEST_FILENAME} !-f
RewriteCond % {REQUEST_URI} !~/ (app/webroot/)? (img|css|js)/ (. *)

RewriteRule A(.*) index.php [QSA,L]
</IfModule>

The above will simply prevent incorrect assets from being sent to index.php and instead display your
webserver’s 404 page.

Additionally you can create a matching HTML 404 page, or use the default built-in CakePHP 404 by
adding an ErrorDocument directive:

Shttp://clickontyler.com/virtualhostx/

Advanced Installation and URL Rewriting 41

http://clickontyler.com/virtualhostx/
http://example.com/~username/cakephp/

CakePHP Cookbook Documentation, Release 2.x

ErrorDocument 404 /404-not-found

Pretty URLs on nginx

nginx does not make use of .htaccess files like Apache, so it is necessary to create those rewritten URLs in
the site-available configuration. Depending upon your setup, you will have to modify this, but at the very
least, you will need PHP running as a FastCGI instance.

server {
listen 80;
server_name www.example.com;
rewrite 7 (.%) http://example. coml permanent;

server {
listen 80;
server_name example.com;

root directive should be global
root /var/www/example.com/public/app/webroot/;
index index.php;

access_log /var/www/example.com/log/access.log;
error_log /var/www/example.com/log/error.log;

location / {
try_files $Suri Suri/ /index.php?S$Sargs;

location ~ \.phpEﬂ {
try_files Suri =404;
include /etc/nginx/fastcgi_params;

fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME S$document_rootS$fastcgi_script_name;

URL Rewrites on IIS7 (Windows hosts)

IIS7 does not natively support .htaccess files. While there are add-ons that can add this support, you can
also import htaccess rules into IIS to use CakePHP’s native rewrites. To do this, follow these steps:

1. Use Microsoft’s Web Platform Installer® to install the URL Rewrite Module 2.07 or download it
directly (32-bit® / 64-bit”).

Shttp://www.microsoft.com/web/downloads/platform.aspx
http://www.iis.net/downloads/microsoft/url-rewrite
8http://www.microsoft.com/en-us/download/details.aspx ?id=5747
“http://www.microsoft.com/en-us/download/details.aspx ?id=7435

42 Chapter 4. Installation

http://www.microsoft.com/web/downloads/platform.aspx
http://www.iis.net/downloads/microsoft/url-rewrite
http://www.microsoft.com/en-us/download/details.aspx?id=5747
http://www.microsoft.com/en-us/download/details.aspx?id=7435

CakePHP Cookbook Documentation, Release 2.x

2. Create a new file called web.config in your CakePHP root folder.
3. Using Notepad or any XML-safe editor, copy the following code into your new web.config file...

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<system.webServer>
<rewrite>
<rules>
<rule name="Rewrite requests to test.php"
stopProcessing="true">
<match url=""test.php(.*)$" ignoreCase="false" />
<action type="Rewrite" url="app/webroot/test.php{R:1}" />
</rule>
<rule name="Exclude direct access to app/webroot/x*"
stopProcessing="true">
<match url=""app/webroot/ (.x)$" ignoreCase="false" />
<action type="None" />
</rule>
<rule name="Rewrite routed access to assets(img, css, files, 7Js,
stopProcessing="true">
<match url="" (img|css|files|js|favicon.ico) (.x)s$" />
<action type="Rewrite" url="app/webroot/{R:1}{R:2}"
appendQueryString="false" />
</rule>
<rule name="Rewrite requested file/folder to index.php"
stopProcessing="true">
<match url=""(.*)$" ignoreCase="false" />
<action type="Rewrite" url="index.php"
appendQueryString="true" />
</rule>
</rules>
</rewrite>
</system.webServer>
</configuration>

Once the web.config file is created with the correct IIS-friendly rewrite rules, CakePHP’s links, CSS, JavaS-
cipt, and rerouting should work correctly.

URL-Rewriting on lighttpd

Lighttpd does not support .htaccess functions, so you can remove all .htaccess files. In the lighttpd configu-
ration, make sure you’ve activated “mod_rewrite”. Add a line:

url.rewrite-if-not-file =(
"ACIAN2Tx) (\2(.4)) 28" => "/index.php?url=5$1&$3"

URL rewrite rules for Hiawatha

The required UrlToolkit rule (for URL rewriting) to use CakePHP with Hiawatha is:

Advanced Installation and URL Rewriting 43

favicon)"

CakePHP Cookbook Documentation, Release 2.x

UrlToolkit {
ToolkitID = cakephp
RequestURI exists Return
Match .* Rewrite /index.php

I don’t / can’t use URL rewriting

If you don’t want to or can’t use URL rewriting on your webserver, refer to the core configuration.

Fire It Up

Alright, let’s see CakePHP in action. Depending on which setup you used, you should point your browser
to http://example.com/ or http://www.example.com/cake_2_0/. At this point, you'll be presented with
CakePHP’s default home, and a message that tells you the status of your current database connection.

Congratulations! You are ready to create your first CakePHP application.

Not working? If youre getting timezone related errors from PHP uncomment one line in
app/Config/core.php:

Ve
* Uncomment this line and correct your server timezone to fix
* any date & time related errors.
*/
date_default_timezone_set ('UTC’);

44 Chapter 4. Installation

http://example.com/
http://www.example.com/cake_2_0/

CHAPTER 5

CakePHP Overview

Welcome to the Cookbook, the manual for the CakePHP web application framework that makes developing
a piece of cake!

This manual assumes that you have a general understanding of PHP and a basic understanding of object-
oriented programming (OOP). Different functionality within the framework makes use of different technolo-
gies — such as SQL, JavaScript, and XML — and this manual does not attempt to explain those technologies,
only how they are used in context.

What is CakePHP? Why use it?

CakePHP' is a free’, open-source’, rapid development* framework> for PHP®. It’s a foundational structure
for programmers to create web applications. Our primary goal is to enable you to work in a structured and
rapid manner—without loss of flexibility.

CakePHP takes the monotony out of web development. It provides you with all the tools you need to get
started coding and what you need to get done: the logic specific to your application. Instead of reinventing
the wheel every time you begin a new project, check out a copy of CakePHP and get started with the logic
of your application.

CakePHP has an active developer team’ and community, bringing great value to the project. In addition
to keeping you from wheel-reinventing, using CakePHP means your application’s core is well tested and is
being constantly improved.

Here’s a quick list of features you’ll enjoy when using CakePHP:
* Active, friendly Official CakePHP discussion group

"http://www.cakephp.org/
“http://en.wikipedia.org/wiki/MIT_License
3http://en.wikipedia.org/wiki/Open_source
*http://en.wikipedia.org/wiki/Rapid_application_development
Shttp://en.wikipedia.org/wiki/Application_framework
Shttp://www.php.net/
https://github.com/cakephp?tab=members

45

http://www.cakephp.org/
http://en.wikipedia.org/wiki/MIT_License
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Application_framework
http://www.php.net/
https://github.com/cakephp?tab=members

CakePHP Cookbook Documentation, Release 2.x

* Flexible licensing®

* Compatible with versions PHP 5.2.8 and greater

» Integrated CRUD’ for database interaction

» Application scaffolding'’

* Code generation

« MVC'! architecture

* Request dispatcher with clean, custom URLs and routes

* Built-in validation'”

+ Fast and flexible templating'® (PHP syntax, with helpers)

* View helpers for AJAX, JavaScript, HTML forms and more
* Email, cookie, security, session, and request handling Components
* Flexible ACL"

* Data sanitization

* Flexible caching'’

* Localization

16

* Works from any web site directory, with little to no Apache'® configuration involved

Understanding Model-View-Controller

CakePHP follows the MVC'” software design pattern. Programming using MVC separates your application
into three main parts:

The Model layer

The Model layer represents the part of your application that implements the business logic. It is responsible
for retrieving data and converting it into meaningful concepts for your application. This includes processing,
validating, associating or other tasks related to handling data.

8http://en.wikipedia.org/wiki/MIT_License
“http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://en.wikipedia.org/wiki/Scaffold_(programming)
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Data_validation
Bhttp://en.wikipedia.org/wiki/Web_template_system
“http://en.wikipedia.org/wiki/Access_control_list
Shitp://en.wikipedia.org/wiki/Web_cache
http://httpd.apache.org/
"http://en.wikipedia.org/wiki/Model-view-controller

46 Chapter 5. CakePHP Overview

http://en.wikipedia.org/wiki/MIT_License
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://en.wikipedia.org/wiki/Scaffold_(programming)
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Data_validation
http://en.wikipedia.org/wiki/Web_template_system
http://en.wikipedia.org/wiki/Access_control_list
http://en.wikipedia.org/wiki/Web_cache
http://httpd.apache.org/
http://en.wikipedia.org/wiki/Model-view-controller

CakePHP Cookbook Documentation, Release 2.x

At a first glance, Model objects can be looked at as the first layer of interaction with any database you might
be using for your application. But in general they stand for the major concepts around which you implement
your application.

In the case of a social network, the Model layer would take care of tasks such as saving the user data, saving
friends’ associations, storing and retrieving user photos, finding suggestions for new friends, etc. The model
objects can be thought as “Friend”, “User”, “Comment”, or “Photo”.

The View layer

The View renders a presentation of modeled data. Being separated from the Model objects, it is responsible
for using the information it has available to produce any presentational interface your application might
need.

For example, as the Model layer returns a set of data, the view would use it to render a HTML page contain-
ing it, or a XML formatted result for others to consume.

The View layer is not only limited to HTML or text representation of the data. It can be used to deliver a
wide variety of formats depending on your needs, such as videos, music, documents and any other format
you can think of.

The Controller layer

The Controller layer handles requests from users. It is responsible for rendering a response with the aid of
both the Model and the View layer.

A controller can be seen as a manager that ensures that all resources needed for completing a task are
delegated to the correct workers. It waits for petitions from clients, checks their validity according to au-
thentication or authorization rules, delegates data fetching or processing to the model, selects the type of
presentational data that the clients are accepting, and finally delegates the rendering process to the View
layer.

Understanding Model-View-Controller 47

CakePHP Cookbook Documentation, Release 2.x

CakePHP request cycle

3

Figure: 1: A typical MVC Request in CakePHP

The typical CakePHP request cycle starts with a user requesting a page or resource in your application. This
request is first processed by a dispatcher which will select the correct controller object to handle it.

Once the request arrives at the controller, it will communicate with the Model layer to process any data-
fetching or -saving operation that might be needed. After this communication is over, the controller will
proceed to delegate to the correct view object the task of generating output resulting from the data provided
by the model.

Finally, when this output is generated, it is immediately rendered to the user.

Almost every request to your application will follow this basic pattern. We’ll add some details later on
which are specific to CakePHP, so keep this in mind as we proceed.

Benefits

Why use MVC? Because it is a tried and true software design pattern that turns an application into a main-
tainable, modular, rapidly developed package. Crafting application tasks into separate models, views, and
controllers makes your application very light on its feet. New features are easily added, and new faces on old
features are a snap. The modular and separate design also allows developers and designers to work simulta-
neously, including the ability to rapidly prototype'®. Separation also allows developers to make changes in
one part of the application without affecting the others.

If you’ve never built an application this way, it takes some time getting used to, but we’re confident that
once you’ve built your first application using CakePHP, you won’t want to do it any other way.

To get started on your first CakePHP application, try the blog tutorial now

Bhttp://en.wikipedia.org/wiki/Software_prototyping

48 Chapter 5. CakePHP Overview

http://en.wikipedia.org/wiki/Software_prototyping

CakePHP Cookbook Documentation, Release 2.x

Where to Get Help

The Official CakePHP website

http://www.cakephp.org

The Official CakePHP website is always a great place to visit. It features links to oft-used developer tools,
screencasts, donation opportunities, and downloads.

The Cookbook

http://book.cakephp.org

This manual should probably be the first place you go to get answers. As with many other open source
projects, we get new folks regularly. Try your best to answer your questions on your own first. Answers
may come slower, but will remain longer — and you’ll also be lightening our support load. Both the manual
and the API have an online component.

The Bakery

http://bakery.cakephp.org

The CakePHP Bakery is a clearing house for all things regarding CakePHP. Check it out for tutorials, case
studies, and code examples. Once you're acquainted with CakePHP, log on and share your knowledge with
the community and gain instant fame and fortune.

The API

http://api.cakephp.org/

Straight to the point and straight from the core developers, the CakePHP API (Application Programming
Interface) is the most comprehensive documentation around for all the nitty gritty details of the internal
workings of the framework. It’s a straight forward code reference, so bring your propeller hat.

The Test Cases
If you ever feel the information provided in the API is not sufficient, check out the code of the test cases

provided with CakePHP. They can serve as practical examples for function and data member usage for a
class.:

lib/Cake/Test/Case

The IRC channel

IRC Channels on irc.freenode.net:

Where to Get Help 49

http://www.cakephp.org
http://book.cakephp.org
http://bakery.cakephp.org
http://api.cakephp.org/

CakePHP Cookbook Documentation, Release 2.x

* #cakephp — General Discussion
* #cakephp-docs — Documentation
* #cakephp-bakery — Bakery

If you’re stumped, give us a holler in the CakePHP IRC channel. Someone from the development team'”

is usually there, especially during the daylight hours for North and South America users. We’d love to hear
from you, whether you need some help, want to find users in your area, or would like to donate your brand
new sports car.

Official CakePHP discussion group

CakePHP Google Group?’

CakePHP also has its official discusson group on Google Groups. There are thousands of people discussing
CakePHP projects, helping each other, solving problems, building projects and sharing ideas. It can be a
great resource for finding archived answers, frequently asked questions, and getting answers to immediate
problems. Join other CakePHP users and start discussing.

Stackoverflow

http://stackoverflow.com/>!

Tag your questions with cakephyp and the specific version you are using to enable existing users of stack-
overflow to find your questions.

Where to get Help in your Language
French

* French CakePHP Community~?

Phttps://github.com/cakephp?tab=members
Dhttp://groups.google.com/group/cake-php

U http://stackoverflow.com/questions/tagged/cakephp/
Zhttp://cakephp-fr.org

50 Chapter 5. CakePHP Overview

https://github.com/cakephp?tab=members
http://groups.google.com/group/cake-php
http://stackoverflow.com/questions/tagged/cakephp/
http://cakephp-fr.org

CHAPTER 6

Controllers

Controllers are the ‘C’ in MVC. After routing has been applied and the correct controller has been found,
your controller’s action is called. Your controller should handle interpreting the request data, making sure
the correct models are called, and the right response or view is rendered. Controllers can be thought of as
middle man between the Model and View. You want to keep your controllers thin, and your models fat. This
will help you more easily reuse your code and makes your code easier to test.

Commonly, a controller is used to manage the logic around a single model. For example, if you were
building a site for an online bakery, you might have a RecipesController managing your recipes and an
IngredientsController managing your ingredients. However, it’s also possible to have controllers work with
more than one model. In CakePHP, a controller is named after the primary model it handles.

Your application’s controllers extend the AppController class, which in turn ex-
tends the core Controller class. The AppController class can be defined in
/app/Controller/AppController.php and it should contain methods that are shared between all
of your application’s controllers.

Controllers provide a number of methods that handle requests. These are called actions. By default, each
public method in a controller is an action, and is accessible from a URL. An action is responsible for
interpreting the request and creating the response. Usually responses are in the form of a rendered view, but
there are other ways to create responses as well.

The App Controller

As stated in the introduction, the AppController class is the parent class to all of your application’s
controllers. AppController itself extends the Cont roller class included in the CakePHP core library.
AppController isdefinedin /app/Controller/AppController.php as follows:

class AppController extends Controller {

}

Controller attributes and methods created in your AppController will be available to all of your appli-
cation’s controllers. Components (which you’ll learn about later) are best used for code that is used in many
(but not necessarily all) controllers.

51

CakePHP Cookbook Documentation, Release 2.x

While normal object-oriented inheritance rules apply, CakePHP does a bit of extra work when it comes to
special controller attributes. The components and helpers used by a controller are treated specially. In these
cases, AppController value arrays are merged with child controller class arrays. The values in the child
class will always override those in AppController.

Note: CakePHP merges the following variables from the AppController into your application’s con-
trollers:

* Scomponents
* Shelpers

e Suses

Remember to add the default Html and Form helpers if you define the $helpers property in your
AppController.

Also remember to call AppController*s callbacks within child controller callbacks for best results:

public function beforeFilter () {
parent: :beforeFilter();

}

Request parameters

When a request is made to a CakePHP application, CakePHP’s Router and Dispatcher classes use
Routes Configuration to find and create the correct controller. The request data is encapsulated in a request
object. CakePHP puts all of the important request information into the $this—>request property. See
the section on CakeRequest for more information on the CakePHP request object.

Controller actions

Controller actions are responsible for converting the request parameters into a response for the browser/user
making the request. CakePHP uses conventions to automate this process and remove some boilerplate code
you would otherwise need to write.

By convention, CakePHP renders a view with an inflected version of the action name. Returning to our on-
line bakery example, our RecipesController might contain the view (), share (),and search () actions.
The controller would be found in /app/Controller/RecipesController.php and contain:

/app/Controller/RecipesController.php

class RecipesController extends AppController {
public function view ($id) {
//action logic goes here..

}

public function share (S$ScustomerId, S$SrecipeId) {
//action logic goes here..

52 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

public function search (Squery) {
//action logic goes here..
}
}

The view files for these actions would be app/View/Recipes/view.ctp,
app/View/Recipes/share.ctp, and app/View/Recipes/search.ctp. The conventional
view file name is the lowercased and underscored version of the action name.

Controller actions generally use set () to create a context that View uses to render the view. Because of
the conventions that CakePHP uses, you don’t need to create and render the view manually. Instead, once a
controller action has completed, CakePHP will handle rendering and delivering the View.

If for some reason you’d like to skip the default behavior, both of the following techniques will bypass the
default view rendering behavior.

* If you return a string, or an object that can be converted to a string from your controller action, it will
be used as the response body.

* You can return a CakeResponse object with the completely created response.

When you use controller methods with requestAction (), you will often want to return data that isn’t
a string. If you have controller methods that are used for normal web requests + requestAction, you should
check the request type before returning:

class RecipesController extends AppController {

public function popular () {
Spopular = $this->Recipe->popular();
if (!empty(Sthis->request->params|[’requested’])) {

return S$Spopular;
Sthis->set (' popular’, Spopular);
}

The above controller action is an example of how a method can be used with requestAction () and nor-
mal requests. Returning array data to a non-requestAction request will cause errors and should be avoided.
See the section on requestAction () for more tips on using requestAction ()

In order for you to use a controller effectively in your own application, we’ll cover some of the core attributes
and methods provided by CakePHP’s controllers.

Request Life-cycle callbacks

class Controller
CakePHP controllers come fitted with callbacks you can use to insert logic around the request life-cycle:

Controller: :beforeFilter ()
This function is executed before every action in the controller. It’s a handy place to check for an active

Request Life-cycle callbacks 53

CakePHP Cookbook Documentation, Release 2.x

session or inspect user permissions.

Note: The beforeFilter() method will be called for missing actions, and scaffolded actions.

Controller: :beforeRender ()
Called after controller action logic, but before the view is rendered. This callback is not used often,
but may be needed if you are calling render () manually before the end of a given action.

Controller: :afterFilter ()
Called after every controller action, and after rendering is complete. This is the last controller method
to run.

In addition to controller life-cycle callbacks, Components also provide a similar set of callbacks.

Controller Methods

For a complete list of controller methods and their descriptions visit the CakePHP API'.

Interacting with Views

Controllers interact with views in a number of ways. First, they are able to pass data to the views, using
set (). You can also decide which view class to use, and which view file should be rendered from the
controller.

Controller: : set (string $var, mixed $value)
The set () method is the main way to send data from your controller to your view. Once you’ve
used set (), the variable can be accessed in your view:

// First you pass data from the controller:
Sthis->set (' color’, ’"pink’);

// Then, in the view, you can utilize the data:
2>

You have selected <?php echo Scolor; ?> icing for the cake.

The set () method also takes an associative array as its first parameter. This can often be a quick
way to assign a set of information to the view:

Sdata = array (
"color’ => "pink’,
"type’ => ’sugar’,

"base_price’ => 23.95
)

// make Scolor, Stype, and Shase price
// available to the view:

"http://api.cakephp.org/2.4/class-Controller.html

54 Chapter 6. Controllers

http://api.cakephp.org/2.4/class-Controller.html

CakePHP Cookbook Documentation, Release 2.x

Sthis->set ($data) ;

The attribute $pageTitle no longer exists. Use set () to set the title:

Sthis->set ('title_for_layout’, ’'This is the page title’);

As of 2.5 the variable $title_for_layout is deprecated, use view blocks instead.

Controller: :render (string $view, string $layout)
The render () method is automatically called at the end of each requested controller action. This
method performs all the view logic (using the data you’ve submitted using the set () method), places
the view inside its $1ayout, and serves it back to the end user.

The default view file used by render is determined by convention. If the search () action of the
RecipesController is requested, the view file in /app/View/Recipes/search.ctp will be rendered:

class RecipesController extends AppController ({

/Y cooc
public function search() {
// Render the view in /View/Recipes/search.ctp
Sthis—->render () ;
}
7V cooc

}

Although CakePHP will automatically call it after every action’s logic (unless you’'ve set
$this->autoRender to false), you can use it to specify an alternate view file by specifying an
action name in the controller using Saction.

If Sview starts with ‘/°, it is assumed to be a view or element file relative to the /app/View folder.
This allows direct rendering of elements, very useful in AJAX calls.

// Render the element in /View/Elements/ajaxreturn.ctp
Sthis->render (’ /Elements/ajaxreturn’) ;

The $1ayout parameter allows you to specify the layout with which the view is rendered.

Rendering a specific view

In your controller, you may want to render a different view than the conventional one. You can do this by
calling render () directly. Once you have called render (), CakePHP will not try to re-render the view:

class PostsController extends AppController ({
public function my_action () {
Sthis—->render (' custom_file’);
}
}

This would render app/View/Posts/custom_file.ctp instead of
app/View/Posts/my_action.ctp

You can also render views inside plugins using the following syntax:
$this->render (' PluginName.PluginController/custom_file’). For example:

Controller Methods 55

CakePHP Cookbook Documentation, Release 2.x

class PostsController extends AppController {
public function my_action() {
Sthis->render (' Users.UserDetails/custom_file’);

}

This would render app/Plugin/Users/View/UserDetails/custom_file.ctp

Flow Control

Controller: :redirect (mixed $url, integer $status, boolean $exir)
The flow control method you’ll use most often is redirect (). This method takes its first parameter
in the form of a CakePHP-relative URL. When a user has successfully placed an order, you might wish
to redirect them to a receipt screen.:

public function place_order () {
// Logic for finalizing order goes here
if ($success) {

P

return S$this->redirect (
array (' controller’ => ’'orders’, ’"action’ => ’thanks’)

)i

}

return Sthis—>redirect (
array (' controller’ => ’'orders’, ’'action’ => ’confirm’)

)

}

You can also use a relative or absolute URL as the $url argument:

Sthis->redirect (' /orders/thanks’);
Sthis->redirect (' http://www.example.com’) ;

You can also pass data to the action:

Sthis->redirect (array ('’ action’ => ’'edit’, $id));

The second parameter of redirect () allows you to define an HTTP status code to accompany the
redirect. You may want to use 301 (moved permanently) or 303 (see other), depending on the nature
of the redirect.

The method will issue an exit () after the redirect unless you set the third parameter to false.
If you need to redirect to the referer page you can use:

Sthis—->redirect (Sthis—>referer());

The method also supports name-based parameters. If you want to redirect to a URL
like: http://www.example.com/orders/confirm/product:pizza/quantity:5
you can use:

Sthis->redirect (array (
"controller’ => ’'orders’,
"action’ => ’'confirm’,

56 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

"product’ => ’'pizza’,
"quantity’ => 5)
)i

An example using query strings and hash would look like:

Sthis->redirect (array (
"controller’ => ’'orders’,
"action’ => ’'confirm’,
"2’ => array (

"product’ => ’'pizza’,
"quantity’ => 5

’
T => /top/)
)i

The generated URL would be:

http://www.example.com/orders/confirm?product=pizzasquantity=5#top

Controller: : flash (string $message, stringlarray $url, integer $pause, string $layout)
Like redirect (), the f1ash () method is used to direct a user to a new page after an operation.
The flash () method is different in that it shows a message before passing the user on to another
URL.

The first parameter should hold the message to be displayed, and the second parameter is a CakePHP-
relative URL. CakePHP will display the Smessage for Spause seconds before forwarding the user
on.

If there’s a particular template you’d like your flashed message to use, you may specify the name of
that layout in the $1ayout parameter.

For in-page flash messages, be sure to check out SessionComponent: :setFlash () method.

Callbacks

In addition to the Request Life-cycle callbacks, CakePHP also supports callbacks related to scaffolding.

Controller: :beforeScaffold ($method)
$method name of method called example index, edit, etc.

Controller: :afterScaffoldSave ($method)
$method name of method called either edit or update.

Controller: :afterScaffoldSaveError ($method)
$method name of method called either edit or update.

Controller: :scaffoldError ($method)
$method name of method called example index, edit, etc.

Controller Methods 57

CakePHP Cookbook Documentation, Release 2.x

Other Useful Methods

Controller: :constructClasses ()

This method loads the models required by the controller. This loading process is done by CakePHP
normally, but this method is handy to have when accessing controllers from a different perspective. If
you need CakePHP in a command-line script or some other outside use, constructClasses ()

may come in handy.

Controller: :referer (mixed $default = null, boolean $local = false)

Returns the referring URL for the current request. Parameter $default can be used to supply a
default URL to use if HTTP_REFERER cannot be read from headers. So, instead of doing this:

class UserController extends AppController ({

public function delete (5id) {
// delete code goes here, and then...
if (Sthis-—>referer() !'=7/") {

return Sthis—->redirect (Sthis—>referer());
}

return Sthis->redirect (array(’action’ => ’index’));

you can do this:

class UserController extends AppController {
public function delete (5id) {
// delete code goes here, and then...
return Sthis—>redirect (
Sthis->referer (array(’action’ => ’index’))

)i

If Sdefault is not set, the function defaults to the root of your domain - /.

Parameter $1ocal if set to t rue, restricts referring URLSs to local server.

Controller: :disableCache ()

Used to tell the user’s browser not to cache the results of the current request. This is different than
view caching, covered in a later chapter.

The headers sent to this effect are:

Expires: Mon, 26 Jul 1997 05:00:00 GMT
Last-Modified: [current datetime] GMT
Cache-Control: no-store, no-cache, must-revalidate
Cache-Control: post-check=0, pre-check=0

Pragma: no-cache

Controller: :postConditions (array $data, mixed $op, string $bool, boolean $exclusive)

Use this method to turn a set of POSTed model data (from HtmlHelper-compatible inputs) into a set
of find conditions for a model. This function offers a quick shortcut on building search logic. For
example, an administrative user may want to be able to search orders in order to know which items
need to be shipped. You can use CakePHP’s FormHelper and HtmlHelper to create a quick form

58

Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

based on the Order model. Then a controller action can use the data posted from that form to craft
find conditions:

public function index() {
Sconditions = $this->postConditions (Sthis->request->data) ;
Sorders = S$this->Order->find(’all’, compact (’conditions’));
Sthis—->set (' orders’, S$Sorders);

If $this->request->data[’Order’] [’'destination’] equals “Old Towne Bakery”,
postConditions converts that condition to an array compatible for use in a Model->find() method.
In this case, array (' Order.destination’ => "0ld Towne Bakery’).

If you want to use a different SQL operator between terms, supply them using the second parameter:

J *
Contents of Sthis—>request->data
array (
’Order’” => array(
‘num_items’ => "4/,
’referrer’ => ’“Ye Olde’
)
)
*/
// Let’s get orders that have at least 4 items and contain ’Ye Olde’
Sconditions = Sthis->postConditions (
Sthis->request->data,
array (
"num_items’ => ’>=',
"referrer’ => ’'LIKE’
)
)i
Sorders = Sthis->Order->find(’all’, compact (’conditions’));

The third parameter allows you to tell CakePHP what SQL boolean operator to use between the find
conditions. Strings like ‘AND’, ‘OR’ and ‘XOR’ are all valid values.

Finally, if the last parameter is set to true, and the $op parameter is an array, fields not included in $op
will not be included in the returned conditions.

Controller: :paginate ()
This method is used for paginating results fetched by your models. You can specify page sizes, model
find conditions and more. See the pagination section for more details on how to use paginate.

Controller: :requestAction (string Surl, array $options)
This function calls a controller’s action from any location and returns data from the action. The Surl
passed is a CakePHP-relative URL (/controllername/actionname/params). To pass extra data to the
receiving controller action add to the $options array.

Note: You can use requestAction () to retrieve a fully rendered view by passing ‘return’ in the
options: requestAction ($url, array(’return’));. Itisimportant to note that making

a requestAction () using return from a controller method can cause script and CSS tags to
not work correctly.

Controller Methods 59

CakePHP Cookbook Documentation, Release 2.x

Warning: If used without caching requestAction () can lead to poor performance. It is
rarely appropriate to use in a controller or model.

requestAction () is best used in conjunction with (cached) elements — as a way to fetch data for
an element before rendering. Let’s use the example of putting a “latest comments” element in the
layout. First we need to create a controller function that will return the data:

// Controller/CommentsController.php
class CommentsController extends AppController {
public function latest () {
if (empty(Sthis->request->params[’requested’])) {
throw new ForbiddenException () ;

}
return Sthis—->Comment—->find(

rall’,

array (' order’ => ’Comment.created DESC’, ’limit’ => 10)
)i

You should always include checks to make sure your requestAction () methods are actually
originating from requestAction (). Failing to do so will allow requestAction () methods
to be directly accessible from a URL, which is generally undesirable.

If we now create a simple element to call that function:

// View/Elements/latest_comments.ctp

Scomments = S$this—->requestAction (’/comments/latest’);

&

foreach (Scomments as Scomment) ({
echo Scomment [/ Comment’] [’title’];

We can then place that element anywhere to get the output using:

echo $this—>element (’ latest_comments’) ;

Written in this way, whenever the element is rendered, a request will be made to the controller to get
the data, the data will be processed, and returned. However in accordance with the warning above it’s
best to make use of element caching to prevent needless processing. By modifying the call to element
to look like this:

echo Sthis->element (' latest_comments’, array (), array(’cache’ => true));

The requestAction () call will not be made while the cached element view file exists and is valid.
In addition, requestAction () now takes array based cake style URLs:

echo Sthis->requestAction (
array (' controller’ => ’'articles’, "action’ => ’featured’),
array (' return’)

)i

60

Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

This allows the requestAction () call to bypass the usage of Router: :url () which can in-
crease performance. The url based arrays are the same as the ones that HtmlHelper: :1link ()
uses with one difference - if you are using named or passed parameters, you must put them in a sec-
ond array and wrap them with the correct key. This is because requestAction () merges the
named args array (requestAction’s 2nd parameter) with the Controller: :params member ar-
ray and does not explicitly place the named args array into the key ‘named’; Additional members in
the Soption array will also be made available in the requested action’s Controller: :params
array:

echo $Sthis->requestAction(’/articles/featured/limit:3");
echo $this->requestAction(’/articles/view/5");

As an array in the requestAction () would then be:

echo $this->requestAction (
array (' controller’ => ’'articles’, "action’ => ’featured’),
array (' named’ => array(’limit’ => 3))

)i

echo $this->requestAction (
array (' controller’ => ’'articles’, ’"action’ => ’'view’),
(

array (' pass’ => array (b))
)i

Note: Unlike other places where array URLSs are analogous to string URLs, requestAction ()
treats them differently.

When using an array url in conjunction with requestAction () you must specify all
parameters that you will need in the requested action. This includes parameters like
$this->request->data. In addition to passing all required parameters, named and pass pa-
rameters must be done in the second array as seen above.

Controller: :loadModel (string $modelClass, mixed $id)
The 1oadModel () function comes handy when you need to use a model which is not the controller’s
default model or its associated model:

Ur

Sthis—->loadModel (' Article’) ;

SrecentArticles = $Sthis—->Article—>find/(
rall’,
array(’'limit’ => 5, ’'order’ => 'Article.created DESC’)

)i

Sthis—->loadModel (' User’, 2)
(

7
Suser = Sthis->User->read();

Controller Attributes

For a complete list of controller attributes and their descriptions visit the CakePHP API”.

*http://api.cakephp.org/2.4/class-Controller.htm]

Controller Attributes 61

http://api.cakephp.org/2.4/class-Controller.html

CakePHP Cookbook Documentation, Release 2.x

property Controller: :Sname

The $name attribute should be set to the name of the controller. Usually this is just the plural form
of the primary model the controller uses. This property can be omitted, but saves CakePHP from
inflecting it:

// Sname controller attribute usage example
class RecipesController extends AppController ({
public Sname = ’'Recipes’;

}

$components, $helpers and $uses

The next most often used controller attributes tell CakePHP what Shelpers, Scomponents, and
models you’ll be using in conjunction with the current controller. Using these attributes make
MVC classes given by Scomponents and Suses available to the controller as class variables
($this—->ModelName, for example) and those given by Shelpers to the view as an object reference
variable (Sthis—>{$helpername}).

Note: Each controller has some of these classes available by default, so you may not need to configure your
controller at all.

property Controller: :Suses

Controllers have access to their primary model available by default. Our RecipesController will have
the Recipe model class available at $this—>Recipe, and our ProductsController also features the
Product model at $this->Product. However, when allowing a controller to access additional
models through the Suses variable, the name of the current controller’s model must also be included.
This is illustrated in the example below.

If you do not wish to use a Model in your controller, set public $uses = array (). This will
allow you to use a controller without a need for a corresponding Model file. However, the models
defined in the AppController will still be loaded. You can also use false to not load any
models at all. Even those defined in the AppController.

Changed in version 2.1: $uses now has a new default value, it also handles false differently.

property Controller: :Shelpers

The HtmlHelper, FormHelper, and SessionHelper are available by default, as is
the SessionComponent. But if you choose to define your own S$helpers array in
AppController, make sure to include HtmlHelper and FormHelper if you want them still
available by default in your Controllers. To learn more about these classes, be sure to check out their
respective sections later in this manual.

Let’s look at how to tell a CakePHP Cont roller that you plan to use additional MVC classes:

class RecipesController extends AppController ({

public Suses = array(’Recipe’, ’'User’);
public Shelpers = array(’'Js’);
public Scomponents = array ('’ RequestHandler’);

62

Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

Each of these variables are merged with their inherited values, therefore it is not necessary (for exam-
ple) to redeclare the FormHe lper, or anything that is declared in your AppController.

property Controller: : Scomponents
The components array allows you to set which Components a controller will use. Like Shelpers
and Suses components in your controllers are merged with those in AppController. As with
Shelpers you can pass settings into $Scomponents. See Configuring Components for more infor-
mation.

Other Attributes

While you can check out the details for all controller attributes in the API’, there are other controller at-
tributes that merit their own sections in the manual.

property Controller: : ScacheAction
The cacheAction attribute is used to define the duration and other information about full page caching.
You can read more about full page caching in the CacheHe lper documentation.

property Controller: : Spaginate
The paginate attribute is a deprecated compatibility property. Using it loads and configures the
PaginatorComponent. It is recommended that you update your code to use normal component
settings:

class ArticlesController extends AppController {

public Scomponents = array (
"Paginator’ => array (
"Article’ => array(

"conditions’ => array(’'published’ => 1)

More on controllers

Request and Response objects

New in CakePHP 2.0 are request and response objects. In previous versions, these objects were represented
through arrays, and the related methods were spread across RequestHandlerComponent, Router,
Dispatcher and Controller. There was no authoritative object on what information the request
contained. For 2.0, CakeRequest and CakeResponse are used for this purpose.

CakeRequest

CakeRequest is the default request object used in CakePHP. It centralizes a number of features for inter-
rogating and interacting with request data. On each request, one CakeRequest is created and then passed

3http://api.cakephp.org

More on controllers 63

http://api.cakephp.org

CakePHP Cookbook Documentation, Release 2.x

by reference to the various layers of an application that use request data. By default, CakeRequest is
assigned to $this—>request, and is available in Controllers, Views and Helpers. You can also access it
in Components by using the controller reference. Some of the duties CakeRequest performs include:

* Process the GET, POST, and FILES arrays into the data structures you are familiar with.

* Provide environment introspection pertaining to the request. Things like the headers sent, the client’s
IP address, and the subdomain/domain information about the application the server is running on.

* Provide access to request parameters both as array indexes and object properties.

Accessing request parameters
CakeRequest exposes several interfaces for accessing request parameters. The first uses object properties,
the second uses array indexes, and the third uses $this->request->params:

Sthis->request->controller;
Sthis->request [’ controller’];
Sthis->request->params [’ controller’];

All of the above will access the same value. Multiple ways of accessing the parameters have been provided
to ease migration for existing applications. All Route Elements are accessed through this interface.

In addition to Route Elements, you also often need access to Passed Arguments and Named Parameters.
These are both available on the request object as well:

// Passed arguments
Sthis->request->pass;
Sthis->request[’pass’];
Sthis->request->params[’pass’];

// named parameters
Sthis->request->named;
Sthis->request [’ named’];
Sthis->request—->params [’/ named’];

All of these will provide you access to the passed arguments and named parameters. There are several im-
portant/useful parameters that CakePHP uses internally. These are also all found in the request parameters:
* plugin The plugin handling the request. Will be null when there is no plugin.
* controller The controller handling the current request.
* action The action handling the current request.
* prefix The prefix for the current action. See Prefix Routing for more information.

* bare Present when the request came from requestAction () and included the bare option. Bare
requests do not have layouts rendered.

* requested Present and set to true when the action came from requestAction ().

64 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

Accessing Querystring parameters

Querystring parameters can be read using CakeRequest : : Squery:

// URL is /posts/index?page=l&sort=title
Sthis->request->query|[’'page’];

// You can also access 1t via an array
// Note: BC accessor, will be deprecated in future versions
Sthis->request[’url’] [’ page’];

You can either directly access the Squery property, or you can use CakeRequest : :query () to read
the URL query array in an error-free manner. Any keys that do not exist will return nul1l:

Sfoo = Sthis->request->query (’value_that_does_not_exist’);
// $foo === null

Accessing POST data

All POST data can be accessed using CakeRequest : : Sdata. Any form data that contains a dat a prefix
will have that data prefix removed. For example:

// An Iinput with a name attribute equal to ’data[MyModel] [title]’
// 1s accessible at
Sthis->request->data[’MyModel’] ["'title’];

You can either directly access the Sdata property, or you can use CakeRequest : :data () to read the
data array in an error-free manner. Any keys that do not exist will return null:

Sfoo = $this->request->data(’Value.that.does.not.exist’);
// Sfoo == null

Accessing PUT or POST data

New in version 2.2.

When building REST services, you often accept request data on PUT and DELETE requests. As of 2.2, any
application/x-www—-form-urlencoded request body data will automatically be parsed and set to
Sthis->data for PUT and DELETE requests. If you are accepting JSON or XML data, see below for
how you can access those request bodies.

Accessing XML or JSON data

Applications employing REST often exchange data in non-URL-encoded post bodies. You can read input
data in any format using CakeRequest : : input (). By providing a decoding function, you can receive
the content in a deserialized format:

// Get JSON encoded data submitted to a PUT/POST action
Sdata = Sthis->request->input (' json_decode’) ;

More on controllers 65

CakePHP Cookbook Documentation, Release 2.x

Some deserializing methods require additional parameters when called, such as the ‘as array’ parameter on
json_decode. If you want XML converted into a DOMDocument object, CakeRequest : : input ()
supports passing in additional parameters as well:

// Get Xml encoded data submitted to a PUT/POST action
Sdata = $this->request->input ('Xml::build’, array(’return’ => ’domdocument’));

Accessing path information

CakeRequest also provides useful information about the paths in your application.
CakeRequest: :$base and CakeRequest::Swebroot are useful for generating URLs, and
determining whether or not your application is in a subdirectory.

Inspecting the request

Detecting various request conditions used to require using RequestHandlerComponent. These meth-
ods have been moved to CakeRequest, and offer a new interface alongside a more backwards-compatible
usage:

Sthis->request->is ('post’);
Sthis->request—>isPost (); // deprecated

Both method calls will return the same value. For the time being, the methods are still avail-
able on RequestHandlerComponent, but are deprecated and still might be removed before
the final release. You can also easily extend the request detectors that are available by using
CakeRequest: :addDetector () to create new kinds of detectors. There are four different types of
detectors that you can create:

* Environment value comparison - Compares a value fetched from env () for equality with the pro-
vided value.

 Pattern value comparison - Pattern value comparison allows you to compare a value fetched from
env () to aregular expression.

* Option based comparison - Option based comparisons use a list of options to create a regular expres-
sion. Subsequent calls to add an already defined options detector will merge the options.

* Callback detectors - Callback detectors allow you to provide a ‘callback’ type to handle the check.
The callback will receive the request object as its only parameter.

Some examples would be:

// Add an environment detector.
Sthis->request->addDetector (

"post’,

array ('env’ => 'REQUEST_METHOD’, ’‘wvalue’ => "POST’)
)i

// Add a pattern value detector.
Sthis->request->addDetector (
" iphone’,

66 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

array ('env’ => "HTTP_USER AGENT’, ’'pattern’ => ’/iPhone/i’)
)

// Add an option detector.
Sthis->request->addDetector (' internallIp’, array (

"env’ => ’'CLIENT_TIP',

"options’ => array(’192.168.0.101", 7192.168.0.100")
)) i

// Add a callback detector. Can either be an anonymous function
// or a regular callable.
Sthis->request->addDetector (

"awesome’ ,

array (' callback’ => function ($request) ({

return isset (Srequest->awesome) ;

})

)

CakeRequest also includes methods like CakeRequest::domain (),
CakeRequest: :subdomains () and CakeRequest::host () to help applications with sub-
domains.

There are several built-in detectors that you can use:
* is (' get’) Check to see whether the current request is a GET.
* is ("put’) Check to see whether the current request is a PUT.
* is ('post’) Check to see whether the current request is a POST.
* is(’delete’) Check to see whether the current request is a DELETE.
* is ("head’) Check to see whether the current request is HEAD.
* is('options’) Check to see whether the current request is OPTIONS.

* is(’ajax’) Check to see whether the current request came with X-Requested-With = XML-
HttpRequest.

* is(’ssl’) Check to see whether the request is via SSL
* is (' flash’) Check to see whether the request has a User-Agent of Flash

* is('mobile’) Check to see whether the request came from a common list of mobile agents.

CakeRequest and RequestHandlerComponent

Since many of the features CakeRequest offers wused to be the realm of
RequestHandlerComponent, some rethinking was required to figure out how it still fits into
the picture. For 2.0, RequestHandlerComponent provides a layer of sugar, such as switching layout
and views based on content, on top of the utility that CakeRequest affords. This separation of utility and
sugar between the two classes lets you more easily choose what you want.

More on controllers 67

CakePHP Cookbook Documentation, Release 2.x

Interacting with other aspects of the request
You can use CakeRequest to introspect a variety of things about the request. Beyond the detectors, you
can also find out other information from various properties and methods.

* Sthis->request->webroot contains the webroot directory.

* Sthis->request—->base contains the base path.

* Sthis->request->here contains the full address to the current request.

* Sthis—->request—->query contains the query string parameters.

CakeRequest API

class CakeRequest
CakeRequest encapsulates request parameter handling and introspection.

CakeRequest: :domain ($tldLength = 1)
Returns the domain name your application is running on.

CakeRequest : : subdomains ($tldLength = 1)
Returns the subdomains your application is running on as an array.

CakeRequest: :host ()
Returns the host your application is on.

CakeRequest: :method ()
Returns the HTTP method the request was made with.

CakeRequest : :onlyAllow ($methods)
Set allowed HTTP methods. If not matched, will throw MethodNotAllowedException. The 405
response will include the required 211 ow header with the passed methods

New in version 2.3.
Deprecated since version 2.5: Use CakeRequest: :allowMethod () instead.

CakeRequest : :allowMethod ($methods)
Set allowed HTTP methods. If not matched will throw MethodNotAllowedException. The 405 re-
sponse will include the required A1 1 ow header with the passed methods

New in version 2.5.

CakeRequest : :referer ($local = false)
Returns the referring address for the request.

CakeRequest: :clientIp ($safe = true)
Returns the current visitor’s IP address.

CakeRequest : :header ($name)
Allows you to access any of the HTTP__» headers that were used for the request. For example:

Sthis->request->header (' User—-Agent’) ;

would return the user agent used for the request.

68 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

CakeRequest : : input ($callback|, $options|)
Retrieve the input data for a request, and optionally pass it through a decoding function. Useful when
interacting with XML or JSON request body content. Additional parameters for the decoding function
can be passed as arguments to input():

Sthis->request->input (’ json_decode’) ;

CakeRequest: :data ($name)

Provides dot notation access to request data. Allows request data to be read and modified. Calls can
be chained together as well:

// Modify some request data, so you can prepopulate some form fields.
Sthis->request->data (’Post.title’, ’'New post’)
—->data (' Comment.1l.author’, ’"Mark’);

// You can also read out data.
Svalue = Sthis->request->data (’Post.title’);

CakeRequest : :query ($name)
Provides dot notation access to URL query data:

// URL is /posts/index?page=l&sort=title
Svalue = S$this->request->query (’'page’);

New in version 2.3.

CakeRequest: :is ($rype)
Check whether or not a Request matches a certain criterion. Uses the built-in detection rules as well
as any additional rules defined with CakeRequest : :addDetector ().

CakeRequest : : addDetector ($name, $options)
Add a detector to be used with CakeRequest: :1s (). See Inspecting the request for more infor-
mation.

CakeRequest : :accepts ($rype = null)
Find out which content types the client accepts, or check whether it accepts a particular type of content.

Get all types:
Sthis->request->accepts{() ;
Check for a single type:

Sthis—->request->accepts (’application/json’) ;

static CakeRequest : : acceptLanguage ($language = null)
Get all the languages accepted by the client, or check whether a specific language is accepted.

Get the list of accepted languages:

CakeRequest: :acceptLanguage () ;

Check whether a specific language is accepted:

More on controllers 69

CakePHP Cookbook Documentation, Release 2.x

CakeRequest::acceptLanguage ('es—-es’);

CakeRequest : :param ($name)
Safely read values in Srequest->params. This removes the need to call isset () or empty ()
before using param values.

New in version 2.4.

property CakeRequest: : Sdata
An array of POST data. You can use CakeRequest: :data () to read this property in a way that
suppresses notice errors.

property CakeRequest: : Squery
An array of query string parameters.

property CakeRequest : : Sparams
An array of route elements and request parameters.

property CakeRequest: : Shere
Returns the current request uri.

property CakeRequest : : Sbase
The base path to the application, usually / unless your application is in a subdirectory.

property CakeRequest : : Swebroot
The current webroot.

CakeResponse

CakeResponse is the default response class in CakePHP. It encapsulates a number of features and
functionality for generating HTTP responses in your application. It also assists in testing, as it can be
mocked/stubbed allowing you to inspect headers that will be sent. Like CakeRequest, CakeResponse
consolidates a number of methods previously found on Controller, RequestHandlerComponent
and Dispatcher. The old methods are deprecated in favour of using CakeResponse.

CakeResponse provides an interface to wrap the common response-related tasks such as:
* Sending headers for redirects.
* Sending content type headers.
* Sending any header.

* Sending the response body.

Changing the response class

CakePHP uses CakeResponse by default. CakeResponse is a flexible and transparent class. If
you need to override it with your own application-specific class, you can replace CakeResponse
in app/webroot/index.php. This will make all the controllers in your application use
CustomResponse instead of CakeResponse. You can also replace the response instance by setting
Sthis->response in your controllers. Overriding the response object is handy during testing, as it

70 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

allows you to stub out the methods that interact with header (). See the section on CakeResponse and
testing for more information.

Dealing with content types

You can control the Content-Type of your application’s responses with CakeResponse: :type (). If
your application needs to deal with content types that are not built into CakeResponse, you can map
them with CakeResponse: :type () as well:

// Add a vCard type
Sthis—->response->type (array (' vcf’ => ’'text/v-card’));

// Set the response Content-Type to vcard.
Sthis->response->type (' vcf’);

Usually, you’ll want to map additional content types in your controller’s beforeFilter () callback,
so you can leverage the automatic view switching features of RequestHandlerComponent if you are
using it.

Sending files

There are times when you want to send files as responses for your requests. Prior to version 2.3, you could
use MediaView. As of 2.3, MediaView is deprecated and you can use CakeResponse::file () to
send a file as response:

public function sendFile (5id) {
$file = $this->Attachment->getFile ($id);
Sthis—->response->file($file[’path’]);
// Return response object to prevent controller from trying to render
// a view
return $this->response;

As shown in the above example, you must pass the file path to the method. CakePHP will send a proper
content type header if it’s a known file type listed in CakeResponse: : S_mimeTypes. You can add new
types prior to calling CakeResponse: : file () by using the CakeResponse: :type () method.

If you want, you can also force a file to be downloaded instead of displayed in the browser by specifying the
options:

Sthis—->response->file (
Sfile[’'path’],
array (' download’ => true, ’'name’ => ’foo’)

)

Sending a string as file

You can respond with a file that does not exist on the disk, such as a pdf or an ics generated on the fly from
a string:

More on controllers 71

CakePHP Cookbook Documentation, Release 2.x

public function sendIcs () {
SicsString = S$Sthis->Calendar->generatelcs () ;
Sthis->response->body ($icsString) ;
Sthis->response->type (’ics’);

//Optionally force file download
Sthis->response->download(’ filename_for download.ics’);

// Return response object to prevent controller from trying to render
// a view
return $this->response;

Setting headers

Setting headers is done with the CakeResponse: :header () method. It can be called with a few
different parameter configurations:

// Set a single header
Sthis->response->header (' Location’, ’http://example.com’);

// Set multiple headers

Sthis->response->header (array (
"Location’ => ’'http://example.com’,
'X-Extra’ => ’'My header’

)) i

Sthis->response->header (array (
"WWW-Authenticate: Negotiate’,
"Content-type: application/pdf’

)) i

Setting the same header () multiple times will result in overwriting the previous values, just as regular
header calls do. Headers are not sent when CakeResponse: :header () is called; instead they are
buffered until the response is actually sent.

New in version 2.4.

You can now use the convenience method CakeResponse: :location () to directly set or get the
redirect location header.

Interacting with browser caching

You sometimes need to force browsers not to cache the results of a controller action.
CakeResponse: :disableCache () is intended for just that:

public function index() {
// do something.
Sthis->response->disableCache () ;

72 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

Warning: Using disableCache() with downloads from SSL domains while trying to send files to Internet
Explorer can result in errors.

You can also tell clients that you want them to cache responses. By using CakeResponse: :cache ():

public function index () {
//do something
Sthis->response->cache (’-1 minute’, ’'+5 days’);

}

The above would tell clients to cache the resulting response for 5 days, hopefully speeding up your vis-
itors’ experience. CakeResponse: :cache () sets the Last-Modified value to the first argument.
Expires header and the max—age directive are set based on the second parameter. Cache-Control’s
public directive is set as well.

Fine tuning HTTP cache

One of the best and easiest ways of speeding up your application is to use HTTP cache. Under this caching
model, you are only required to help clients decide if they should use a cached copy of the response by
setting a few headers such as modified time and response entity tag.

Rather than forcing you to code the logic for caching and for invalidating (refreshing) it once the data has
changed, HTTP uses two models, expiration and validation, which usually are much simpler to use.

Apart from using CakeResponse: : cache (), you can also use many other methods to fine-tune HTTP
cache headers to take advantage of browser or reverse proxy caching.

The Cache Control header

New in version 2.1.

Used under the expiration model, this header contains multiple indicators that can change the way browsers
or proxies use the cached content. A Cache-Control header can look like this:

Cache-Control: private, max-age=3600, must-revalidate

CakeResponse class helps you set this header with some utility methods that will produce a final valid
Cache-Control header. The first is the CakeResponse: :sharable () method, which indicates
whether a response is to be considered sharable across different users or clients. This method actually
controls the public or private part of this header. Setting a response as private indicates that all or part
of it is intended for a single user. To take advantage of shared caches, the control directive must be set as
public.

The second parameter of this method is used to specify a max—-age for the cache, which is the number of
seconds after which the response is no longer considered fresh:

public function view () {

// set the Cache-Control as public for 3600 seconds
Sthis—->response—>sharable (true, 3600);

More on controllers 73

CakePHP Cookbook Documentation, Release 2.x

public function my_data () {

// set the Cache-Control as private for 3600 seconds
Sthis->response->sharable (false, 3600);

CakeResponse exposes separate methods for setting each of the directives in the Cache-Control
header.

The Expiration header

New in version 2.1.

You can set the Expires header to a date and time after which the response is no longer considered fresh.
This header can be set using the CakeResponse: :expires () method:

public function view() {
Sthis->response->expires(’+5 days’);

}

This method also accepts a Dat eTime instance or any string that can be parsed by the DateTime class.

The Etag header

New in version 2.1.

Cache validation in HTTP is often used when content is constantly changing, and asks the application to
only generate the response contents if the cache is no longer fresh. Under this model, the client continues to
store pages in the cache, but it asks the application every time whether the resource has changed, instead of
using it directly. This is commonly used with static resources such as images and other assets.

The etag () method (called entity tag) is a string that uniquely identifies the requested resource, as a
checksum does for a file, in order to determine whether it matches a cached resource.

To take advantage of this header, you must either call the CakeResponse: :checkNotModified ()
method manually or include the RequestHandlerComponent in your controller:

public function index() {
Sarticles = Sthis->Article->find(’all’);
Sthis—->response->etag ($this->Article->generateHash (Sarticles));
if (Sthis->response->checkNotModified (Sthis->request)) {
return $this->response;

74 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

The Last Modified header

New in version 2.1.

Under the HTTP cache validation model, you can also set the Last-Modified header to indicate the
date and time at which the resource was modified for the last time. Setting this header helps CakePHP tell
caching clients whether the response was modified or not based on their cache.

To take advantage of this header, you must either call the CakeResponse: :checkNotModified ()
method manually or include the RequestHandlerComponent in your controller:

public function view() {
Sarticle = S$this->Article->find(’ first’);
Sthis->response->modified(Sarticle[’Article’] ['modified’]);
if (Sthis->response->checkNotModified($Sthis->request)) {

return Sthis->response;

The Vary header

In some cases, you might want to serve different content using the same URL. This is often the case if
you have a multilingual page or respond with different HTML depending on the browser. Under such
circumstances you can use the Vary header:

Sthis->response->vary (' User—-Agent’) ;
Sthis->response->vary (' Accept-Encoding’, ’'User-Agent’);
Sthis->response->vary (' Accept-Language’) ;

CakeResponse and testing

Probably one of the biggest wins from CakeResponse comes from how it makes testing controllers and
components easier. Instead of having methods spread across several objects, you only have to mock a single
object, since controllers and components delegate to CakeResponse. This helps you to get closer to a
unit test and makes testing controllers easier:

public function testSomething () {

Sthis—->controller->response = $this->getMock (' CakeResponse’);
Sthis->controller—->response->expects (Sthis->once ())->method(’ header’) ;
//

Additionally, you can run tests from the command line more easily, as you can use mocks to avoid the
‘headers sent’ errors that can occur when trying to set headers in CLI.

More on controllers 75

CakePHP Cookbook Documentation, Release 2.x

CakeResponse API

class CakeResponse
CakeResponse provides a number of useful methods for interacting with the response you are sending
to a client.

CakeResponse: :header ($header = null, $value = null)
Allows you to directly set one or more headers to be sent with the response.

CakeResponse: :location ($url = null)
Allows you to directly set the redirect location header to be sent with the response:

// Set the redirect location
Sthis—->response->location(’http://example.com’) ;

// Get the current redirect location header
Slocation = $this->response->location () ;

New in version 2.4.

CakeResponse: :charset ($charset = null)
Sets the charset that will be used in the response.

CakeResponse: :type ($contentType = null)
Sets the content type of the response. You can either use a known content type alias or the full content
type name.

CakeResponse: : cache ($since, $time = ‘+1 day’)
Allows you to set caching headers in the response.

CakeResponse: :disableCache ()
Sets the headers to disable client caching for the response.

CakeResponse: : sharable ($public = null, $time = null)
Sets the Cache-Control header to be either public or private and optionally sets amax—age
directive of the resource

New in version 2.1.

CakeResponse: :expires ($time = null)
Allows the Expires header to be set to a specific date.

New in version 2.1.

CakeResponse: :etagqg ($tag = null, $weak = false)
Sets the Et ag header to uniquely identify a response resource.

New in version 2.1.

CakeResponse: :modified ($time = null)
Sets the Last—Modified header to a specific date and time in the correct format.

New in version 2.1.

CakeResponse: : checkNotModified (CakeRequest $request)
Compares the cache headers for the request object with the cache header from the response and deter-

76 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

mines whether it can still be considered fresh. If so, deletes the response content, and sends the 304
Not Modified header.

New in version 2.1.

CakeResponse: :compress ()
Turns on gzip compression for the request.

CakeResponse: :download ($filename)
Allows you to send a response as an attachment, and to set its filename.

CakeResponse: : statusCode ($code = null)
Allows you to set the status code of the response.

CakeResponse: :body ($content = null)
Sets the content body of the response.

CakeResponse: :send ()
Once you are done creating a response, calling send () will send all the set headers as well as the
body. This is done automatically at the end of each request by Dispatcher.

CakeResponse: : £ile ($path, Soptions = array())
Allows you to set the Content-Disposition header of a file either to display or to download.

New in version 2.3.

Scaffolding

Deprecated since version 2.5: Dynamic scaffolding will be removed and replaced in 3.0

Application scaffolding is a technique that allows a developer to define and create a basic application that
can create, retrieve, update and delete objects. Scaffolding in CakePHP also allows developers to define how
objects are related to each other, and to create and break those links.

All that’s needed to create a scaffold is a model and its controller. Once you set the $scaffold variable in the
controller, you’re up and running.

CakePHP’s scaffolding is pretty cool. It allows you to get a basic CRUD application up and going in minutes.
It’s so cool that you’ll want to use it in production apps. Now, we think it’s cool too, but please realize that
scaffolding is... well... just scaffolding. It’s a loose structure you throw up real quick during the beginning
of a project in order to get started. It isn’t meant to be completely flexible, it’s meant as a temporary way
to get up and going. If you find yourself really wanting to customize your logic and your views, it’s time
to pull your scaffolding down in order to write some code. CakePHP’s bake console, covered in the next
section, is a great next step: it generates all the code that would produce the same result as the most current
scaffold.

Scaffolding is a great way of getting the early parts of developing a web application started. Early database
schemas are subject to change, which is perfectly normal in the early part of the design process. This has
a downside: a web developer hates creating forms that never will see real use. To reduce the strain on the
developer, scaffolding has been included in CakePHP. Scaffolding analyzes your database tables and creates
standard lists with add, delete and edit buttons, standard forms for editing and standard views for inspecting
a single item in the database.

More on controllers 77

CakePHP Cookbook Documentation, Release 2.x

To add scaffolding to your application, in the controller, add the $scaffold variable:

class CategoriesController extends AppController {
public S$scaffold;

}

Assuming you’ve created even the most basic Category model «class file (in
app/Model/Category.php), youre ready to go. Visit http://example.com/categories to see
your new scaffold.

Note: Creating methods in controllers that are scaffolded can cause unwanted results. For example, if you
create an index () method in a scaffolded controller, your index method will be rendered rather than the

scaffolding functionality.

Scaffolding is aware of model’s associations; so, if your Category model belongsTo User, you’ll see re-
lated User IDs in the Category listings. While scaffolding “knows” about model’s associations, you will not
see any related records in the scaffold views until you manually add the association code to the model. For
example, if Group hasMany User and User belongsTo Group, you have to manually add the following
code to your User and Group models. Before you do it, the view displays an empty select input for Group
in the New User form; after — populated with IDs or names from the Group table in the New User form:

// In Group.php

public ShasMany = ’'User’;

// In User.php

public SbelongsTo = ’Group’;

If you’d rather see something besides an ID (like the user’s first name), you can set the $displayField
variable in the model. Let’s set the $SdisplayField variable in our User class so that users related to
categories will be shown by first name rather than just by ID in scaffolding. This feature makes scaffolding
more readable in many instances:

class User extends AppModel {
public S$displayField = ’first_name’;

}

Creating a simple admin interface with scaffolding

If you have enabled admin routing in your app/Config/core.php with
Configure::write ('Routing.prefixes’, array(’admin’));, you can use scaffold-
ing to generate an admin interface.

Once you have enabled admin routing, assign your admin prefix to the scaffolding variable:

public Sscaffold = ’'admin’;

You will now be able to access admin scaffolded actions:

http://example.com/admin/controller/index
http://example.com/admin/controller/view
http://example.com/admin/controller/edit

78 Chapter 6. Controllers

http://example.com/categories

CakePHP Cookbook Documentation, Release 2.x

http://example.com/admin/controller/add
http://example.com/admin/controller/delete

This is an easy way to create a simple backend interface quickly. Keep in mind that you cannot have both
admin and non-admin methods scaffolded at the same time. As with normal scaffolding, you can override
individual methods and replace them with your own:

public function admin_view ($id = null) {
// custom code here

}

Once you have replaced a scaffolded action, you will need to create a view file for the action as well.

Customizing Scaffold Views

If you’re looking for something a little different in your scaffolded views, you can create templates. We still
don’t recommend using this technique for production applications, but such a customization may be useful
during prototyping iterations.

Custom scaffolding views for a specific controller (PostsController in this example) should be placed like
SO:

app/View/Posts/scaffold.index.ctp
app/View/Posts/scaffold. form.ctp
app/View/Posts/scaffold.view.ctp

Custom scaffolding views for all controllers should be placed like so:

app/View/Scaffolds/index.ctp
app/View/Scaffolds/form.ctp
app/View/Scaffolds/view.ctp

The Pages Controller

CakePHP ships with a default controller PagesController.php. This is a simple and optional con-
troller for serving up static content. The home page you see after installation is generated using this con-
troller. If you make the view file app/View/Pages/about_us.ctp you can access it using the url
http://example.com/pages/about_us. You are free to modify the Pages Controller to meet your
needs.

When you “bake” an app wusing CakePHP’s console utility the Pages Controller is
created in your app/Controller/ folder. You can also copy the file from
lib/Cake/Console/Templates/skel/Controller/PagesController.php.

Changed in version 2.1: With CakePHP 2.0 the Pages Controller was part of 1ib/Cake. Since 2.1 the
Pages Controller is no longer part of the core but ships in the app folder.

Warning: Do not directly modify ANY file under the 1ib/Cake folder to avoid issues when updating
the core in future.

More on controllers 79

CakePHP Cookbook Documentation, Release 2.x

Components

Components are packages of logic that are shared between controllers. CakePHP comes with a fantastic set
of core components you can use to aid in various common tasks. You can also create your own components.
If you find yourself wanting to copy and paste things between controllers, you should consider creating your
own component to contain the functionality. Creating components keeps controller code clean and allows
you to reuse code between projects.

Each of the core components is detailed in its own chapter. See Components. This section describes how to
configure and use components, and how to create your own components.

Configuring Components

Many of the core components require configuration. Some examples of components requiring configuration
are Authentication and Cookie. Configuration for these components, and for components in general, is
usually done in the Scomponent s array or your controller’s beforeFilter () method:

class PostsController extends AppController {

public Scomponents = array (
"Auth’ => array (
"authorize’ => array(’controller’),
"loginAction’ => array (
"controller’ => ’'users’,
"action’” => ’login’
)
) 4
"Cookie’ => array(’'name’ => ’CookieMonster’)

)i

The previous fragment of code would be an example of configuring a component with the $components
array. All core components allow their configuration settings to be set in this way. In addition, you can
configure components in your controller’s beforeFilter () method. This is useful when you need to
assign the results of a function to a component property. The above could also be expressed as:

public function beforeFilter () {
Sthis->Auth->authorize = array (’controller’);
$Sthis->Auth->loginAction = array (
"controller’ => ’'users’,
"action’ => ’login’

)i

Sthis—->Cookie—->name = ’'CookieMonster’;

It’s possible, however, that a component requires certain configuration options to be set before the con-
troller’s beforeFilter () isrun. To this end, some components allow configuration options be set in the
Scomponents array:

public Scomponents = array (
"DebugKit.Toolbar’ => array(’panels’ => array(’'history’, ’'session’))

)

80 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

Consult the relevant documentation to determine what configuration options each component provides.

One common setting to use is the c1assName option, which allows you to alias components. This feature
is useful when you want to replace $this—>Auth or another common Component reference with a custom
implementation:

// app/Controller/PostsController.php
class PostsController extends AppController ({
public Scomponents = array (
"Auth’ => array (
"className’ => "MyAuth’

)i
// app/Controller/Component/MyAuthComponent .php
App: :uses (' AuthComponent’, ’Controller/Component’);

class MyAuthComponent extends AuthComponent {
// Add your code to override the core AuthComponent

The above would alias MyAuthComponent to Sthis—>Auth in your controllers.

Note: Aliasing a component replaces that instance anywhere that component is used, including inside other
Components.

Using Components

Once you’ve included some components in your controller, using them is pretty simple. Each component
you use is exposed as a property on your controller. If you had loaded up the SessionComponent and
the CookieComponent in your controller, you could access them like so:

class PostsController extends AppController ({

public Scomponents = array(’Session’, ’Cookie’);
public function delete () {
if (Sthis->Post->delete(Sthis->request->data (’/Post.id’)) {

Sthis—>Session—->setFlash (’Post deleted.’);
return S$this->redirect (array(’action’ => ’index’));

Note: Since both Models and Components are added to Controllers as properties they share the same
‘namespace’. Be sure to not give a component and a model the same name.

Loading components on the fly

You might not need all of your components available on every controller action. In situations like this you
can load a component at runtime using the Component Collection. From inside a controller’s method you

More on controllers 81

CakePHP Cookbook Documentation, Release 2.x

can do the following:

&

Sthis->0OneTimer = Sthis->Components—->load(’OneTimer’);

Sthis->0OneTimer->getTime () ;

Note: Keep in mind that loading a component on the fly will not call its initialize method. If the component
you are calling has this method you will need to call it manually after load.

Component Callbacks

Components also offer a few request life-cycle callbacks that allow them to augment the request cycle. See
the base Component API for more information on the callbacks components offer.

Creating a Component

Suppose our online application needs to perform a complex mathematical operation in many different parts
of the application. We could create a component to house this shared logic for use in many different con-
trollers.

The first step is to create a new component file and class. Create the file in
app/Controller/Component /MathComponent .php. The basic structure for the component
would look something like this:

App: :uses (' Component’, ’'Controller’);
class MathComponent extends Component {
public function doComplexOperation (Samountl, S$Samount2) {
return Samountl + Samount2;

}

Note: All components must extend Component. Failing to do this will trigger an exception.

Including your component in your controllers

Once our component is finished, we can use it in the application’s controllers by placing the component’s
name (without the “Component” part) in the controller’s $components array. The controller will auto-
matically be given a new attribute named after the component, through which we can access an instance of
it:

/* Make the new component available at Sthis->Math,
as well as the standard S$this->Session */
public Scomponents = array(’Math’, ’Session’);

Components declared in AppController will be merged with those in your other controllers. So there is
no need to re-declare the same component twice.

82 Chapter 6. Controllers

CakePHP Cookbook Documentation, Release 2.x

When including Components in a Controller you can also declare a set of parameters that will be passed on
to the Component’s constructor. These parameters can then be handled by the Component:

public Scomponents = array (
"Math’ => array (
"precision’ => 2,
"randomGenerator’ => ’srand’

) s

"Session’, ’'Auth’

)i

The above would pass the array containing precision and randomGenerator to
MathComponent::__construct () as the second parameter. By convention, if array keys
match component’s public properties, the properties will be set to the values of these keys.

Using other Components in your Component

Sometimes one of your components may need to use another component. In this case you can include
other components in your component the exact same way you include them in controllers - using the
Scomponents var:

// app/Controller/Component/CustomComponent .php
App: :uses (' Component’, ’'Controller’);
class CustomComponent extends Component ({
// the other component your component uses
public Scomponents = array(’Existing’);

public function initialize (Controller Scontroller) {
Sthis->Existing->foo () ;

public function bar () {

/S

// app/Controller/Component/ExistingComponent.php
App: :uses (' Component’, ’'Controller’);
class ExistingComponent extends Component {

public function foo () {

/S

Note: In contrast to a component included in a controller no callbacks will be triggered on a component’s
component.

More on controllers 83

CakePHP Cookbook Documentation, Release 2.x

Component API

class Component
The base Component class offers a few methods for lazily loading other Components through
ComponentCollection as well as dealing with common handling of settings. It also provides
prototypes for all the component callbacks.

Component: :___econstruct (ComponentCollection $collection, $settings = array())
Constructor for the base component class. All $settings that are also public properties will have
their values changed to the matching value in $settings.

Callbacks

Component : :initialize (Controller $controller)
Is called before the controller’s beforeFilter method.

Component : : startup (Controller $controller)
Is called after the controller’s beforeFilter method but before the controller executes the current action
handler.

Component : :beforeRender (Controller $controller)
Is called after the controller executes the requested action’s logic, but before the controller’s renders
views and layout.

Component : : shutdown (Controller $controller)
Is called before output is sent to the browser.

Component : :beforeRedirect (Controller $controller, $url, $status=null, $exit=true)
Is invoked when the controller’s redirect method is called but before any further action. If this method
returns false the controller will not continue on to redirect the request. The $url, $status and Sexit
variables have same meaning as for the controller’s method. You can also return a string which will
be interpreted as the URL to redirect to or return an associative array with the key ‘url’ and optionally
‘status’ and ‘exit’.

84 Chapter 6. Controllers

CHAPTER 7

Views

Views are the V in MVC. Views are responsible for generating the specific output required for the request.
Often this is in the form of HTML, XML, or JSON, but streaming files and creating PDF’s that users can
download are also responsibilities of the View Layer.

CakePHP comes with a few built-in View classes for handling the most common rendering scenarios:
* To create XML or JSON webservices you can use the JSON and XML views.
* To serve protected files, or dynamically generated files, you can use Sending files.

* To create multiple themed views, you can use Themes.

View Templates

The view layer of CakePHP is how you speak to your users. Most of the time your views will be showing
(X)HTML documents to browsers, but you might also need to serve AMF data to a Flash object, reply to a
remote application via SOAP, or output a CSV file for a user.

By default CakePHP view files are written in plain PHP and have a default extension of .ctp (CakePHP Tem-
plate). These files contain all the presentational logic needed to get the data it received from the controller
in a format that is ready for the audience you’re serving to. If you’d prefer using a templating language like
Twig, or Smarty, a subclass of View will bridge your templating language and CakePHP.

A view file is stored in /app/View/, in a subfolder named after the controller that uses the file. It has a

filename corresponding to its action. For example, the view file for the Products controller’s “view()” action
would normally be found in /app/View/Products/view.ctp.

The view layer in CakePHP can be made up of a number of different parts. Each part has different uses, and
will be covered in this chapter:

* views: Views are the part of the page that is unique to the action being run. They form the meat of
your application’s response.

* elements: smaller, reusable bits of view code. Elements are usually rendered inside views.

85

CakePHP Cookbook Documentation, Release 2.x

* layouts: view files that contain presentational code that wraps many interfaces in your application.
Most views are rendered inside a layout.

* helpers: these classes encapsulate view logic that is needed in many places in the view layer. Among
other things, helpers in CakePHP can help you build forms, build AJAX functionality, paginate model
data, or serve RSS feeds.

Extending Views

New in version 2.1.

View extending allows you to wrap one view in another. Combining this with view blocks gives you a
powerful way to keep your views DRY. For example, your application has a sidebar that needs to change
depending on the specific view being rendered. By extending a common view file, you can avoid repeating
the common markup for your sidebar, and only define the parts that change:

// app/View/Common/view.ctp
<hl><?php echo S$this->fetch(’title’); ?></hl>
<?php echo Sthis->fetch (’content’); ?>

<div class="actions">
<h3>Related actions</h3>

<?php echo Sthis->fetch (’/sidebar’); ?>

</div>

The above view file could be used as a parent view. It expects that the view extending it will define the
sidebar and title blocks. The content block is a special block that CakePHP creates. It will contain
all the uncaptured content from the extending view. Assuming our view file has a $post variable with the
data about our post, the view could look like:

<?php
// app/View/Posts/view.ctp
Sthis->extend (’ /Common/view’) ;

Sthis->assign(’title’, S$post);

Sthis—->start (/! sidebar’) ;

2>

<?php

echo Sthis->Html->1ink (’edit’, array (
"action’ => ’'edit’,
Spost ["Post’] ["id"]

)); P>

</1li>

<?php $this->end(); 2>

// The remaining content will be available as the ’content’ block
// in the parent view.
<?php echo h (Spost[’Post’][’body’]);

86 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

The post view above shows how you can extend a view, and populate a set of blocks. Any content not already
in a defined block will be captured and put into a special block named content. When a view contains
a call to extend (), execution continues to the bottom of the current view file. Once it is complete, the
extended view will be rendered. Calling extend () more than once in a view file will override the parent
view that will be processed next:

Sthis—->extend (’ /Common/view’) ;
Sthis—->extend (’ /Common/index’) ;

The above will result in /Common/index . ctp being rendered as the parent view to the current view.

You can nest extended views as many times as necessary. Each view can extend another view if desired.
Each parent view will get the previous view’s content as the content block.

Note: You should avoid using content as a block name in your application. CakePHP uses this for
uncaptured content in extended views.

Using view blocks

New in version 2.1.

View blocks replace $scripts_for_layout and provide a flexible API that allows you to define slots or
blocks in your views/layouts that will be defined elsewhere. For example, blocks are ideal for implementing
things such as sidebars, or regions to load assets at the bottom/top of the layout. Blocks can be defined in
two ways: either as a capturing block, or by direct assignment. The start (), append () and end ()
methods allow you to work with capturing blocks:

// create the sidebar block.
Sthis—->start (' sidebar’);

echo Sthis->element (/' sidebar/recent_topics’);
echo $this—->element (’/ sidebar/recent_comments’);
Sthis->end () ;

// Append into the sidebar later on.
Sthis->append (’ sidebar’) ;

echo S$this->element (’ sidebar/popular_topics’);
Sthis—->end () ;

You can also append into a block using start () multiple times. assign () can be used to clear or
overwrite a block at any time:

// Clear the previous content from the sidebar block.
Sthis->assign (’sidebar’, "’);

In 2.3, a few new methods were added for working with blocks. The prepend () method was added to
prepend content to an existing block:

// Prepend to sidebar
Sthis->prepend(’sidebar’, ’'this content goes on top of sidebar’);

Using view blocks 87

CakePHP Cookbook Documentation, Release 2.x

The method start IfEmpty () can be used to start a block only if it is empty or undefined. If the block
already exists, the captured content will be discarded. This is useful when you want to conditionally define
default content for a block if it does not already exist:

// In a view file.

// Create a navbar block
Sthis->startIfEmpty (' navbar’);

echo $this->element (' navbar’);

echo S$this->element ('notifications’);
Sthis—->end();

// In a parent view/layout

<?php $this->startIfEmpty ('’ navbar’); 2>

<p>If the block is not defined by now - show this instead</p>
<?php $this->end(); ?>

// Somewhere later in the parent view/layout
echo $this->fetch ('’ navbar’);

In the above example, the navbar block will only contain the content added in the first section. Since the
block was defined in the child view, the default content with the <p> tag will be discarded.

Note: You should avoid using content as a block name. This is used by CakePHP internally for extended
views, and view content in the layout.

Displaying blocks

New in version 2.1.

You can display blocks using the fetch () method. fetch () will safely output a block, returning “’ if a
block does not exist:

echo Sthis—->fetch (’sidebar’);

You can also use fetch to conditionally show content that should surround a block should it exist. This is
helpful in layouts, or extended views where you want to conditionally show headings or other markup:

// in app/View/Layouts/default.ctp
<?php if (Sthis->fetch('menu’)): ?>
<div class="menu">

<h3>Menu options</h3>

<?php echo Sthis->fetch (’menu’); ?>
</div>
<?php endif; 2>

As of 2.3.0, you can also provide a default value for a block should it not have any content. This allows
you to easily add placeholder content for empty states. You can provide a default value using the second
argument:

<div class="shopping-cart">
<h3>Your Cart</h3>

88 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

<?php echo S$this->fetch (’cart’, ’'Your cart is empty’); ?>
</div>

Changed in version 2.3: The $default argument was added in 2.3.

Using blocks for script and CSS files

New in version 2.1.

Blocks replace the deprecated $scripts_for_layout layout variable. Instead you should use blocks.
The Htm1Helper ties into view blocks, and its script (), css (), and meta () methods each update a

block with the same name when used with the inline = false option:
<?php

// in your view file

Sthis->Html->script (' carousel’, array(’inline’ => false));
Sthis->Html->css (' carousel’, array(’inline’ => false));

?>

// In your layout file.
<!DOCTYPE html>
<html lang="en">
<head>
<title><?php echo S$this->fetch(’title’); ?></title>
<?php echo Sthis->fetch(’script’); ?>
<?php echo Sthis->fetch(’css’); ?>
</head>
// rest of the layout follows

The Htm1He lper also allows you to control which block the scripts and CSS go to:

// in your view
Sthis->Html->script (' carousel’, array(’block’ => ’scriptBottom’));

// in your layout
echo Sthis->fetch(’scriptBottom’);

Layouts

A layout contains presentation code that wraps around a view. Anything you want to see in all of your views
should be placed in a layout.

CakePHP’s default layout is located at /app/View/Layouts/default.ctp. If you want to change
the overall look of your application, then this is the right place to start, because controller-rendered view
code is placed inside of the default layout when the page is rendered.

Other layout files should be placed in /app/View/Layouts. When you create a layout, you need to tell
CakePHP where to place the output of your views. To do so, make sure your layout includes a place for
Sthis->fetch (' content’) Here’s an example of what a default layout might look like:

Layouts 89

CakePHP Cookbook Documentation, Release 2.x

<!DOCTYPE html>

<html lang="en">

<head>

<title><?php echo S$this->fetch(’title’); ?></title>

<link rel="shortcut icon" href="favicon.ico" type="image/x-icon">

<!—— TInclude external files and scripts here (See HTML helper for more info.) -->
<?php

echo $Sthis—>fetch('meta’);

echo Sthis—->fetch(’css’);

echo Sthis—->fetch (’script’);

2>
</head>
<body>
<!—— If you’d like some sort of menu to
show up on all of your views, include it here —-—>
<div id="header">
<div id="menu">...</div>
</div>
<!—— Here’s where I want my views to be displayed —-->

<?php echo Sthis->fetch(’content’); ?>

<!-— Add a footer to each displayed page ——>
<div id="footer">...</div>

</body>

</html>

Note: Prior to version 2.1, method fetch() was not available, fetch (’ content’) is a replacement for
Scontent_for_layout and lines fetch ('meta’), fetch(’css’) and fetch ('’ script’)

are contained in the $scripts_for_layout variable in version 2.0

The script, css and meta blocks contain any content defined in the views using the built-in HTML
helper. Useful for including JavaScript and CSS files from views.

Note: When using HtmlHelper: :css () or HtmlHelper: :script () in view files, specify ‘false’
for the ‘inline’ option to place the HTML source in a block with the same name. (See API for more details

on usage).

The content block contains the contents of the rendered view.

$title_for_layout contains the page title. This variable is generated automatically, but you can
override it by setting it in your controller/view.

Note: The Stitle_for_layout is deprecated as of 2.5, use $Sthis->fetch (’title’) in your
layout and $this->assign (’title’, ’page title’) instead.

Setting the title for the layout is easiest to do in the controller, setting the Stitle_for_layout variable:

90 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

class UsersController extends AppController ({
public function view_active () {
Sthis->set ('title_for_layout’, ’'View Active Users’);

}

You can also set the title_for_layout variable from inside the view file:

Sthis->set ('title_for_layout’, S$titleContent);

You can create as many layouts as you wish: just place them in the app/View/Layouts directory, and
switch between them inside of your controller actions using the controller or view’s $1ayout property:

// from a controller

public function admin_view () {
// stuff
Sthis->layout = ’admin’;

// from a view file
Sthis->layout = ’loggedin’;

For example, if a section of my site included a smaller ad banner space, I might create a new layout with the
smaller advertising space and specify it as the layout for all controllers’ actions using something like:

class UsersController extends AppController ({
public function view_active () {
Sthis->set ('title_for_layout’, ’'View Active Users’);
Sthis->layout = ’"default_small_ad’;

public function view_image () {
Sthis->layout = ’image’;
//output user image

CakePHP features two core layouts (besides CakePHP’s default layout) you can use in your own application:
‘ajax’ and ‘flash’. The Ajax layout is handy for crafting AJAX responses - it’s an empty layout. (Most AJAX
calls only require a bit of markup in return, rather than a fully-rendered interface.) The flash layout is used
for messages shown by Controller::flash () method.

Three other layouts, xml, js, and rss, exist in the core for a quick and easy way to serve up content that isn’t
text/html.

Using layouts from plugins

New in version 2.1.

If you want to use a layout that exists in a plugin, you can use p/ugin syntax. For example, to use the contact
layout from the Contacts plugin:

Layouts 91

CakePHP Cookbook Documentation, Release 2.x

class UsersController extends AppController ({

public function view_active () {
Sthis->layout = ’Contacts.contact’;
}
}
Elements

Many applications have small blocks of presentation code that need to be repeated from page to page,
sometimes in different places in the layout. CakePHP can help you repeat parts of your website that need to
be reused. These reusable parts are called Elements. Ads, help boxes, navigational controls, extra menus,
login forms, and callouts are often implemented in CakePHP as elements. An element is basically a mini-
view that can be included in other views, in layouts, and even within other elements. Elements can be used
to make a view more readable, placing the rendering of repeating elements in its own file. They can also
help you re-use content fragments in your application.

Elements live in the /app/View/Elements/ folder, and have the .ctp filename extension. They are
output using the element method of the view:

echo S$this->element (' helpbox’);

Passing Variables into an Element

You can pass data to an element through the element’s second argument:

echo Sthis—->element (' helpbox’, array (
"helptext" => "Oh, this text is very helpful."
)) i

Inside the element file, all the passed variables are available as members of the parameter array (in the
same way that Controller: :set () in the controller works with view files). In the above example, the
/app/View/Elements/helpbox.ctp file can use the Shelptext variable:

// inside app/View/Elements/helpbox.ctp
echo Shelptext; //outputs "Oh, this text is very helpful."

The View: :element () method also supports options for the element. The options supported are ‘cache’
and ‘callbacks’. An example:

echo Sthis->element (' helpbox’, array (

"helptext" => "This is passed to the element as W
"foobar" => "This is passed to the element as Lie

) 4

array (
// uses the "long view" cache configuration
"cache" => "long_view",
// set to true to have before/afterRender called for the element
"callbacks" => true

92 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

)i

Element caching is facilitated through the Cache class. You can configure elements to be stored in any
Cache configuration you’ve set up. This gives you a great amount of flexibility to decide where and for
how long elements are stored. To cache different versions of the same element in an application, provide a
unique cache key value using the following format:

Sthis—->element (’ helpbox’, array (), array (
"cache" => array(’config’ => ’short’, 'key’ => ’"unique value’)

)

You can take full advantage of elements by using requestAction (), which fetches view variables from
a controller action and returns them as an array. This enables your elements to perform in true MVC style.
Create a controller action that prepares the view variables for your elements, then call requestAction ()
inside the second parameter of element () to feed the element the view variables from your controller.

To do this, in your controller add something like the following for the Post example:

class PostsController extends AppController {

// .
public function index () {
Sposts = Sthis->paginate();
if (Sthis->request->is ('’ requested’)) {
return S$posts;
} else ({

$Sthis->set ('posts’, $posts);

And then in the element we can access the paginated posts model. To get the latest five posts in an ordered
list, we would do something like the following:

<h2>Latest Posts</h2>
<?php
Sposts = $this->requestAction (
"posts/index/sort:created/direction:asc/limit:5"

)i

2>

<?php foreach (Sposts as S$post): ?>
<1li><?php echo S$post[’Post’][’title’]; ?></1li>
<?php endforeach; ?>

Caching Elements

You can take advantage of CakePHP view caching if you supply a cache parameter. If set to true, it will
cache the element in the ‘default’ Cache configuration. Otherwise, you can set which cache configuration

Elements 93

CakePHP Cookbook Documentation, Release 2.x

should be used. See Caching for more information on configuring Cache. A simple example of caching an
element would be:

echo Sthis->element (' helpbox’, array (), array(’cache’ => true));

If you render the same element more than once in a view and have caching enabled, be sure to set the
‘key’ parameter to a different name each time. This will prevent each successive call from overwriting the
previous element() call’s cached result. For example:

echo $Sthis—->element (

"helpbox’,
array (' var’ => Svar),
array (' cache’ => array(’'key’ => 'first_use’, ’'config’ => ’'view_long’)

)

echo Sthis—>element (

"helpbox’,
array (’'var’ => S$Sdifferenvar),
array (' cache’ => array(’'key’ => ’'second_use’, ’'config’ => 'view_long’)

)

The above will ensure that both element results are cached separately. If you want all element caching to
use the same cache configuration, you can avoid some repetition by setting View: : SelementCache to
the cache configuration you want to use. CakePHP will use this configuration when none is given.

Requesting Elements from a Plugin
2.0

To load an element from a plugin, use the plugin option (moved out of the data option in 1.x):

echo Sthis->element (' helpbox’, array (), array(’'plugin’ => ’Contacts’));

2.1

If you are using a plugin and wish to use elements from within the plugin, just use the familiar plugin syntax.
If the view is being rendered for a plugin controller/action, the plugin name will automatically be prefixed
onto all elements used, unless another plugin name is present. If the element doesn’t exist in the plugin, it
will look in the main APP folder.:

echo Sthis->element (' Contacts.helpbox’);

If your view is a part of a plugin, you can omit the plugin name. For example, if you are in the
ContactsController of the Contacts plugin, the following:

echo S$this->element (' helpbox’);
// and
echo S$this->element (' Contacts.helpbox’);

are equivalent and will result in the same element being rendered.

94 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Changed in version 2.1: The S$options[plugin] option was deprecated and support for
Plugin.element was added.

Creating your own view classes

You may need to create custom view classes to enable new types of data views, or add additional custom
view-rendering logic to your application. Like most components of CakePHP, view classes have a few
conventions:

* View class files should be put in App/View. For example: App/View/PdfView.php
* View classes should be suffixed with View. For example: PdfView.

* When referencing view class names you should omit the View suffix. For example:
Sthis—->viewClass = ’'Pdf’;.

You’ll also want to extend View to ensure things work correctly:

// in App/View/PdfView.php

App::uses ('View’, ’'View’);
class PdfView extends View {
public function render ($view = null, S$layout = null) ({
// custom logic here.
}
}

Replacing the render method lets you take full control over how your content is rendered.

View API

class View

View methods are accessible in all view, element and layout files. To call any view method use
Sthis—->method ()

View: : set (string $var, mixed $value)
Views have a set () method that is analogous to the set () found in Controller objects. Using set()
from your view file will add the variables to the layout and elements that will be rendered later. See
Controller Methods for more information on using set().

In your view file you can do:

Sthis->set (’ activeMenuButton’, ’'posts’);

Then, in your layout, the $activeMenuButton variable will be available and contain the value
‘posts’.

View: :get (string $var, $default = null)
Get the value of a viewVar with the name Svar.

As of 2.5, you can provide a default value in case the variable is not already set.

Creating your own view classes 95

CakePHP Cookbook Documentation, Release 2.x

Changed in version 2.5: The $default argument was added in 2.5.

View: :getVar (string $var)
Gets the value of the viewVar with the name Svar.

Deprecated since version 2.3: Use View: : get () instead.

View: :getVars ()
Gets a list of all the available view variables in the current rendering scope. Returns an array of
variable names.

View: :element (string $elementPath, array $data, array $options = array())
Renders an element or view partial. See the section on Elements for more information and examples.

View: :uuid (string $object, mixed $url)
Generates a unique non-random DOM ID for an object, based on the object type and URL. This
method is often used by helpers that need to generate unique DOM ID’s for elements such as the
JsHelper:

= Sthis—>uuid (

"form’,

array (' controller’ => ’'posts’, ’'action’ => ’index’)
)
//Suuid contains ’form0425fe3bad’

Suuid

View: :addScript (string $name, string $content)
Adds content to the internal scripts buffer. This buffer is made available in the layout as
$scripts_for_layout. This method is helpful when creating helpers that need to add javascript
or css directly to the layout. Keep in mind that scripts added from the layout and elements in the
layout will not be added to $scripts_for_layout. This method is most often used from inside
helpers, such as the JsHelper and HtmlHelper Helpers.

Deprecated since version 2.1: Use the Using view blocks features instead.

View: :blocks ()
Get the names of all defined blocks as an array.

View: :start ($name)
Start a capturing block for a view block. See the section on Using view blocks for examples.

New in version 2.1.

View: :end ()
End the top most open capturing block. See the section on Using view blocks for examples.

New in version 2.1.

View: : append ($name, $content)
Append into the block with $name. See the section on Using view blocks for examples.

New in version 2.1.

View: :prepend ($name, $content)
Prepend to the block with $name. See the section on Using view blocks for examples.

New in version 2.3.

96 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

View: :startIfEmpty ($name)
Start a block if it is empty. All content in the block will be captured and discarded if the block is
already defined.

New in version 2.3.

View: :assign ($name, $content)
Assign the value of a block. This will overwrite any existing content. See the section on Using view
blocks for examples.

New in version 2.1.

View: : fetch ($name, $default =)
Fetch the value of a block. If a block is empty or undefined, ©* will be returned. See the section on
Using view blocks for examples.

New in version 2.1.

View: :extend ($name)
Extend the current view/element/layout with the named one. See the section on Extending Views for
examples.

New in version 2.1.

property View: : Slayout
Set the layout the current view will be wrapped in.

property View: : SelementCache
The cache configuration used to cache elements. Setting this property will change the default config-
uration used to cache elements. This default can be overridden using the ‘cache’ option in the element
method.

property View: : Srequest
An instance of CakeRequest. Use this instance to access information about the current request.

property View: : Soutput
Contains the last rendered content from a view, either the view file, or the layout content.

Deprecated since version 2.1: Use $view—->Blocks—>get (/ content’) ; instead.

property View: : SBlocks
An instance of ViewBlock. Used to provide view block functionality in view rendering.

New in version 2.1.

More about Views

Themes

You can take advantage of themes, making it easy to switch the look and feel of your page quickly and
easily.

To use themes, specify the theme name in your controller:

More about Views 97

CakePHP Cookbook Documentation, Release 2.x

class ExampleController extends AppController {
public Stheme = ’Example’;

}

Changed in version 2.1: Versions previous to 2.1 required setting the $this->viewClass =
"Theme’ . 2.1 removes this requirement as the normal View class supports themes

You can also set or change the theme name within an action or within the beforeFilter or
beforeRender callback functions:

Sthis—->theme = ’AnotherExample’;
Theme view files need to be within the /app/View/Themed/ folder. Within the themed folder, create

a folder using the same name as your theme name. For example, the above theme would be found in
/app/View/Themed/AnotherExample.

Note: It is important to remember that CakePHP expects CamelCase theme names.

Beyond that, the folder structure within the /app/View/Themed/Example/ folder is exactly the same
as /app/View/.

For example, the view file for an edit action of a Posts controller would reside at
/app/View/Themed/Example/Posts/edit.ctp. Layout files would reside in
/app/View/Themed/Example/Layouts/.

If a view file can’t be found in the theme, CakePHP will try to locate the view file in the /app/View/
folder. This way, you can create master view files and simply override them on a case-by-case basis within
your theme folder.

Theme assets

Themes can contain static assets as well as view files. A theme can include any necessary assets in its web-
root directory. This allows for easy packaging and distribution of themes. While in development, requests
for theme assets will be handled by Dispatcher. To improve performance for production environments,
it’s recommended that you either symlink or copy theme assets into the application’s webroot. See below
for more information.

To use the new theme webroot create directories like:

app/View/Themed/<themeName>/webroot<path_to_file>

in your theme. The Dispatcher will handle finding the correct theme assets in your view paths.

All of CakePHP’s built-in helpers are aware of themes and will create the correct paths automatically. Like
view files, if a file isn’t in the theme folder, it will default to the main webroot folder:

//When in a theme with the name of ’purple_cupcake’
Sthis->Html->css ('main.css’);

//creates a path like
/theme/purple_cupcake/css/main.css

98 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

//and links to
app/View/Themed/PurpleCupcake/webroot/css/main.css

Increasing performance of plugin and theme assets

It’s a well known fact that serving assets through PHP is guaranteed to be slower than serving those assets
without invoking PHP. And while the core team has taken steps to make plugin and theme asset serving
as fast as possible, there may be situations where more performance is required. In these situations it’s
recommended that you either symlink or copy out plugin/theme assets to directories in app/webroot
with paths matching those used by CakePHP.

* app/Plugin/DebugKit/webroot/js/my_file. js becomes
app/webroot/debug_kit/js/my_file.js

* app/View/Themed/Navy/webroot/css/navy.css becomes
app/webroot/theme/Navy/css/navy.css

Media Views

class MediaView
Deprecated since version 2.3: Use Sending files instead.

Media views allow you to send binary files to the user. For example, you may wish to have a directory of
files outside of the webroot to prevent users from direct linking them. You can use the Media view to pull
the file from a special folder within /app/, allowing you to perform authentication before delivering the file
to the user.

To use the Media view, you need to tell your controller to use the MediaView class instead of the default
View class. After that, just pass in additional parameters to specify where your file is located:

class ExampleController extends AppController {
public function download() {

Sthis->viewClass = ’'Media’;
// Download app/outside_webroot_dir/example.zip
Sparams = array (

rid’ => ’'example.zip’,

"name’ => ’example’,

"download’ => true,

"extension’ => ’zip’,

"path’ => APP . ’outside_webroot_dir’ . DS

) ;

Sthis—->set (Sparams) ;
}

Here’s an example of rendering a file whose mime type is not included in the MediaView’s $SmimeType
array. We are also using a relative path which will default to your app/webroot folder:

More about Views 99

CakePHP Cookbook Documentation, Release 2.x

public function download() {

Sthis->viewClass = ’"Media’;
// Render app/webroot/files/example.docx
Sparams = array (

rid’ => ’'example.docx’,

"name’ => ’'example’,

"extension’ => ’docx’,

"mimeType’ => array (

"docx’ => ’"application/vnd.openxmlformats—-officedocument’
" .wordprocessingml.document’
)I
"path’ => "files’ . DS
) i

Sthis->set (Sparams) ;

Settable Parameters

id The ID is the file name as it resides on the file server including the file extension.

name The name allows you to specify an alternate file name to be sent to the user. Specify the name without
the file extension.

download A boolean value indicating whether headers should be set to force download.

extension The file extension. This is matched against an internal list of acceptable mime types. If the
mime type specified is not in the list (or set in the mimeType parameter array), the file will not be
downloaded.

path The folder name, including the final directory separator. The path should be absolute but can be
relative to the app/webroot folder.

mimeType An array with additional mime types to be merged with MediaView internal list of acceptable
mime types.

cache A boolean or integer value - If set to true it will allow browsers to cache the file (defaults to false if
not set); otherwise set it to the number of seconds in the future for when the cache should expire.

JSON and XML views

New in CakePHP 2.1 are two new view classes. The Xm1View and JsonView let you easily create XML
and JSON responses, and integrate with the RequestHandlerComponent.

By enabling RequestHandlerComponent in your application, and enabling support for the xm1 and
or json extensions, you can automatically leverage the new view classes. Xm1View and JsonView will
be referred to as data views for the rest of this page.

There are two ways you can generate data views. The first is by using the _serialize key, and the second
is by creating normal view files.

100 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Enabling data views in your application

Before you can use the data view classes, you’ll need to do a bit of setup:

1. Enable the json and or xml extensions with Router: :parseExtensions (). This will enable
Router to handle multiple extensions.

2. Add the RequestHandlerComponent to your controller’s list of components. This will en-
able automatic view class switching on content types. You can also set the component up with the
viewClassMap setting, to map types to your custom classes and/or map other data types.

New in version 2.3: RequestHandlerComponent : :viewClassMap () method has been added to
map types to viewClasses. The viewClassMap setting will not work on earlier versions.

After adding Router: :parseExtensions (/ json’); to your routes file, CakePHP will automat-
ically switch view classes when a request is done with the . json extension, or the Accept header is
application/json.

Using data views with the serialize key

The _serialize key is a special view variable that indicates which other view variable(s) should be
serialized when using a data view. This lets you skip defining view files for your controller actions if you
don’t need to do any custom formatting before your data is converted into json/xml.

If you need to do any formatting or manipulation of your view variables before generating the response, you
should use view files. The value of _serialize can be either a string or an array of view variables to
serialize:

class PostsController extends AppController ({

public Scomponents = array (’RequestHandler’);
public function index() {
Sthis->set ('posts’, S$this->paginate());
Sthis->set (' _serialize’, array(’'posts’));

You can also define _serialize as an array of view variables to combine:

class PostsController extends AppController ({
public Scomponents = array (' RequestHandler’);

public function index () {
// some code that created Sposts and Scomments
Sthis—->set (compact (' posts’, ’comments’));
Sthis->set (' _serialize’, array(’posts’, ’comments’));

Defining _serialize as an array has the added benefit of automatically appending a top-level
<response> element when using Xm1View. If you use a string value for _serialize and XmlView,
make sure that your view variable has a single top-level element. Without a single top-level element the Xml
will fail to generate.

More about Views 101

CakePHP Cookbook Documentation, Release 2.x

Using a data view with view files

You should use view files if you need to do some manipulation of your view content before creating the final
output. For example if we had posts, that had a field containing generated HTML, we would probably want
to omit that from a JSON response. This is a situation where a view file would be useful:

// Controller code
class PostsController extends AppController ({
public function index () {
Sthis—->set (compact (' posts’, ’comments’));

}

// View code — app/View/Posts/json/index.ctp

foreach (Sposts as &Spost) {
unset (Spost [’ Post’] ["generated_html’]);
}
echo json_encode (compact (' posts’, ’comments’));

You can do more complex manipulations, or use helpers to do formatting as well.

Note: The data view classes don’t support layouts. They assume that the view file will output the serialized
content.

class XmlvView
A view class for generating Xml view data. See above for how you can use XmlView in your appli-
cation.

By default when using _serialize the XmlView will wrap your serialized view variables with a
<response> node. You can set a custom name for this node using the _rootNode view variable.

New in version 2.3: The _rootNode feature was added.

class JsonView
A view class for generating Json view data. See above for how you can use JsonView in your appli-
cation.

JSONP response

New in version 2.4.

When using JsonView you can use the special view variable __jsonp to enable returning a JSONP response.
Setting it to t rue makes the view class check if query string parameter named “callback™ is set and if so
wrap the json response in the function name provided. If you want to use a custom query string parameter
name instead of “callback” set _jsonp to required name instead of t rue.

Helpers

Helpers are the component-like classes for the presentation layer of your application. They contain presen-
tational logic that is shared between many views, elements, or layouts. This chapter will show you how to

102 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

create your own helpers, and outline the basic tasks CakePHP’s core helpers can help you accomplish.

CakePHP features a number of helpers that aid in view creation. They assist in creating well-formed markup
(including forms), aid in formatting text, times and numbers, and can even speed up AJAX functionality.
For more information on the helpers included in CakePHP, check out the chapter for each helper:

CacheHelper

class CacheHelper (View $view, array $settings = array())

The Cache helper assists in caching entire layouts and views, saving time repetitively retrieving data. View
Caching in CakePHP temporarily stores parsed layouts and views as simple PHP + HTML files. It should
be noted that the Cache helper works quite differently than other helpers. It does not have methods that are
directly called. Instead, a view is marked with cache tags indicating which blocks of content should not be
cached. The CacheHelper then uses helper callbacks to process the file and output to generate the cache file.

When a URL is requested, CakePHP checks to see if that request string has already been cached. If it has,
the rest of the URL dispatching process is skipped. Any nocache blocks are processed normally and the
view is served. This creates a big savings in processing time for each request to a cached URL as minimal
code is executed. If CakePHP doesn’t find a cached view, or the cache has expired for the requested URL it
continues to process the request normally.

Using the Helper

There are two steps you have to take before you can use the CacheHelper. First in your
APP/Config/core.php uncomment the Configure write call for Cache.check. This will tell
CakePHP to check for, and generate view cache files when handling requests.

Once you’ve uncommented the Cache.check line you will need to add the helper to your controller’s
Shelpers array:

class PostsController extends AppController ({
public Shelpers = array(’Cache’);

}

You will also need to add the CacheDispatcher to your dispatcher filters in your bootstrap:

Configure::write(’Dispatcher.filters’, array (
"CacheDispatcher’

)) i

New in version 2.3: If you have a setup with multiple domains or languages you can use Config-
ure::write(‘Cache.viewPrefix’, ‘YOURPREFIX’); to store the view cache files prefixed.

Additional configuration options CacheHelper has a few additional configuration options you can use
to tune and tweak its behavior. This is done through the $cacheAction variable in your controllers.
$cacheAction should be set to an array which contains the actions you want cached, and the duration in
seconds you want those views cached. The time value can be expressed in a strtotime () format (e.g.
“1 hour”, or “3 minutes”).

More about Views 103

CakePHP Cookbook Documentation, Release 2.x

Using the example of an ArticlesController, that receives a lot of traffic that needs to be cached:

public ScacheAction = array (
"view’ => 36000,
"index’ => 48000

)i

This will cache the view action 10 hours, and the index action 13 hours. By making $cacheAction a
strtotime () friendly value you can cache every action in the controller:

public ScacheAction = "1 hour";

You can also enable controller/component callbacks for cached views created with CacheHelper. To do
so you must use the array format for $cacheAction and create an array like the following:

public ScacheAction = array (
"view’ => array(’callbacks’ => true, ’'duration’ => 21600),
"add’” => array(’callbacks’ => true, ’'duration’ => 36000),
"index’ => array(’callbacks’ => true, ’'duration’ => 48000)
)

By setting callbacks => true you tell CacheHelper that you want the generated files to create the
components and models for the controller. Additionally, fire the component initialize, controller beforeFilter,
and component startup callbacks.

Note: Setting callbacks => true partly defeats the purpose of caching. This is also the reason it is
disabled by default.

Marking Non-Cached Content in Views

There will be times when you don’t want an entire view cached. For example, certain parts of the page may
look different whether a user is currently logged in or browsing your site as a guest.

To indicate blocks of content that are not to be cached, wrap them in <!--nocache-->
<!--/nocache--> like so:

<!--nocache-->
<?php if (Sthis->Session->check (’User.name’)): 2>

Welcome, <?php echo h($this->Session->read(’User.name’)); ?>.
<?php else: ?>

<?php echo S$this->Html->1ink (’Login’, ’‘users/login’); 2>
<?php endif; ?>
<!--/nocache-—>

Note: You cannot use nocache tags in elements. Since there are no callbacks around elements, they
cannot be cached.

It should be noted that once an action is cached, the controller method for the action will not be called. When
a cache file is created, the request object, and view variables are serialized with PHP’s serialize ().

104 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Warning: If you have view variables that contain un-serializable content such as SimpleXML objects,
resource handles, or closures you might not be able to use view caching.

Clearing the Cache

It is important to remember that CakePHP will clear a cached view if a model used in the cached view is
modified. For example, if a cached view uses data from the Post model, and there has been an INSERT,
UPDATE, or DELETE query made to a Post, the cache for that view is cleared, and new content is generated
on the next request.

Note: This automatic cache clearing requires the controller/model name to be part of the URL. If you’ve
used routing to change your URLSs this feature will not work.

If you need to manually clear the cache, you can do so by calling Cache::clear(). This will clear all cached
data, excluding cached view files. If you need to clear the cached view files, use clearCache ().

FormHelper

class FormHelper (View $view, array $settings = array())

The FormHelper does most of the heavy lifting in form creation. The FormHelper focuses on creating forms
quickly, in a way that will streamline validation, re-population and layout. The FormHelper is also flexible
- it will do almost everything for you using conventions, or you can use specific methods to get only what
you need.

Creating Forms

The first method you’ll need to use in order to take advantage of the FormHelper is create (). This special
method outputs an opening form tag.

FormHelper: : create (string $model = null, array $options = array())
All parameters are optional. If create () is called with no parameters supplied, it assumes you are
building a form that submits to the current controller, via the current URL. The default method for
form submission is POST. The form element is also returned with a DOM ID. The ID is generated
using the name of the model, and the name of the controller action, CamelCased. If I were to call
create () inside a UsersController view, I'd see something like the following output in the rendered
view:

<form id="UserAddForm" method="post" action="/users/add">

Note: You can also pass false for S$model. This will place your form
data into the array: $this->request->data (instead of in the sub-array:

$this->request->datal[’Model’]). This can be handy for short forms that may not
represent anything in your database.

More about Views 105

CakePHP Cookbook Documentation, Release 2.x

The create () method allows us to customize much more using the parameters, however. First, you
can specify a model name. By specifying a model for a form, you are creating that form’s context.
All fields are assumed to belong to this model (unless otherwise specified), and all models referenced
are assumed to be associated with it. If you do not specify a model, then it assumes you are using the
default model for the current controller:

// If you are on /recipes/add
echo $this->Form->create (’Recipe’);

Output:

<form id="RecipeAddForm" method="post" action="/recipes/add">

This will POST the form data to the add () action of RecipesController. However, you can also use
the same logic to create an edit form. The FormHelper uses the $this->request->data prop-
erty to automatically detect whether to create an add or edit form. If $this->request->data
contains an array element named after the form’s model, and that array contains a non-empty value of
the model’s primary key, then the FormHelper will create an edit form for that record. For example,
if we browse to http://site.com/recipes/edit/5, we would get the following:

// Controller/RecipesController.php:
public function edit ($id = null) ({
if (empty (Sthis->request->data)) {
Sthis->request->data = Sthis->Recipe->findById($id);
} else {
// Save logic goes here

// View/Recipes/edit.ctp:

// Since Sthis->request->data[’Recipe’][’id’] = 5,
// we will get an edit form

<?php echo $this->Form->create (’Recipe’); ?>

Output:

<form id="RecipeEditForm" method="post" action="/recipes/edit/5">
<input type="hidden" name="_method" value="PUT" />

Note: Since this is an edit form, a hidden input field is generated to override the default HTTP
method.

When creating forms for models in plugins, you should always use plugin syntax when creating a
form. This will ensure the form is correctly generated:

echo $this->Form->create (' ContactManager.Contact’);
The $options array is where most of the form configuration happens. This special array can contain
a number of different key-value pairs that affect the way the form tag is generated.

Changed in version 2.0: The default URL for all forms, is now the current URL including passed,
named, and querystring parameters. You can override this default by supplying Soptions[’url’]
in the second parameter of $this—->Form->create ().

106

Chapter 7. Views

http://site.com/recipes/edit/5

CakePHP Cookbook Documentation, Release 2.x

Options for create() There are a number of options for create():

* Soptions[’type’] Thiskey is used to specify the type of form to be created. Valid values include
‘post’, ‘get’, ‘file’, ‘put’ and ‘delete’.

Supplying either ‘post’ or ‘get’ changes the form submission method accordingly:

echo Sthis->Form->create(’'User’, array(’'type’ => ’'get’));

Output:
<form id="UserAddForm" method="get" action="/users/add">
Specifying ‘file’ changes the form submission method to ‘post’, and includes an enctype of

“multipart/form-data” on the form tag. This is to be used if there are any file elements inside the
form. The absence of the proper enctype attribute will cause the file uploads not to function:

echo Sthis->Form->create(’User’, array(’'type’ => ’'file’));

Output:

<form id="UserAddForm" enctype="multipart/form-data"
method="post" action="/users/add">

When using ‘put’ or ‘delete’, your form will be functionally equivalent to a ‘post’ form, but when
submitted, the HTTP request method will be overridden with ‘PUT’ or ‘DELETE’, respectively. This
allows CakePHP to emulate proper REST support in web browsers.

* Soptions[’action’] The action key allows you to point the form to a specific action in your
current controller. For example, if you’d like to point the form to the login() action of the current
controller, you would supply an $options array like the following:

echo $this->Form->create(’User’, array(’action’ => ’'login’));
Output:

<form id="UserLoginForm" method="post" action="/users/login">

* Soptions[’url’] If the desired form action isn’t in the current controller, you can specify a URL
for the form action using the ‘url’ key of the $options array. The supplied URL can be relative to your

CakePHP application:
echo $this->Form->create (null, array (
"url’ => array (’'controller’ => ’'recipes’, ’"action’ => ’add’)
)) i
Output:

<form method="post" action="/recipes/add">

or can point to an external domain:

echo $this->Form->create (null, array (
"url’ => ’'http://www.google.com/search’,

More about Views 107

CakePHP Cookbook Documentation, Release 2.x

"type’ => ’'get’
)) i

Output:

<form method="get" action="http://www.google.com/search">

Also check HtmlHelper: :url () method for more examples of different types of URLs.

Soptions[’default’] If ‘default’ has been set to boolean false, the form’s submit action is
changed so that pressing the submit button does not submit the form. If the form is meant to be
submitted via AJAX, setting ‘default’ to false suppresses the form’s default behavior so you can grab
the data and submit it via AJAX instead.

Soptions [’/ inputDefaults’] You can declare a set of default options for input () with the
inputDefaults key to customize your default input creation:

echo $this->Form->create (’User’, array (
"inputDefaults’ => array (
"label’ => false,
"div’ => false

)) i

All inputs created from that point forward would inherit the options declared in inputDefaults. You
can override the defaultOptions by declaring the option in the input() call:

echo Sthis->Form->input (' password’); // No div, no label
// has a label element
echo S$this->Form—>input (

"username’,

array ('’ label’ => ’Username’)

)i

Closing the Form

FormHelper: : end ($options = null, $secureAttributes = array())

The FormHelper includes an end () method that completes the form. Often, end () only outputs a
closing form tag, but using end () also allows the FormHelper to insert needed hidden form elements
that SecurityComponent requires:

<?php echo S$this->Form->create(); ?>
<!-— Form elements go here —--—>
<?php echo S$this->Form->end(); ?>

If a string is supplied as the first parameter to end () , the FormHelper outputs a submit button named
accordingly along with the closing form tag:

<?php echo $this->Form->end(’Finish’); ?>

108

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Will output:

<div class="submit">

<input type="submit" value="Finish" />
</div>
</form>

You can specify detail settings by passing an array to end () :

Soptions = array (
"label’ => ’Update’,
"div’ => array (
"class’ => ’'glass-pill’,
)
)i

echo $this->Form->end($Soptions) ;

Will output:

<div class="glass-pill"><input type="submit" value="Update" name="Update">
</div>

See the Form Helper API' for further details.

Note: If you are using SecurityComponent in your application you should always end your
forms with end () .

Changed in version 2.5: The $secureAttributes parameter was added in 2.5.

Creating form elements

There are a few ways to create form inputs with the FormHelper. We’ll start by looking at input (). This
method will automatically inspect the model field it has been supplied in order to create an appropriate input
for that field. Internally input () delegates to other methods in FormHelper.

FormHelper: : input (string $fieldName, array $options = array())

Creates the following elements given a particular Model.field:
*Wrapping div.
L abel element
*Input element(s)
*Error element with message if applicable.
The type of input created depends on the column datatype:
Column Type Resulting Form Field
string (char, varchar, etc.) text

boolean, tinyint(1) checkbox

"http://api.cakephp.org/2.4/class-FormHelper.html

More about Views 109

http://api.cakephp.org/2.4/class-FormHelper.html

CakePHP Cookbook Documentation, Release 2.x

text textarea

text, with name of password, passwd, or psword password

text, with name of email email

text, with name of tel, telephone, or phone tel

date day, month, and year selects

datetime, timestamp day, month, year, hour, minute, and meridian selects
time hour, minute, and meridian selects

binary file

The $options parameter allows you to customize how input () works, and finely control what is
generated.

The wrapping div will have a requi red class name appended if the validation rules for the Model’s
field do not specify allowEmpty => true. One limitation of this behavior is the field’s model
must have been loaded during this request. Or be directly associated to the model supplied to
create ().

New in version 2.5: The binary type now maps to a file input.

New in version 2.3. Since 2.3 the HTMLS required attribute will also be added to the input based
on validation rules. You can explicitly set required key in options array to override it for a field. To
skip browser validation triggering for the whole form you can set option ' formnovalidate’ =>
t rue for the input button you generate using FormHelper: :submit () or set " novalidate’
=> true in options for FormHelper: :create ().

For example, let’s assume that your User model includes fields for a username (varchar), password
(varchar), approved (datetime) and quote (text). You can use the input() method of the FormHelper to
create appropriate inputs for all of these form fields:

echo $this->Form->create () ;

echo Sthis->Form->input (' username’) ; //text

echo Sthis->Form->input (' password’) ; //password

echo S$this->Form—>input (/ approved’) ; //day, month, year, hour, minute,
//meridian

echo S$this->Form->input (/ quote’); //textarea

echo $this—->Form->end (’Add’) ;

A more extensive example showing some options for a date field:

echo S$this->Form->input (‘birth_dt’, array (
"label’” => ’"Date of birth’,
"dateFormat’ => ’'DMY’,
"minYear’ => date(’'Y’) - 70,
"maxYear’ => date(’Y’) - 18,

))

110

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Besides the specific options for input () found below, you can specify any option for the in-
put type & any HTML attribute (for instance onfocus). For more information on $options and
ShtmlAttributes see HimlHelper.

Assuming that User hasAndBelongsToMany Group. In your controller, set a camelCase plural vari-
able (group -> groups in this case, or ExtraFunkyModel -> extraFunkyModels) with the select options.
In the controller action you would put the following:

Sthis->set (' groups’, S$this->User->Group->find(’1list’));

And in the view a multiple select can be created with this simple code:

echo $this->Form—>input (' Group’);

If you want to create a select field while using a belongsTo - or hasOne - Relation, you can add the
following to your Users-controller (assuming your User belongsTo Group):

Sthis—->set ('groups’, $this->User->Group->find(’list’));

Afterwards, add the following to your form-view:

echo $this->Form->input (' group_id’);

If your model name consists of two or more words, e.g., “UserGroup”, when passing the data using
set() you should name your data in a pluralised and camelCased format as follows:

Sthis->set (' userGroups’, $this->UserGroup—->find(’list’));
// or
Sthis—->set (
"reallyInappropriateModelNames’,
Sthis->ReallyInappropriateModelName->find (’list’)
)i

Note: Try to avoid using FormHelper::input() to generate submit buttons. Use
FormHelper: :submit () instead.

FormHelper: : inputs (mixed $fields = null, array $blacklist = null, $options = array())
Generate a set of inputs for $fields. If $fields is null all fields, except of those defined in
Sblacklist, of the current model will be used.

In addition to controller fields output, Sfields can be used to control legend and fieldset render-
ing with the fieldset and legend keys. $this->Form->inputs (array (' legend’ =>
"My legend’)); Would generate an input set with a custom legend. You can customize individual
inputs through $fields as well.:

echo $this->Form->inputs (array (
"name’ => array(’label’ => 'custom label’)

)) i

In addition to fields control, inputs() allows you to use a few additional options.

efieldset Set to false to disable the fieldset. If a string is supplied it will be used as the class
name for the fieldset element.

More about Views 111

CakePHP Cookbook Documentation, Release 2.x

*legend Set to false to disable the legend for the generated input set. Or supply a string to
customize the legend text.

Field naming conventions The Form helper is pretty smart. Whenever you specify a field name with the
form helper methods, it’ll automatically use the current model name to build an input with a format like the
following:

<input type="text" id="ModelnameFieldname" name="data[Modelname] [fieldname]">

This allows you to omit the model name when generating inputs for the model that the form was created for.
You can create inputs for associated models, or arbitrary models by passing in Modelname.fieldname as the
first parameter:

echo $this—->Form->input (' Modelname.fieldname’) ;

If you need to specify multiple fields using the same field name, thus creating an array that can be saved in
one shot with saveAll(), use the following convention:

echo $this->Form—->input (' Modelname.(0.fieldname’) ;
echo S$this—->Form->input ('Modelname.l.fieldname’);

Output:

<input type="text" id="ModelnameOFieldname"
name="data [Modelname] [0] [fieldname] ">

<input type="text" id="ModelnamelFieldname"
name="data[Modelname] [1] [fieldname] ">

FormHelper uses several field-suffixes internally for datetime input creation. If you are using fields named
year, month, day, hour, minute, or meridian and having issues getting the correct input, you can
set the name attribute to override the default behavior:

echo Sthis->Form->input (' Model.year’, array (
"type’ => "text’,
"name’ => ’data[Model] [year]’

)) i

Options FormHelper::input () supports a large number of options. In addition to its own options
input () accepts options for the generated input types, as well as HTML attributes. The following will
cover the options specific to FormHelper: : input ().

* Soptions[’type’] You can force the type of an input, overriding model introspection, by spec-
ifying a type. In addition to the field types found in the Creating form elements, you can also create
“file’, ‘password’, and any type supported by HTMLS5:

echo Sthis->Form->input (' field’, array(’'type’ => ’'file’));
echo Sthis->Form->input (‘email’, array(’'type’ => 'email’));

Output:

112 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

<div class="input file">

<label for="UserField">Field</label>

<input type="file" name="data[User] [field]" value="" id="UserField" />
</div>
<div class="input email">

<label for="UserEmail">Email</label>

<input type="email" name="data[User] [email]" value="" id="UserEmail" />
</div>

* Soptions[’div’] Use this option to set attributes of the input’s containing div. Using a string
value will set the div’s class name. An array will set the div’s attributes to those specified by the
array’s keys/values. Alternatively, you can set this key to false to disable the output of the div.

Setting the class name:

echo S$this->Form->input (' User.name’, array (
"div’ => ’class_name’

)) i

Output:

<div class="class_name">

<label for="UserName">Name</label>

<input name="data[User] [name]" type="text" value="" id="UserName" />
</div>

Setting multiple attributes:

echo S$this->Form—>input (' User.name’, array (
"div’ => array (
"id’ => ’'mainDiv’,
"title’ => ’Div Title’,
"style’ => ’display:block’

)) i

Output:

<div class="input text" id="mainDiv" title="Div Title"
style="display:block">
<label for="UserName">Name</label>
<input name="data[User] [name]" type="text" value="" id="UserName" />
</div>

Disabling div output:

echo Sthis->Form->input (' User.name’, array(’'div’ => false)); ?>

Output:

<label for="UserName">Name</label>
<input name="data[User] [name]" type="text" value="" id="UserName" />

* Soptions [’ label’] Setthis key to the string you would like to be displayed within the label that
usually accompanies the input:

More about Views 113

CakePHP Cookbook Documentation, Release 2.x

echo $this->Form->input (' User.name’, array (
"label’ => ’"The User Alias’
))

Output:

<div class="input">

<label for="UserName">The User Alias</label>

<input name="data[User] [name]" type="text" value="" id="UserName" />
</div>

Alternatively, set this key to false to disable the output of the label:

echo S$this->Form->input (' User.name’, array(’label’ => false));

Output:
<div class="input">

<input name="data[User] [name]" type="text" value="" id="UserName" />
</div>

Set this to an array to provide additional options for the 1abel element. If you do this, you can use
a text key in the array to customize the label text:

echo $this->Form->input (' User.name’, array (
"label’ => array (
"class’ => ’"thingy’,
"text’ => 'The User Alias’

)) i

Output:

<div class="input">

<label for="UserName" class="thingy">The User Alias</label>

<input name="data[User] [name]" type="text" value="" id="UserName" />
</div>

Soptions|[’error’] Using this key allows you to override the default model error messages and
can be used, for example, to set 118n messages. It has a number of suboptions which control the
wrapping element, wrapping element class name, and whether HTML in the error message will be
escaped.

To disable error message output & field classes set the error key to false:

Sthis->Form->input ('Model.field’, array(’error’ => false));

To disable only the error message, but retain the field classes, set the errorMessage key to false:

Sthis->Form->input ('Model.field’, array(’errorMessage’ => false));

To modify the wrapping element type and its class, use the following format:

114

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Sthis->Form->input ('Model.field’, array (
"error’ => array (
"attributes’ => array(’'wrap’ => ’span’, ’‘class’ => ’'bzzz’)

)) i

To prevent HTML being automatically escaped in the error message output, set the escape suboption
to false:

Sthis->Form->input ('Model.field’, array (
"error’ => array (
"attributes’ => array(’escape’ => false)

)) i

To override the model error messages use an array with the keys matching the validation rule names:

Sthis->Form->input ('Model.field’, array (
"error’ => array(’'tooShort’ => __ ('This is not long enough’))

)) i

As seen above you can set the error message for each validation rule you have in your models. In
addition you can provide i18n messages for your forms.

New in version 2.3: Support for the errorMessage option was added in 2.3

* Soptions[’before’], S$Soptions|[’between’], Soptions[’separator’], and
Soptions[’after’]

Use these keys if you need to inject some markup inside the output of the input() method:

echo S$this->Form->input (' field’, array (
"before’ => ’--before—-—',
"after’ => ’'-——after—-',
"between’ => ’'—-between——-'

))i

Output:

<div class="input">

——before——

<label for="UserField">Field</label>

——between———

<input name="data[User] [field]" type="text" value="" id="UserField" />
—-—after—-

</div>

For radio inputs the ‘separator’ attribute can be used to inject markup to separate each input/label pair:

echo $this->Form->input (' field’, array (
"before’ => ’'--before——',
"after’ => ’'——after——',
"between’ => ’--between——-',
"separator’ => ’'--separator—--’,

More about Views 115

CakePHP Cookbook Documentation, Release 2.x

"options’ => array(’'1l’, '2")
));

Output:

<div class="input">

——before—-—

<input name="data[User] [field]" type="radio" value="1" id="UserFieldl" />
<label for="UserFieldl">1</label>

——separator——

<input name="data[User] [field]" type="radio" value="2" id="UserField2" />
<label for="UserField2">2</label>

——between———

——after—-

</div>

For date and datetime type elements the ‘separator’ attribute can be used to change the string
between select elements. Defaults to ‘-°.

* Soptions [’ format’] The ordering of the HTML generated by FormHelper is controllable as
well. The ‘format’ options supports an array of strings describing the template you would like said
element to follow. The supported array keys are: array (' before’, ’'input’, ’'between’,
"label’, "after’,’error’).

* Soptions [’ inputDefaults’] If you find yourself repeating the same options in multiple in-
put() calls, you can use inputDefaults‘ to keep your code dry:

echo $this->Form->create (’User’, array (
"inputDefaults’ => array (
"label’ => false,
"div’ => false

)) i

All inputs created from that point forward would inherit the options declared in inputDefaults. You
can override the defaultOptions by declaring the option in the input() call:

// No div, no label

echo $this->Form->input (' password’);

// has a label element

@i

echo $this->Form->input (' username’, array(’label’ => ’'Username’));

If you need to later change the defaults you can use FormHelper: :inputDefaults ().

Generating specific types of inputs

In addition to the generic input () method, FormHelper has specific methods for generating a number
of different types of inputs. These can be used to generate just the input widget itself, and combined with
other methods like 1abel () and error () to generate fully custom form layouts.

116 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Common options Many of the various input element methods support a common set of options. All of
these options are also supported by input (). To reduce repetition the common options shared by all input
methods are as follows:

* Soptions[’class’] You can set the class name for an input:

echo $this->Form->input (‘title’, array(’class’ => ’'custom-class’));

* Soptions [’ id’] Set this key to force the value of the DOM id for the input.

* Soptions[’default’] Used to set a default value for the input field. The value is used if the
data passed to the form does not contain a value for the field (or if no data is passed at all).

Example usage:

echo Sthis->Form->input (' ingredient’, array(’default’ => ’Sugar’));

Example with select field (Size “Medium” will be selected as default):

$sizes = array(’s’ => ’'Small’, 'm’ => ’'Medium’, ’1’ => ’'Large’);
echo S$this->Form—>input (

"size’,

array (' options’ => S$sizes, ’'default’ => 'm’)

)i

Note: You cannot use default to check a checkbox - instead you might set the value in
$this->request->data in your controller, or set the input option checked to true.

Date and datetime fields’ default values can be set by using the ‘selected’ key.

Beware of using false to assign a default value. A false value is used to disable/exclude options of
an input field, so “ default’ => false would not set any value at all. Instead use ' default’
=> 0.

In addition to the above options, you can mixin any HTML attribute you wish to use. Any non-special
option name will be treated as an HTML attribute, and applied to the generated HTML input element.

Options for select, checkbox and radio inputs

* Soptions|[’selected’] Used in combination with a select-type input (i.e. For types select,
date, time, datetime). Set ‘selected’ to the value of the item you wish to be selected by default when
the input is rendered:

echo S$this->Form->input ('close_time’, array (
"type’ => ’"time’,
"'selected’ => "13:30:00"

))

Note: The selected key for date and datetime inputs may also be a UNIX timestamp.

* Soptions[’empty’] If set to true, forces the input to remain empty.

More about Views 117

CakePHP Cookbook Documentation, Release 2.x

When passed to a select list, this creates a blank option with an empty value in your drop down list. If
you want to have a empty value with text displayed instead of just a blank option, pass in a string to
empty:

echo Sthis->Form->input (' field’, array (
"options’ => array(l, 2, 3, 4, 5),
"empty’ => '’ (choose one)’

)) i

Output:

<div class="input">
<label for="UserField">Field</label>
<select name="data[User] [field]" id="UserField">
<option value="">(choose one)</option>
<option value="0">1</option>
<option value="1">2</option>
<option value="2">3</option>
<option value="3">4</option>
<option value="4">5</option>
</select>
</div>

Note: If you need to set the default value in a password field to blank, use ‘value’ => *’ instead.

Options can also supplied as key-value pairs.

Soptions[’hiddenField’] For certain input types (checkboxes, radios) a hidden input is cre-
ated so that the key in $this->request->data will exist even without a value specified:

<input type="hidden" name="data[Post] [Published]" id="PostPublished "
value="0" />

<input type="checkbox" name="data[Post] [Published]" value="1"
id="PostPublished" />

This can be disabled by setting the Soptions [’ hiddenField’] = false:

echo Sthis->Form->checkbox (’published’, array(’hiddenField’ => false));

Which outputs:

<input type="checkbox" name="data[Post] [Published]" value="1"
id="PostPublished" />

If you want to create multiple blocks of inputs on a form that are all grouped together, you should use
this parameter on all inputs except the first. If the hidden input is on the page in multiple places, only
the last group of input’s values will be saved

In this example, only the tertiary colors would be passed, and the primary colors would be overridden:

<h2>Primary Colors</h2>

<input type="hidden" name="data[Color] [Color]" id="Colors_" value="0" />

<input type="checkbox" name="data[Color] [Color][]" value="5"
id="ColorsRed" />

118

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

<label for="ColorsRed">Red</label>

<input type="checkbox" name="data[Color] [Color][]" value="5"
id="ColorsBlue" />

<label for="ColorsBlue">Blue</label>

<input type="checkbox" name="data[Color] [Color] []" value="5"
id="ColorsYellow" />

<label for="ColorsYellow">Yellow</label>

<h2>Tertiary Colors</h2>

<input type="hidden" name="data[Color] [Color]" id="Colors_" value="0" />

<input type="checkbox" name="data[Color] [Color] []" value="5"
id="ColorsGreen" />

<label for="ColorsGreen">Green</label>

<input type="checkbox" name="data[Color] [Color][]" value="5"
id="ColorsPurple" />

<label for="ColorsPurple">Purple</label>

<input type="checkbox" name="data[Addon] [Addon] []" value="5"
id="ColorsOrange" />

<label for="ColorsOrange">Orange</label>

Disabling the " hiddenField’ on the second input group would prevent this behavior.
You can set a different hidden field value other than O such as ‘N’:

echo $this->Form->checkbox ('published’, array (
"value’ => 'Y’,
"hiddenField’” => ’'N’,

)) i

Datetime options

Soptions[’timeFormat’] Used to specify the format of the select inputs for a time-related set
of inputs. Valid values include 12, 24, and null.

Soptions[’dateFormat’] Used to specify the format of the select inputs for a date-related set
of inputs. Valid values include any combination of ‘D’, ‘M’ and ‘Y’ or null. The inputs will be put
in the order defined by the dateFormat option.

Soptions[’minYear’], Soptions[’maxYear’] Used in combination with a
date/datetime input. Defines the lower and/or upper end of values shown in the years select
field.

Soptions|[’orderYear’] Used in combination with a date/datetime input. Defines the order in
which the year values will be set. Valid values include ‘asc’, ‘desc’. The default value is ‘desc’.

Soptions [’ interval’] This option specifies the number of minutes between each option in the
minutes select box:

echo $this->Form->input ('Model.time’, array (
"type’ => 'time’,
"interval’ => 15

Y) i

Would create 4 options in the minute select. One for each 15 minutes.

More about Views 119

CakePHP Cookbook Documentation, Release 2.x

* Soptions [’ round’] Can be set to up or down to force rounding in either direction. Defaults to
null which rounds half up according to interval.

New in version 2.4.

Form Element-Specific Methods

All elements are created under a form for the User model as in the examples above. For this
reason, the HTML code generated will contain attributes that reference to the User model. Ex:
name=data[User][username], id=UserUsername

FormHelper: : label (string $fieldName, string $text, array $options)
Create a label element. $fieldName is used for generating the DOM id. If $text is undefined,
$fieldName will be used to inflect the label’s text:

echo $this—->Form->label (' User.name’) ;
echo $this—>Form—>label (' User.name’, ’'Your username’);

Output:

<label for="UserName">Name</label>
<label for="UserName">Your username</label>

Soptions can either be an array of HTML attributes, or a string that will be used as a class name:

echo Sthis->Form->label ('User.name’, null, array(’id’ => ’'user-label’));
echo $this->Form->label (' User.name’, ’'Your username’, ’'highlight’);
Output:

<label for="UserName" id="user-label">Name</label>
<label for="UserName" class="highlight">Your username</label>

FormHelper: :text (string $name, array $options)
The rest of the methods available in the FormHelper are for creating specific form elements. Many of
these methods also make use of a special $options parameter. In this case, however, Soptions is used
primarily to specify HTML tag attributes (such as the value or DOM id of an element in the form):

echo Sthis->Form->text (' username’, array(’class’ => ’'users’));
Will output:
<input name="data[User] [username]" type="text" class="users"

id="UserUsername" />

FormHelper: :password (string $fieldName, array $options)
Creates a password field.:

echo $this->Form—>password (' password’) ;

Will output:

120 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

<input name="data[User] [password]" wvalue="" id="UserPassword"
type="password" />

FormHelper: :hidden (string $fieldName, array $options)
Creates a hidden form input. Example:

echo $Sthis->Form->hidden (’id’);

Will output:
<input name="data[User] [1d]" id="UserId" type="hidden" />
If the form is edited (that is, the array $Sthis—->request—->data will contain the information

saved for the User model), the value corresponding to id field will automatically be added to the
HTML generated. Example for data[User][id] = 10:

<input name="data[User] [id]" id="UserId" type="hidden" />

Changed in version 2.0: Hidden fields no longer remove the class attribute. This means that if there
are validation errors on hidden fields, the error-field class name will be applied.

FormHelper: :textarea (string $fieldName, array $options)
Creates a textarea input field.:

echo $this-—>Form->textarea (' notes’);

Will output:
<textarea name="data[User] [notes]" id="UserNotes"></textarea>
If the form is edited (that is, the array $this—->request—>data will contain the information

saved for the User model), the value corresponding to notes field will automatically be added to
the HTML generated. Example:

<textarea name="data[User] [notes]" id="UserNotes">
This text is to be edited.
</textarea>

Note: The textarea input type allows for the Soptions attribute of ' escape’ which deter-
mines whether or not the contents of the textarea should be escaped. Defaults to t rue.

echo Sthis->Form->textarea(’notes’, array(’escape’ => false);
// OR....
echo Sthis->Form—->input (
"notes’,
array (' type’ => ’'textarea’, ’'escape’ => false)
) i
Options

In addition to the Common options, textarea() supports a few specific options:

*Soptions[’rows’], S$Soptions[’cols’] These two keys specify the number of rows
and columns:

More about Views 121

CakePHP Cookbook Documentation, Release 2.x

echo $Sthis-—>Form—->textarea (
"textarea’,

array (' rows’ => ’5’, ’cols’ => ’5")
) ;
Output:
<textarea name="data[Form] [textarea]" cols="5" rows="5" id="FormTextarea">
</textarea>

FormHelper: : checkbox (string $fieldName, array $options)

Creates a checkbox form element. This method also generates an associated hidden form input to
force the submission of data for the specified field.:

echo $this—->Form—>checkbox (’done’) ;

Will output:
<input type="hidden" name="data[User] [done]" value="0" id="UserDone_" />
<input type="checkbox" name="data[User] [done]" value="1" id="UserDone" />

It is possible to specify the value of the checkbox by using the $options array:

echo $this->Form->checkbox (’done’, array(’value’ => 555));

Will output:
<input type="hidden" name="data[User] [done]" value="0" id="UserDone_" />
<input type="checkbox" name="data[User] [done]" value="555" id="UserDone" />

If you don’t want the Form helper to create a hidden input:
echo Sthis->Form->checkbox (’done’, array(’hiddenField’ => false));

Will output:

n

<input type="checkbox" name="data[User] [done]" value="1" id="UserDone" />

FormHelper: : radio (string $fieldName, array $options, array $attributes)

Creates a set of radio button inputs.

Options
*Sattributes[’value’] to set which value should be selected default.
*Sattributes [’ separator’] to specify HTML in between radio buttons (e.g.
).

*Sattributes[’between’] specify some content to be inserted between the legend and
first element.

eSattributes|[’disabled’] Setting this to true or ' disabled’ will disable all of the
generated radio buttons.

*Sattributes [’ legend’] Radio elements are wrapped with a legend and fieldset by de-
fault. Set Sattributes [’ legend’] to false to remove them.:

122

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Soptions = array('M’ => 'Male’, ’'F’ => ’'Female’);
Sattributes = array(’legend’ => false);
echo $this->Form->radio(’gender’, Soptions, S$attributes);

Will output:

<input name="data[User] [gender]" id="UserGender_ " value=""
type="hidden" />

<input name="data[User] [gender]" id="UserGenderM" value="M"

type="radio" />

<label for="UserGenderM">Male</label>

<input name="data[User] [gender]" id="UserGenderF" value="F"
type="radio" />

<label for="UserGenderF">Female</label>

If for some reason you don’t want the hidden input, setting Sattributes [’ value’] to aselected
value or boolean false will do just that.

Changed in version 2.1: The $attributes [’ disabled’] option was added in 2.1.

FormHelper: : select (string $fieldName, array $options, array $attributes)
Creates a select element, populated with the items in Soptions, with the option specified
by Sattributes[’value’] shown as selected by default. Set the ‘empty’ key in the
$Sattributes variable to false to turn off the default empty option:

Soptions = array('M’ => 'Male’, ’'F’ => ’'Female’);
echo $this->Form->select (' gender’, Soptions);

Will output:
<select name="data[User] [gender]" id="UserGender">
<option value=""></option>

<option value="M">Male</option>
<option value="F">Female</option>
</select>

The select input type allows for a special Soption attribute called escape’ which accepts a
bool and determines whether to HTML entity encode the contents of the select options. Defaults to
true:

Soptions = array('M’ => 'Male’, ’'F’ => ’'Female’);

echo S$this->Form->select (' gender’, Soptions, array(’escape’ => false));

*Sattributes [’ options’] This key allows you to manually specify options for a select
input, or for a radio group. Unless the ‘type’ is specified as ‘radio’, the FormHelper will assume
that the target output is a select input:

echo $this->Form->select (/' field’, array(l,2,3,4,5));

Output:

<select name="data[User] [field]" id="UserField">
<option value="0">1</option>

More about Views 123

CakePHP Cookbook Documentation, Release 2.x

<option value="1">2</option>

<option value="2">3</option>

<option value="3">4</option>

<option value="4">5</option>
</select>

Options can also be supplied as key-value pairs:

echo Sthis->Form->select (' field’, array (
"Value 1’ => ’'Label 1’,
"Value 2’ => ’"Label 27,
"Value 3’ => ’'Label 3’

)) i

Output:

<select name="data [User] [field]" id="UserField">
<option value="Value 1">Label 1</option>
<option value="Value 2">Label 2</option>
<option value="Value 3">Label 3</option>
</select>

If you would like to generate a select with optgroups, just pass data in hierarchical format. This
works on multiple checkboxes and radio buttons too, but instead of optgroups wraps elements in
fieldsets:

Soptions = array (
"Group 1’ => array (
"Value 1’ => ’"Label 17,
"Value 2’ => ’"Label 2’
) 14
"Group 2’ => array (
"Value 3’ => ’"Label 3’

)i
echo $this->Form->select ('’ field’, Soptions);

Output:

<select name="data[User] [field]" id="UserField">
<optgroup label="Group 1">
<option value="Value 1">Label 1</option>
<option value="Value 2">Label 2</option>
</optgroup>
<optgroup label="Group 2">
<option value="Value 3">Label 3</option>
</optgroup>
</select>

eSattributes|['multiple’] If ‘multiple’ has been set to true for an input that outputs a
select, the select will allow multiple selections:

echo $this—>Form->select (
"Model.field’,

124 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Soptions,
array ('multiple’ => true)
)i

Alternatively set ‘multiple’ to ‘checkbox’ to output a list of related check boxes:

Soptions = array (
"Value 1’ => ’'Label 1’,
"Value 2’ => ’"Label 2’

)

echo Sthis->Form->select ('Model.field’, Soptions, array (
"multiple’ => ’checkbox’

)) i

Output:

<div class="input select">
<label for="ModelField">Field</label>
<input name="data[Model] [field]" wvalue="" id="ModelField"
type="hidden">
<div class="checkbox">
<input name="data[Model] [field] []" value="Value 1"
id="ModelFieldl" type="checkbox">
<label for="ModelFieldl">Label 1</label>

</div>
<div class="checkbox">
<input name="data[Model] [field] []" value="Value 2"

id="ModelField2" type="checkbox">
<label for="ModelField2">Label 2</label>
</div>
</div>

*Sattributes[’disabled’] When creating checkboxes, this option can be set to disable
all or some checkboxes. To disable all checkboxes set disabled to t rue:

Soptions = array (
"Value 1’ => ’'Label 1’7,
"Value 2’ => ’"Label 2’
) ;
echo Sthis->Form->select ('Model.field’, Soptions, array (
"multiple’ => ’checkbox’,
"disabled’ => array(’'Value 1’)
))

Output:

<div class="input select">

<label for="ModelField">Field</label>

<input name="data[Model] [field]" value="" id="ModelField"

type="hidden">

<div class="checkbox">
<input name="data[Model] [field] []" disabled="disabled"

value="Value 1" id="ModelFieldl" type="checkbox">

<label for="ModelFieldl">Label 1</label>

More about Views 125

CakePHP Cookbook Documentation, Release 2.x

</div>
<div class="checkbox">
<input name="data[Model] [field] []" value="Value 2"

id="ModelField2" type="checkbox">
<label for="ModelField2">Label 2</label>
</div>
</div>

Changed in version 2.3: Support for arrays in $attributes [’ disabled’] was added in 2.3.

FormHelper: : £ile (string $fieldName, array $options)
To add a file upload field to a form, you must first make sure that the form enctype is set to
“multipart/form-data”, so start off with a create function such as the following:

echo $this->Form->create (’Document’, array (
"enctype’ => 'multipart/form-data’

))
// OR
echo S$this->Form->create ('Document’, array(’type’ => "file’));

Next add either of the two lines to your form view file:

echo Sthis->Form->input (' Document.submittedfile’, array (
"between’ => '
',
"type’ => ’'file’

)) i

// OR

echo $this->Form->file (’Document.submittedfile’);

Due to the limitations of HTML itself, it is not possible to put default values into input fields of type
‘file’. Each time the form is displayed, the value inside will be empty.

Upon submission, file fields provide an expanded data array to the script receiving the form data.

For the example above, the values in the submitted data array would be organized as follows, if
the CakePHP was installed on a Windows server. ‘tmp_name’ will have a different path in a Unix

environment:
Sthis->request->data[’Document’] [’ submittedfile’] = array (
"name’ => ’'conference_schedule.pdf’,

"type’ => ’application/pdf’,
"tmp_name’ => ’C:/WINDOWS/TEMP/phplEE.tmp’,
"error’ => 0,
"size’ => 41737,
)i

This array is generated by PHP itself, so for more detail on the way PHP handles data passed via file
fields read the PHP manual section on file uploads”.

*http://php.net/features.file-upload

126 Chapter 7. Views

http://php.net/features.file-upload

CakePHP Cookbook Documentation, Release 2.x

Validating Uploads Below is an example validation method you could define in your model to validate
whether a file has been successfully uploaded:

public function isUploadedFile (Sparams) {

Sval = array_shift (Sparams) ;
if ((isset(Sval[’error’]) && Sval[’error’] == 0) ||

(lempty (Sval[’tmp_name’]) && S$val[’tmp_name’] != ’'none’)
) A

return is_uploaded_file($vall[’tmp_name’]);

}

return false;

Creates a file input:

echo Sthis->Form->create (’'User’, array(’'type’ => "file’));
echo $this—>Form—>file(’avatar’);

Will output:

<form enctype="multipart/form-data" method="post" action="/users/add">
<input name="data[User] [avatar]" value="" id="UserAvatar" type="file">

Note: When using $this->Form->file (), remember to set the form encoding-type, by setting the
type option to ‘file’ in $this->Form->create ()

Creating buttons and submit elements

FormHelper: : submit (string $caption, array $options)
Creates a submit button with caption $caption. If the supplied Scaption is a URL to an image
(it contains a ‘.’ character), the submit button will be rendered as an image.

It is enclosed between div tags by default; you can avoid this by declaring Soptions[’div’] =
false:

echo $this->Form->submit () ;

Will output:

<div class="submit"><input value="Submit" type="submit"></div>

You can also pass a relative or absolute URL to an image for the caption parameter instead of caption
text.:

echo Sthis->Form->submit (' ok.png’);

Will output:

<div class="submit"><input type="image" src="/img/ok.png"></div>

FormHelper : :button (string $title, array Soptions = array())
Creates an HTML button with the specified title and a default type of “button”. Setting

More about Views 127

CakePHP Cookbook Documentation, Release 2.x

Soptions [’ type’] will output one of the three possible button types:
1.submit: Same as the $this—->Form—>submit method - (the default).
2.reset: Creates a form reset button.
3.button: Creates a standard push button.

echo $this—->Form->button (’A Button’);

(
echo Sthis->Form->button (’Another Button’, array(’'type’ => ’"button’));
echo Sthis->Form->button (’Reset the Form’, array(’'type’ => 'reset’));
echo $this->Form->button (’Submit Form’, array(’type’ => ’submit’));
Will output:

<button type="submit">A Button</button>
<button type="button">Another Button</button>
<button type="reset">Reset the Form</button>
<button type="submit">Submit Form</button>

The button input type supports the escape option, which accepts a bool and determines whether
to HTML entity encode the $title of the button. Defaults to false:

echo $this->Form->button (’/Submit Form’, array (
"type’ => ’submit’,
"escape’ => true

Y)

FormHelper: :postButton (string $title, mixed $url, array $options = array ())

Create a <button> tag with a surrounding <form> that submits via POST.

This method creates a <form> element. So do not use this method in some opened form. Instead
use FormHelper: :submit () or FormHelper: :button () to create buttons inside opened
forms.

FormHelper: :postLink (string $title, mixed $url = null, array $options = array (), string $con-

firmMessage = false)
Creates an HTML link, but access the URL using method POST. Requires JavaScript to be enabled in

browser.

This method creates a <form> element. So do not use this method inside an existing form. Instead
you should add a submit button using FormHelper: : submit ()

Changed in version 2.3: The method option was added.

Changed in version 2.5: The inline and block options were added. They allow buffering the
generated form tag, instead of returning with the link. This helps avoiding nested form tags. Setting
inline’ => true will add the form tag to postLink content block or you can use option
block to specify a custom block.

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Creating date and time inputs

FormHelper: :dateTime ($fieldName, $dateFormat = ‘DMY’, $timeFormat = ‘12°, $attributes

= array())
Creates a set of select inputs for date and time. Valid values for $dateformat are ‘DMY’, ‘MDY",

‘YMD’ or ‘NONE’. Valid values for $timeFormat are ‘12, ‘24’, and null.

You can specify not to display empty values by setting “array(‘empty’ => false)” in the attributes
parameter. It will also pre-select the fields with the current datetime.

FormHelper: :year (string $fieldName, int $minYear, int $maxYear, array $attributes)
Creates a select element populated with the years from $minYear to SmaxYear. HTML attributes
may be supplied in $attributes. If Sattributes [’ empty’] is false, the select will not include an
empty option:

echo $this->Form->year (' purchased’, 2000, date(’'Y’));

Will output:

<select name="data[User] [purchased] [year]" id="UserPurchasedYear">
<option value=""></option>

<option value="2009">2009</option>
<option value="2008">2008</option>
<option value="2007">2007</option>
<option value="2006">2006</option>
<option value="2005">2005</option>
<option value="2004">2004</option>
<option value="2003">2003</option>
<option value="2002">2002</option>
<option value="2001">2001</option>
<option value="2000">2000</option>
</select>

FormHelper : :month (string $fieldName, array $attributes)
Creates a select element populated with month names:

echo $this—->Form->month (' mob’) ;

Will output:
<select name="data[User] [mob] [month]" id="UserMobMonth">
<option value=""></option>

<option value="01">January</option>
<option value="02">February</option>
<option value="03">March</option>
<option value="04">April</option>
<option value="05">May</option>
<option value="06">June</option>
<option value="07">July</option>
<option value="08">August</option>
<option value="09">September</option>
<option value="10">October</option>
<option value="11">November</option>

More about Views 129

CakePHP Cookbook Documentation, Release 2.x

<option value="12">December</option>
</select>

You can pass in your own array of months to be used by setting the ‘monthNames’ attribute, or have
months displayed as numbers by passing false. (Note: the default months are internationalized and
can be translated using localization.):

echo $this->Form->month ('mob’, array (’monthNames’ => false));

FormHelper : : day (string $fieldName, array $attributes)
Creates a select element populated with the (numerical) days of the month.

To create an empty option with prompt text of your choosing (e.g. the first option is ‘Day’), you can
supply the text as the final parameter as follows:

echo $this->Form->day (' created’);

Will output:
<select name="data[User] [created] [day]" id="UserCreatedDay">
<option value=""></option>

<option value="01">1</option>
<option value="02">2</option>
<option value="03">3</option>

<option value="31">31</option>
</select>

FormHelper: :hour (string $fieldName, boolean $format24Hours, array $attributes)
Creates a select element populated with the hours of the day.

FormHelper: :minute (string $fieldName, array $attributes)
Creates a select element populated with the minutes of the hour.

FormHelper: :meridian (string $fieldName, array $attributes)
Creates a select element populated with ‘am’ and ‘pm’.

Displaying and checking errors

FormHelper: :error (string $fieldName, mixed $text, array $options)
Shows a validation error message, specified by $text, for the given field, in the event that a validation
error has occurred.

Options:
*‘escape’ bool Whether or not to HTML escape the contents of the error.

*‘wrap’ mixed Whether or not the error message should be wrapped in a div. If a string, will be
used as the HTML tag to use.

*‘class’ string The class name for the error message

FormHelper: :isFieldError (string $fieldName)
Returns true if the supplied $fieldName has an active validation error.:

130 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

if (Sthis->Form->isFieldError (’gender’)) {
echo $this->Form—->error (' gender’);

Note: When using FormHelper: : input (), errors are rendered by default.

FormHelper: :tagIsInvalid()
Returns false if given form field described by the current entity has no errors. Otherwise it returns the
validation message.

Setting Defaults for all fields

New in version 2.2.

You can declare a set of default options for input () using FormHelper: :inputDefaults ().
Changing the default options allows you to consolidate repeated options into a single method call:

Sthis->Form->inputDefaults (array (
"label’” => false,
"div’ => false,
"class’ => '’ fancy’

)

All inputs created from that point forward will inherit the options declared in inputDefaults. You can override
the default options by declaring the option in the input() call:

echo S$this->Form->input (' password’); // No div, no label with class ’fancy’
// has a label element same defaults
echo $this—->Form->input (

"username’,

array ('’ label’ => ’Username’)

)

Working with SecurityComponent

SecurityComponent offers several features that make your forms safer and more secure. By simply
including the SecurityComponent in your controller, you’ll automatically benefit from CSRF and form
tampering features.

As mentioned previously when using SecurityComponent, you should always close your forms using
FormHelper: :end (). This will ensure that the special _Token inputs are generated.

FormHelper: :unlockField ($name)
Unlocks a field making it exempt from the SecurityComponent field hashing. This also allows
the fields to be manipulated by JavaScript. The $name parameter should be the entity name for the
input:

More about Views 131

CakePHP Cookbook Documentation, Release 2.x

Sthis—->Form—>unlockField(’User.id’);

FormHelper: : secure (array $fields = array())
Generates a hidden field with a security hash based on the fields used in the form.

2.0 updates

$selected parameter removed

The $selected parameter was removed from several methods in FormHelper. All methods now support
a $Sattributes[’value’] key now which should be used in place of $selected. This change
simplifies the FormHelper methods, reducing the number of arguments, and reduces the duplication that
$selected created. The effected methods are:

* FormHelper::select()

* FormHelper::dateTime()
* FormHelper::year()

* FormHelper::month()

* FormHelper::day()

* FormHelper::hour()

* FormHelper::minute()

* FormHelper::meridian()

Default URLSs on forms is the current action

The default URL for all forms, is now the current URL including passed, named, and querystring pa-
rameters. You can override this default by supplying $Soptions[’url’] in the second parameter of
Sthis—->Form—->create ()

FormHelper::hidden()

Hidden fields no longer remove the class attribute. This means that if there are validation errors on hidden
fields, the error-field class name will be applied.

HtmlIHelper

class HtmlHelper (View $view, array $settings = array())

The role of the HtmlHelper in CakePHP is to make HTML-related options easier, faster, and more resilient
to change. Using this helper will enable your application to be more light on its feet, and more flexible on
where it is placed in relation to the root of a domain.

Many HtmlHelper methods include a $htmlAttributes parameter, that allow you to tack on any extra
attributes on your tags. Here are a few examples of how to use the $htmlAttributes parameter:

132 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Desired attributes: <tag class="someClass" />
Array parameter: array(’class’ => ’'someClass’)

Desired attributes: <tag name="foo" value="bar" />
Array parameter: array(’name’ => ’'foo’, ’'value’ => ’'bar’)

Note: The HtmlHelper is available in all views by default. If you’re getting an error informing you that
it isn’t there, it’s usually due to its name being missing from a manually configured $helpers controller

variable.

Inserting Well-Formatted elements

The most important task the HtmlHelper accomplishes is creating well formed markup. Don’t be afraid to
use it often - you can cache views in CakePHP in order to save some CPU cycles when views are being
rendered and delivered. This section will cover some of the methods of the HtmlHelper and how to use
them.

HtmlHelper: :charset ($charset=null)
Parameters

¢ $charset (string) — Desired character set. If null, the value of App.encoding
will be used.

Used to create a meta tag specifying the document’s character. Defaults to UTF-8
Example use:

echo $this—->Html->charset () ;

Will output:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

Alternatively,

echo $this—->Html->charset (' IS0O-8859-1");

Will output:
<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />
HtmlHelper: :ess (mixed $path, array $options = array())
Changed in version 2.4.
Parameters

* $path (mixed) — Either a string of the CSS file to link, or an array with multiple
files

* Soptions (array) — An array of options or hitml attributes.

More about Views 133

CakePHP Cookbook Documentation, Release 2.x

Creates a link(s) to a CSS style-sheet. If key ‘inline’ is set to false in Sopt ions parameter, the link
tags are added to the css block which you can print inside the head tag of the document.

You can use the b1 ock option to control which block the link element will be appended to. By default
it will append to the css block.

If key ‘rel’ in Soptions array is set to ‘import’ the stylesheet will be imported.

This method of CSS inclusion assumes that the CSS file specified resides inside the /app/webroot/css
directory if path doesn’t start with a /.

echo $this->Html->css (’ forms’);

Will output:

<link rel="stylesheet" type="text/css" href="/css/forms.css" />

The first parameter can be an array to include multiple files.:

echo Sthis->Html->css (array(’ forms’, ’'tables’, ’"menu’));

Will output:

<link rel="stylesheet" type="text/css" href="/css/forms.css" />
<link rel="stylesheet" type="text/css" href="/css/tables.css" />
<link rel="stylesheet" type="text/css" href="/css/menu.css" />

You can include CSS files from any loaded plugin using plugin syntax. To include
app/Plugin/DebugKit/webroot/css/toolbar.css You could use the following:

echo $this->Html->css (’DebugKit.toolbar.css’);

If you want to include a CSS file which shares a name with a loaded plugin you can
do the following. For example if you had a Blog plugin, and also wanted to include
app/webroot/css/Blog.common.css, you would:

versionchanged:: 2.4

echo $this->Html->css(‘Blog.common.css’, array(‘plugin’ => false));

Changed in version 2.1: The block option was added. Support for plugin syntax was added.

HtmlHelper: :meta (string $type, string $url = null, array $options = array())

Parameters
* $type (string) — The type meta tag you want.
* $url (mixed) — The URL for the meta tag, either a string or a routing array.
* $options (array) — An array of himl attributes.

This method is handy for linking to external resources like RSS/Atom feeds and favicons. Like css(),
you can specify whether or not you’d like this tag to appear inline or appended to the meta block by
setting the ‘inline’ key in the $attributes parameter to false, ie - array (' inline’ => false).

134

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

If you set the “type” attribute using the $attributes parameter, CakePHP contains a few shortcuts:

type | translated value
html | text/html
rss application/rss+xml
atom | application/atom+xml
icon | image/x-icon

<?php

echo $Sthis—->Html->meta (

"favicon.ico’,

" /favicon.ico’,

array (' type’ => ’icon’)

)i

2>

// Output (line breaks added)

<link

href="http://example.com/favicon.ico"
title="favicon.ico" type="image/x—-icon"

rel="alternate"

/>
<?php
echo St

his—>Html->meta (

"Comments’,

" /comments/index.rss’,
array (' type’ => ’'rss’)

)i

7>

// Output (line breaks added)

<link

href="http://example.com/comments/index.rss"

title="Comments"

type="application/rss+xml"

rel="alternate"

/>

This method can also be used to add the meta keywords and descriptions. Example:

<?php

echo St

his—->Html->meta (

"keywords’,

"enter any meta keyword here’

)i

2>

// Output

<meta name="keywords"

<?php

echo S$th

is—>Html->meta (

"description’,

"enter any meta description here’

)i

2>

// Output

content="enter any meta keyword here"

More about Views

135

CakePHP Cookbook Documentation, Release 2.x

<meta name="description" content="enter any meta description here" />

If you want to add a custom meta tag then the first parameter should be set to an array. To output a
robots noindex tag use the following code:

echo Sthis->Html->meta (array (' name’ => ’robots’, ’content’ => ’'noindex’));

Changed in version 2.1: The block option was added.

HtmlHelper: :docType (string $type = ‘xhtml-strict’)

Parameters
* $type (string) — The type of doctype being made.
Returns a (X)HTML doctype tag. Supply the doctype according to the following table:

type translated value
html4-strict | HTML4 Strict
html4-trans | HTML4 Transitional
html4-frame | HTML4 Frameset
html5 HTMLS5

xhtml-strict | XHTML1 Strict
xhtml-trans | XHTML1 Transitional
xhtml-frame | XHTML1 Frameset

xhtml11 XHTML1.1
echo $this->Html->docType () ;
// Outputs:
// <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
// "http://www.w3.orqg/TR/xhtmll/DTD/xhtmll—-strict.dtd">

echo $this->Html->docType (' html5");
// Outputs: <!DOCTYPE html>

echo $this->Html->docType (' html4-trans’);

// Outputs:
// <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
// "http://www.w3.org/TR/html4/loose.dtd">

Changed in version 2.1: The default doctype is html5 in 2.1.

HtmlHelper: : style (array $data, boolean $oneline = true)

Parameters
* $data (array) — A set of key => values with CSS properties.
* $oneline (boolean) — Should the contents be on one line.

Builds CSS style definitions based on the keys and values of the array passed to the method. Especially
handy if your CSS file is dynamic.:

echo $Sthis->Html->style (array (
"background’ => #6337,
"border-bottom’ => ’1lpx solid #000’,

136

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

"padding’ => ’10px’
)) i

Will output:

background: #633; border—-bottom:lpx solid #000; padding:10px;

HtmlHelper: : image (string $path, array $options = array())
Parameters
* $path (string) — Path to the image.
* Soptions (array) — An array of himl attributes.
Creates a formatted image tag. The path supplied should be relative to /app/webroot/img/.:

echo $this->Html->image ('’ cake_logo.png’, array(’alt’ => ’'CakePHP’));

Will output:

To create an image link specify the link destination using the url option in ShtmlAttributes.:

echo Sthis->Html->image ("recipes/6.Jjpg", array (

"alt" => "Brownies",

"url’ => array(’controller’ => ’'recipes’, ’action’ => ’'view’, 6)
))
Will output:

If you are creating images in emails, or want absolute paths to images you can use the fullBase

option:

echo $this->Html->image ("logo.png", array(’fullBase’ => true));

Will output:

You can include image files from any loaded plugin using plugin syntax. To include

app/Plugin/DebugKit/webroot/img/icon.png You could use the following:
echo S$this->Html->image (' DebugKit.icon.png’) ;
If you want to include a image file which shares a name with a loaded plugin you can

do the following. For example if you had a Blog plugin, and also wanted to include
app/webroot/js/Blog.icon.png, you would:

More about Views 137

CakePHP Cookbook Documentation, Release 2.x

echo $Sthis->Html->image (’Blog.icon.png’, array(’plugin’ => false));

Changed in version 2.1: The fullBase option was added. Support for plugin syntax was added.

HtmlHelper: : link (string $title, mixed $url = null, array $options = array(), string $confir-
mMessage = false)

param string $title The text to display as the body of the link.
param mixed $url Either the string location, or a routing array.
param array $options An array of hml attributes.

General purpose method for creating HTML links. Use $Soptions to specify attributes
for the element and whether or not the $t it 1e should be escaped.:

echo $this—->Html->1ink (

"Enter’,

" /pages/home’,

array (' class’ => ’"button’, ’target’ => ’_blank’)
)i
Will output:

Enter

Use ' full_base’=>true option for absolute URLs:

echo $this—->Html->1ink (
"Dashboard’,
array (
"controller’ => ’'dashboards’,
"action’ => ’index’,
"full base’ => true

)i

Will output:

Dashboard

Specify $confirmMessage to display a JavaScript confirm () dialog:

echo $this—->Html->1ink (

"Delete’,
array (' controller’ => ’'recipes’, ’'action’ => ’'delete’, 6),
array (),

"Are you sure you wish to delete this recipe?"
) i

Will output:

<a href="/recipes/delete/6"
onclick="return confirm(
"Are you sure you wish to delete this recipe?’
)i ">

138 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Delete

Query strings can also be created with 1ink () .:

echo $this->Html->1link (’View image’, array (
"controller’ => ’images’,
"action’ => ’'view’,
1/
"2’ => array(’height’ => 400, ’'width’ => 500))
) i

Will output:

View image

When using named parameters, use the array syntax and include names for ALL parameters
in the URL. Using the string syntax for paramters (i.e. “recipes/view/6/comments:false”
will result in the colon characters being HTML escaped and the link will not work as
desired.:

<?php
echo $this—->Html->1ink (
Sthis—->Html->image ("recipes/6. jpg", array("alt" => "Brownies")),
array (
"controller’” => ’'recipes’,
"action’ => ’view’,
rid’ => o,
"comments’ => false

)i

Will output:

HTML special characters in $title will be converted to HTML entities. To disable this
conversion, set the escape option to false in the Soptions array.:

<?php

echo $this—>Html->1ink (
Sthis->Html->image ("recipes/6. jpg", array("alt" => "Brownies")),
"recipes/view/6",
array (' escape’ => false)

)i

Will output:

More about Views 139

CakePHP Cookbook Documentation, Release 2.x

Setting escape to false will also disable escaping of attributes of the link. As of 2.4 you
can use the option escapeTitle to disable just escaping of title and not the attributes.:

<?php

echo $this—>Html->1ink (
Sthis->Html->image (' recipes/6.Jjpg’, array(’alt’ => ’'Brownies’)),
"recipes/view/6’,
array (' escapeTitle’ => false, ’'title’ => "hi "howdy"’)

)i

Will output:

Changed in version 2.4: The escapeTit le option was added.

Also check HtmlHelper: : url method for more examples of different types of URLs.

HtmlHelper: :media (stringlarray $path, array $options)

Parameters

* $path (stringlarray) — Path to the video file, relative to the web-
root/{$options[’pathPrefix’]} directory. Or an array where each item itself can
be a path string or an associate array containing keys src and fype.

* Soptions (array) — Array of HTML attributes, and special options.
Options:

— type Type of media element to generate, valid values are “audio” or “video”. If
type is not provided media type is guessed based on file’s mime type.

— text Text to include inside the video tag
— pathPrefix Path prefix to use for relative URLs, defaults to ‘files/’

— fullBase If provided the src attribute will get a full address including domain
name

New in version 2.1.
Returns a formatted audio/video tag:

<?php echo S$this->Html->media (’audio.mp3’); ?>

// Output
<audio src="/files/audio.mp3"></audio>

<?php echo S$this->Html->media(’video.mp4’, array (
"fullBase’ => true,
"text’ => ’'Fallback text’

))i 2>

// Output

140

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

<video src="http://www.somehost.com/files/video.mp4">Fallback text</video>

<?php echo S$this->Html->media (

array (
"video.mp4d’,
array (
"src’ => ’'video.ogg’,
"type’ => "video/ogg; codecs=’'theora, vorbis’"

)
array (' autoplay’)
)i ?>

// Output
<video autoplay="autoplay">
<source src="/files/video.mp4" type="video/mp4"/>
<source src="/files/video.ogg" type="video/ogg;
codecs='theora, vorbis’"/>
</video>

HtmlHelper: :tag (string $tag, string $text, array $ShtmlAttributes)
Parameters
* $tag (string) — The tag name being generated.
* S$text (string) — The contents for the tag.
* Soptions (array) — An array of html aitributes.

Returns text wrapped in a specified tag. If no text is specified then only the opening <tag> is returned.:

<?php

echo S$this->Html->tag(’span’, 'Hello World.’, array(’class’ => ’"welcome’));
?>

// Output

Hello World

// No text specified.

<?php

echo Sthis->Html->tag(’span’, null, array(’class’ => 'welcome’));
2>

// Output

Note: Text is not escaped by default but you may use $htmlOptions[’escape’] = true
to escape your text. This replaces a fourth parameter boolean S$escape = false that was

available in previous versions.

HtmlHelper: :div (string $class, string $text, array $options)

Parameters

More about Views 141

CakePHP Cookbook Documentation, Release 2.x

* S$class (string) — The class name for the div.
* $text (string) — The content inside the div.
* Soptions (array) — An array of html attributes.

Used for creating div-wrapped sections of markup. The first parameter specifies a CSS class, and the

second is used to supply the text to be wrapped by div tags. If the last parameter has been set to true,
$text will be printed HTML-escaped.

If no text is specified, only an opening div tag is returned.:

<?php

echo $this->Html->div (’error’, ’'Please enter your credit card number.’);
2>

// Output

<div class="error">Please enter your credit card number.</div>

HtmlHelper: :para (string $class, string $text, array $options)
Parameters
* S$class (string) — The class name for the paragraph.
* $text (string) — The content inside the paragraph.
* $options (array) — An array of himl aitributes.

Returns a text wrapped in a CSS-classed <p> tag. If no text is supplied, only a starting <p> tag is

returned.:

<?php

echo $this->Html->para (null, ’'Hello World.’);
2>

// Output

<p>Hello World.</p>

HtmlHelper: : script (mixed $url, mixed $options)

Parameters

* $url (mixed) — Either a string to a single JavaScript file, or an array of strings for
multiple files.

* $options (array) — An array of himl attributes.
Include a script file(s), contained either locally or as a remote URL.

By default, script tags are added to the document inline. If you override this by setting
Soptions[’inline’] to false, the script tags will instead be added to the script block which
you can print elsewhere in the document. If you wish to override which block name is used, you can
do so by setting Soptions[’block’].

Soptions [’ once’] controls whether or not you want to include this script once per request or
more than once. This defaults to true.

142 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

You can use $options to set additional properties to the generated script tag. If an array of script tags
is used, the attributes will be applied to all of the generated script tags.

This method of JavaScript file inclusion assumes that the JavaScript file specified resides inside the
/app/webroot/js directory:

echo S$this->Html->script (’scripts’);
Will output:

<script type="text/javascript" href="/js/scripts.js"></script>

You can link to files with absolute paths as well to link files that are not in app/webroot/ js:

echo $this->Html->script (’/otherdir/script_file’);

You can also link to a remote URL:

echo $this->Html->script (’http://code. jquery.com/jquery.min. js’);

Will output:

<script type="text/Jjavascript" href="http://code.jquery.com/jquery.min. js">
</script>

The first parameter can be an array to include multiple files.:

echo $this->Html->script (array (’ jquery’, 'wysiwyg’, ’scripts’));

Will output:

<script type="text/javascript" href="/]js/Jjquery.js"></script>
<script type="text/javascript" href="/js/wysiwyg.js"></script>
<script type="text/javascript" href="/js/scripts.js"></script>

You can append the script tag to a specific block using the block option:

echo $this->Html->script ('wysiwyg’, array(’'block’ => ’'scriptBottom’));

In your layout you can output all the script tags added to ‘scriptBottom’:

echo $this->fetch (’scriptBottom’);

You can include script files from any loaded plugin using plugin syntax. To include
app/Plugin/DebugKit/webroot/js/toolbar. js You could use the following:

echo $this->Html->script (' DebugKit.toolbar.js’);

If you want to include a script file which shares a name with a loaded plugin you can
do the following. For example if you had a Blog plugin, and also wanted to include
app/webroot/js/Blog.plugins. js, you would:

echo Sthis->Html->script ('Blog.plugins.js’, array(’'plugin’ => false)) ;

Changed in version 2.1: The block option was added. Support for plugin syntax was added.

More about Views 143

CakePHP Cookbook Documentation, Release 2.x

HtmlHelper: :scriptBlock ($code, $options = array())
Parameters
* $code (string) — The code to go in the script tag.
* Soptions (array) — An array of himl aitributes.

Generate a code block containing $code set Soptions[’inline’] to false to have the script
block appear in the script view block. Other options defined will be added as attributes to
script tags. S$this->Html->scriptBlock (/stuff’, array(’defer’ => true));
will create a script tag with defer="defer" attribute.

HtmlHelper: :scriptStart (Soptions = array())

Parameters

* Soptions (array) — An array of himl attributes to be used when scriptEnd is called.

Begin a buffering code block. This code block will capture all output between scriptStart ()
and scriptEnd () and create an script tag. Options are the same as scriptBlock ()

HtmlHelper: :scriptEnd ()

End a buffering script block, returns the generated script element or null if the script block was opened
with inline = false.

An example of using scriptStart () and scriptEnd () would be:

Sthis->Html->scriptStart (array(’'inline’ => false));
echo $this->Js->alert (I am in the javascript’);

Sthis->Html->scriptEnd() ;

HtmlHelper: :nestedList (array $list, array $options = array(), array $itemOptions = ar-
ray(), string $tag = ‘ul’)
Parameters

e $list (array) — Set of elements to list.

* Soptions (array) — Additional HTML attributes of the list (ol/ul) tag or if ul/ol use
that as tag.

* $itemOptions (array) — Additional HTML attributes of the list item (LI) tag.
o $tag (string) — Type of list tag to use (ol/ul).
Build a nested list (UL/OL) out of an associative array:

Slist = array (
"Languages’ => array (
"English’ => array (
"American’,
"Canadian’,
"British’,
)I

"Spanish’,

144 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

"German’,

) ;
echo $this—->Html->nestedList ($list);

Output:
// Output (minus the whitespace)

Languages

English

American</1li>
Canadian</1li>
<1li>British</1li>

</1li>
Spanish</1li>
German</1li>

HtmlHelper: :tableHeaders (array $names, array $trOptions = null, array $thOptions =
null)

Parameters
 $names (array) — An array of strings to create table headings.
* $trOptions (array) — An array of hrml attributes for the <tr>
* $thOptions (array) — An array of himl attributes for the <th> elements

Creates a row of table header cells to be placed inside of <table> tags.:

echo $this->Html->tableHeaders (array (’'Date’, ’'Title’, ’'Active’));
Output:
<tr>
<th>Date</th>
<th>Title</th>
<th>Active</th>
</tr>
echo $Sthis->Html->tableHeaders (
array ('Date’,’Title’,’Active’),
array (' class’ => ’status’),
array (' class’ => ’'product_table’)
)i
Output:

More about Views 145

CakePHP Cookbook Documentation, Release 2.x

<tr class="status">
<th class="product_table">Date</th>
<th class="product_table">Title</th>
<th class="product_table">Active</th>
</tr>

Changed in version 2.2: tableHeaders () now accepts attributes per cell, see below.

As of 2.2 you can set attributes per column, these are used instead of the defaults provided in the
SthOptions:

echo Sthis->Html->tableHeaders (array (
rid’,
array (' Name’ => array(’class’ => ’"highlight’)),
array ('Date’ => array(’'class’ => ’'sortable’))
)) i

Output:

<tr>
<th>id</th>
<th class="highlight">Name</th>
<th class="sortable">Date</th>
</tr>

HtmlHelper: :tableCells (array $data, array $oddTrOptions = null, array $evenTrOptions =
null, $useCount = false, $continueOddEven = true)

Parameters
* $data (array) — A two dimensional array with data for the rows.
* $0ddTrOptions (array) — An array of html attributes for the odd <tr>’s.
* $evenTrOptions (array) — An array of html attributes for the even <tr>’s.
» $useCount (boolean) — Adds class “column-$i”.

* $continueOddEven (boolean) — If false, will use a non-static $count variable, so
that the odd/even count is reset to zero just for that call.

Creates table cells, in rows, assigning <tr> attributes differently for odd- and even-numbered rows.
Wrap a single table cell within an array() for specific <td>-attributes.

echo $this->Html->tableCells (array (
array (' Jul 7th, 2007’, ’'Best Brownies’, ’'Yes’),
array (' Jun 21st, 2007’, ’'Smart Cookies’, ’'Yes’),
array ('Aug 1lst, 2006’, ’'Anti-Java Cake’, ’'No’),
))

Output:

<tr><td>Jul 7th, 2007</td><td>Best Brownies</td><td>Yes</td></tr>
<tr><td>Jun 21st, 2007</td><td>Smart Cookies</td><td>Yes</td></tr>
<tr><td>Aug 1st, 2006</td><td>Anti-Java Cake</td><td>No</td></tr>

146 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

echo $Sthis->Html->tableCells (array (

array (
"Jul 7th, 20077,
array (
"Best Brownies’,
array (' class’ => ’"highlight’)
)I
"Yes’),
array (' Jun 21st, 2007’, ’'Smart Cookies’, ’'Yes’),
array (

"Aug 1lst, 2006'",
"Anti-Java Cake’,

array ('No’, array(’'id’ => ’'special’))
),
)) i
Output:
<tr>
<td>
Jul 7th, 2007
</td>

<td class="highlight">
Best Brownies
</td>
<td>
Yes
</td>
</tr>
<tr>
<td>
Jun 21st, 2007
</td>
<td>
Smart Cookies
</td>
<td>
Yes
</td>
</tr>
<tr>
<td>
Aug 1lst, 2006
</td>
<td>
Anti-Java Cake
</td>
<td id="special">
No
</td>
</tr>

More about Views 147

CakePHP Cookbook Documentation, Release 2.x

HtmlHelper: :url (mixed $url = NULL, boolean $full = false)

echo $this—>Html->tableCells (

array (

array ('Red’, ’'Apple’),
array (' Orange’, ’'Orange’),
array (' Yellow’, ’'Banana’),

)y

array (' class’ => ’darker’)

)i

Output:

<tr class="darker"><td>Red</td><td>Apple</td></tr>
<tr><td>Orange</td><td>Orange</td></tr>
<tr class="darker"><td>Yellow</td><td>Banana</td></tr>

Parameters

* Surl (mixed) — A routing array.

* $full (mixed) — Either a boolean to indicate whether or not the base path should

be included on an array of options for Router: :url ()

Returns a URL pointing to a combination of controller and action. If $url is empty, it returns the
REQUEST_URI, otherwise it generates the URL for the controller and action combo. If full is true,

the full base URL will be prepended to the result:

echo $this->Html->url (array (
"controller" => "posts",
"action" => "view",
"bar"

)) i

// Output

/posts/view/bar

Here are a few more usage examples:
URL with named parameters:

echo $this->Html->url (array (

"controller" => "posts",
"action" => "view",
HfOO" :> "bar"

)) i

// Output

/posts/view/foo:bar

URL with extension:

echo $this->Html->url (array (
"controller" => "posts",
"action" => "list",

148

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

"axt" => "ygg"

)) i

// Output
/posts/list.rss

URL (starting with ‘/’) with the full base URL prepended:
echo S$this->Html->url (' /posts’, true);

// Output
http://somedomain.com/posts

URL with GET params and named anchor:

echo $this->Html->url (array (

"controller" => "posts",
"action" => "search",
"?" :> array("fooll :> "bar") r

AN =5 wEipgt
)) i

// Output
/posts/search?foo=bar#first

For further information check Router::url® in the APL.

HtmlHelper: :useTag (string $tag)
Returns a formatted existent block of $tag:

Sthis->Html->useTag (
"form’,
"http://example.com’,
array ('method’ => ’"post’, ’‘class’ => "'myform’)

)i

Output:

<form action="http://example.com" method="post" class="myform">

Changing the tags output by HtmlHelper

HtmlHelper: : loadConfig (mixed $configFile, string $path = null)
The built-in tag sets for Htm1Helper are XHTML compliant, however if you need to generate
HTML for HTMLS5 you will need to create and load a new tags config file containing the tags you’d
like to use. To change the tags used create app/Config/html5_tags.php containing:

Sconfig = array(’tags’ => array (
"css’ => ’'<link rel="%s" href="%s" %s>’,
"style’ => ’'<style%$s>%$s</style>’,

"charset’ => ’'<meta charset="%s">’,

3http://api.cakephp.org/2.4/class-Router.html# url

More about Views 149

http://api.cakephp.org/2.4/class-Router.html#_url

CakePHP Cookbook Documentation, Release 2.x

" javascriptblock’ => ’'<script%s>%s</script>’,
"javascriptstart’ => ’<script>’,

" Javascriptlink’ => ’<script src="%s"%$s></script>’,
4

Y) i

You can then load this tag set by calling $this->Html->1loadConfig(’html5_tags’);

Creating breadcrumb trails with HtmIHelper

HtmlHelper: :getCrumbs (string $separator = ‘»,’, string $startText = false)
CakePHP has the built-in ability to automatically create a breadcrumb trail in your app. To set this up,
first add something similar to the following in your layout template:

echo $this->Html->getCrumbs(’ > ', ’'Home’);

The $startText option can also accept an array. This gives more control over the generated first

link:

echo $this->Html->getCrumbs(’ > ', array (
"text’ => Sthis->Html->image (' home.png’),
"url’ => array(’controller’ => ’'pages’, ’'action’ => ’display’, ’'home’),
"escape’ => false

Y) i

Any keys that are not text or url will be passed to 1ink () asthe Soptions parameter.
Changed in version 2.1: The $startText parameter now accepts an array.

HtmlHelper: :addCrumb (string $name, string $link = null, mixed $options = null)
Now, in your view you’ll want to add the following to start the breadcrumb trails on each of the pages:

Sthis—->Html->addCrumb (' Users’, ' /users’);
Sthis->Html->addCrumb (' Add User’, array(’controller’ => ’'users’, ’action’ => ’add’));

This will add the output of “Home > Users > Add User” in your layout where getCrumbs was added.
HtmlHelper: :getCrumbList (array $options = array(), mixed $startText)
Parameters

* Soptions (array) — An array of html aitributes for the containing element.
Can also contain the ‘separator’, ‘firstClass’, ‘lastClass’ and ‘escape’ options.

o $startText (stringlarray) — The text or element that precedes the ul.

Returns breadcrumbs as a (x)html list.

This method uses HtmlHelper::tag() to generate list and its elements. Works similar
to getCrumbs (), so it uses options which every crumb was added with. You can use the
$startText parameter to provide the first breadcrumb link/text. This is useful when you al-
ways want to include a root link. This option works the same as the $startText option for
getCrumbs ().

150 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Changed in version 2.1: The $startText parameter was added.
Changed in version 2.3: The ‘separator’, ‘firstClass’ and ‘lastClass’ options were added.
Changed in version 2.5: The ‘escape’ option was added.

JsHelper

class JsHelper (View $view, array $settings = array())

Warning: The JsHelper is currently deprecated and completely removed in 3.x. We recommend using
regular JavaScript and directly interacting with JavaScript libraries where possible.

Since the beginning CakePHP’s support for JavaScript has been with Prototype/Scriptaculous. While we
still think these are excellent JavaScript libraries, the community has been asking for support for other
libraries. Rather than drop Prototype in favour of another JavaScript library. We created an Adapter based
helper, and included 3 of the most requested libraries. Prototype/Scriptaculous, Mootools/Mootools-more,
and jQuery/jQuery Ul While the API is not as expansive as the previous AjaxHelper we feel that the adapter
based solution allows for a more extensible solution giving developers the power and flexibility they need
to address their specific application needs.

JavaScript Engines form the backbone of the new JsHelper. A JavaScript engine translates an abstract
JavaScript element into concrete JavaScript code specific to the JavaScript library being used. In addition
they create an extensible system for others to use.

Using a specific JavaScript engine

First of all download your preferred JavaScript library and place it in app/webroot/Js

Then you must include the library in your page. To include it in all pages, add this line to the <head> section
of app/View/Layouts/default.ctp:

echo S$Sthis->Html->script (’ jquery’); // Include jQuery library

Replace jquery with the name of your library file (.js will be added to the name).

By default scripts are cached, and you must explicitly print out the cache. To do this at the end of each page,
include this line just before the ending </body> tag:

echo S$this->Js—->writeBuffer(); // Write cached scripts

Warning: You must include the library in your page and print the cache for the helper to function.

JavaScript engine selection is declared when you include the helper in your controller:
public Shelpers = array(’Js’ => array (' Jquery’));
The above would use the Jquery Engine in the instances of JsHelper in your views. If you do not declare a

specific engine, the jQuery engine will be used as the default. As mentioned before, there are three engines
implemented in the core, but we encourage the community to expand the library compatibility.

More about Views 151

CakePHP Cookbook Documentation, Release 2.x

Using jQuery with other libraries The jQuery library, and virtually all of its plugins are constrained
within the jQuery namespace. As a general rule, “global” objects are stored inside the jQuery namespace as
well, so you shouldn’t get a clash between jQuery and any other library (like Prototype, MooTools, or YUI).

That said, there is one caveat: By default, jQuery uses “$” as a shortcut for “jQuery”
To override the “$” shortcut, use the jQueryObject variable:

Sthis->Js->JqueryEngine—->jQueryObject = '$7j’;
echo Sthis—->Html->scriptBlock (
var $j = jQuery.noConflict();’,
array(’'inline’ => false)
)i
// Tell jQuery to go into noconflict mode

Using the JsHelper inside customHelpers Declare the JsHelper in the Shelpers array in your cus-
tomHelper:

public Shelpers = array(’'Js’);

Note: Itis not possible to declare a JavaScript engine inside a custom helper. Doing that will have no effect.

If you are willing to use an other JavaScript engine than the default, do the helper setup in your controller as
follows:

public Shelpers = array (
"Js’ => array(’'Prototype’),
"CustomHelper’

)

Warning: Be sure to declare the JsHelper and its engine on top of the $Shelpers array in your
controller.

The selected JavaScript engine may disappear (replaced by the default) from the JsHelper object in your
helper, if you miss to do so and you will get code that does not fit your JavaScript library.

Creating a JavaScript Engine

JavaScript engine helpers follow normal helper conventions, with a few additional restrictions. They must
have the Engine suffix. DojoHelper is not good, DojoEngineHelper is correct. Furthermore, they
should extend JsBaseEngineHelper in order to leverage the most of the new APL

JavaScript engine usage

The JsHelper provides a few methods, and acts as a facade for the the Engine helper. You should not
directly access the Engine helper except in rare occasions. Using the facade features of the JsHelper
allows you to leverage the buffering and method chaining features built-in; (method chaining only works in
PHPS).

152 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

The JsHelper by default buffers almost all script code generated, allowing you to collect scripts through-
out the view, elements and layout, and output it in one place. Outputting buffered scripts is done with
Sthis->Js->writeBuffer (); this will return the buffer contents in a script tag. You can disable
buffering wholesale with the $bufferScripts property or setting buffer => false in methods
taking Soptions.

Since most methods in JavaScript begin with a selection of elements in the DOM, $this->Js->get ()
returns a $this, allowing you to chain the methods using the selection. Method chaining allows you to write
shorter, more expressive code:

Sthis->Js->get (' #foo’) —>event (' click’, S$eventCode);
Is an example of method chaining. Method chaining is not possible in PHP4 and the above sample would
be written like:

Sthis->Js->get (' #foo’) ;
Sthis->Js->event (' click’, SeventCode);

Common options In attempts to simplify development where JavaScript libraries can change, a common
set of options is supported by JsHelper, these common options will be mapped out to the library specific
options internally. If you are not planning on switching JavaScript libraries, each library also supports all of
its native callbacks and options.

Callback wrapping By default all callback options are wrapped with the an anonymous function with the
correct arguments. You can disable this behavior by supplying the wrapCallbacks = false in your
options array.

Working with buffered scripts One drawback to previous implementation of ‘Ajax’ type features was
the scattering of script tags throughout your document, and the inability to buffer scripts added by elements
in the layout. The new JsHelper if used correctly avoids both of those issues. It is recommended that you
place $this->Js—>writeBuffer () atthe bottom of your layout file above the </body> tag. This
will allow all scripts generated in layout elements to be output in one place. It should be noted that buffered
scripts are handled separately from included script files.

JsHelper: :writeBuffer ($options = array())
Writes all JavaScript generated so far to a code block or caches them to a file and returns a linked script.
Options

* inline - Setto true to have scripts output as a script block inline if cache is also true, a script link
tag will be generated. (default true)

* cache - Set to true to have scripts cached to a file and linked in (default false)
* clear - Setto false to prevent script cache from being cleared (default true)
* onDomReady - wrap cached scripts in domready event (default true)

* safe - if an inline block is generated should it be wrapped in <![CDATA] ...]]> (default true)

More about Views 153

CakePHP Cookbook Documentation, Release 2.x

Creating a cache file with writeBuffer () requires that webroot/js be world writable and allows a
browser to cache generated script resources for any page.

JsHelper: :buffer ($content)
Add $content to the internal script buffer.
JsHelper: :getBuffer ($clear = true)
Get the contents of the current buffer. Pass in false to not clear the buffer at the same time.
Buffering methods that are not normally buffered
Some methods in the helpers are buffered by default. The engines buffer the following methods by default:
* event
* sortable
* drag
* drop
* slider

Additionally you can force any other method in JsHelper to use the buffering. By appending an boolean
to the end of the arguments you can force other methods to go into the buffer. For example the each ()
method does not normally buffer:

Sthis—->Js->each (’alert ("whoa!");’, true);
The above would force the each () method to use the buffer. Conversely if you want a method that does
buffer to not buffer, you can pass a false in as the last argument:

Sthis->Js->event (click’, ’"alert ("whoa!");’, false);

This would force the event function which normally buffers to return its result.

Other Methods

The core JavaScript Engines provide the same feature set across all libraries, there is also a subset of common
options that are translated into library specific options. This is done to provide end developers with as unified
an API as possible. The following list of methods are supported by all the Engines included in the CakePHP
core. Whenever you see separate lists for Options and Event Options both sets of parameters are
supplied in the $options array for the method.

JsHelper: :object ($data, $options = array())
Serializes Sdata into JSON. This method is a proxy for json_encode () with a few extra features
added via the $options parameter.

Options:
*prefix - String prepended to the returned data.

*post fix - String appended to the returned data.

154 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Example Use:

&

Sjson = Sthis->Js->object (Sdata) ;

JsHelper: :sortable ($options = array())

Sortable generates a JavaScript snippet to make a set of elements (usually a list) drag and drop sortable.

The normalized options are:
Options

econtainment - Container for move action

*handle - Selector to handle element. Only this element will start sort action.

srevert - Whether or not to use an effect to move sortable into final position.

*opacity - Opacity of the placeholder

*distance - Distance a sortable must be dragged before sorting starts.
Event Options

*start - Event fired when sorting starts

*sort - Event fired during sorting

ecomplete - Event fired when sorting completes.

Other options are supported by each JavaScript library, and you should check the documentation for

your JavaScript library for more detailed information on its options and parameters.

Example Use:

Sthis->Js->get (' #my—-1ist’);

Sthis->Js->sortable (array (
"distance’ => 5,
"containment’ => ’'parent’,
"start’” => ’onStart’,
"complete’ => ’'onStop’,
"sort’ => ’'onSort’,
"wrapCallbacks’ => false

))

Assuming you were using the jQuery engine, you would get the following code in your generated

JavaScript block

S ("#myList") .sortable ({
containment:"parent",
distance:5,
sort:onSort,
start:onStart,
stop:onStop

1) i

JsHelper: : request (Surl, $options = array())
Generate a JavaScript snippet to create an Xm1Ht tpRequest or ‘AJAX’ request.

More about Views

155

CakePHP Cookbook Documentation, Release 2.x

Event Options
scomplete - Callback to fire on complete.
*success - Callback to fire on success.
*before - Callback to fire on request initialization.
serror - Callback to fire on request failure.
Options
*method - The method to make the request with defaults to GET in more libraries
easync - Whether or not you want an asynchronous request.
*data - Additional data to send.
supdate - Dom id to update with the content of the response.

*type - Data type for response. ‘json’ and ‘html’ are supported. Default is html for most
libraries.

*cvalScripts - Whether or not <script> tags should be eval’ed.

*dataExpression - Should the data key be treated as a callback. Useful for supplying
Soptions[’data’] as another JavaScript expression.

Example use:

Sthis->Js—->event (

"click’,
Sthis->Js->request (
array (’'action’ => ’"foo’, ’'paraml’),
array (’async’ => true, ’'update’ => ’felement’)

)i

JsHelper: :get ($selector)
Set the internal ‘selection’ to a CSS selector. The active selection is used in subsequent operations
until a new selection is made:

Sthis->Js—->get (’ #element’) ;
The JsHelper now will reference all other element based methods on the selection of #element.
To change the active selection, call get () again with a new element.

JsHelper: : set (mixed $one, mixed $two = null)
Pass variables into JavaScript. Allows you to set variables that will be output when the buffer is
fetched with JsHelper: :getBuffer () or JsHelper::writeBuffer (). The JavaScript
variable used to output set variables can be controlled with JsHelper: : $setVariable.

JsHelper: :drag ($options = array())
Make an element draggable.

Options

ehandle - selector to the handle element.

156 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

*snapGrid - The pixel grid that movement snaps to, an array(x, y)

scontainer - The element that acts as a bounding box for the draggable element.
Event Options

estart - Event fired when the drag starts

*drag - Event fired on every step of the drag

*stop - Event fired when dragging stops (mouse release)

Example use:

Sthis—->Js—->get (' #element’) ;

Sthis->Js->drag (array (
"container’ => ’#content’,
"start’” => ’onStart’,
"drag’ => ’'onDrag’,
"stop’ => 'onStop’,
’snapGrid’ => array (10, 10),
"wrapCallbacks’ => false

))

If you were using the jQuery engine the following code would be added to the buffer

S ("#element") .draggable ({
containment:"#content",
drag:onDrag,
grid:[10,107],
start:onStart,
stop:onStop

1)

JsHelper: :drop ($options = array())
Make an element accept draggable elements and act as a dropzone for dragged elements.

Options

eaccept - Selector for elements this droppable will accept.

*hoverclass - Class to add to droppable when a draggable is over.
Event Options

*drop - Event fired when an element is dropped into the drop zone.

*hover - Event fired when a drag enters a drop zone.

*leave - Event fired when a drag is removed from a drop zone without being dropped.
Example use:

Sthis->Js—->get (’ #element’) ;
$this—->Js—>drop (array (

"accept’ => ’.items’,
"hover’” => ’onHover’,
"leave’ => ’"onExit’,

More about Views 157

CakePHP Cookbook Documentation, Release 2.x

"drop’ => ’onDrop’,
"wrapCallbacks’ => false
)) i

If you were using the jQuery engine the following code would be added to the buffer

S ("f#element") .droppable ({
accept:".items",
drop:onDrop,
out :onExit,
over:onHover

P

Note: Droppables in Mootools function differently from other libraries. Droppables are implemented
as an extension of Drag. So in addition to making a get() selection for the droppable element. You

must also provide a selector rule to the draggable element. Furthermore, Mootools droppables inherit
all options from Drag.

JsHelper: :slider ($options = array())
Create snippet of JavaScript that converts an element into a slider ui widget. See your libraries imple-
mentation for additional usage and features.

Options
*handle - The id of the element used in sliding.
*direction - The direction of the slider either ‘vertical’ or ‘horizontal’
emin - The min value for the slider.
*max - The max value for the slider.
*step - The number of steps or ticks the slider will have.
*value - The initial offset of the slider.
Events
schange - Fired when the slider’s value is updated
scomplete - Fired when the user stops sliding the handle
Example use:

Sthis->Js—>get (' #element’) ;

Sthis->Js->slider (array (
"complete’ => ’'onComplete’,
"change’ => ’onChange’,

"min’ => 0,

"max’” => 10,

"value’ => 2,

"direction’ => ’vertical’,
"wrapCallbacks’ => false

158 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

If you were using the jQuery engine the following code would be added to the buffer

S("#element") .slider ({
change:onChange,
max:10,
min:0,
orientation:"vertical",
stop:onComplete,
value:?2

})s

JsHelper: :effect ($name, $options = array())

Creates a basic effect. By default this method is not buffered and returns its result.

Supported effect names
The following effects are supported by all JsEngines
*show - reveal an element.
*hide - hide an element.
*fadelIn - Fade in an element.
*fadeOut - Fade out an element.
*slidelIn - Slide an element in.
*slideOut - Slide an element out.

Options

*speed - Speed at which the animation should occur. Accepted values are ‘slow’, ‘fast’. Not all

effects use the speed option.
Example use
If you were using the jQuery engine:

Sthis->Js—->get (' #felement’) ;
Sresult = $this—>Js—>effect (' fadeIn’);

// Sresult contains S ("#foo").fadeIn();

JsHelper: :event ($type, $content, Soptions = array())

Bind an event to the current selection. $type can be any of the normal DOM events or a custom
event type if your library supports them. $content should contain the function body for the call-

back. Callbacks will be wrapped with function (event) {
Soptions.

Options

} unless disabled with the

*wrap - Whether you want the callback wrapped in an anonymous function. (defaults to true)

*stop - Whether you want the event to stop. (defaults to true)

Example use:

More about Views

159

CakePHP Cookbook Documentation, Release 2.x

Sthis—->Js—>get (’ #some—-1ink’) ;
Sthis->Js->event ('click’, Sthis->Js->alert ('hey you!’));

If you were using the jQuery library you would get the following JavaScript code:

S(’#some—1ink’) .bind(’click’, function (event) {
alert (" hey you!’);
return false;

})s

You can remove the return false; by passing setting the st op option to false:

Sthis—->Js—->get (' #some—-1ink’) ;

Sthis—->Js—>event (
"click’,
Sthis->Js->alert (" hey you!’),
array (' stop’ => false)

)

If you were using the jQuery library you would the following JavaScript code would be added to the
buffer. Note that the default browser event is not cancelled:

S (' #some—1ink’) .bind (' click’, function (event) ({
alert (" hey you!’);
1)

JsHelper: : domReady ($callback)
Creates the special ‘DOM ready’ event. JsHelper: :writeBuffer () automatically wraps the
buffered scripts in a domReady method.

JsHelper: :each ($callback)
Create a snippet that iterates over the currently selected elements, and inserts $callback.

Example:

Sthis->Js—->get (div.message’) ;
Sthis—->Js—->each(’$(this) .css ({color: "red"});’);

Using the jQuery engine would create the following JavaScript:

$(’div.message’) .each (function () { $(this).css({color: "red"}); });

JsHelper: :alert ($message)
Create a JavaScript snippet containing an alert () snippet. By default, alert does not buffer, and
returns the script snippet.:

Salert = Sthis->Js->alert ('Hey there’);
JsHelper: :confirm ($message)

Create a JavaScript snippet containing a confirm () snippet. By default, conf i rm does not buffer,
and returns the script snippet.:

Salert = $this->Js->confirm(’Are you sure?’);

160 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

JsHelper: :prompt ($message, $default)
Create a JavaScript snippet containing a prompt () snippet. By default, prompt does not buffer,
and returns the script snippet.:

Sprompt = S$this->Js—>prompt (' What is your favorite color?’, ’blue’);
JsHelper: :submit ($caption = null, $options = array())

Create a submit input button that enables Xm1Ht t pRequest submitted forms. Options can include
both those for FormHelper: :submit () and JsBaseEngine::request(), JsBaseEngine::event();

Forms submitting with this method, cannot send files. Files do not transfer over Xm1Ht tpRequest
and require an iframe, or other more specialized setups that are beyond the scope of this helper.

Options
eurl - The URL you wish the XHR request to submit to.

econfirm - Confirm message displayed before sending the request. Using confirm, does not
replace any be fore callback methods in the generated XmlHttpRequest.

*buf fer - Disable the buffering and return a script tag in addition to the link.
swrapCallbacks - Set to false to disable automatic callback wrapping.
Example use:

echo S$this->Js->submit (’ Save’, array(’update’ => ’#content’));

Will create a submit button with an attached onclick event. The click event will be buftered by default.:

echo Sthis->Js—->submit (/ Save’, array (
"update’ => ’{fcontent’,
"div’ => false,

"type’ => ’json’,
"async’ => false
)) i
Shows how you can combine options that both FormHelper::submit () and

JsHelper: :request () when using submit.

JsHelper: : link ($title, Surl = null, $options = array())
Create an HTML anchor element that has a click event bound to it. Options can include both those for
HtmlHelper::1link () and JsHelper: :request (), JsHelper: :event (), Soptions
is a html attributes array that are appended to the generated anchor element. If an option is not part
of the standard attributes or ShtmlAttributes it will be passed to JsHelper: : request () as
an option. If an id is not supplied, a randomly generated one will be created for each link generated.
Options
econfirm - Generate a confirm() dialog before sending the event.

eid - use a custom id.

shtmlAttributes - additional non-standard htmlAttributes. Standard attributes are class, id,
rel, title, escape, onblur and onfocus.

*buffer - Disable the buffering and return a script tag in addition to the link.

More about Views 161

CakePHP Cookbook Documentation, Release 2.x

Example use:

echo $this—>Js->1ink (
"Page 2',
array (' page’ => 2),
array (' update’ => ’f#content’)
)

Will create a link pointing to /page : 2 and updating #content with the response.

You can use the htm1Attributes option to add in additional custom attributes.:

echo $this->Js->1ink ('Page 2’, array(’'page’ => 2), array (
"update’ => ’f{fcontent’,
"htmlAttributes’ => array(’other’ => ’"value’)

Y) i

Outputs the following HTML.:

Page 2

JsHelper: :serializeForm ($options = array())
Serialize the form attached to $selector. Pass true for $isForm if the current selection is a form
element. Converts the form or the form element attached to the current selection into a string/json
object (depending on the library implementation) for use with XHR operations.

Options
*isForm - is the current selection a form, or an input? (defaults to false)

*inline - is the rendered statement going to be used inside another JS statement? (defaults to
false)

Setting inline == false allows you to remove the trailing ; . This is useful when you need to serialize a
form element as part of another JavaScript operation, or use the serialize method in an Object literal.

JsHelper: :redirect ($url)
Redirect the page to Surl using window.location.

JsHelper: :value ($value)
Converts a PHP-native variable of any type to a JSON-equivalent representation. Escapes any string
values into JSON compatible strings. UTF-8 characters will be escaped.

AJAX Pagination

Much like AJAX Pagination in 1.2, you can use the JsHelper to handle the creation of AJAX pagination
links instead of plain HTML links.

Making AJAX Links Before you can create AJAX links you must include the JavaScript library
that matches the adapter you are using with JsHelper. By default the JsHelper uses jQuery.
So in your layout include jQuery (or whichever library you are using). Also make sure to include
RequestHandlerComponent in your components. Add the following to your controller:

162 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

public Scomponents = array (’RequestHandler’);

public Shelpers = array(’'Js’);

Next link in the JavaScript library you want to use. For this example we’ll be using jQuery:

echo Sthis—->Html->script (’ jquery’);

Similar to 1.2 you need to tell the PaginatorHelper that you want to make JavaScript enhanced links
instead of plain HTML ones. To do so, call the opt ions () at the top of your view:

Sthis->Paginator->options (array (
"update’ => ’{#content’,
"evalScripts’ => true

)) i

The PaginatorHelper now knows to make JavaScript enhanced links, and that those links should
update the #content element. Of course this element must exist, and often times you want to wrap
Scontent_for_layout with a div matching the id used for the update option. You also should set
evalScripts to true if you are using the Mootools or Prototype adapters, without evalScripts these
libraries will not be able to chain requests together. The indicator option is not supported by JsHelper
and will be ignored.

You then create all the links as needed for your pagination features. Since the JsHelper automatically
buffers all generated script content to reduce the number of <script> tags in your source code you must
write the buffer out. At the bottom of your view file. Be sure to include:

echo $Sthis—>Js-—>writeBuffer ();

If you omit this you will not be able to chain AJAX pagination links. When you write the buffer, it is also
cleared, so you don’t have worry about the same JavaScript being output twice.

Adding effects and transitions Since indicator is no longer supported, you must add any indicator
effects yourself:

<!DOCTYPE html>

<html>
<head>
<?php echo S$this->Html->script (' jquery’); 2>
//more stuff here.
</head>
<body>

<div id="content">
<?php echo Sthis->fetch(’content’); 2>
</div>
<?php
echo Sthis->Html->image (
"indicator.gif’,
array (’'id’ => ’'busy-indicator’)
)i
?>
</body>
</html>

More about Views 163

CakePHP Cookbook Documentation, Release 2.x

Remember to place the indicator.gif file inside app/webroot/img folder. You may see a situation where the
indicator.gif displays immediately upon the page load. You need to put in this CSS #busy-indicator
{ display:none; } inyour main CSS file.

With the above layout, we’ve included an indicator image file, that will display a busy indicator animation
that we will show and hide with the JsHelper. To do that we need to update our options () function:

Sthis->Paginator->options (array (
"update’ => ’#content’,
"evalScripts’ => true,
"before’ => Sthis->Js->get (’ #busy-indicator’)->effect (
"fadeln’,
array ('buffer’ => false)

),

"complete’ => Sthis->Js->get (’ #busy-indicator’)->effect (
" fadeOut’,
array ('buffer’ => false)

)y
));

This will show/hide the busy-indicator element before and after the #content div is updated. Although
indicator has been removed, the new features offered by JsHelper allow for more control and more
complex effects to be created.

NumberHelper

class NumberHelper (View $view, array $settings = array())

The NumberHelper contains convenient methods that enable display numbers in common formats in your
views. These methods include ways to format currency, percentages, data sizes, format numbers to specific
precisions and also to give you more flexibility with formatting numbers.

Changed in version 2.1: NumberHelper have been refactored into CakeNumber class to allow easier
use outside of the View layer. Within a view, these methods are accessible via the NumberHelper class
and you can call it as you would call a normal helper method: $this—>Number->method ($Sargs) ;.

All of these functions return the formatted number; They do not automatically echo the output into the view.

NumberHelper: :currency (mixed $number, string $currency = ‘USD’, array $options = ar-
ray())
Parameters

 $number (float) — The value to covert.
* $currency (string) — The known currency format to use.
* Soptions (array) — Options, see below.

This method is used to display a number in common currency formats (EUR,GBP,USD). Usage in a
view looks like:

164 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

// called as NumberHelper
echo $this->Number->currency ($Snumber, S$Scurrency) ;

// called as CakeNumber
App::uses (' CakeNumber’, ’'Utility’);
echo CakeNumber: :currency (Snumber, Scurrency);

The first parameter, $number, should be a floating point number that represents the amount of money
you are expressing. The second parameter is used to choose a predefined currency formatting scheme:

$currency | 1234.56, formatted by currency type

EUR €1.234,56

GBP £1,234.56

USD $1,234.56
The third parameter is an array of options for further defining the output. The following options are
available:

Option Description

before The currency symbol to place before whole numbers ie. ‘$’

after The currency symbol to place after decimal numbers ie. ‘c’. Set to boolean false to

use no decimal symbol. eg. 0.35 => $0.35.

Zero The text to use for zero values, can be a string or a number. ie. 0, ‘Free!’

places Number of decimal places to use. ie. 2

thousands Thousands separator ie. ‘;

decimals Decimal separator symbol ie. ‘.’

negative Symbol for negative numbers. If equal to ‘()’, the number will be wrapped with (

and)

escape Should the output be htmlentity escaped? Defaults to true

wholeSym- | String to use for whole numbers ie. ‘ dollars’

bol

wholePosi- | Either ‘before’ or ‘after’ to place the whole symbol

tion

fraction- String to use for fraction numbers ie. ‘ cents’

Symbol

fractionPo- | Either ‘before’ or ‘after’ to place the fraction symbol

sition

fractionEx- | Fraction exponent of this specific currency. Defaults to 2.

ponent

If a non-recognized $currency value is supplied, it is prepended to a USD formatted number. For
example:

// called as NumberHelper
echo $this->Number->currency (’1234.56’, 'FOOQO’);

// Outputs
FOO 1,234.56

// called as CakeNumber
App: :uses (! CakeNumber’, ’'Utility’);

More about Views 165

CakePHP Cookbook Documentation, Release 2.x

echo CakeNumber: :currency (’1234.56", ’'FOO0O’);

Changed in version 2.4: The fractionExponent option was added.
NumberHelper: :defaultCurrency (string $currency)
Parameters
* $currency (string) — Set a known currency for CakeNumber: :currency ().

Setter/getter for default currency. This removes the need always passing the currency to
CakeNumber: :currency () and change all currency outputs by setting other default.

New in version 2.3: This method was added in 2.3
NumberHelper: : addFormat (string $formatName, array $options)
Parameters
* $formatName (s7ring) — The format name to be used in the future

* $options (array) — The array of options for this format. Uses the same
Soptions keys as CakeNumber: :currency ().

Add a currency format to the Number helper. Makes reusing currency formats easier:

// called as NumberHelper
Sthis—->Number->addFormat (' BRL’, array(’'before’ => 'R$’, ’thousands’ => ’'.’, ’'decimals’

// called as CakeNumber
App: :uses (' CakeNumber’, ’'Utility’);
CakeNumber: :addFormat (' BRL’, array(’'before’ => 'R$’, ’'thousands’ => ’'.’, ’'decimals’ =>

You can now use BRL as a short form when formatting currency amounts:

// called as NumberHelper
echo $this->Number->currency ($value, ’'BRL’);

// called as CakeNumber

App: :uses (' CakeNumber’, ’"Utility’);
echo CakeNumber: :currency (Svalue, ’'BRL’);

Added formats are merged with the following defaults:

array (
"wholeSymbol’ => ',
"wholePosition’ => ’'before’,
"fractionSymbol’ => false,
"fractionPosition’ => ’after’,
"zero’ => 0,
"places’ => 2,
"thousands’ =,
"decimals’ = .7,
"negative’ = "0",
"escape’ => true,
"fractionExponent’ => 2

166 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

NumberHelper: :precision (mixed $number, int $precision = 3)
Parameters
* $number (floar) — The value to covert
* $precision (integer) — The number of decimal places to display

This method displays a number with the specified amount of precision (decimal places). It will round
in order to maintain the level of precision defined.:

// called as NumberHelper

echo $this->Number->precision (456.91873645, 2);
// Outputs
456.92

// called as CakeNumber
App: :uses (! CakeNumber’, ’'Utility’);
echo CakeNumber: :precision(456.91873645, 2);

NumberHelper: : toPercentage (mixed $number, int $precision = 2, array $options = ar-
ray())
Parameters

* $number (floar) — The value to covert.
* $precision (integer) — The number of decimal places to display.

* Soptions (array) — Options, see below.

Option | Description
multi- | Boolean to indicate whether the value has to be multiplied by 100. Useful for decimal
ply percentages.

Like precision(), this method formats a number according to the supplied precision (where numbers
are rounded to meet the given precision). This method also expresses the number as a percentage and
prepends the output with a percent sign.:

// Called as NumberHelper. Output: 45.69%
echo $this->Number->toPercentage (45.691873645);

// Called as CakeNumber. Output: 45.69%
App: :uses (! CakeNumber’, ’"Utility’);
echo CakeNumber: :toPercentage (45.691873645) ;

// Called with multiply. Output: 45.69%
echo CakeNumber::toPercentage (0.45691, 2, array (
"multiply’ => true
))
New in version 2.4: The Soptions argument with the multiply option was added.
NumberHelper: : fromReadableSize (string $size, $default)

Parameters

More about Views 167

CakePHP Cookbook Documentation, Release 2.x

* $size (string) — The formatted human readable value.
This method unformats a number from a human readable byte size to an integer number of bytes.
New in version 2.3: This method was added in 2.3
NumberHelper: : toReadableSize (string $dataSize)
Parameters
* $dataSize (string) — The number of bytes to make readable.

This method formats data sizes in human readable forms. It provides a shortcut way to convert bytes
to KB, MB, GB, and TB. The size is displayed with a two-digit precision level, according to the size
of data supplied (i.e. higher sizes are expressed in larger terms):

// called as NumberHelper

echo $this->Number->toReadableSize (0); // 0 Bytes

echo $this->Number—>toReadableSize (1024); // 1 KB

echo S$this—>Number->toReadableSize (1321205.76); // 1.26 MB
echo $this->Number—->toReadableSize (5368709120); // 5.00 GB

// called as CakeNumber

App: :uses (' CakeNumber’, ’'Utility’);

echo CakeNumber::toReadableSize (0); // 0 Bytes

echo CakeNumber: :toReadableSize (1024); // 1 KB

echo CakeNumber::toReadableSize (1321205.76); // 1.26 MB
echo CakeNumber::toReadableSize (5368709120); // 5.00 GB

NumberHelper: : format (mixed $number, mixed $options=false)
This method gives you much more control over the formatting of numbers for use in your views (and
is used as the main method by most of the other NumberHelper methods). Using this method might
looks like:

// called as NumberHelper
Sthis->Number->format ($number, S$Soptions);

// called as CakeNumber
CakeNumber: : format (Snumber, Soptions);

The $number parameter is the number that you are planning on formatting for output. With no $op-
tions supplied, the number 1236.334 would output as 1,236. Note that the default precision is zero
decimal places.

The $options parameter is where the real magic for this method resides.
*If you pass an integer then this becomes the amount of precision or places for the function.
*If you pass an associated array, you can use the following keys:
—places (integer): the amount of desired precision
—before (string): to be put before the outputted number
—escape (boolean): if you want the value in before to be escaped

—decimals (string): used to delimit the decimal places in a number

168 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

—thousands (string): used to mark off thousand, millions, ... places
Example:

// called as NumberHelper
echo $this->Number->format ('123456.7890’, array (
"places’ => 2,
"before’ => '¥ 7,
"escape’ => false,
"decimals’ => '’ .’
"thousands’ => ',

Y)
// output ‘¥ 123,456.79’

// called as CakeNumber
App: :uses (' CakeNumber’, ’'Utility’);
echo CakeNumber::format (’123456.7890’, array (
"places’ => 2,
"before’ => '¥ ',
"escape’ => false,
"decimals’ => ' .’/
"thousands’ => '’ ,’

Y) i
// output ‘¥ 123,456.79’

NumberHelper: : formatDelta (mixed $number, mixed $options=array())
This method displays differences in value as a signed number:

// called as NumberHelper
Sthis—->Number->formatDelta ($number, Soptions);

// called as CakeNumber
CakeNumber: : formatDelta ($Snumber, S$Soptions);

The $number parameter is the number that you are planning on formatting for output. With no $op-
tions supplied, the number 1236.334 would output as 1,236. Note that the default precision is zero
decimal places.

The $options parameter takes the same keys as CakeNumber: : format () itself:
eplaces (integer): the amount of desired precision
*before (string): to be put before the outputted number
eafter (string): to be put after the outputted number
edecimals (string): used to delimit the decimal places in a number
sthousands (string): used to mark off thousand, millions, ... places
Example:

// called as NumberHelper

echo $this->Number->formatDelta (’123456.7890’, array (
"places’ => 2,
"decimals’ => ".’,

More about Views 169

CakePHP Cookbook Documentation, Release 2.x

"thousands’ => ',’

)) i
// output ’+123,456.79’

// called as CakeNumber

App: :uses (! CakeNumber’, ’"Utility’);

echo CakeNumber: :formatDelta (’123456.7890", array (
"places’ => 2,
"decimals’ => ".’,
"thousands’ => ',’

))

// output ’+123,456.79"

New in version 2.3: This method was added in 2.3

Warning: Since 2.4 the symbols are now UTF-8. Please see the migration guide for details if you run a
non-UTF-8 app.

Paginator

class PaginatorHelper (View $view, array $settings = array())

The Pagination helper is used to output pagination controls such as page numbers and next/previous links.
It works in tandem with PaginatorComponent.

See also Pagination for information on how to create paginated datasets and do paginated queries.

Creating sort links

PaginatorHelper: : sort ($key, $title = null, $options = array())
Parameters
* $key (string) — The name of the key that the recordset should be sorted.

o $title (string) — Title for the link. If $title is null $key will be used for the title and
will be generated by inflection.

* Soptions (array) — Options for sorting link.

Generates a sorting link. Sets named or querystring parameters for the sort and direction. Links will default
to sorting by asc. After the first click, links generated with sort () will handle direction switching auto-
matically. Link sorting default by ‘asc’. If the resultset is sorted ‘asc’ by the specified key the returned link
will sort by ‘desc’.

Accepted keys for Soptions:
* escape Whether you want the contents HTML entity encoded, defaults to true.
¢ model The model to use, defaults to PaginatorHelper: :defaultModel ().

e direction The default direction to use when this link isn’t active.

170 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

* lock Lock direction. Will only use the default direction then, defaults to false.

New in version 2.5: You can now set the lock option to true in order to lock the sorting direction into
the specified direction.

Assuming you are paginating some posts, and are on page one:

echo Sthis->Paginator->sort (‘user_id’);

Output:

User Id

You can use the title parameter to create custom text for your link:

echo $this->Paginator->sort (‘user_id’, ’'User account’);

Output:

User account

If you are using HTML like images in your links remember to set escaping off:
echo $this->Paginator->sort (

"user_id’,

'User account’,

array (' escape’ => false)
)

Output:

User account

The direction option can be used to set the default direction for a link. Once a link is active, it will automat-
ically switch directions like normal:

echo Sthis->Paginator->sort (‘user_id’, null, array(’direction’ => ’desc’));

Output:

User Id

The lock option can be used to lock sorting into the specified direction:

echo Sthis—->Paginator—>sort (‘user_id’, null, array(’direction’ => ’'asc’, ’lock’

PaginatorHelper: : sortDir (string $model = null, mixed $options = array())
Gets the current direction the recordset is sorted.

PaginatorHelper: : sortKey (string $model = null, mixed $options = array())
Gets the current key by which the recordset is sorted.

More about Views 171

=> true));

CakePHP Cookbook Documentation, Release 2.x

Creating page number links

PaginatorHelper: :numbers ($options = array())

Returns a set of numbers for the paged result set. Uses a modulus to decide how many numbers to show on
each side of the current page By default 8 links on either side of the current page will be created if those
pages exist. Links will not be generated for pages that do not exist. The current page is also not a link.

Supported options are:

before Content to be inserted before the numbers.

after Content to be inserted after the numbers.

model Model to create numbers for, defaults to PaginatorHelper: :defaultModel ().
modulus how many numbers to include on either side of the current page, defaults to 8.
separator Separator content defaults to ““ | “¢

tag The tag to wrap links in, defaults to ‘span’.

first Whether you want first links generated, set to an integer to define the number of ‘first’ links
to generate. Defaults to false. If a string is set a link to the first page will be generated with the value
as the title:

echo Sthis->Paginator->numbers (array (' first’ => 'First page’));
last Whether you want last links generated, set to an integer to define the number of ‘last’ links

to generate. Defaults to false. Follows the same logic as the first option. There is a last () °
method to be used separately as well if you wish.

ellipsis Ellipsis content, defaults to ‘...’
class The class name used on the wrapping tag.
currentClass The class name to use on the current/active link. Defaults to current.

currentTag Tag to use for current page number, defaults to null. This allows you to generate for
example Twitter Bootstrap like links with the current page number wrapped in extra ‘a’ or ‘span’ tag.

While this method allows a lot of customization for its output. It is also ok to just call the method without
any params.:

echo

Sthis—->Paginator—->numbers () ;

Using the first and last options you can create links to the beginning and end of the page set. The following
would create a set of page links that include links to the first 2 and last 2 pages in the paged results:

echo Sthis—->Paginator—->numbers (array ('’ first’ => 2, ’last’ => 2));

New in version 2.1: The currentClass option was added in 2.1.

New in version 2.3: The current Tag option was added in 2.3.

172

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Creating jump links

In addition to generating links that go directly to specific page numbers, you’ll often want links that go to
the previous and next links, first and last pages in the paged data set.

PaginatorHelper: :prev ($title = ‘<< Previous’, $options = array(), $disabledTitle = null,
$disabledOptions = array())

Parameters
o Stitle (string) — Title for the link.
* $options (mixed) — Options for pagination link.

* $disabledTitle (string) — Title when the link is disabled, as when you’re already
on the first page, no previous page to go.

* $disabledOptions (mixed) — Options for the disabled pagination link.
Generates a link to the previous page in a set of paged records.
Soptions and $disabledOptions supports the following keys:

*t ag The tag wrapping tag you want to use, defaults to ‘span’. Set this to false to disable this
option.

*escape Whether you want the contents HTML entity encoded, defaults to true.
*model The model to use, defaults to PaginatorHelper: :defaultModel ().
*disabledTag Tag to use instead of A tag when there is no previous page

A simple example would be:

echo Sthis->Paginator->prev (
" << " . _ _('"previous’),
array (),
null,

array (' class’ => 'prev disabled’)

)i

If you were currently on the second page of posts, you would get the following:

<< previous

If there were no previous pages you would get:

<< previous

You can change the wrapping tag using the t ag option:

echo $this->Paginator->prev(__ ('previous’), array(’'tag’ => "1i’));

More about Views 173

CakePHP Cookbook Documentation, Release 2.x

Output:

<1li class="prev">

previous

</1li>
You can also disable the wrapping tag:

echo S$this->Paginator->prev(__ ('previous’), array(’'tag’ => false));

Output:

<a class="prev" rel="prev"
href="/posts/index/page:1/sort:title/order:desc">
previous

Changed in version 2.3: For methods: PaginatorHelper: :prev () and
PaginatorHelper::next () it is now possible to set the tag option to false to disable the
wrapper. New options disabledTag has been added.

If you leave the $disabledOptions empty the Soptions parameter will be used. This can save some
additional typing if both sets of options are the same.

PaginatorHelper: :next ($title = ‘Next >>’, $options = array(), $disabledTitle = null, $dis-

abledOptions = array())
This method is identical to prev () with a few exceptions. It creates links pointing to the next page

instead of the previous one. It also uses next as the rel attribute value instead of prev

PaginatorHelper: : first ($first = ‘<< first’, $options = array())
Returns a first or set of numbers for the first pages. If a string is given, then only a link to the first
page with the provided text will be created:

echo $this->Paginator->first (’'< first’);
The above creates a single link for the first page. Will output nothing if you are on the first page. You
can also use an integer to indicate how many first paging links you want generated:
echo $this->Paginator->first (3);
The above will create links for the first 3 pages, once you get to the third or greater page. Prior to that
nothing will be output.
The options parameter accepts the following:
*t ag The tag wrapping tag you want to use, defaults to ‘span’
eafter Content to insert after the link/tag
emodel The model to use defaults to PaginatorHelper: :defaultModel ()
*separator Content between the generated links, defaults to | ¢

*c11lipsis Content for ellipsis, defaults to ‘...

174 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

PaginatorHelper: :last ($last = ‘last >>’, $options = array())
This method works very much like the £irst () method. It has a few differences though. It will not
generate any links if you are on the last page for a string values of $1ast. For an integer value of
$1last no links will be generated once the user is inside the range of last pages.

PaginatorHelper: :current (string $model = null)
Gets the current page of the recordset for the given model:

// Our URL is: http://example.com/comments/view/page:3
echo $this->Paginator->current (' Comment’) ;
// Output is 3

PaginatorHelper: :hasNext (string $model = null)
Returns true if the given result set is not at the last page.

PaginatorHelper: :hasPrev (string $model = null)
Returns true if the given result set is not at the first page.

PaginatorHelper: :hasPage (string $model = null, integer $page = 1)
Returns true if the given result set has the page number given by $page.

Creating a page counter

PaginatorHelper: : counter (Soptions = array())

Returns a counter string for the paged result set. Using a provided format string and a number of options
you can create localized and application specific indicators of where a user is in the paged data set.

There are a number of options for counter (). The supported ones are:

* format Format of the counter. Supported formats are ‘range’, ‘pages’ and custom. Defaults to pages
which would output like ‘1 of 10’. In the custom mode the supplied string is parsed and tokens are
replaced with actual values. The available tokens are:

— {:page} - the current page displayed.

— {:pages} - total number of pages.

— {:current} - current number of records being shown.
— {:count} - the total number of records in the result set.
— {:start} - number of the first record being displayed.

— {:end} - number of the last record being displayed.

— {:model} - The pluralized human form of the model name. If your model was ‘RecipePage’,
{ :model} would be ‘recipe pages’. This option was added in 2.0.

You could also supply only a string to the counter method using the tokens available. For example:

echo $this->Paginator->counter (
"Page {:page} of {:pages}, showing {:current} records out of
{:count} total, starting on record {:start}, ending on {:end}’

)i

More about Views 175

CakePHP Cookbook Documentation, Release 2.x

Setting ‘format’ to range would output like ‘1 - 3 of 13’:

echo S$this->Paginator->counter (array (
"format’ => ’range’

)) i

* separator The separator between the actual page and the number of pages. Defaults to * of *. This
is used in conjunction with ‘format’ = ‘pages’ which is ‘format’ default value:

echo $this->Paginator—->counter (array (
"separator’” => ' of a total of '
))
* model The name of the model being paginated, defaults to
PaginatorHelper::defaultModel (). This is used in conjunction with the custom

string on ‘format’ option.

Modifying the options PaginatorHelper uses

PaginatorHelper: :options (Soptions = array())
Parameters

* Soptions (mixed) — Default options for pagination links. If a string is supplied - it
is used as the DOM id element to update.

Sets all the options for the Paginator Helper. Supported options are:
* url The URL of the paginating action. ‘url’ has a few sub options as well:
— sort The key that the records are sorted by.
— direction The direction of the sorting. Defaults to ‘ASC’.
— page The page number to display.

The above mentioned options can be used to force particular pages/directions. You can also append
additional URL content into all URLs generated in the helper:

$Sthis->Paginator->options (array (
"url’ => array (
"sort’ => 'email’, ’'direction’ => ’'desc’, ’'page’ => 6,

"lang’ => ’en’

)) i

The above adds the en route parameter to all links the helper will generate. It will also create links
with specific sort, direction and page values. By default PaginatorHelper will merge in all of the
current pass and named parameters. So you don’t have to do that in each view file.

* escape Defines if the title field for links should be HTML escaped. Defaults to true.

» update The CSS selector of the element to update with the results of AJAX pagination calls. If not
specified, regular links will be created:

176 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

$this—->Paginator—>options (array (' update’ => ’#content’));

This is useful when doing AJAX Pagination. Keep in mind that the value of update can be any valid
CSS selector, but most often is simpler to use an id selector.

* model The name of the model being paginated, defaults to
PaginatorHelper::defaultModel ().

Using GET parameters for pagination Normally Pagination in CakePHP uses Named Parameters. There
are times you want to use GET parameters instead. While the main configuration option for this feature is
in PaginatorComponent, you have some additional control in the view. You can use options () to
indicate that you want other named parameters to be converted:

Sthis->Paginator->options (array (
"convertKeys’ => array(’'your’, ’'keys’, "here’)

)) i

Configuring the PaginatorHelper to use a JavaScript helper By default the PaginatorHelper uses
JsHelper todo AJAX features. However, if you don’t want that and want to use a custom helper for AJAX
links, you can do so by changing the Shelpers array in your controller. After running paginate () do
the following:

// In your controller action.
Sthis—->set ('posts’, S$this->paginate());
Sthis->helpers|[’Paginator’] = array(’ajax’ => ’'Customds’);

Will change the PaginatorHelper to use the CustomJs for AJAX operations. You could also set
the ‘ajax’ key to be any helper, as long as that class implements a 1ink () method that behaves like
HtmlHelper::1link ()

Pagination in Views

It’s up to you to decide how to show records to the user, but most often this will be done inside HTML
tables. The examples below assume a tabular layout, but the PaginatorHelper available in views doesn’t
always need to be restricted as such.

See the details on PaginatorHelper® in the API. As mentioned, the PaginatorHelper also offers sorting fea-
tures which can be easily integrated into your table column headers:

// app/View/Posts/index.ctp
<table>
<tr>
<th><?php echo S$this->Paginator->sort (’id’, ’'ID’); ?></th>
<th><?php echo S$this->Paginator->sort (’'title’, ’'Title’); ?></th>
</tr>
<?php foreach (Sdata as Srecipe): ?>
<tr>

“http://api.cakephp.org/2.4/class-PaginatorHelper.html

More about Views 177

http://api.cakephp.org/2.4/class-PaginatorHelper.html

CakePHP Cookbook Documentation, Release 2.x

<td><?php echo S$recipe[’Recipe’][’id’]; ?> </td>
<td><?php echo h($recipe[’Recipe’][’'title’]); ?> </td>
</tr>
<?php endforeach; 7>
</table>

The links output from the sort () method of the PaginatorHelper allow users to click on table headers
to toggle the sorting of the data by a given field.

It is also possible to sort a column based on associations:

<table>
<tr>
<th><?php echo Sthis->Paginator->sort (’title’, ’‘Title’); ?></th>
<th><?php echo Sthis—>Paginator—->sort (’Author.name’, ’Author’); ?></th>
</tr>
<?php foreach (Sdata as Srecipe): ?>
<tr>
<td><?php echo h(Srecipe[’Recipe’][’title’]),; ?> </td>
<td><?php echo h(Srecipe([’Author’] [’name’]); ?> </td>
</tr>
<?php endforeach; ?>
</table>

The final ingredient to pagination display in views is the addition of page navigation, also supplied by the
PaginationHelper:

// Shows the page numbers
echo S$this->Paginator—>numbers() ;

// Shows the next and previous links
echo S$this->Paginator->prev (

"« Previous’,

null,

null,

array (’'class’ => ’'disabled’)
)i
echo S$this->Paginator->next (

"Next »’,

null,

null,

array (’'class’ => ’'disabled’)
)i

// prints X of Y, where X is current page and Y is number of pages
echo $this->Paginator->counter () ;

The wording output by the counter() method can also be customized using special markers:

echo Sthis->Paginator—>counter (array (
"format’ => ’'Page {:page} of {:pages}, showing {:current} records out of
{:count} total, starting on record {:start}, ending on {:end}’

)) i

178 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Other Methods

PaginatorHelper: : link ($title, $url = array(), $options = array())
Parameters
* Stitle (string) — Title for the link.
* $url (mixed) — Url for the action. See Router::url()
* Soptions (array) — Options for the link. See options() for list of keys.
Accepted keys for Soptions:
supdate The Id of the DOM element you wish to update. Creates AJAX enabled links.
*escape Whether you want the contents HTML entity encoded, defaults to true.
*'model The model to use, defaults to PaginatorHelper: :defaultModel ().
Creates a regular or AJAX link with pagination parameters:

echo Sthis->Paginator->link(’Sort by title on page 5’,
array (’'sort’ => ’title’, ’'page’ => 5, ’'direction’ => ’desc’));

If created in the view for /posts/index Would create a link pointing at
‘/posts/index/page:S/sort:title/direction:desc’

PaginatorHelper: :url ($options = array(), $asArray = false, $model = null)

Parameters

* $options (array) — Pagination/URL options array. As used on options () or
link () method.

* $asArray (boolean) — Return the URL as an array, or a URI string. Defaults to
false.

* $model (string) — Which model to paginate on
By default returns a full pagination URL string for use in non-standard contexts (i.e. JavaScript).:

echo $this->Paginator->url (array (’sort’ => ’'title’), true);

PaginatorHelper: :defaultModel ()
Gets the default model of the paged sets or null if pagination is not initialized.

PaginatorHelper: :params (string $model = null)
Gets the current paging parameters from the resultset for the given model:

debug ($this—->Paginator—->params ()) ;
J/ *
Array
(
[page] => 2
[current] => 2
[count] => 43
[prevPage] => 1

More about Views 179

CakePHP Cookbook Documentation, Release 2.x

[nextPage] => 3
[pageCount] => 3
[order] =>
[I1imit] => 20
[options] => Array
(
[page] => 2
[conditions] => Array
(
)
)
[paramType] => named

)
*/

PaginatorHelper: :param (siring $key, string $model = null)
Gets the specific paging parameter from the resultset for the given model:

debug ($this->Paginator->param(’count’));
/ *

(int) 43

*/

New in version 2.4: The param () method was added in 2.4.

RSS

class RssHelper (View $view, array $settings = array())

The RSS helper makes generating XML for RSS feeds easy.

Creating an RSS feed with the RssHelper

This example assumes you have a Posts Controller and Post Model already created and want to make an
alternative view for RSS.

Creating an xml/rss version of posts/index is a snap with CakePHP. After a few simple steps you can simply
append the desired extension .rss to posts/index making your URL posts/index.rss. Before
we jump too far ahead trying to get our webservice up and running we need to do a few things. First
parseExtensions needs to be activated, this is done in app/Config/routes.php:

Router: :parseExtensions (' rss’);

In the call above we’ve activated the .rss extension. When using Router: :parseExtensions () you
can pass as many arguments or extensions as you want. This will activate each extension/content-type for
use in your application. Now when the address posts/index.rss is requested you will get an xml
version of your posts/index. However, first we need to edit the controller to add in the rss-specific
code.

180 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Controller Code It is a good idea to add RequestHandler to your PostsController’s $components array.
This will allow a lot of automagic to occur:

public Scomponents = array (’RequestHandler’);

Our view will also use the TextHelper for formatting, so that should be added to the controller as well:

public Shelpers = array(’Text’);

Before we can make an RSS version of our posts/index we need to get a few things in order. It may
be tempting to put the channel metadata in the controller action and pass it to your view using the
Controller: :set () method but this is inappropriate. That information can also go in the view. That
will come later though, for now if you have a different set of logic for the data used to make the RSS feed
and the data for the HTML view you can use the RequestHandler: : isRss () method, otherwise your
controller can stay the same:

// Modify the Posts Controller action that corresponds to
// the action which deliver the rss feed, which is the
// index action in our example

public function index () {
if (Sthis->RequestHandler->isRss ()) {
Sposts = $this->Post->find/(
rall’,
array (’'limit’ => 20, ’'order’ => ’'Post.created DESC’)

)i

return $this->set (compact ("posts’));

// this is not an Rss request, so deliver
// data used by website’s interface
Sthis->paginate[’/Post’] = array (
"order’ => ’'Post.created DESC’,
"limit’ => 10
) ;

Sposts = Sthis->paginate();
Sthis->set (compact (' posts’));

With all the View variables set we need to create an rss layout.

Layout An Rss layout is very simple, put the following contents in
app/View/Layouts/rss/default.ctp:

if (!isset (SdocumentData)) {
SdocumentData = array() ;

}

if (!isset (SchannelData)) {
SchannelData = array();

}

if (!isset (SchannelData[’title’])) {
SchannelData[’title’] = Sthis->fetch(’'title’);

More about Views 181

CakePHP Cookbook Documentation, Release 2.x

}
Schannel = $this->Rss—->channel (array (), SchannelData, S$this->fetch(’content’));
echo $this->Rss—->document (SdocumentData, Schannel);

It doesn’t look like much but thanks to the power in the RssHelper it’s doing a lot of lifting for us. We
haven’t set SdocumentData or $SchannelData in the controller, however in CakePHP your views can
pass variables back to the layout. Which is where our $channelData array will come from setting all of
the meta data for our feed.

Next up is view file for my posts/index. Much like the layout file we created, we need to create a
View/Posts/rss/ directory and create a new index.ctp inside that folder. The contents of the file
are below.

View Our view, located at app/View/Posts/rss/index.ctp, begins by setting the
$documentData and $channelData variables for the layout, these contain all the metadata for
our RSS feed. This is done by using the View: :set () method which is analogous to the Con-
troller::set() method. Here though we are passing the channel’s metadata back to the layout:

Sthis—->set (' channelData’, array (
"title’” => __ ("Most Recent Posts"),
link’ => S$this->Html->url(’/’, true),
"description’ => __ ("Most recent posts."),
"language’ => ’'en-us’

)) i

The second part of the view generates the elements for the actual records of the feed. This is accomplished
by looping through the data that has been passed to the view ($items) and using the RssHelper::item ()
method. The other method you can use, RssHelper: :items () which takes a callback and an ar-
ray of items for the feed. (The method I have seen used for the callback has always been called
transformRss (). There is one downfall to this method, which is that you cannot use any of the other
helper classes to prepare your data inside the callback method because the scope inside the method does not
include anything that is not passed inside, thus not giving access to the TimeHelper or any other helper that
you may need. The RssHelper: :item () transforms the associative array into an element for each key
value pair.

Note: You will need to modify the $postLink variable as appropriate to your application.

foreach (Sposts as Spost) {
SpostTime = strtotime (Spost[’Post’][’created’]);

SpostLink = array (
"controller’ => ’'posts’,

"action’ => ’'view’,
"year’ => date('Y’, SpostTime),
"month’ => date('m’, SpostTime),

"day’ => date(’d’, SpostTime),
Spost ["Post’] [’slug’]
)

// Remove & escape any HTML to make sure the feed content will validate.

182 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

SbodyText = h(strip_tags(Spost[’Post’]['body’]1));
— "jt

SbodyText = S$Sthis->Text->truncate (SbodyText, 400, array (
"ending’ => ’"...',
"exact’ => true,
"html’ => true,

)) i

echo S$this->Rss—->item(array (), array (
"title’ => Spost[’Post’][’'title’],
link’ => S$postLink,
"guid’ => array(’'url’ => S$postLink, ’isPermalink’ => ’true’),
"description’ => SbodyText,
"pubDate’ => S$post[’Post’][’created’]

)) i

}

You can see above that we can use the loop to prepare the data to be transformed into XML elements. It
is important to filter out any non-plain text characters out of the description, especially if you are using
a rich text editor for the body of your blog. In the code above we used strip_tags () and h() to
remove/escape any XML special characaters from the content, as they could cause validation errors. Once
we have set up the data for the feed, we can then use the RssHelper: :item () method to create the
XML in RSS format. Once you have all this setup, you can test your RSS feed by going to your site
/posts/index.rss and you will see your new feed. It is always important that you validate your RSS
feed before making it live. This can be done by visiting sites that validate the XML such as Feed Validator
or the w3c site at http://validator.w3.org/feed/.

Note: You may need to set the value of ‘debug’ in your core configuration to 1 or to O to get a valid feed,
because of the various debug information added automagically under higher debug settings that break XML

syntax or feed validation rules.

Rss Helper API

property RssHelper: :Saction
Current action

property RssHelper: : Sbase
Base URL

property RssHelper: : Sdata
POSTed model data

property RssHelper: :$field
Name of the current field

property RssHelper: : Shelpers
Helpers used by the RSS Helper

property RssHelper: : Shere
URL to current action

More about Views 183

http://validator.w3.org/feed/

CakePHP Cookbook Documentation, Release 2.x

property RssHelper: : Smodel
Name of current model

property RssHelper: : Sparams
Parameter array

property RssHelper: : Sversion
Default spec version of generated RSS.

RssHelper: :channel (array $attrib = array (), array $elements = array (), mixed $content =

null)
Return type string

Returns an RSS <channel /> element.
RssHelper: : document (array $attrib = array (), string $content = null)
Return type string
Returns an RSS document wrapped in <rss /> tags.

RssHelper: :elem (string $name, array $attrib = array (), mixed $content = null, boolean $end-
Tag = true)

Return type string
Generates an XML element.
RssHelper: :item (array $att = array (), array $elements = array ())
Return type string
Converts an array into an <item /> element and its contents.
RssHelper: :items (array $items, mixed $callback = null)
Return type string
Transforms an array of data using an optional callback, and maps it to a set of <item /> tags.
RssHelper: :time (mixed $time)
Return type string

Converts a time in any format to an RSS time. See TimeHelper: :toRSS ().

SessionHelper

class SessionHelper (View $view, array $settings = array())

As a natural counterpart to the Session Component, the Session Helper replicates most of the component’s
functionality and makes it available in your view.

The major difference between the Session Helper and the Session Component is that the helper does not
have the ability to write to the session.

As with the Session Component, data is read by using dot notation array structures:

184 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

array (' User’ => array (
"username’ => ’super(@example.com’

)) i

Given the previous array structure, the node would be accessed by User.username, with the dot in-
dicating the nested array. This notation is used for all Session helper methods wherever a $Skey is used.

SessionHelper: :read (string $key)
Return type mixed
Read from the Session. Returns a string or array depending on the contents of the session.
SessionHelper: :check (string $key)
Return type boolean
Check to see whether a key is in the Session. Returns a boolean representing the key’s existence.
SessionHelper: :error ()
Return type string
Returns last error encountered in a session.
SessionHelper: :valid ()
Return type boolean

Used to check whether a session is valid in a view.

Displaying notifications or flash messages

SessionHelper: : flash (string $key = ‘flash’, array $params = array())
Return type string

As explained in Creating notification messages, you can create one-time notifications for feedback.
After creating messages with SessionComponent: :setFlash (), you will want to display
them. Once a message is displayed, it will be removed and not displayed again:

echo $this->Session->flash{();

The above will output a simple message with the following HTML.:

<div id="flashMessage" class="message">
Your stuff has been saved.
</div>

As with the component method, you can set additional properties and customize which element is
used. In the controller, you might have code like:

// in a controller
Sthis—->Session->setFlash (/' The user could not be deleted.’);

More about Views 185

CakePHP Cookbook Documentation, Release 2.x

When outputting this message, you can choose the element used to display the message:

// in a layout.
echo $this->Session->flash(’flash’, array(’'element’ => ’failure’));

This would use View/Elements/failure. ctp to render the message. The message text would
be available as Smessage in the element.

The failure element would contain something like this:

<div class="flash flash-failure">
<?php echo h (Smessage); ?>
</div>

You can also pass additional parameters into the £1ash () method, which allows you to generate
customized messages:

// In the controller
Sthis->Session->setFlash (’ Thanks for your payment.’);

// In the layout.

echo Sthis->Session->flash(’ flash’, array (
"params’ => array(’'name’ => Suser[’User’][’'name’])
"element’ => ’payment’

)) i

// View/Elements/payment.ctp
<div class="flash payment">

<?php printf (Smessage, h(Sname)); ?>
</div>

Note: By default, CakePHP does not escape the HTML in flash messages. If you are using any
request or user data in your flash messages, you should escape it with h when formatting your mes-

sages.

TextHelper

class TextHelper (View $view, array $settings = array())

The TextHelper contains methods to make text more usable and friendly in your views. It aids in enabling
links, formatting URLs, creating excerpts of text around chosen words or phrases, highlighting key words
in blocks of text, and gracefully truncating long stretches of text.

Changed in version 2.1: Several Text Helper methods have been moved into the St ring class to allow
easier use outside of the View layer. Within a view, these methods are accessible via the TextHelper class.
You can call one as you would call a normal helper method: $this->Text->method ($args) ;.

TextHelper: :autoLinkEmails (string $text, array $options=array())
Parameters

o S$text (srring) — The text to convert.

186 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

* Soptions (array) — An array of hrml attributes for the generated links.

Adds links to the well-formed email addresses in $text, according to any options defined in
ShtmlOptions (see HtmlHelper: :1ink ()).:

SmyText = 'For more information regarding our world-famous '
"pastries and desserts, contact infolexample.com’;
SlinkedText = $this-—>Text->autoLinkEmails (SmyText) ;

Output:

For more information regarding our world-famous pastries and desserts,
contact infol@example.com

Changed in version 2.1: In 2.1 this method automatically escapes its input. Use the escape option
to disable this if necessary.

TextHelper: :autoLinkUrls (string $text, array $ShtimlOptions=array())
Parameters
o S$text (string) — The text to convert.
* $htmlOptions (array) — An array himl attributes for the generated links

Same as autoLinkEmails (), only this method searches for strings that start with https, http, ftp,
or nntp and links them appropriately.

Changed in version 2.1: In 2.1 this method automatically escapes its input. Use the escape option
to disable this if necessary.

TextHelper: :autoLink (string $text, array $htmlOptions=array())
Parameters
o $text (string) — The text to autolink.
* $htmlOptions (array) — An array himl attributes for the generated links

Performs the functionality in both autoLinkUrls () and autoLinkEmails () on the supplied
Stext. All URLs and emails are linked appropriately given the supplied $ShtmlOptions.

Changed in version 2.1: As of 2.1, this method automatically escapes its input. Use the escape
option to disable this if necessary.

TextHelper: :autoParagraph (string $text)
Parameters
o S$text (string) — The text to convert.

Adds proper <p> around text where double-line returns are found, and
 where single-line returns
are found.:

SmyText = ’'For more information
regarding our world-famous pastries and desserts.

More about Views 187

CakePHP Cookbook Documentation, Release 2.x

contact info@example.com’;
SformattedText = Sthis->Text->autoParagraph (SmyText) ;

Output:

<p>For more information

regarding our world-famous pastries and desserts.<p>
<p>contact infolexample.com</p>

New in version 2.4.
TextHelper: :highlight (string $haystack, string $needle, array $options = array())
Parameters
* $haystack (string) — The string to search.
* $needle (string) — The string to find.
* $options (array) — An array of options, see below.

Highlights $needle in $Shaystack using the Soptions [’ format’] string specified or a de-
fault string.

Options:

*‘format’ - string The piece of HTML with that the phrase will be highlighted

*‘html’ - bool If true, will ignore any HTML tags, ensuring that only the correct text is highlighted
Example:

// called as TextHelper
echo Sthis-—>Text->highlight (
SlastSentence,
"using’,
array (' format’ => ’\1’)

)i

// called as String
App::uses (/' String’, 'Utility’);
echo String::highlight (
SlastSentence,
"using’,
array (' format’ => ’\1")
)i

Output:

Highlights $needle in S$haystack using
the Soptions[’format’] string specified or a default string.

TextHelper: :stripLinks ($rext)
Strips the supplied $text of any HTML links.

TextHelper: :truncate (string $text, int $length=100, array $options)

188 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Parameters
o S$text (string) — The text to truncate.

* $length (inr) — The length, in characters, beyond which the text should be trun-
cated.

* Soptions (array) — An array of options to use.

If Stext is longer than $1ength characters, this method truncates it at $1ength and adds a prefix
consisting of “ellipsis’, if defined. If ' exact’ is passed as false, the truncation will occur
at the first whitespace after the point at which $1ength is exceeded. If " html’ is passed as true,
HTML tags will be respected and will not be cut off.

Soptions is used to pass all extra parameters, and has the following possible keys by default, all of
which are optional:

array (
"ellipsis’ => '"...',
"exact’ => true,

"html’ => false

Example:

// called as TextHelper
echo $Sthis—>Text->truncate (
"The killer crept forward and tripped on the rug.’,
22,
array (
"ellipsis’ => "...',
"exact’ => false

)i

// called as String
App::uses (/' String’, 'Utility’);
echo String::truncate (
"The killer crept forward and tripped on the rug.’,

22,
array (
"ellipsis’ => "...",
"exact’ => false
)
)
Output:

The killer crept...

Changed in version 2.3: ending has been replaced by el1ipsis. ending is still used in 2.2.1

TextHelper: :tail (string $text, int $length=100, array $options)

Parameters

More about Views 189

CakePHP Cookbook Documentation, Release 2.x

o $text (string) — The text to truncate.

* $length (int) — The length, in characters, beyond which the text should be trun-
cated.

* Soptions (array) — An array of options to use.

If $text is longer than $1ength characters, this method removes an initial substring with length
consisting of the difference and prepends a suffix consisting of "ellipsis’, if defined. If
"exact'’ is passed as false, the truncation will occur at the first whitespace prior to the point
at which truncation would otherwise take place.

Soptions is used to pass all extra parameters, and has the following possible keys by default, all of
which are optional:

array (
"ellipsis’ => "...",
"exact’ => true

New in version 2.3.
Example:

l4

SsampleText = ’I packed my bag and in it I put a PSP, a PS3, a TV,
"a C# program that can divide by zero, death metal t-shirts’

// called as TextHelper

echo $Sthis-—>Text->tail (
SsampleText,
70,
array (
"ellipsis’ => ’"...',

"exact’ => false

)i

// called as String
App::uses (/' String’, 'Utility’);
echo String::tail(

SsampleText,

70,
array (
"ellipsis’ => "...',
"exact’ => false
)
)i
Output:

..a TV, a C# program that can divide by zero, death metal t-shirts

TextHelper: :excerpt (string $haystack, string $needle, integer $radius=100, string $ellip-
sis="..."")

Parameters

190 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

¢ $haystack (string) — The string to search.
* $needle (string) — The string to excerpt around.

* $radius (int) — The number of characters on either side of $needle you want to
include.

* Sellipsis (string) — Text to append/prepend to the beginning or end of the result.

Extracts an excerpt from $haystack surrounding the $needle with a number of characters on
each side determined by $radius, and prefix/suffix with $ellipsis. This method is especially
handy for search results. The query string or keywords can be shown within the resulting document.:

// called as TextHelper
echo $this->Text->excerpt ($lastParagraph, ’'method’, 50, ’'...");

// called as String
App::uses ('’ String’, ’'Utility’);
echo String::excerpt ($lastParagraph, ’‘method’, 50, "...");

Output:

by $radius, and prefix/suffix with Sellipsis. This method is
especially handy for search results. The query...

TextHelper: :toList (array $list, $and="and’)
Parameters
* Slist (array) — Array of elements to combine into a list sentence.
* $and (string) — The word used for the last join.
Creates a comma-separated list where the last two items are joined with ‘and’.:

// called as TextHelper
echo $this-—>Text->tolList (Scolors);

// called as String

App::uses (/' String’, 'Utility’);
echo String::tolList (Scolors);

Output:

red, orange, yellow, green, blue, indigo and violet

TimeHelper

class TimeHelper (View $view, array $settings = array())

The Time Helper does what it says on the tin: saves you time. It allows for the quick processing of time
related information. The Time Helper has two main tasks that it can perform:

1. It can format time strings.

2. It can test time (but cannot bend time, sorry).

More about Views 191

CakePHP Cookbook Documentation, Release 2.x

Changed in version 2.1: TimeHelper has been refactored into the CakeTime class to allow easier use
outside of the View layer. Within a view, these methods are accessible via the TimeHelper class and you
can call it as you would call a normal helper method: $this->Time->method ($args) ;.

Using the Helper

A common use of the Time Helper is to offset the date and time to match a user’s time zone. Lets use a
forum as an example. Your forum has many users who may post messages at any time from any part of the
world. An easy way to manage the time is to save all dates and times as GMT+0 or UTC. Uncomment the
line date_default_timezone_set (' UTC’); in app/Config/core.php to ensure your appli-
cation’s time zone is set to GMT+0.

Next add a time zone field to your users table and make the necessary modifications to allow your users to
set their time zone. Now that we know the time zone of the logged in user we can correct the date and time
on our posts using the Time Helper:

echo $this—>Time->format (
'F §S, Y h:i A’,

Spost [’Post’] [’ created’],
null,
Suser[’User’] ['time_zone’]

)i

// Will display August 22nd, 2011 11:53 PM for a user in GMT+0
// August 22nd, 2011 03:53 PM for a user in GMT-8

// and August 23rd, 2011 09:53 AM GMT+10

Most of the Time Helper methods have a $timezone parameter. The $timezone parameter accepts a valid
timezone identifier string or an instance of DateTimeZone class.

Formatting

TimeHelper: :convert ($serverTime, $timezone = NULL)
Return type integer
Converts given time (in server’s time zone) to user’s local time, given his/her timezone.:

// called via TimeHelper

&

echo $this—->Time->convert (time (), ’Asia/Jakarta’);
// 1321038036

// called as CakeTime
App: :uses (' CakeTime’, 'Utility’);
echo CakeTime: :convert (time (), new DateTimeZone (’Asia/Jakarta’));

Changed in version 2.2: $t imezone parameter replaces SuserOf f set parameter used in 2.1 and
below.

TimeHelper: :convertSpecifiers ($format, $time = NULL)

Return type string

192 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Converts a string representing the format for the function strftime and returns a windows safe and
118n aware format.

TimeHelper: :dayAsSql ($dateString, $field_name, $timezone = NULL)
Return type string
Creates a string in the same format as daysAsSql but only needs a single date object:

// called via TimeHelper

echo Sthis->Time->dayAsSqgl ('Aug 22, 2011’, ’'modified’);
// (modified >= 72011-08-22 00:00:00’) AND

// (modified <= 72011-08-22 23:59:59")

// called as CakeTime
App::uses (' CakeTime’, 'Utility’);
echo CakeTime: :dayAsSqgl ("Aug 22, 2011’, 'modified’);

Changed in version 2.2: $t imezone parameter replaces SuserOf f set parameter used in 2.1 and
below.

New in version 2.2: $dateString parameter now also accepts a DateTime object.
TimeHelper: :daysAsSql (8begin, $end, $fieldName, $timezone = NULL)
Return type string

Returns a string in the format “($field_name >= ‘2008-01-21 00:00:00”) AND ($field_name <= ‘2008-
01-25 23:59:59)”. This is handy if you need to search for records between two dates inclusively:

// called via TimeHelper

echo $this->Time->daysAsSqgl ('Aug 22, 2011", ’'Aug 25, 2011’, ’'created’);
// (created >= 72011-08-22 00:00:00’) AND

// (created <= 72011-08-25 23:59:597)

// called as CakeTime
App::uses (' CakeTime’, 'Utility’);
echo CakeTime: :daysAsSql ('Aug 22, 2011", "Aug 25, 2011’, ’'created’);

Changed in version 2.2: St imezone parameter replaces SuserOf fset parameter used in 2.1 and
below.
New in version 2.2: $dateString parameter now also accepts a DateTime object.
TimeHelper: : format ($date, $formar = NULL, $default = false, $timezone = NULL)
Return type string
Will return a string formatted to the given format using the PHP strftime() formatting options”:

// called via TimeHelper
echo $this->Time->format (/2011-08-22 11:53:00’, ’'%B %e,
// August 22, 2011 11:53 AM

o\
=
o\
|
o\°
=
o\°
o)
~
~

echo $this->Time->format (' +2 days’, ’'%c’);

>http://www.php.net/manual/en/function.strftime.php

More about Views 193

http://www.php.net/manual/en/function.strftime.php

CakePHP Cookbook Documentation, Release 2.x

// 2 days from now formatted as Sun, 13 Nov 2011 03:36:10 AM EET

// called as CakeTime

App::uses (' CakeTime’, 'Utility’);

echo CakeTime::format (2011-08-22 11:53:00’, ’'S%B %e, %Y %H:%M %p’);
echo CakeTime::format (' +2 days’, ’"%c’);

You can also provide the date/time as the first argument. When doing this you should use strftime
compatible formatting. This call signature allows you to leverage locale aware date formatting which
is not possible using date () compatible formatting:

// called via TimeHelper
echo $this—>Time->format (/2012-01-13’, ’'%$d-%m—-%Y’, ’invalid’);

// called as CakeTime
App: :uses (' CakeTime’, 'Utility’);
echo CakeTime::format (2011-08-22", ’'$d-%m-%Y’);

Changed in version 2.2: $format and $date parameters are in opposite order as used in 2.1 and be-
low. $timezone parameter replaces SuserOf fset parameter used in 2.1 and below. $default
parameter replaces $invalid parameter used in 2.1 and below.

New in version 2.2: $date parameter now also accepts a DateTime object.
TimeHelper: : fromString ($dateString, $timezone = NULL)
Return type string
Takes a string and uses strtotime® to convert it into a date integer:

// called via TimeHelper
echo $this->Time->fromString(’Aug 22, 2011");
// 1313971200

echo $this->Time->fromString(’+1 days’);
// 1321074066 (+1 day from current date)

// called as CakeTime

App: :uses (' CakeTime’, 'Utility’);

echo CakeTime::fromString (’Aug 22, 2011");
echo CakeTime::fromString(’+1 days’);

Changed in version 2.2: $timezone parameter replaces SuserOf fset parameter used in 2.1 and
below.
New in version 2.2: $dateString parameter now also accepts a DateTime object.
TimeHelper: :gmt ($dateString = NULL)
Return type integer

Will return the date as an integer set to Greenwich Mean Time (GMT).:

Shttp://us.php.net/manual/en/function.date.php

194 Chapter 7. Views

http://us.php.net/manual/en/function.date.php

CakePHP Cookbook Documentation, Release 2.x

// called via TimeHelper
echo $this->Time->gmt ('Aug 22, 20117);
// 1313971200

// called as CakeTime
App: :uses (' CakeTime’, 'Utility’);
echo CakeTime::gmt ('Aug 22, 2011");
TimeHelper: :il18nFormat ($date, $format = NULL, $invalid = false, $timezone = NULL)
Return type string

Returns a formatted date string, given either a UNIX timestamp or a valid strtotime() date string. It
take in account the default date format for the current language if a LC_TIME file is used. For more
info about LC_TIME file check /ere.

Changed in version 2.2: $timezone parameter replaces SuserOf fset parameter used in 2.1 and
below.

TimeHelper: :nice ($dateString = NULL, $timezone = NULL, $format = null)
Return type string

Takes a date string and outputs it in the format “Tue, Jan 1st 2008, 19:25” or as per optional $format
param passed:

// called via TimeHelper
echo $this->Time->nice(’2011-08-22 11:53:00");
// Mon, Aug 22nd 2011, 11:53

// called as CakeTime
App: :uses (' CakeTime’, 'Utility’);
echo CakeTime::nice(’2011-08-22 11:53:00");
TimeHelper: :niceShort ($dateString = NULL, $timezone = NULL)
Return type string

Takes a date string and outputs it in the format “Jan 1st 2008, 19:25”. If the date object is today, the
format will be “Today, 19:25”. If the date object is yesterday, the format will be “Yesterday, 19:25:

// called via TimeHelper
echo $this-—>Time->niceShort (/2011-08-22 11:53:00");
// Aug 22nd, 11:53

// called as CakeTime
App::uses (' CakeTime’, 'Utility’);
echo CakeTime: :niceShort (/2011-08-22 11:53:00");

Changed in version 2.2: $timezone parameter replaces SuserOffset parameter used in 2.1 and
below.

New in version 2.2: $dateString parameter now also accepts a DateTime object.

TimeHelper: :serverOffset ()

More about Views 195

CakePHP Cookbook Documentation, Release 2.x

Return type integer

Returns server’s offset from GMT in seconds.

TimeHelper: :timeAgoInWords ($dateString, $options = array())

Return type string

Will take a datetime string (anything that is parsable by PHP’s strtotime() function or MySQL’s date-
time format) and convert it into a friendly word format like, “3 weeks, 3 days ago”:

// called via TimeHelper
echo $this->Time->timeAgoInWords ('Aug 22, 2011'");
// on 22/8/11

// on August 22nd, 2011

echo $this->Time->timeAgoInWords (
"Aug 22, 2011’,
array (' format’ => 'F jS, Y')

) ;

// called as CakeTime
App::uses (' CakeTime’, 'Utility’);
echo CakeTime::timeAgoInWords ('Aug 22, 2011’");
echo CakeTime: :timeAgoInWords (
"Aug 22, 2011’,
array (' format’ => 'F jS, Y')

)i

Use the ‘end’ option to determine the cutoff point to no longer will use words; default ‘+1 month’:

// called via TimeHelper
echo $this->Time->timeAgoInWords (
"Aug 22, 20117’,
array (' format’ => 'F jS, Y’, ’'end’ => ’'+1 year’)
) ;
// On Nov 10th, 2011 it would display: 2 months, 2 weeks, 6 days ago

// called as CakeTime
App: :uses (' CakeTime’, 'Utility’);
echo CakeTime::timeAgoInWords (
"Aug 22, 2011’,
array (' format’ => 'F jS, Y’, ’'end’ => ’'+1 year’)
)

Use the ‘accuracy’ option to determine how precise the output should be. You can use this to limit the
output:

// If Stimestamp is 1 month, 1 week, 5 days and 6 hours ago
echo CakeTime::timeAgoInWords (Stimestamp, array (
"accuracy’ => array('month’ => "month’),
"end’ => '1 year’
)) i
// Outputs ‘1 month ago’

Changed in version 2.2: The accuracy option was added.

196

Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

New in version 2.2: $dateString parameter now also accepts a DateTime object.
TimeHelper: :toAtom ($dateString, $timezone = NULL)
Return type string
Will return a date string in the Atom format “2008-01-12T00:00:00Z”

Changed in version 2.2: $timezone parameter replaces SuserOf fset parameter used in 2.1 and
below.

New in version 2.2: $dateString parameter now also accepts a DateTime object.
TimeHelper: :toQuarter ($dateString, Srange = false)
Return type mixed

Will return 1, 2, 3 or 4 depending on what quarter of the year the date falls in. If range is set to true, a
two element array will be returned with start and end dates in the format “2008-03-31"":

// called via TimeHelper
echo $this->Time->toQuarter ('Aug 22, 20117);
// Would print 3

Sarr = $this->Time->toQuarter (’Aug 22, 2011’, true);
J *
Array
(
[0] => 2011-07-01
[1] => 2011-09-30
)
*/

// called as CakeTime

App: :uses (' CakeTime’, 'Utility’);

echo CakeTime: :toQuarter (Aug 22, 20117);

Sarr = CakeTime: :toQuarter (’Aug 22, 2011’, true);

New in version 2.2: $dateString parameter now also accepts a DateTime object.

New in version 2.4: The new option parameters relativeString (defaults to $s ago) and
absoluteString (defaults to on %s) to allow customization of the resulting output string are
now available.

TimeHelper: : toRSS ($dateString, $timezone = NULL)
Return type string
Will return a date string in the RSS format “Sat, 12 Jan 2008 00:00:00 -0500”

Changed in version 2.2: $timezone parameter replaces SuserOf fset parameter used in 2.1 and
below.

New in version 2.2: $dateString parameter now also accepts a DateTime object.
TimeHelper: :toUnix ($dateString, $timezone = NULL)

Return type integer

More about Views 197

CakePHP Cookbook Documentation, Release 2.x

A wrapper for fromString.

Changed in version 2.2: $timezone parameter replaces SuserOf fset parameter used in 2.1 and
below.

New in version 2.2: $dateString parameter now also accepts a DateTime object.
TimeHelper: :toServer ($dateString, $timezone = NULL, $format = ‘Y-m-d H:i:s’)
Return type mixed
New in version 2.2: Returns a formatted date in server’s timezone.
TimeHelper: :timezone ($timezone = NULL)
Return type DateTimeZone

New in version 2.2: Returns a timezone object from a string or the user’s timezone object. If the
function is called without a parameter it tries to get timezone from ‘Config.timezone’ configuration
variable.

TimeHelper: :listTimezones ($filter = null, $country = null, $group = true)
Return type array

New in version 2.2: Returns a list of timezone identifiers.

Testing Time

TimeHelper: :isToday ($dateString, $timezone = NULL)
TimeHelper: :isThisWeek ($dateString, $timezone = NULL)
TimeHelper: :isThisMonth ($dateString, $timezone = NULL)
TimeHelper: :isThisYear ($dateString, $timezone = NULL)
TimeHelper: :wasYesterday ($dateString, $timezone = NULL)
TimeHelper: :isTomorrow ($dateString, $timezone = NULL)

TimeHelper: :isFuture ($dateString, $timezone = NULL)
New in version 2.4.

TimeHelper: :isPast ($dateString, $timezone = NULL)
New in version 2.4.

TimeHelper: :wasWithinLast ($timelnterval, $dateString, $timezone = NULL)
Changed in version 2.2: $timezone parameter replaces SuserOf fset parameter used in 2.1 and
below.

New in version 2.2: $dateString parameter now also accepts a DateTime object.

All of the above functions return true or false when passed a date string. wasWithinLast takes an
additional $timeInterval option:

198 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

// called via TimeHelper
Sthis->Time->wasWithinLast (StimeInterval, S$dateString);

// called as CakeTime
App::uses (' CakeTime’, 'Utility’);
CakeTime: :wasWithinLast ($StimeInterval, S$dateString);

wasWithinLast takes a time interval which is a string in the format “3 months” and accepts a time
interval of seconds, minutes, hours, days, weeks, months and years (plural and not). If a time interval
is not recognized (for example, if it is mistyped) then it will default to days.

Using and Configuring Helpers

You enable helpers in CakePHP by making a controller aware of them. Each controller has a Shelpers
property that lists the helpers to be made available in the view. To enable a helper in your view, add the
name of the helper to the controller’s $Shelpers array:

class BakeriesController extends AppController {
public Shelpers = array(’'Form’, ’'Html’, ’'Js’, ’'Time’);

Adding helpers from plugins uses the plugin syntax used elsewhere in CakePHP:

class BakeriesController extends AppController {
public Shelpers = array(’Blog.Comment’) ;

You can also add helpers from within an action, so they will only be available to that action and not to the
other actions in the controller. This saves processing power for the other actions that do not use the helper
and helps keep the controller better organized:

class BakeriesController extends AppController ({

public function bake () {
Sthis->helpers[] = ’'Time’;

}

public function mix () {

// The Time helper 1is not loaded here and thus not available

}

If you need to enable a helper for all controllers, add the name of the helper to the $Shelpers array in
/app/Controller/AppController.php (or create it if not present). Remember to include the
default Html and Form helpers:

class AppController extends Controller ({
public Shelpers = array(’'Form’, ’'Html’, ’Js’, ’'Time’);

}

You can pass options to helpers. These options can be used to set attribute values or modify behavior of a
helper:

More about Views 199

CakePHP Cookbook Documentation, Release 2.x

class AwesomeHelper extends AppHelper ({
public function __ _construct (View Sview, S$settings = array()) {
parent::_construct ($view, Ssettings);
debug ($settings) ;

class AwesomeController extends AppController {
public Shelpers = array(’Awesome’ => array(’optionl’ => ’valuel’));

}

As of 2.3, the options are merged with the Helper: : $settings property of the helper.

One common setting to use is the className option, which allows you to create aliased helpers in your
views. This feature is useful when you want to replace $this->Html or another common Helper reference
with a custom implementation:

// app/Controller/PostsController.php
class PostsController extends AppController {
public Shelpers = array (
"Html’ => array (
"className’ => ’'MyHtml’

)i

// app/View/Helper/MyHtmlHelper.php
App::uses ('HtmlHelper’, ’'View/Helper’);
class MyHtmlHelper extends HtmlHelper ({
// Add your code to override the core HtmlHelper

}

The above would alias MyHtmlHelper to $this—>Html in your views.

Note: Aliasing a helper replaces that instance anywhere that helper is used, including inside other Helpers.

Using helper settings allows you to declaratively configure your helpers and keep configuration logic out
of your controller actions. If you have configuration options that cannot be included as part of a class
declaration, you can set those in your controller’s beforeRender callback:

class PostsController extends AppController {
public function beforeRender () {
parent: :beforeRender () ;
Sthis->helpers[’/CustomStuff’] = Sthis->_getCustomStuffSettings();

Using Helpers

Once you’ve configured which helpers you want to use in your controller, each helper is exposed as a public
property in the view. For example, if you were using the Htm1Helper you would be able to access it by

200 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

doing the following:
echo S$this->Html->css(’styles’);
The above would call the css method on the HtmlHelper. You can access any loaded helper using

Sthis->{$helperName}. There may come a time where you need to dynamically load a helper from
inside a view. You can use the view’s HelperCollection to do this:

SmediaHelper = $this->Helpers—->load(’Media’, SmediaSettings);

The HelperCollection is a collection and supports the collection API used elsewhere in CakePHP.

Callback methods

Helpers feature several callbacks that allow you to augment the view rendering process. See the Helper API
and the Collections documentation for more information.

Creating Helpers

If a core helper (or one showcased on GitHub or in the Bakery) doesn’t fit your needs, helpers are easy to
create.

Let’s say we wanted to create a helper that could be used to output a specifically crafted CSS-styled link you
needed many different places in your application. In order to fit your logic into CakePHP’s existing helper
structure, you’ll need to create a new class in /app/View/Helper. Let’s call our helper LinkHelper. The
actual PHP class file would look something like this:

/* /app/View/Helper/LinkHelper.php */
App: :uses (' AppHelper’, ’'View/Helper’);

class LinkHelper extends AppHelper (
public function makeEdit (Stitle, Surl) {
// Logic to create specially formatted link goes here...

}

Note: Helpers must extend either AppHelper or Helper or implement all the callbacks in the Helper
API.

Including other Helpers

You may wish to use some functionality already existing in another helper. To do so, you can specify helpers
you wish to use with a $Shelpers array, formatted just as you would in a controller:

/* Japp/View/Helper/LinkHelper.php (using other helpers) */
App: :uses (' AppHelper’, ’'View/Helper’);

class LinkHelper extends AppHelper ({

More about Views 201

CakePHP Cookbook Documentation, Release 2.x

public Shelpers = array(’Html’);

public function makeEdit (Stitle, Surl) {
// Use the HTML helper to output
// formatted data:

Slink = S$this->Html->link(Stitle, S$Surl, array(’class’ => ’'edit’));

return ’'<div class="editOuter">’ . Slink . ’'</div>';

Using your Helper

Once you’ve created your helper and placed it in /app/View/Helper/, you'll be able to include it in
your controllers using the special variable Shelpers:

class PostsController extends AppController ({
public Shelpers = array(’Link’);

Once your controller has been made aware of this new class, you can use it in your views by accessing an
object named after the helper:

<!-— make a link using the new helper ——>
<?php echo $this->Link->makeEdit (' Change this Recipe’, ' /recipes/edit/5"); ?>

Creating Functionality for All Helpers

All helpers extend a special class, AppHelper (just like models extend AppModel and controllers
extend AppController). To create functionality that would be available to all helpers, create
/app/View/Helper/AppHelper.php:

App: :uses ('Helper’, ’'View’);

class AppHelper extends Helper {
public function customMethod () {
}

Helper API

class Helper
The base class for Helpers. It provides a number of utility methods and features for loading other
helpers.

Helper: :webroot ($file)
Resolve a file name to the webroot of the application. If a theme is active and the file exists in the
current theme’s webroot, the path to the themed file will be returned.

202 Chapter 7. Views

CakePHP Cookbook Documentation, Release 2.x

Helper: :url (Surl, $full = false)
Generates an HTML escaped URL, delegates to Router: :url ().

Helper: :value ($options = array(), $field = null, $key = ‘value’)
Get the value for a given input name.

Helper: :domId ($options = null, $id = ‘id’)
Generate a CamelCased id value for the currently selected field. Overriding this method in your
AppHelper will allow you to change how CakePHP generates ID attributes.

Callbacks

Helper: :beforeRenderFile ($viewFile)
Is called before each view file is rendered. This includes elements, views, parent views and layouts.

Helper: :afterRenderFile ($viewFile, $content)
Is called after each view file is rendered. This includes elements, views, parent views and layouts. A
callback can modify and return $Scontent to change how the rendered content will be displayed in
the browser.

Helper: :beforeRender ($viewFile)
The beforeRender method is called after the controller’s beforeRender method but before the con-
troller renders view and layout. Receives the file being rendered as an argument.

Helper: :afterRender ($viewFile)
Is called after the view has been rendered but before layout rendering has started.

Helper: :beforeLayout ($layoutFile)
Is called before layout rendering starts. Receives the layout filename as an argument.

Helper: :afterLayout ($layoutFile)
Is called after layout rendering is complete. Receives the layout filename as an argument.

More about Views 203

CakePHP Cookbook Documentation, Release 2.x

204 Chapter 7. Views

CHAPTER 8

Models

Models are the classes that form the business layer in your application. They should be responsible for
managing almost everything regarding your data, its validity, and its interactions, as well as the evolution of
the information workflow in your domain.

Usually, model classes represent data and are used in CakePHP applications for data access. They generally
represent a database table but can be used to access anything that manipulates data such as files, external
web services, or iCal events.

A model can be associated with other models. For example, a Recipe may be associated with an Author as
well as an Ingredient.

This section will explain what features of the model can be automated, how to override those features, and
what methods and properties a model can have. It will explain the different ways to build associations for
your data. It will describe how to find, save, and delete data. Finally, it will look at Datasources.

Understanding Models

A Model represents your data model. In object-oriented programming, a data model is an object that rep-
resents a thing such as a car, a person, or a house. A blog, for example, may have many blog posts and
each blog post may have many comments. The Blog, Post, and Comment are all examples of models, each
associated with another.

Here is a simple example of a model definition in CakePHP:

App: :uses (' AppModel’, "Model’);
class Ingredient extends AppModel ({
public Sname = ’Ingredient’;

}

With just this simple declaration, the Ingredient model is endowed with all the functionality you need to
create queries and to save and delete data. These methods come from CakePHP’s Model class by the magic
of inheritance. The Ingredient model extends the application model, AppModel, which in turn extends

205

CakePHP Cookbook Documentation, Release 2.x

CakePHP’s internal Model class. It is this core Model class that bestows the functionality onto your In-
gredient model. App: :uses (' AppModel’, ’"Model’) ensures that the model is loaded when it is
needed.

The intermediate class, AppModel, is empty. If you haven’t created your own, it is taken from the CakePHP
core folder. Overriding the AppModel allows you to define functionality that should be made available to all
models within your application. To do so, you need to create your own AppModel . php file that resides in
the Model folder, as do all other models in your application. Creating a project using Bake will automatically
generate this file for you.

See also Behaviors for more information on how to apply similar logic to multiple models.

Back to our Ingredient model. In order to work on it, create the PHP file in the /app/Model/ directory. By
convention, it should have the same name as the class, which for this example will be Ingredient . php.

Note: CakePHP will dynamically create a model object for you if it cannot find a corresponding file in
/app/Model. This also means that if your model file isn’t named correctly (for instance, if it is named

ingredient.php or Ingredients.php rather than Ingredient.php), CakePHP will use an instance of AppModel
rather than your model file (which CakePHP assumes is missing). If you’re trying to use a method you’ve
defined in your model, or a behavior attached to your model, and you’re getting SQL errors that are the name
of the method you’re calling, it’s a sure sign that CakePHP can’t find your model and you need to check the
file names, your application cache, or both.

Note: Some class names are not usable for model names. For instance, “File” cannot be used, since “File”
is a class that already exists in the CakePHP core.

When your model is defined, it can be accessed from within your Controller. CakePHP will automatically
make the model available for access when its name matches that of the controller. For example, a controller
named IngredientsController will automatically initialize the Ingredient model and attach it to the controller
at Sthis—->Ingredient:

class IngredientsController extends AppController ({

public function index() {
//grab all ingredients and pass it to the view:
Singredients = $this->Ingredient->find(’all’);

Sthis->set (' ingredients’, S$ingredients);
}

Associated models are available through the main model. In the following example, Recipe has an associa-
tion with the Ingredient model:

class Recipe extends AppModel {

public function steakRecipes () {
Singredient = $this->Ingredient->findByName (’ Steak’);
return Sthis->findAllByMainIngredient ($Singredient [’ Ingredient’] [’1d"]);

}

This shows how to use models that are already linked. To understand how associations are defined, take a

206 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

look at the Associations section

More on models

Associations: Linking Models Together
One of the most powerful features of CakePHP is the ability to link relational mapping provided by the
model. In CakePHP, the links between models are handled through associations.

Defining relations between different objects in your application should be a natural process. For example:
in a recipe database, a recipe may have many reviews, reviews have a single author, and authors may have
many recipes. Defining the way these relations work allows you to access your data in an intuitive and
powerful way.

The purpose of this section is to show you how to plan for, define, and utilize associations between models
in CakePHP.

While data can come from a variety of sources, the most common form of storage in web applications is a
relational database. Most of what this section covers will be in that context.

For information on associations with Plugin models, see Plugin Models.
Relationship Types

The four association types in CakePHP are: hasOne, hasMany, belongsTo, and hasAndBelongsToMany
(HABTM).

Relationship | Association Type Example

one to one hasOne A user has one profile.

one to many hasMany A user can have multiple recipes.

many to one belongsTo Many recipes belong to a user.

many to many | hasAndBelongsToMany | Recipes have, and belong to, many ingredients.

Associations are defined by creating a class variable named after the association you are defining. The class
variable can sometimes be as simple as a string, but can be as complex as a multidimensional array used to
define association specifics.

class User extends AppModel {

public S$ShasOne = ’'Profile’;
public ShasMany = array (
"Recipe’ => array (
"className’ => ’'Recipe’,
"conditions’ => array(’'Recipe.approved’ => '1’),

"order’ => ’"Recipe.created DESC’

)i
}

In the above example, the first instance of the word ‘Recipe’ is what is termed an ‘Alias’. This is an identifier
for the relationship, and can be anything you choose. Usually, you will choose the same name as the class

More on models 207

CakePHP Cookbook Documentation, Release 2.x

that it references. However, aliases for each model must be unique across the app. For example, it is
appropriate to have:

class User extends AppModel {

public ShasMany = array (

"MyRecipe’ => array (
"className’ => ’'Recipe’,

)
public S$hasAndBelongsToMany = array (
"MemberOf’ => array (
"className’ => ’Group’,

)i

class Group extends AppModel {
public ShasMany = array (
"MyRecipe’ => array (
"className’ => ’'Recipe’,

) i
public ShasAndBelongsToMany = array (
"Member’ => array (
"className’ => ’User’,

)i

but the following will not work well in all circumstances:

class User extends AppModel {

public ShasMany = array (

"MyRecipe’ => array (
"className’ => ’'Recipe’,

) i
public ShasAndBelongsToMany = array (
"Member’ => array (
"className’ => ’Group’,

)i

class Group extends AppModel {
public ShasMany = array (
"MyRecipe’ => array (
"className’ => ’'Recipe’,

)i
public ShasAndBelongsToMany = array (
"Member’ => array (
"className’ => ’User’,

208 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

)i
}

because here we have the alias ‘Member’ referring to both the User (in Group) and the Group (in User)
model in the HABTM associations. Choosing non-unique names for model aliases across models can cause
unexpected behavior.

CakePHP will automatically create links between associated model objects. So for example in your User
model you can access the Recipe model as:

Sthis->Recipe->someFunction () ;

Similarly in your controller you can access an associated model simply by following your model associa-
tions:

Sthis->User->Recipe—->someFunction () ;

Note: Remember that associations are defined ‘one way’. If you define User hasMany Recipe, that has no
effect on the Recipe Model. You need to define Recipe belongsTo User to be able to access the User model

from your Recipe model.

hasOne

Let’s set up a User model with a hasOne relationship to a Profile model.

First, your database tables need to be keyed correctly. For a hasOne relationship to work, one table has to
contain a foreign key that points to a record in the other. In this case, the profiles table will contain a field
called user_id. The basic pattern is:

hasOne: the other model contains the foreign key.

Relation Schema

Apple hasOne Banana | bananas.apple_id
User hasOne Profile profiles.user_id
Doctor hasOne Mentor | mentors.doctor_id

Note: It is not mandatory to follow CakePHP conventions. You can easily override the use of any for-
eignKey in your associations definitions. Nevertheless, sticking to conventions will make your code less

repetitive and easier to read and maintain.

The User model file will be saved in /app/Model/User.php. To define the ‘User hasOne Profile’ association,
add the $hasOne property to the model class. Remember to have a Profile model in /app/Model/Profile.php,
or the association won’t work:

class User extends AppModel ({
public ShasOne = ’'Profile’;

}

There are two ways to describe this relationship in your model files. The simplest method is to set the
$hasOne attribute to a string containing the class name of the associated model, as we’ve done above.

More on models 209

CakePHP Cookbook Documentation, Release 2.x

If you need more control, you can define your associations using array syntax. For example, you might want
to limit the association to include only certain records.

class User extends AppModel ({

}

public ShasOne = array (
"Profile’ => array (
"className’ => ’"Profile’,
"conditions’ => array('Profile.published’ => "17"),
"dependent’ => true

)i

Possible keys for hasOne association arrays include:

className: the class name of the model being associated to the current model. If you’re defining a
‘User hasOne Profile’ relationship, the className key should equal ‘Profile’.

foreignKey: the name of the foreign key found in the other model. This is especially handy if you need
to define multiple hasOne relationships. The default value for this key is the underscored, singular
name of the current model, suffixed with ‘_id’. In the example above, it would default to ‘user_id’.

conditions: an array of find()-compatible conditions or SQL strings such as array(‘Profile.approved’
=> true)

fields: A list of fields to be retrieved when the associated model data is fetched. Returns all fields by
default.

order: an array of find()-compatible order clauses or SQL strings such as array(‘Profile.last_name’
=> ‘ASC’)

dependent: When the dependent key is set to true, and the model’s delete() method is called with the
cascade parameter set to true, associated model records are also deleted. In this case, we set it true so
that deleting a User will also delete her associated Profile.

Once this association has been defined, find operations on the User model will also fetch a related Profile
record if it exists:

//Sample results from a Sthis->User—->find() call.

Array

(

[User] => Array
(
[id] => 121
[name] => Gwoo the Kungwoo
[created] => 2007-05-01 10:31:01
)
[Profile] => Array
(
[id] => 12
[user_id] => 121
[skill] => Baking Cakes
[created] => 2007-05-01 10:31:01

210

Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

belongsTo

Now that we have Profile data access from the User model, let’s define a belongsTo association in the Profile
model in order to get access to related User data. The belongsTo association is a natural complement to the
hasOne and hasMany associations: it allows us to see the data from the other direction.

When keying your database tables for a belongsTo relationship, follow this convention:

belongsTo: the current model contains the foreign key.

Relation Schema

Banana belongsTo Apple | bananas.apple_id
Profile belongsTo User profiles.user_id
Mentor belongsTo Doctor | mentors.doctor_id

Tip: If a model(table) contains a foreign key, it belongsTo the other model(table).

We can define the belongsTo association in our Profile model at /app/Model/Profile.php using the string
syntax as follows:

class Profile extends AppModel {
public SbelongsTo = ’'User’;

}

We can also define a more specific relationship using array syntax:

class Profile extends AppModel ({
public SbelongsTo = array (

"User’ => array (
"className’ => ’User’,
"foreignKey’ => ’'user_id’

)i
}

Possible keys for belongsTo association arrays include:

* className: the class name of the model being associated to the current model. If you’re defining a
‘Profile belongsTo User’ relationship, the className key should equal ‘User’.

* foreignKey: the name of the foreign key found in the current model. This is especially handy if you
need to define multiple belongsTo relationships. The default value for this key is the underscored,
singular name of the other model, suffixed with _id.

* conditions: an array of find() compatible conditions or SQL strings such as
array (’User.active’ => true)

* type: the type of the join to use in the SQL query. The default is ‘LEFT’, which may not fit your
needs in all situations. The value ‘INNER’ may be helpful (when used with some conditions) when
you want everything from your main and associated models or nothing at all.

More on models 211

CakePHP Cookbook Documentation, Release 2.x

« fields: A list of fields to be retrieved when the associated model data is fetched. Returns all fields by
default.

* order: an array of find() compatible order <clauses or SQL strings such as
array (’User.username’ => ’'ASC’)

* counterCache: If set to true, the associated Model will automatically increase or decrease the “[sin-
gular_model_name]_count” field in the foreign table whenever you do a save () or delete ().
If it’s a string, then it’s the field name to use. The value in the counter field represents the number
of related rows. You can also specify multiple counter caches by defining an array. See Multiple
counterCache.

* counterScope: Optional conditions array to use for updating counter cache field.

Once this association has been defined, find operations on the Profile model will also fetch a related User
record if it exists:

//Sample results from a Sthis—->Profile->find() call.

Array
(
[Profile] => Array
(
[1id] => 12
[user_id] => 121
[skill] => Baking Cakes
[created] => 2007-05-01 10:31:01
)
[User] => Array
(
[id] => 121
[name] => Gwoo the Kungwoo

[created] => 2007-05-01 10:31:01

counterCache - Cache your count()

This feature helps you cache the count of related data. Instead of counting the records manually via
find (’ count’), the model itself tracks any addition/deletion towards the associated $hasMany model
and increases/decreases a dedicated integer field within the parent model table.

The name of the field consists of the singular model name followed by a underscore and the word “count”:

my_model_count

Let’s say you have a model called TmageComment and a model called ITmage. You would add a new
INT-field to the images table and name it image_comment_count.

Here are some more examples:

212 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

Model Associated Model | Example

User Image users.image_count

Image ImageComment images.image_comment_count
BlogEntry | BlogEntryComment | blog_entries.blog_entry_comment_count

Once you have added the counter field, you are good to go. Activate counter-cache in your association by
adding a counterCache key and set the value to t rue:

class ImageComment extends AppModel {
public SbelongsTo = array (
"Image’ => array (
"counterCache’ => true,

)i

From now on, every time you add or remove a ImageComment associated to Image, the number within
image_comment_count is adjusted automatically.

counterScope

You can also specify counterScope. It allows you to specify a simple condition which tells the model
when to update (or when not to, depending on how you look at it) the counter value.

Using our Image model example, we can specify it like so:

class ImageComment extends AppModel {
public SbelongsTo = array (

"Image’ => array (
"counterCache’ => ’active_comment_count’, //custom field name
// only count if "ImageComment" is active = 1
"counterScope’ => array (
"ImageComment .active’ => 1

Multiple counterCache

Since 2.0, CakePHP has supported having multiple counterCache in a single model relation. It is also
possible to define a counterScope for each counterCache. Assuming you have a User model and a
Message model, and you want to be able to count the amount of read and unread messages for each user.

Model Field Description

User users.messages_read Count read Message

User users.messages_unread | Count unread Message

Message | messages.is_read Determines if a Message is read or not.

With this setup, your belongsTo would look like this:

More on models 213

CakePHP Cookbook Documentation, Release 2.x

class Message extends AppModel {
public SbelongsTo = array (

"User’ => array (
"counterCache’ => array (
"messages_read’ => array(’'Message.is_read’ => 1),

"messages_unread’ => array(’'Message.is_read’ => 0)

hasMany

Next step: defining a “User hasMany Comment” association. A hasMany association will allow us to fetch
a user’s comments when we fetch a User record.

When keying your database tables for a hasMany relationship, follow this convention:

hasMany: the other model contains the foreign key.

Relation Schema

User hasMany Comment | Comment.user_id
Cake hasMany Virtue Virtue.cake_id
Product hasMany Option | Option.product_id

We can define the hasMany association in our User model at /app/Model/User.php using the string syntax
as follows:

class User extends AppModel ({
public ShasMany = ’'Comment’;

We can also define a more specific relationship using array syntax:

class User extends AppModel {
public ShasMany = array (
"Comment’ => array (
"className’ => ’Comment’,
"foreignKey’ => ’'user_id’,
"conditions’ => array (’Comment.status’ => '1"),
"order’” => ’Comment.created DESC’,
"limit’ => ’5’,
"dependent’ => true

)i

Possible keys for hasMany association arrays include:

* className: the class name of the model being associated to the current model. If you’re defining a
‘User hasMany Comment’ relationship, the className key should equal ‘Comment.’

214 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

foreignKey: the name of the foreign key found in the other model. This is especially handy if you
need to define multiple hasMany relationships. The default value for this key is the underscored,
singular name of the actual model, suffixed with ‘_id’.

conditions: an array of find() compatible conditions or SQL strings such as array(‘Comment.visible’
=> true)

order: an array of find() compatible order clauses or SQL strings such as array(‘Profile.last_name’
=> ‘ASC’)

limit: The maximum number of associated rows you want returned.

offset: The number of associated rows to skip over (given the current conditions and order) before
fetching and associating.

dependent: When dependent is set to true, recursive model deletion is possible. In this example,
Comment records will be deleted when their associated User record has been deleted.

exclusive: When exclusive is set to true, recursive model deletion does the delete with a delete All()
call, instead of deleting each entity separately. This greatly improves performance, but may not be
ideal for all circumstances.

finderQuery: A complete SQL query CakePHP can use to fetch associated model records. This
should be used in situations that require highly customized results. If a query you’re building re-
quires a reference to the associated model ID, use the special {$___cakeID__$} marker in the
query. For example, if your Apple model hasMany Orange, the query should look something
like this: SELECT Orange.* from oranges as Orange WHERE Orange.apple_id
= {$__cakeID__S$};

Once this association has been defined, find operations on the User model will also fetch related Comment
records if they exist:

//Sample results from a Sthis->User—->find() call.

Array

[User] => Array
(
[id] => 121
[name] => Gwoo the Kungwoo
[created] => 2007-05-01 10:31:01
)
[Comment] => Array
(
[0] => Array
(

id] => 123
user_id] => 121

[

[

[title] => On Gwoo the Kungwoo

[body] => The Kungwooness is not so Gwooish
[created] => 2006-05-01 10:31:01

)
[1] => Array
(

More on models 215

CakePHP Cookbook Documentation, Release 2.x

id] => 124
user_id] => 121

body] => But what of the E]Nut?

[

[

[title] => More on Gwoo

[

[created] => 2006-05-01 10:41:01

)

One thing to remember is that you’ll need a complementary Comment belongsTo User association in order
to get the data from both directions. What we’ve outlined in this section empowers you to get Comment
data from the User. Adding the Comment belongsTo User association in the Comment model enables you
to get User data from the Comment model, completing the connection and allowing the flow of information
from either model’s perspective.

hasAndBelongsToMany (HABTM)

All right. At this point, you can already call yourself a CakePHP model associations professional. You're
already well versed in the three associations that take up the bulk of object relations.

Let’s tackle the final relationship type: hasAndBelongsToMany, or HABTM. This association is used when
you have two models that need to be joined up, repeatedly, many times, in many different ways.

The main difference between hasMany and HABTM is that a link between models in HABTM is not exclu-
sive. For example, we’re about to join up our Recipe model with an Ingredient model using HABTM. Using
tomatoes as an Ingredient for my grandma’s spaghetti recipe doesn’t “use up” the ingredient. I can also use
it for a salad Recipe.

Links between hasMany associated objects are exclusive. If my User hasMany Comments, a comment is
only linked to a specific user. It’s not up for grabs.

Moving on. We’ll need to set up an extra table in the database to handle HABTM associations. This new join
table’s name needs to include the names of both models involved, in alphabetical order, and separated with
an underscore (_). The contents of the table should be two fields that are foreign keys (which should be
integers) pointing to the primary keys of the involved models. To avoid any issues, don’t define a combined
primary key for these two fields. If your application requires a unique index, you can define one. If you plan
to add any extra information to this table, or use a ‘with’ model, you should add an additional primary key
field (by convention ‘id’).

HABTM requires a separate join table that includes both model names.

Relationship HABTM Table Fields

Recipe HABTM ingredients_recipes.id, ingredients_recipes.ingredient_id,
Ingredient ingredients_recipes.recipe_id

Cake HABTM Fan cakes_fans.id, cakes_fans.cake id, cakes_fans.fan_id
Foo HABTM Bar bars_foos.id, bars_foos.foo_id, bars_foos.bar_id

Note: Table names are in alphabetical order by convention. It is possible to define a custom table name in
association definition.

216 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

Make sure primary keys in tables cakes and recipes have “id” fields as assumed by convention. If they’re
different than assumed, they must be changed in model’s primaryKey.

Once this new table has been created, we can define the HABTM association in the model files. We’re going
to skip straight to the array syntax this time:

class Recipe extends AppModel {

}

public ShasAndBelongsToMany = array (
"Ingredient’ =>
array (
"className’ => ’Ingredient’,
"joinTable’ => ’ingredients_recipes’,
"foreignKey’ => ’recipe_id’,
"associationForeignKey’ => ’ingredient_id’,

"unique’ => true,
"conditions’ => '',
"fields’ => "',
"order’ => "',
flimit” => "',
"offset’ => "',

"finderQuery’ => "',
"with’ => '’

)i

Possible keys for HABTM association arrays include:

className: the class name of the model being associated to the current model. If you’re defining a
‘Recipe HABTM Ingredient’ relationship, the className key should equal ‘Ingredient’.

joinTable: The name of the join table used in this association (if the current table doesn’t adhere to
the naming convention for HABTM join tables).

with: Defines the name of the model for the join table. By default CakePHP will auto-create a model
for you. Using the example above it would be called IngredientsRecipe. By using this key you can
override this default name. The join table model can be used just like any “regular’” model to access
the join table directly. By creating a model class with such name and filename, you can add any
custom behavior to the join table searches, such as adding more information/columns to it.

foreignKey: the name of the foreign key found in the current model. This is especially handy if
you need to define multiple HABTM relationships. The default value for this key is the underscored,
singular name of the current model, suffixed with ‘_id’.

associationForeignKey: the name of the foreign key found in the other model. This is especially
handy if you need to define multiple HABTM relationships. The default value for this key is the
underscored, singular name of the other model, suffixed with *_id’.

unique: boolean or string keepExisting.

— If true (default value) CakePHP will first delete existing relationship records in the foreign
keys table before inserting new ones. Existing associations need to be passed again when
updating.

More on models 217

CakePHP Cookbook Documentation, Release 2.x

— When false, CakePHP will insert the specified new relationship records and leave any ex-
isting relationship records in place, possibly resulting in duplicate relationship records.

— When set to keepEx1sting, the behavior is similar to frue, but with an additional check
so that if any of the records to be added are duplicates of an existing relationship record, the
existing relationship record is not deleted, and the duplicate is ignored. This can be useful
if, for example, the join table has additional data in it that needs to be retained.

conditions: an array of find()-compatible conditions or SQL string. If you have conditions on an
associated table, you should use a ‘with’ model, and define the necessary belongsTo associations on
it.

fields: A list of fields to be retrieved when the associated model data is fetched. Returns all fields by
default.

order: an array of find()-compatible order clauses or SQL strings

limit: The maximum number of associated rows you want returned.

offset: The number of associated rows to skip over (given the current conditions and order) before
fetching and associating.

finderQuery: A complete SQL query CakePHP can use to fetch associated model records. This
should be used in situations that require highly customized results.

Once this association has been defined, find operations on the Recipe model will also fetch related Tag
records if they exist:

// Sample results from a Sthis—->Recipe->find() call.

Array
(
[Recipe] => Array
(
[1d] => 2745
[name] => Chocolate Frosted Sugar Bombs
[created] => 2007-05-01 10:31:01
[user_id] => 2346
)
[Ingredient] => Array
(
[0] => Array
(
[id] => 123
[name] => Chocolate
)
[1] => Array
(
[id] => 124
[name] => Sugar
)
[2] => Array
(
[id] => 125
[name] => Bombs
218 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

)

Remember to define a HABTM association in the Ingredient model if you’d like to fetch Recipe data when
using the Ingredient model.

Note: HABTM data is treated like a complete set. Each time a new data association is added, the complete
set of associated rows in the database is dropped and created again so you will always need to pass the whole

data set for saving. For an alternative to using HABTM, see hasMany through (The Join Model).

Tip: For more information on saving HABTM objects, see Saving Related Model Data (HABTM)

hasMany through (The Join Model)

It is sometimes desirable to store additional data with a many-to-many association. Consider the following
Student hasAndBelongsToMany Course
Course hasAndBelongsToMany Student

In other words, a Student can take many Courses and a Course can be taken by many Students. This is a
simple many-to-many association demanding a table such as this:

id | student_id | course_id

Now what if we want to store the number of days that were attended by the student on the course and their
final grade? The table we’d want would be:

id | student_id | course_id | days_attended | grade

The trouble is, hasAndBelongsToMany will not support this type of scenario because when hasAndBe-
longsToMany associations are saved, the association is deleted first. You would lose the extra data in the
columns as it is not replaced in the new insert.

Changed in version 2.1.

You can set the unique setting to keepEx1isting to circumvent losing extra data during the
save operation. See unique key in HABTM association arrays.

The way to implement our requirement is to use a join model, otherwise known as a hasMany through
association. That is, the association is a model itself. So, we can create a new model CourseMembership.
Take a look at the following models.:

// Student.php
class Student extends AppModel {
public ShasMany = array (
"CourseMembership’

)i

More on models 219

CakePHP Cookbook Documentation, Release 2.x

// Course.php

class Course extends AppModel ({
public ShasMany = array (
"CourseMembership’

)i

// CourseMembership.php

class CourseMembership extends AppModel ({
public SbelongsTo = array (
"Student’, ’Course’

)i

The CourseMembership join model uniquely identifies a given Student’s participation on a Course in addi-
tion to extra meta-information.

Join models are pretty useful things to be able to use, and CakePHP makes it easy to do so with its built-in
hasMany and belongsTo associations and saveAll feature.

Creating and Destroying Associations on the Fly

Sometimes it becomes necessary to create and destroy model associations on the fly. This may be for any
number of reasons:

* You want to reduce the amount of associated data fetched, but all your associations are on the first
level of recursion.

* You want to change the way an association is defined in order to sort or filter associated data.

This association creation and destruction is done using the CakePHP model bindModel() and unbindModel()
methods. (There is also a very helpful behavior called “Containable”. Please refer to the manual section
about Built-in behaviors for more information.) Let’s set up a few models so we can see how bindModel()
and unbindModel() work. We’ll start with two models:

class Leader extends AppModel ({
public ShasMany = array (
"Follower’ => array (
"className’ => ’'Follower’,
"order’ => ’"Follower.rank’

)i

class Follower extends AppModel ({
public Sname = ’'Follower’;

Now, in the LeadersController, we can use the find() method in the Leader model to fetch a Leader and its
associated followers. As you can see above, the association array in the Leader model defines a “Leader

220 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

hasMany Followers” relationship. For demonstration purposes, let’s use unbindModel() to remove that
association in a controller action:

public function some_action () {
// This fetches Leaders, and their associated Followers
Sthis—->Leader->find(’all’);

// Let’s remove the hasMany. ..
Sthis->Leader->unbindModel (

array (' hasMany’ => array(’'Follower’))
) i

// Now using a find function will return
// Leaders, with no Followers
Sthis—->Leader—>find(’all’);

// NOTE: unbindModel only affects the very next
// find function. An additional find call will use
// the configured association information.

// We’ve already used find(’all’) after unbindModel (),
// so this will fetch Leaders with associated

// Followers once again...

Sthis->Leader—->find (’all’);

Note: Removing or adding associations using bind- and unbindModel() only works for the next find opera-
tion unless the second parameter has been set to false. If the second parameter has been set to false, the bind

remains in place for the remainder of the request.

Here’s the basic usage pattern for unbindModel():

Sthis—->Model—->unbindModel (
array (' associationType’ => array(’associatedModelClassName’))
)

Now that we’ve successfully removed an association on the fly, let’s add one. Our as-of-yet unprincipled
Leader needs some associated Principles. The model file for our Principle model is bare, except for the
public $name statement. Let’s associate some Principles to our Leader on the fly (but remember, only for
the following find operation). This function appears in the LeadersController:

public function another_action() {
// There is no Leader hasMany Principles 1in
// the leader.php model file, so a find here
// only fetches Leaders.
Sthis—->Leader->find("all’);

// Let’s use bindModel () to add a new association
// to the Leader model:
Sthis—->Leader—->bindModel (
array (' hasMany’ => array (
"Principle’ => array (
"className’ => ’Principle’

More on models 221

CakePHP Cookbook Documentation, Release 2.x

)i

// Now that we’re associated correctly,

// we can use a single find function to fetch
// Leaders with their associated principles:
Sthis—>Leader->find(’all’);

There you have it. The basic usage for bindModel() is the encapsulation of a normal association array inside
an array whose key is named after the type of association you are trying to create:

Sthis->Model->bindModel (
array (' associationName’ => array (
"associatedModelClassName’ => array (
// normal association keys go here...

)

Even though the newly bound model doesn’t need any sort of association definition in its model file, it will
still need to be correctly keyed in order for the new association to work properly.

Multiple relations to the same model

There are cases where a Model has more than one relation to another Model. For example, you might have
a Message model that has two relations to the User model: one relation to the user who sends a message,
and a second to the user who receives the message. The messages table will have a field user_id, but also a
field recipient_id. Now your Message model can look something like:

class Message extends AppModel {
public SbelongsTo = array (
"Sender’ => array (

"className’ => ’User’,
"foreignKey’ => ’'user_id’

)I

"Recipient’ => array (
"className’ => ’User’,
"foreignKey’ => ’'recipient_id’

)i

Recipient is an alias for the User model. Now let’s see what the User model would look like:

class User extends AppModel {

public ShasMany = array (
"MessageSent’ => array (
"className’ => ’"Message’,

222 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

"foreignKey’ => ’'user_id’

) 14

"MessageReceived’ => array (
"className’ => ’'Message’,
"foreignKey’ => ’'recipient_id’

)i

It is also possible to create self associations as shown below:
class Post extends AppModel ({

&

public SbelongsTo = array (
"Parent’ => array (
"className’ => ’"Post’,
"foreignKey’ => ’'parent_id’

)i

public ShasMany = array (
"Children’ => array (
"className’ => ’"Post’,
"foreignKey’ => ’'parent_id’

)i

Fetching a nested array of associated records:

If your table has a parent_id field, you can also use find(‘threaded’) to fetch a nested array of records
using a single query without setting up any associations.

Joining tables

In SQL, you can combine related tables using the JOIN statement. This allows you to perform complex
searches across multiple tables (for example, search posts given several tags).

In CakePHP, some associations (belongsTo and hasOne) perform automatic joins to retrieve data, so you
can issue queries to retrieve models based on data in the related one.

But this is not the case with hasMany and hasAndBelongsToMany associations. Here is where forcing joins
comes to the rescue. You only have to define the necessary joins to combine tables and get the desired results
for your query.

Note: Remember that you need to set the recursion to -1 for this to work: $this->Channel->recursive = -1;

To force a join between tables, you need to use the “modern” syntax for Model::find(), adding a ‘joins’ key
to the $options array. For example:

¢

Soptions [’ joins’] = array (
array (' table’ => ’channels’,

More on models 223

CakePHP Cookbook Documentation, Release 2.x

"alias’ => ’Channel’,
"type’ => 'LEFT’,
"conditions’ => array (
"Channel.id = Item.channel_id’,

)

SItem—>find(’all’, Soptions);

Note: Note that the ‘join’ arrays are not keyed.

In the above example, a model called Item is left-joined to the channels table. You can alias the table with
the Model name, so the retrieved data complies with the CakePHP data structure.

The keys that define the join are the following:
* table: The table for the join.
« alias: An alias to the table. The name of the model associated with the table is the best bet.
* type: The type of join: inner, left or right.
 conditions: The conditions to perform the join.

With joins, you could add conditions based on Related model fields:

Soptions|[’ joins’] = array (
array (' table’ => ’channels’,
"alias’ => ’Channel’,

"type’ => 'LEFT’,
"conditions’ => array (
"Channel.id = Item.channel_id’,

)i

Soptions[’conditions’] = array (
"Channel.private’ => 1

~
~.

SprivateItems = S$Item—>find(’all’, S$Soptions);

You could perform several joins as needed in hasAndBelongsToMany:

Suppose there is a Book hasAndBelongsToMany Tag association. This relation uses a books_tags table as a
join table, so you need to join the books table to the books_tags table, and this with the tags table:

Soptions [’ joins’] = array (
array (' table’ => ’"books_tags’,
"alias’ => ’BooksTag’,
"type’ => ’inner’,

"conditions’ => array (
"Book.id = BooksTag.book_id’

224 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

)I
array (' table’ => ’"tags’,
"alias’ => ’"Tag’,
"type’ => ’inner’,
"conditions’ => array (
"BooksTag.tag_id = Tag.id’

)

Soptions[’conditions’] = array (
"Tag.tag’” => ’'Novel’
)i

Sbooks = S$Book->find(’all’, Soptions);

Using joins allows you to have maximum flexibility in how CakePHP handles associations and fetches the
data. However, in most cases, you can use other tools to achieve the same results such as correctly defining
associations, binding models on the fly and using the Containable behavior. This feature should be used
with care because it could lead, in a few cases, into ill-formed SQL queries if combined with any of the
former techniques described for associating models.

Retrieving Your Data

As stated before, one of the roles of the Model layer is to get data from multiple types of storage. The
CakePHP Model class comes with some functions that will help you search for this data, sort it, paginate it,
and filter it. The most common function you will use in models is Model: : find ()

find

find(string S$type = ’'first’, array S$params = array())

Find is the multifunctional workhorse of all model data-retrieval functions. $type can be 'all’,
"first’, "count’, "list’, "neighbors’ or 'threaded’, or any custom finder you can de-
fine. Keep in mind that $type is case-sensitive. Using an upper case character (for example, A11) will not
produce the expected results.

$params is used to pass all parameters to the various types of find(), and has the following possible keys
by default, all of which are optional:

array (
conditions’ => array(’'Model.field’ => S$thisValue), //array of conditions
"recursive’ => 1, //int
//array of field names
’fields’ => array(’Model.fieldl’, ’DISTINCT Model.field2’),
//string or array defining order
"order’ => array(’Model.created’, ’'Model.field3 DESC’),
"group’ => array(’Model.field’), //fields to GROUP BY
’limit’” => n, //int

More on models 225

CakePHP Cookbook Documentation, Release 2.x

"page’ => n, //int
"offset’” => n, //int
"callbacks’ => true //other possible values are false, ’‘before’, ’after’

It’s also possible to add and use other parameters. Some types of find() and behaviors make use of this
ability, and your own model methods can, too.

If your find() operation fails to match any records, you will get an empty array.
find(*first’)

find (' first’, S$params) will return one result. You’d use this for any case where you expect only
one result. Below are a couple of simple (controller code) examples:

public function some_function () {

/7 .

SsemiRandomArticle = S$Sthis—->Article->find ('’ first’);

SlastCreated = Sthis->Article->find(’first’, array (
"order’ => array(’'Article.created’ => ’desc’)

)) i

$specificallyThisOne = $this—>Article->find(’first’, array(
"conditions’ => array(’'Article.id’ => 1)

))

//

In the first example, no parameters at all are passed to find, so no conditions or sort order will be used. The
format returned from £ind (' first’) call is of the form:

Array
(
[ModelName] => Array
(

[id] => 83
[fieldl] => wvaluel
[field2] => wvalue2
[field3] => wvalue3

[AssociatedModelName] => Array
(
[id] => 1
[fieldl] => wvaluel
[field2] => value2
[field3] => wvalue3

226 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

find(‘count’)

find (' count’, S$params) returns an integer value. Below are a couple of simple (controller code)
examples:

public function some_function () {
VAP
Stotal = $this->Article->find(’count’);
Spending = S$this->Article->find(’count’, array (
"conditions’ => array(’'Article.status’ => ’'pending’)
))
Sauthors = Sthis->Article—>User—>find(’count’);
$SpublishedAuthors = $this->Article->find(’count’, array (
"fields’” => ’'DISTINCT Article.user_id’,
"conditions’ => array(’Article.status !=’' => ’"pending’)
))
//

Note: Don’t pass fields as an array to £ind (' count’). You would only need to specify fields for a
DISTINCT count (since otherwise, the count is always the same, dictated by the conditions).

find(‘all’)

find(’all’, $params) returns an array of potentially multiple results. It is, in fact, the mechanism
used by all £ind () variants, as well as paginate. Below are a couple of simple (controller code)
examples:

public function some_function() {
/7
SallArticles = $this—->Article—->find(’all’);
$pending = $this->Article->find(’all’, array(
"conditions’ => array(’Article.status’ => ’'pending’)
)) i
SallAuthors = $this—>Article—>User—>find(’all’);
$allPublishedAuthors = $this->Article->User->find(’all’, array (
"conditions’ => array(’Article.status !=’' => ’"pending’)
)) i
//

Note: In the above example, SallAuthors will contain every user in the users table. There will be no
condition applied to the find, since none were passed.

The results of acall to £ind (*all’) will be of the following form:

Array

(
[0] => Array

More on models 227

CakePHP Cookbook Documentation, Release 2.x

[ModelName] => Array
(
[id] => 83
[fieldl] => wvaluel
[field2] => value2
[field3] => value3
[AssociatedModelName] => Array
(
[id] => 1
[fieldl] => wvaluel
[field2] => value2
[field3] => wvalue3

find(‘list’)

find(’1list’, S$params) returns an indexed array, useful for any place where you would want a list,
such as for populating input select boxes. Below are a couple of simple (controller code) examples:

public function some_function() {
/7
SallArticles = S$Sthis->Article->find(’1list’);
Spending Sthis->Article->find(’list’, array (
"conditions’ => array(’'Article.status’ => ’'pending’)

))

SallAuthors = S$Sthis->Article—->User—->find(’list’);

SallPublishedAuthors = $this->Article->find(’1list’, array(
"fields’ => array(’'User.id’, ’User.name’),
"conditions’ => array(’'Article.status !=’ => ’'pending’),
"recursive’ => 0

))

//

Note: In the above example, SallAuthors will contain every user in the users table. There will be no
condition applied to the find, since none were passed.

The results of a call to £ind (’ 1ist’) will be in the following form:

Array

(
//[1id] => ’‘displayValue’,
[1] => "displayValuel’,

[2] => ’'displayValue2’,
[4] => ’'displayValued’,
[5] => ’'displayValueb5’,

228 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

[6] => "displayValueéb’,
[3] => ’'displayValue3’,

When calling find (* 1ist’),the fields passed are used to determine what should be used as the array
key and value, and optionally what to group the results by. By default, the primary key for the model is used
for the key, and the display field (which can be configured using the model attribute displayField) is used
for the value. Some further examples to clarify:

public function some_function () {
//
Sjustusernames = Sthis->Article->User—->find(’list’, array (

"fields’ => array(’User.username’)
)) i
SusernameMap = Sthis->Article->User->find(’list’, array (
"fields’ => array(’'User.username’, ’User.first_name’)
))
SusernameGroups = Sthis->Article->User—->find(’list’, array (
"fields’ => array(’User.username’, ’'User.first_name’, ’'User.group’)
))
//

With the above code example, the resultant vars would look something like this:

$justusernames = Array
(
//[id] => ’‘username’,
[213] => '"AD7six’,
[25] => '_psychic_’,
[1] => 'PHPNut’,
[2] => "gwoo’,
[400] => ' Jjperras’,

SusernameMap = Array

(
//[username] => ’firstname’,
["AD7six’] => ’'Andy’,
[/ _psychic_’] => ’"John’,
[/PHPNut’] => ’'Larry’,
["gwoo’] => ’'Gwoo’,

[

"Jjperras’] => "Jo&l’,

SusernameGroups = Array

(
["User’] => Array
(
["PHPNut’”] => ’"Larry’,
["gwoo’] => ’'Gwoo’,

More on models 229

CakePHP Cookbook Documentation, Release 2.x

[Admin’] => Array

(
[/ _psychic_’] => ’"John’
["AD7six’"] => ’'Andy’,
[/ jperras’] => ’'Jo&l’,

find(‘threaded’)

find (' threaded’, $params) returns a nested array, and is appropriate if you want to use the
parent_id field of your model data to build nested results. Below are a couple of simple (controller
code) examples:

public function some_function() {
/7 .
$SallCategories = Sthis->Category->find(’threaded’);
Scomments = $this->Comment->find(’threaded’, array(
"conditions’ => array(’article_id’ => 50)
)) i
/7

Tip: A better way to deal with nested data is using the 7ree behavior

In the above code example, $allCategories will contain a nested array representing the whole category
structure. The results of a call to £ind (’ threaded’) will be of the following form:

Array
(
[0] => Array
(
[ModelName] => Array
(
[id] => 83
[parent_id] => null
[fieldl] => wvaluel
[field2] => wvalue2
[field3] => value3

[AssociatedModelName] => Array
(
[id] => 1
[fieldl] => wvaluel
[field2] => wvalue2
[field3] => wvalue3

[children] => Array

230 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

=> Array

[ModelName]
(

d] =>
parent
fieldl
field2

[1
[
[
[
[field3

1
]
]

[AssociatedM
(
[id] =>
[fieldl]
[field2]
[field3]

[children]

=> Array

42

id]
=>
=>
=>

=> 83
valuel
value?2
value3

odelName] => Array

2

=> valuel
=> value?2
=> value3

> Array

(
)

)

The order in which results appear can be changed, as it is influenced by the order of processing. For example,
if "order’ => ’"name ASC’ is passed in the paramsto find (' threaded’), the results will appear
in name order. Any order can be used; there is no built-in requirement of this method for the top result to be
returned first.

Warning:
aliases):

If you specify f£ields, you need to always include the id and parent_id (or their current

public function some_function() {
Sthis—->Category—->find/(
=> array(’id’,

Scategories =
"fields’

"threaded’,
"parent_id’)

array (

"name’ ,
)) i

}

Otherwise, the returned array will not be of the expected nested structure from above.

find(‘neighbors’)

find (' neighbors’, $params) will perform a find similar to ‘first’, but will return the row before
and after the one you request. Below is a simple (controller code) example:

More on models 231

CakePHP Cookbook Documentation, Release 2.x

public function some_function() {
Sneighbors = $this—>Article->find(
"neighbors’,

array (' field’ => ’id’, ’'value’ => 3)

)i

You can see in this example the two required elements of the $params array: field and value. Other
elements are still allowed as with any other find. (For example: If your model acts as containable, then you
can specify ‘contain’ in Sparams.) The result returned from a find (' neighbors’) callis in the form:

Array
(
[prev] => Array
(
[ModelName] => Array
(
[id] => 2
[fieldl] => wvaluel
[field2] => value2

)

[AssociatedModelName] => Array
(
[id] => 151
[fieldl] => wvaluel
[field2] => wvalue2

)
[next] => Array
(
[ModelName] => Array
(
[id] => 4
[fieldl] => wvaluel
[field2] => value2

)
[AssociatedModelName] => Array

(
[1d] => 122
[fieldl] => wvaluel
[field2] => wvalue2

Note: Note how the result always contains only two root elements: prev and next. This function does not
honor a model’s default recursive var. The recursive setting must be passed in the parameters on each call.

232 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

Creating custom find types

The f£ind method is flexible enough to accept your custom finders. This is done by declaring your own
types in a model variable and by implementing a special function in your model class.

A Model Find Type is a shortcut to find() options. For example, the following two finds are equivalent

Sthis->User—>find ('’ first’);
Sthis->User->find(’all’, array(’'limit’ => 1));

The following are core find types:
e first
e all
* count
e list
* threaded
* neighbors

But what about other types? Let’s say you want a finder for all published articles in your database. The first
change you need to do is add your type to the Model: : $findMethods variable in the model

class Article extends AppModel {
public S$findMethods = array(’available’ => true);

}

Basically this is just telling CakePHP to accept the value available as the first argument of the find
function. The next step is to implement the function _findAvailable. This is done by convention. If
you wanted to implement a finder called myFancySearch, then the method to implement would be named
_findMyFancySearch.

class Article extends AppModel {

public $findMethods = array(’available’ => true);
protected function _findAvailable (Sstate, S$Squery, Sresults = array()) {
if (Sstate === ’"before’) {
Squery[’conditions’] ["Article.published’] = true;

return Squery;

}

return Sresults;

This all comes together in the following example (controller code):

class ArticlesController extends AppController {

// Will find all published articles and order them by the created column
public function index () {
Sarticles = $this->Article->find(’available’, array(
"order’ => array(’'created’ => ’desc’)

More on models 233

CakePHP Cookbook Documentation, Release 2.x

The special _find[Type] methods receive three arguments as shown above. The first one means the state
of the query execution, which could be either before or after. Itis done this way because this function
is just a sort of callback function that has the ability to modify the query before it is done, or to modify the
results after they are fetched.

Typically the first thing to check in our custom find function is the state of the query. The before state
is the moment to modify the query, bind new associations, apply more behaviors, and interpret any special
key that is passed in the second argument of £ind. This state requires you to return the $query argument
(modified or not).

The after state is the perfect place to inspect the results, inject new data, process it in order to return it
in another format, or do whatever you like to the recently fetched data. This state requires you to return the
$results array (modified or not).

You can create as many custom finders as you like, and they are a great way of reusing code in your
application across models.

It is also possible to paginate via a custom find type as follows:

class ArticlesController extends AppController ({

// Will paginate all published articles
public function index () {
Sthis->paginate = array(’available’);
Sarticles = $this->paginate();

&

Sthis->set (compact ("articles’));

Setting the Sthis->paginate property as above on the controller will result in the t ype of the find
becoming available, and will also allow you to continue to modify the find results.

To simply return the count of a custom find type, call count like you normally would, but pass in the find
type in an array for the second argument.

class ArticlesController extends AppController ({

// Will find the count of all published articles (using the available find
public function index() {
Scount = $this->Article->find(’count’, array (
"type’ => "available’
)) i

If your pagination page count is becoming corrupt, it may be necessary to add the following code to your
AppModel, which should fix the pagination count:

234 Chapter 8. Models

defined abo

CakePHP Cookbook Documentation, Release 2.x

class AppModel extends Model {

/

*

Removes ’fields’ key from count query on custom finds when it 1is an array,
as it will completely break the Model::_findCount () call

@param string Sstate Either "before" or "after"
@param array Squery

@param array Sresults

@return int The number of records found, or false
@access protected

@see Model::find/()

P S A T S

*
N

protected function _findCount (Sstate, S$query, Sresults = array()) {
if (Sstate === ’"before’) {
if (isset (Squery[’type’]) &&

isset (Sthis—>findMethods [Squery[’type’]1]1)) {

Squery = Sthis—>{
! _find’ . ucfirst (Squery[’type’])

} ("before’, Squery);

if (!empty (Squery[’fields’]) && is_array(Squery[’fields’])) {
if (!preg_match(’/”“count/i’, current (Squery[’fields’]1))) {

unset (Squery [’ fields’]);

}

return parent::_findCount (Sstate, S$Squery, Sresults);

}

2>

Changed in version 2.2.

You no longer need to override _findCount for fixing incorrect count results. The " before’ state of your
custom finder will now be called again with $query[’operation’] = ‘count’. The returned $query will be
used in _findCount () If necessary, you can distinguish by checking the operation’ key and return
a different Squery:

protected function _findAvailable($state, Squery, Sresults = array()) {
if (Sstate === ’'before’) {
Squery[’conditions’] ['Article.published’] = true;
if (!'empty(Squery[’operation’]) && Squery[’operation’] === ’count’) {

return Squery;
}
Squery [’ joins’] = array (
//array of required joins
)i
return Squery;
}

return Sresults;

More on models 235

CakePHP Cookbook Documentation, Release 2.x

Magic Find Types

These magic functions can be used as a shortcut to search your tables by a certain field. Just add the name
of the field (in CamelCase format) to the end of these functions, and supply the criteria for that field as the
first parameter.

findAlIBy() functions will return results in a format like £ind (” all’), while findBy() return in the same
formatas find (’ first’)

findAlIBy

findAllBy<fieldName> (string S$Svalue, array $fields, array S$Sorder, int
$limit, int $page, int S$Srecursive)

findAlIBy<x> Example Corresponding SQL Fragment
Sthis->Product->findAl11ByOrderStatus (’3’);| Product.order_status = 3
Sthis->Recipe->findAl1ByType (' Cookie’); Recipe.type = ’Cookie’

Sthis->User->findAllByLastName (' Anderson’)|; User.last_name =
"Anderson’

$this—>Cake—->findAl1lById (7); Cake.id = 7
Sthis->User->findAl1ByEmailOrUsername (' jhonUger.email = ’ jhon’ OR
"Jhon’) ; User.username = ' jhon’;
$this->User->findAl1ByUsernameAndPassword (| Yeem’ username = ' jhon’ AND
r123"); User.password = "123";
Sthis->User->findAllByLastName (' psychic’, | User.last_name = ’psychic’
array (), array(’User.user_name => ORDER BY User.user_name
"asc’)); ASC

The returned result is an array formatted just as it would be from find (" all’).

findBy

findBy<fieldName> (string S$value);
The findBy magic functions also accept some optional parameters:

findBy<fieldName> (string $value[, mixed $fields[, mixed S$Sorder]]);

findBy<x> Example Corresponding SQL Fragment
Sthis->Product->findByOrderStatus (’ 31 Product.order_status = 3
Sthis—->Recipe->findByType (' Cookie’); | Recipe.type = ’'Cookie’

Sthis->User->findByLastName (' Anderson’Usper.last_name = ’Anderson’;
$Sthis->User->findByEmailOrUsername (’ jlser,.email = ' jhon’ OR
"jhon’) ; User.username = ' jhon’;
Sthis->User->findByUsernameAndPasswordifethars’ername = ' jhon’ AND
"1237); User.password = 7123’;
Sthis—>Cake->findById(7); Cake.id = 7

findBy() functions return results like find (first’)

236 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

Model: :query ()

query (string Squery)

SQL calls that you can’t or don’t want to make via other model methods can be made using the model’s
query () method (though this should only rarely be necessary).

If you use this method, be sure to properly escape all parameters using the value () method on the database
driver. Failing to escape parameters will create SQL injection vulnerabilities.

Note: query () does not honor $Model->cacheQueries as its functionality is inherently disjoint from
that of the calling model. To avoid caching calls to query, supply a second argument of false, ie:

query (Squery, Scachequeries = false)

query () uses the table name in the query as the array key for the returned data, rather than the model
name. For example:

Sthis->Picture->query ("SELECT x FROM pictures LIMIT 2;");

might return:

Array

(
[0] => Array

(

[pictures] => Array

(
[id] => 1304
[user_id] => 759

[1] => Array

[pictures] => Array

(
[id] => 1305
[user_id] => 759

)

To use the model name as the array key, and get a result consistent with that returned by the Find methods,
the query can be rewritten:

Sthis->Picture->query ("SELECT » FROM pictures AS Picture LIMIT 2;");

which returns:

Array

More on models 237

CakePHP Cookbook Documentation, Release 2.x

[Picture] => Array

(
[id] => 1304
[user_id] => 759

[1] => Array

[Picture] => Array

(
[id] => 1305
[user_id] => 759

Note: This syntax and the corresponding array structure is valid for MySQL only. CakePHP does not
provide any data abstraction when running queries manually, so exact results will vary between databases.

Model: : field ()

field(string $name, array S$conditions = null, string Sorder = null)

Returns the value of a single field, specified as Sname, from the first record matched by $conditions as
ordered by $order. If no conditions are passed and the model id is set, it will return the field value for the
current model result. If no matching record is found, it returns false.

Sthis->Post—>id = 22;
echo S$this->Post->field('name’); // echo the name for row id 22

// echo the name of the last created instance
echo $this—>Post->field/(
"name’ ,
array (' created <’ => date('Y-m-d H:i:s’)),
"created DESC’
)i

Model: :read()

read ($fields, $id)

read () is a method used to set the current model data (Model : : $data)-such as during edits—but it can
also be used in other circumstances to retrieve a single record from the database.

$fields is used to pass a single field name, as a string, or an array of field names; if left empty, all fields
will be fetched.

$id specifies the ID of the record to be read. By default, the currently selected record, as specified by
Model: : $1id, is used. Passing a different value to $id will cause that record to be selected.

238 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

read () always returns an array (even if only a single field name is requested). Use field to retrieve the
value of a single field.

Warning: As the read method overwrites any information stored in the data and id property of
the model, you should be very careful when using this function in general, especially using it in the
model callback functions such as beforevalidate and beforeSave. Generally the £ind function
provides a more robust and easy to work with API than the read method.

Complex Find Conditions

Most of the model’s find calls involve passing sets of conditions in one way or another. In general, CakePHP
prefers using arrays for expressing any conditions that need to be put after the WHERE clause in any SQL

query.

Using arrays is clearer and easier to read, and also makes it very easy to build queries. This syntax also
breaks out the elements of your query (fields, values, operators, etc.) into discrete, manipulatable parts.
This allows CakePHP to generate the most efficient query possible, ensure proper SQL syntax, and properly
escape each individual part of the query. Using the array syntax also enables CakePHP to secure your queries
against any SQL injection attack.

Warning: CakePHP only escapes the array values. You should never put user data into the keys. Doing
so will make you vulnerable to SQL injections.

At its most basic, an array-based query looks like this:

$conditions = array("Post.title" => "This is a post", "Post.author_id" => 1);
// Example usage with a model:
Sthis->Post->find (’ first’, array(’conditions’ => S$conditions));

The structure here is fairly self-explanatory: it will find any post where the title equals “This is a post” and
the author id is equal to 1. Note that we could have used just “title” as the field name, but when building
queries, it is good practice to always specify the model name, as it improves the clarity of the code, and
helps prevent collisions in the future, should you choose to change your schema.

What about other types of matches? These are equally simple. Let’s say we wanted to find all the posts
where the title is not “This is a post”:

array ("Post.title !=" => "This is a post")

Notice the ‘!=" that follows the field name. CakePHP can parse out any valid SQL comparison operator,
including match expressions using LIKE, BETWEEN, or REGEX, as long as you leave a space between
field name and the operator. The one exception here is IN (...)-style matches. Let’s say you wanted to find
posts where the title was in a given set of values:

array (
"Post.title" => array("First post", "Second post", "Third post")
)

To do a NOT IN(...) match to find posts where the title is not in the given set of values, do the following:

More on models 239

CakePHP Cookbook Documentation, Release 2.x

array (
"NOT" => array (
"Post.title" => array("First post", "Second post", "Third post")

Adding additional filters to the conditions is as simple as adding additional key/value pairs to the array:

array (
"Post.title" => array("First post", "Second post", "Third post"),
"Post.created >" => date('Y-m-d’, strtotime ("-2 weeks"))

You can also create finds that compare two fields in the database:

array ("Post.created = Post.modified")

The above example will return posts where the created date is equal to the modified date (that is, it will
return posts that have never been modified).

Remember that if you find yourself unable to form a WHERE clause in this method (for example, boolean
operations), you can always specify it as a string like:

array (
"Model.field & 8 = 17,
// other conditions as usual

By default, CakePHP joins multiple conditions with boolean AND. This means the snippet above would
only match posts that have been created in the past two weeks, and have a title that matches one in the given
set. However, we could just as easily find posts that match either condition:

array ("OR" => array (
"Post.title" => array("First post", "Second post", "Third post"),
"Post.created >" => date('Y-m-d’, strtotime ("-2 weeks"))

))

CakePHP accepts all valid SQL boolean operations, including AND, OR, NOT, XOR, etc., and they can be
upper or lower case, whichever you prefer. These conditions are also infinitely nestable. Let’s say you had a
belongsTo relationship between Posts and Authors. Let’s say you wanted to find all the posts that contained
a certain keyword (“magic”) or were created in the past two weeks, but you wanted to restrict your search
to posts written by Bob:

array (
"Author.name" => "Bob",
"OR" => array (
"Post.title LIKE" => "%magics%",
"Post.created >" => date(’'Y-m-d’, strtotime("-2 weeks"))

If you need to set multiple conditions on the same field, like when you want to do a LIKE search with
multiple terms, you can do so by using conditions similar to:

240 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

array (' OR’ => array (
array (' Post.title LIKE’ => ’%one
array ('Post.title LIKE’' => ’%two%’)
))

CakePHP can also check for null fields. In this example, the query will return records where the post title is
not null:

array ("NOT" => array (
"Post.title" => null
)
)

To handle BETWEEN queries, you can use the following:

array (' Post.read_count BETWEEN ? AND ?’ => array(l,10))

Note: CakePHP will quote the numeric values depending on the field type in your DB.

How about GROUP BY?:

array (
"fields’ => array(
"Product.type’,
"MIN (Product.price) as price’

),
"group’ => ’'Product.type’

)
The data returned for this would be in the following format:

Array

(
[0] => Array

([Product] => Array
[type] => Clothing
[0] => Array
[price] => 32
)

[1] => Array

A quick example of doing a DISTINCT query. You can use other operators, such as MIN(), MAX(), etc., in
a similar fashion:

array (
"fields’ => array ('DISTINCT (User.name) AS my_column_name’),
"order’ = >array(’User.id DESC’)

More on models 241

CakePHP Cookbook Documentation, Release 2.x

You can create very complex conditions by nesting multiple condition arrays:

array (
"OR’ => array (
array (' Company.name’ => ’'Future Holdings’),
array (' Company.city’ => "CA’)
)I
"AND’ => array (
array (
"OR’ => array (
array (' Company.status’ => ’"active’),
"NOT’” => array (
array (' Company.status’ => array(’inactive’, ’suspended’))

which produces the following SQL:

SELECT ‘Company ‘. ‘'id‘, ‘Company ‘. ‘name?’‘,
‘Company ‘. ‘description', ‘Company‘.‘location?,
‘Company ‘. ‘created', ‘Company‘.‘status‘, ‘Company‘.‘size?’

FROM
‘companies' AS ‘Company®
WHERE
((‘Company ‘. ‘name‘ = ’'Future Holdings’)
OR
(‘Company ‘. ‘city' = "CA’))
AND
((‘Company ‘. ‘status' = "active’)
OR (NOT (‘Company‘.‘status' IN (’inactive’, ’'suspended’))))

Sub-queries

For this example, imagine that we have a “users” table with “id”, “name” and “status”. The status can be
“A”, “B” or “C”. We want to retrieve all the users that have status other than “B” using a sub-query.

In order to achieve that, we are going to get the model data source and ask it to build the query as if we were
calling a find() method, but it will just return the SQL statement. After that we make an expression and add
it to the conditions array:

SconditionsSubQuery [’ "User2"."status"’] = "B’;

Sdb = $this->User—->getDataSource () ;
SsubQuery = S$db->buildStatement (
array (
"fields’ => array ('’ "User2"."id"’"),

242 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

"table’ => Sdb->fullTableName ($Sthis->User),
"alias’ => ’'User2’,

"limit’ => null,

"offset’ => null,

"joins’ => array (),

"conditions’ => SconditionsSubQuery,

"order’ => null,

"group’ => null

),
Sthis—->User

)i

SsubQuery = ’ "User"."id" NOT IN (’ . S$subQuery . ") ’;
SsubQueryExpression = $db->expression (SsubQuery) ;
Sconditions[] = $subQueryExpression;

Sthis->User->find(’all’, compact (’conditions’));

This should generate the following SQL.:

SELECT
"User"."id" AS "User__id",
"User"."name" AS "User__name",
"User"."status" AS "User_ status"
FROM
"users" AS "User"
WHERE
"User"."id" NOT IN (
SELECT
"User2"."id"
FROM
"users" AS "User2"
WHERE
"User2"."status" = "B’

Also, if you need to pass just part of your query as raw SQL as above, datasource expressions with raw
SQL work for any part of the find query.

Prepared Statements

Should you need even more control over your queries, you can make use of prepared statements. This allows
you to talk directly to the database driver and send any custom query you like:

Sdb = $this->getDataSource () ;
Sdb—>fetchAll (
"SELECT x from users where username = ? AND password = ?’/,
array (' jhon’, "12345")
)
Sdb->fetchAll (
"SELECT x from users where username = :username AND password = :password’,

More on models 243

CakePHP Cookbook Documentation, Release 2.x

array (' username’ => ’jhon’,’'password’ => ’12345")
)i
Saving Your Data

CakePHP makes saving model data a snap. Data ready to be saved should be passed to the model’s save ()
method using the following basic format:

Array
(
[ModelName] => Array
(
[fieldnamel] => ’'wvalue’
[fieldname2] => ’'value’

Most of the time you won’t even need to worry about this format: CakePHP’s FormHe 1 per, and model find
methods all package data in this format. If you’re using either of the helpers, the data is also conveniently
available in $this->request->data for quick usage.

Here’s a quick example of a controller action that uses a CakePHP model to save data to a database table:

public function edit ($id) {
// Has any form data been POSTed?
if (Sthis->request->is('post’)) {
// If the form data can be validated and saved...
if (Sthis->Recipe->save ($this->request->data)) {
// Set a session flash message and redirect.
Sthis->Session->setFlash (’Recipe Saved!’);
return Sthis->redirect (’ /recipes’);

// If no form data, find the recipe to be edited

// and hand it to the view.
Sthis->set (' recipe’, S$this->Recipe->findById($id)) ;

When save is called, the data passed to it in the first parameter is validated using CakePHP’s validation
mechanism (see Data Validation chapter for more information). If for some reason your data isn’t saving,
be sure to check to see if some validation rules are being broken. You can debug this situation by outputting
Model::$validationErrors:

if (Sthis->Recipe->save ($this->request->data)) {
// handle the success.
}

debug (Sthis->Recipe->validationErrors) ;

There are a few other save-related methods in the model that you’ll find useful:

244 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

Model: :set ($one, $two = null)

Model: :set () can be used to set one or many fields of data to the data array inside a model. This is
useful when using models with the ActiveRecord features offered by Model:

Sthis->Post—->read (null, 1);
Sthis—->Post—>set ('title’, ’'New title for the article’);
Sthis—->Post—>save () ;

Is an example of how you can use set () to update single fields, in an ActiveRecord approach. You can
also use set () to assign new values to multiple fields:

Sthis—->Post—>read (null, 1);
Sthis->Post->set (array (
"title’ => ’'New title’,
"published’ => false
)) i

&

Sthis->Post->save () ;

The above would update the title and published fields and save the record to the database.

Model: :clear()

This method can be used to reset model state and clear out any unsaved data and validation errors.

New in version 2.4.

Model: :save (array $data = null, boolean $validate = true, array
$fieldList = array())

Featured above, this method saves array-formatted data. The second parameter allows you to sidestep val-
idation, and the third allows you to supply a list of model fields to be saved. For added security, you can
limit the saved fields to those listed in $fieldList.

Note: If SfieldList is not supplied, a malicious user can add additional fields to the form data (if you
are not using SecurityComponent), and by this change fields that were not originally intended to be

changed.

The save method also has an alternate syntax:

save (array Sdata = null, array Sparams = array())

Sparams array can have any of the following available options as keys:
* validate Set to true/false to enable/disable validation.
e fieldList An array of fields you want to allow for saving.

* callbacks Set to false to disable callbacks. Using ‘before’ or ‘after’ will enable only those call-
backs.

More on models 245

CakePHP Cookbook Documentation, Release 2.x

* counterCache (since 2.4) Boolean to control updating of counter caches (if any)

More information about model callbacks is available /ere

Tip: If you don’t want the modified field to be automatically updated when saving some data add
"modified’ => false toyour $data array

Once a save has been completed, the ID for the object can be found in the $1d attribute of the model object
- something especially handy when creating new objects.

Sthis->Ingredient->save (S$SnewData) ;
SnewIngredientId = Sthis->Ingredient->id;

Creating or updating is controlled by the model’s id field. If $Model->1id is set, the record with this
primary key is updated. Otherwise a new record is created:

// Create: id isn’t set or is null
Sthis—->Recipe->create () ;
Sthis->Recipe->save (Sthis->request->data) ;

// Update: id is set to a numerical value
Sthis->Recipe->id = 2;
Sthis->Recipe->save (Sthis->request->data);

Tip: When calling save in a loop, don’t forget to call clear ().

If you want to update a value, rather than create a new one, make sure you are passing the primary key field
into the data array:

Sdata = array(’id’ => 10, ’'title’ => ’'My new title’);
// This will update Recipe with id 10
Sthis—->Recipe->save ($data) ;

Model: :create (array $data = array())

This method resets the model state for saving new information. It does not actually create a record in the
database but clears Model::$id and sets Model::$data based on your database field defaults. If you have not
defined defaults for your database fields, Model::$data will be set to an empty array.

If the Sdat a parameter (using the array format outlined above) is passed, it will be merged with the database
field defaults and the model instance will be ready to save with that data (accessible at $this->data).

If false ornull are passed for the $data parameter, Model::data will be set to an empty array.

Tip: If you want to insert a new row instead of updating an existing one you should always call create()
first. This avoids conflicts with possible prior save calls in callbacks or other places.

246 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

Model: :saveField(string $fieldName, string $fieldvValue, $validate =
false)

Used to save a single field value. Set the ID of the model ($this->ModelName->id = $id) just
before calling saveField (). When using this method, $fieldName should only contain the name of
the field, not the name of the model and field.

For example, to update the title of a blog post, the call to saveField from a controller might look some-
thing like this:

Sthis->Post->saveField('title’, 'A New Title for a New Day’);

Warning: You can’t stop the modified field being updated with this method, you need to use the
save() method.

The saveField method also has an alternate syntax:

saveField(string $fieldName, string $fieldValue, array S$Sparams = array())

$params array can have any of the following available options as keys:
* validate Set to true/false to enable disable validation.

* callbacks Set to false to disable callbacks. Using ‘before’ or ‘after’ will enable only those call-
backs.

* counterCache (since 2.4) Boolean to control updating of counter caches (if any)

Model: :updateAll (array $fields, mixed $conditions)

Updates one or more records in a single call. Fields to be updated, along with their values, are identified by
the $fields array. Records to be updated are identified by the $conditions array. If Sconditions
argument is not supplied or it is set to t rue, all records will be updated.

For example, to approve all bakers who have been members for over a year, the update call might look
something like:

SthisYear = date(’Y-m—-d H:i:s’, strtotime(’'-1 year’));

Sthis->Baker->updateAll (
array (' Baker.approved’ => true),
array (' Baker.created <=’ => SthisYear)

)

The $fields array accepts SQL expressions. Literal values should be quoted manually using
DboSource: :value (). For example if one of your model methods was calling updateAll () you
would do the following:

Sdb = $this->getDataSource () ;
Svalue = Sdb->value($Svalue, ’'string’);
Sthis—->updateAll (

array (' Baker.approved’ => true),

More on models 247

CakePHP Cookbook Documentation, Release 2.x

array (' Baker.created <=’ => S$Svalue)

)

Note: Even if the modified field exists for the model being updated, it is not going to be updated automati-
cally by the ORM. Just add it manually to the array if you need it to be updated.

For example, to close all tickets that belong to a certain customer:

Sthis->Ticket->updateAll (
array (' Ticket.status’ => "’closed’"),
array (' Ticket.customer_id’ => 453)

)i

By default, updateAll() will automatically join any belongsTo association for databases that support joins.
To prevent this, temporarily unbind the associations.

Model: : saveMany (array $data = null, array S$options = array())

Method used to save multiple rows of the same model at once. The following options may be used:

* validate: Set to false to disable validation, true to validate each record before saving, ‘first’ to
validate all records before any are saved (default),

* atomic: If true (default), will attempt to save all records in a single transaction. Should be set to
false if database/table does not support transactions.

* fieldList: Equivalent to the $fieldList parameter in Model::save()
e deep: (since 2.1) If set to true, also associated data is saved, see also saveAssociated

* callbacks Set to false to disable callbacks. Using ‘before’ or ‘after’ will enable only those call-
backs.

* counterCache (since 2.4) Boolean to control updating of counter caches (if any)

For saving multiple records of single model, $data needs to be a numerically indexed array of records like
this:

Sdata = array (
array(’'title’ => ’'title 17),
array (’'title’ => 'title 2'),
)

Note: Note that we are passing numerical indexes instead of usual $data containing the Article key.
When saving multiple records of same model the records arrays should be just numerically indexed without

the model key.

It is also acceptable to have the data in the following format:

Sdata = array (
array ('Article’ => array('title’ => ’'title 17)),

248 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

)i

array ('Article’ => array(’'title’ => ’'title 2')),

To save also associated data with Soptions[’deep’] = true (since 2.1), the two above examples
would look like:
Sdata = array (

array(’'title’ => ’'title 1’, ’'Assoc’ => array(’'field’ => ’'value’)),

)

array(’'title’ => ’'title 27),

Sdata = array (

array (
"Article’ => array(’'title’ => ’'title 17),
"Assoc’ => array(’'field’ => ’value’)
)I
array ('Article’ => array(’'title’ => ’'title 2')),
’
SModel->saveMany (Sdata, array(’deep’ => true));

Keep in mind that if you want to update a record instead of creating a new one you just need to add the
primary key index to the data row:

$data = array (
array (
// This creates a new row
"Article’ => array('title’ => ’'New article’)),
array (

// This updates an existing row
"Article’ => array(’'id’ => 2, ’'title’ => ’'title 2')),

Model: :saveAssociated (array $data = null, array $options = array())

Method used to save multiple model associations at once. The following options may be used:

validate: Set to false to disable validation, true to validate each record before saving, ‘first’ to
validate all records before any are saved (default),

atomic: If true (default), will attempt to save all records in a single transaction. Should be set to
false if database/table does not support transactions.

fieldList: Equivalent to the $fieldList parameter in Model::save()

deep: (since 2.1) If set to true, not only directly associated data is saved, but deeper nested associated
data as well. Defaults to false.

counterCache (since 2.4) Boolean to control updating of counter caches (if any)

For saving a record along with its related record having a hasOne or belongsTo association, the data array
should be like this:

Sdata = array (

"User’ => array(’username’ => ’'billy’),

More on models 249

CakePHP Cookbook Documentation, Release 2.x

"Profile’ => array(’sex’ => 'Male’, ’'occupation’ => ’'Programmer’),
)

For saving a record along with its related records having hasMany association, the data array should be like
this:

Sdata = array (
"Article’ => array(’'title’ => ’'My first article’),
’Comment’ => array (
array ('body’ => 'Comment 1’, ’'user_id’ => 1

)I
array (' body’ => ’'Comment 2’, ’user_id’ => 12),
array ('body’ => ’Comment 3’, ’‘user_id’ => 40)
)I
)i

And for saving a record along with its related records having hasMany with more than two levels deep
associations, the data array should be as follow:

Sdata = array (
"User’ => array(’'email’ => ’john-doe@cakephp.org’),
"Cart’ => array (
array (
"payment_status_id’ => 2,
"total_cost’ => 250,
"CartItem’ => array (
array (
"cart_product_id’ => 3,
"quantity’ => 1,
"cost’ => 100,
)I
array (
"cart_product_id’ => 5,
"quantity’ => 1,
"cost’ => 150,

)i

Note: If successful, the foreign key of the main model will be stored in the related models’ id field, i.e.
Sthis->RelatedModel->id.

Warning: Be careful when checking saveAssociated calls with atomic option set to false. It returns an
array instead of boolean.

Changed in version 2.1: You can now save deeper associated data as well with setting
Soptions[’deep’] = true;

For saving a record along with its related records having hasMany association and deeper associated Com-
ment belongsTo User data as well, the data array should be like this:

250 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

Sdata = array (
"Article’ => array(’'title’ => "My first article’),
’Comment’ => array (
array (' body’ => ’Comment 1’, ’'user_id’ => 1),
array (

"body’ => ’Save a new user as well’,
"User’ => array(’'first’ => 'mad’, ’'last’ => ’'coder’)

),
)i

And save this data with:

SArticle->saveAssociated($data, array(’deep’ => true));

Changed in version 2.1: Model: :saveAll () and friends now support passing the fieldList for multiple
models.

Example of using fieldList with multiple models:

Sthis—->SomeModel->saveAll ($data, array (
"fieldList’ => array(
" SomeModel’ => array(’field_1’),
"AssociatedModel’ => array(’'field_2’, ’"field 3')

)) i

The fieldList will be an array of model aliases as keys and arrays with fields as values. The model names
are not nested like in the data to be saved.

Model: :saveAll (array $data = null, array $options = array())

The saveAll function is just a wrapper around the saveMany and saveAssociated methods. it will
inspect the data and determine what type of save it should perform. If data is formatted in a numerical
indexed array, saveMany will be called, otherwise saveAssociated is used.

This function receives the same options as the former two, and is generally a backwards compatible function.
It is recommended using either saveMany or saveAssociated depending on the case.

Saving Related Model Data (hasOne, hasMany, belongsTo)

When working with associated models, it is important to realize that saving model data should always be
done by the corresponding CakePHP model. If you are saving a new Post and its associated Comments, then
you would use both Post and Comment models during the save operation.

If neither of the associated model records exists in the system yet (for example, you want to save a new User
and their related Profile records at the same time), you’ll need to first save the primary, or parent model.

To get an idea of how this works, let’s imagine that we have an action in our UsersController that handles
the saving of a new User and a related Profile. The example action shown below will assume that you’ve
POSTed enough data (using the FormHelper) to create a single User and a single Profile:

More on models 251

CakePHP Cookbook Documentation, Release 2.x

public function add() {
if (!empty(Sthis->request->data)) {
// We can save the User data:
// it should be in Sthis->request—->data[’User’]

Suser = Sthis->User->save (Sthis->request->data);

// If the user was saved, Now we add this information to the data
// and save the Profile.

if (!empty (Suser)) {
// The ID of the newly created user has been set
// as Sthis->User—->id.
Sthis->request->datal[’Profile’] ["user_id’] = S$Sthis->User->id;

// Because our User hasOne Profile, we can access
// the Profile model through the User model:
Sthis->User->Profile->save ($this->request->data) ;

As a rule, when working with hasOne, hasMany, and belongsTo associations, it’s all about keying. The
basic idea is to get the key from one model and place it in the foreign key field on the other. Sometimes
this might involve using the $1id attribute of the model class after a save (), but other times it might just
involve gathering the ID from a hidden input on a form that’s just been POSTed to a controller action.

To supplement the basic approach used above, CakePHP also offers a very handy method
saveAssociated (), which allows you to validate and save multiple models in one shot. In addition,
saveAssociated () provides transactional support to ensure data integrity in your database (i.e. if one
model fails to save, the other models will not be saved either).

Note: For transactions to work correctly in MySQL your tables must use InnoDB engine. Remember that
MyISAM tables do not support transactions.

Let’s see how we can use saveAssociated () to save Company and Account models at the same time.

First, you need to build your form for both Company and Account models (we’ll assume that Company
hasMany Account):

echo Sthis—->Form—>create (' Company’, array(’action’ => ’'add’));

echo Sthis->Form->input (’ Company.name’, array(’label’ => ’Company name’));
echo Sthis->Form->input (' Company.description’) ;

echo $this—->Form->input (’ Company.location’) ;

echo Sthis—->Form—>input (' Account.0.name’, array(’label’ => ’'Account name’));
echo S$this—->Form->input (' Account.0.username’) ;
echo Sthis->Form->input (' Account.0.email’);

echo $this—->Form->end (’Add’);

Take a look at the way we named the form fields for the Account model. If Company is our main model,

252 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

saveAssociated () will expect the related model’s (Account) data to arrive in a specific format. And
having Account . 0.fieldName is exactly what we need.

Note: The above field naming is required for a hasMany association. If the association between the models
is hasOne, you have to use ModelName.fieldName notation for the associated model.

Now, in our CompaniesController we can create an add () action:

public function add() {
if ('empty(Sthis->request->data)) {
// Use the following to avoid validation errors:
unset ($this->Company—->Account->validate [’ company_1id’]) ;
Sthis—->Company->saveAssociated ($this->request->data);

That’s all there is to it. Now our Company and Account models will be validated and saved all at the same
time. By default saveAssociated will validate all values passed and then try to perform a save for each.

Saving hasMany through data

Let’s see how data stored in a join table for two models is saved. As shown in the hasMany through (The
Join Model) section, the join table is associated to each model using a hasMany type of relationship. Our
example involves the Head of Cake School asking us to write an application that allows him to log a student’s
attendance on a course with days attended and grade. Take a look at the following code.:

// Controller/CourseMembershipController.php
class CourseMembershipsController extends AppController {
public Suses = array (’CourseMembership’);

public function index () {
Sthis->set (
"courseMembershipsList’,
Sthis->CourseMembership->find(’all’)
)i

public function add() {
if (Sthis->request->is(’'post’)) {
if (Sthis->CourseMembership->saveAssociated (Sthis->request->data)) {
return Sthis->redirect (array(’action’ => ’index’));

// View/CourseMemberships/add.ctp

<?php echo $this->Form->create (' CourseMembership’); ?>
<?php echo S$this->Form->input ('’ Student.first_name’); ?>
<?php echo S$this->Form->input ('’ Student.last_name’); 2>

More on models 253

CakePHP Cookbook Documentation, Release 2.x

<?php echo S$this->Form->input (' Course.name’); ?>
<?php echo S$this->Form->input (' CourseMembership.days_attended’); ?>
<?php echo S$this->Form->input (' CourseMembership.grade’); ?>
<button type="submit">Save</button>
<?php echo Sthis->Form->end(); 2>

The data array will look like this when submitted.:

Array

(
[Student] => Array

(

[first_name] => Joe
[last_name] => Bloggs

)

[Course] => Array

(
[name] => Cake

)

[CourseMembership] => Array

(
[days_attended] => 5
[grade] => A

CakePHP will happily be able to save the lot together and assign the foreign keys of the Student and Course
into CourseMembership with a saveAssociated call with this data structure. If we run the index action of
our CourseMembershipsController the data structure received now from a find(‘all’) is:

Array

(
[0] => Array
(

[CourseMembership] => Array
(

id] => 1

student_id] => 1

days_attended] => 5

[
[
[course_id] => 1
[
[grade] => A

[Student] => Array
(

[id] => 1
[first_name] => Joe
[last_name] => Bloggs
)
[Course] => Array

254 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

[id] => 1
[name] => Cake

There are of course many ways to work with a join model. The version above assumes you want to save
everything at-once. There will be cases where you want to create the Student and Course independently and
at a later point associate the two together with a CourseMembership. So you might have a form that allows
selection of existing students and courses from pick lists or ID entry and then the two meta-fields for the
CourseMembership, e.g.:

// View/CourseMemberships/add.ctp

<?php echo $this->Form->create (’ CourseMembership’); 2>
<?php
echo Sthis->Form->input (

"Student.id’,

array (
"type’ => "text’,
"label’ => ’Student ID’,
"default’ => 1

)i

2>
<?php
echo $this->Form—>input (
"Course.id’,
array (
"type’ => 'text’,
"label” => ’Course ID’,
"default’ => 1
)
)
?>

<?php echo S$this->Form->input (' CourseMembership.days_attended’); ?>
<?php echo Sthis->Form->input (' CourseMembership.grade’); ?>
<button type="submit">Save</button>

<?php echo S$this->Form->end(); ?>

And the resultant POST:

Array

(
[Student] => Array

(

[id] => 1
)
[Course] => Array
(

[id] => 1

More on models 255

CakePHP Cookbook Documentation, Release 2.x

)

[CourseMembership] => Array

(
[days_attended] => 10

[grade] => 5

)

Again CakePHP is good to us and pulls the Student id and Course id into the CourseMembership with the

saveAssociated.

Saving Related Model Data (HABTM)

Saving models that are associated by hasOne, belongsTo, and hasMany is pretty simple: you just populate
the foreign key field with the ID of the associated model. Once that’s done, you just call the save ()
method on the model, and everything gets linked up correctly. An example of the required format for the
data array passed to save () for the Tag model is shown below:

Array
(
[Recipe] => Array
(
[1d] => 42
)
[Tag] => Array
(

[name] => Italian
)
)

You can also use this format to save several records and their HABTM associations with saveAll (),
using an array like the following:

Array
([0] => Array
([Recipe] => Array
([id] => 42
[Tag; => Array
(

[name] => Italian
)
)
[1] => Array
(
[Recipe] => Array
(
[id] => 43

256 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

)

)
[Tag] => Array
(

[name] => Pasta
)
)
[2] => Array
(
[Recipe] => Array
(
[id] => 51

)
[Tag] => Array
(

[name] => Mexican
)
)
[3] => Array
(
[Recipe] => Array
(
[1id] => 17

)
[Tag] => Array
(

[name] => American

)

(new)

Passing the above array to saveAll () will create the contained tags, each associated with their respective

recipes.

Another example that is helpful is when you need to save many Tags to a Post. You need to pass the
associated HABTM data in the following HABTM array format. Note you only need to pass in the id’s of
the associated HABTM model however it needs to be nested again:

Array

[0] => Array

(
[Post] => Array

(

[title] => ’Saving HABTM arrays’

)
[Tag] => Array
(

[Tag] => Array (1,

)
)
[1] => Array

(
[Post] => Array

2, 5, 9)

More on models

257

CakePHP Cookbook Documentation, Release 2.x

[title] => ’'Dr Who’s Name is Revealed’

)
[Tag] => Array

(
[Tag] => Array (7, 9, 15, 19)

)
[2] => Array
(
[Post] => Array
(
[title] => I Came, I Saw and I Conquered’
)
[Tag] => Array
(
[Tag] => Array (11, 12, 15, 19)

)
[3] => Array
(
[Post] => Array
(
[title] => ’'Simplicity is the Ultimate Sophistication
)
[Tag] => Array
(
[Tag] => Array (12, 22, 25, 29)

Passing the above array to saveAll ($data, array(’deep’ => true)) will populate the
posts_tags join table with the Tag to Post associations.

As an example, we’ll build a form that creates a new tag and generates the proper data array to associate it
on the fly with some recipe.

The simplest form might look something like this (we’ll assume that $recipe_1id is already set to some-
thing):

<?php echo $this->Form->create(’'Tag’); ?>
<?php echo Sthis->Form->input (
"Recipe.id’,
array (' type’ => ’'hidden’, ’'value’ => Srecipe_id)
)i 7>
<?php echo S$this->Form->input (' Tag.name’); ?>
<?php echo S$this->Form->end(’Add Tag’); ?>

In this example, you can see the Recipe. id hidden field whose value is set to the ID of the recipe we
want to link the tag to.

When the save () method is invoked within the controller, it’ll automatically save the HABTM data to the
database:

258 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

public function add() {
// Save the association
if (Sthis->Tag->save (Sthis->request->data)) ({
// do something on success

With the preceding code, our new Tag is created and associated with a Recipe, whose ID was set in
Sthis->request->datal[’Recipe’][’ id’].

Other ways we might want to present our associated data can include a select drop down list. The data can
be pulled from the model using the find (’ 1ist’) method and assigned to a view variable of the model
name. An input with the same name will automatically pull in this data into a <select>:

// in the controller:
Sthis—>set ('tags’, S$this->Recipe->Tag->find(’1list’));

// in the view:
$this->Form->input (' tags’);

A more likely scenario with a HABTM relationship would include a <select> set to allow multiple
selections. For example, a Recipe can have multiple Tags assigned to it. In this case, the data is pulled out
of the model the same way, but the form input is declared slightly different. The tag name is defined using
the Mode 1Name convention:

// 1in the controller:
Sthis->set ('tags’, Sthis->Recipe->Tag->find(’1list’));

// 1n the view:
Sthis—>Form—>input (' Tag’) ;

Using the preceding code, a multiple select drop down is created, allowing for multiple choices to automat-
ically be saved to the existing Recipe being added or saved to the database.

Self HABTM Normally HABTM is used to bring 2 models together but it can also be used with only 1
model, though it requires some extra attention.

The key is in the model setup the className. Simply adding a Project HABTM Project relation
causes issues saving data. By setting the c1assName to the models name and use the alias as key we avoid
those issues.:

class Project extends AppModel {
public ShasAndBelongsToMany = array (

"RelatedProject’ => array (
"className’ => 'Project’,
"foreignKey’ => ’'projects_a_id’,
"associationForeignKey’ => ’'projects_b_id’,

),
)i

Creating form elements and saving the data works the same as before but you use the alias instead. This:

More on models 259

CakePHP Cookbook Documentation, Release 2.x

Sthis->set ('projects’, Sthis—>Project->find(’list’));
Sthis->Form->input (' Project’) ;

Becomes this:

Sthis—->set (' relatedProjects’, S$this->Project->find(’list’));
Sthis->Form->input (' RelatedProject’);

What to do when HABTM becomes complicated? By default when saving a HasAndBelongsToMany
relationship, CakePHP will delete all rows on the join table before saving new ones. For example if you
have a Club that has 10 Children associated. You then update the Club with 2 children. The Club will only
have 2 Children, not 12.

Also note that if you want to add more fields to the join (when it was created or meta information) this is
possible with HABTM join tables, but it is important to understand that you have an easy option.

HasAndBelongsToMany between two models is in reality shorthand for three models associated through
both a hasMany and a belongsTo association.

Consider this example:

Child hasAndBelongsToMany Club

Another way to look at this is adding a Membership model:

Child hasMany Membership
Membership belongsTo Child, Club
Club hasMany Membership.

These two examples are almost the exact same. They use the same amount of named fields in the database
and the same amount of models. The important differences are that the “join” model is named differently
and its behavior is more predictable.

Tip: When your join table contains extra fields besides two foreign keys, you can prevent losing the extra
field values by setting unique’ array key to ' keepExisting’. You could think of this similar to

‘unique’ => true, but without losing data from the extra fields during save operation. Additionally, if you
used bake in order to create the models, this is set automatically. See: HABTM association arrays.

However, in most cases it’s easier to make a model for the join table and setup hasMany, belongsTo associ-
ations as shown in example above instead of using HABTM association.

Datatables

While CakePHP can have datasources that aren’t database driven, most of the time, they are. CakePHP is
designed to be agnostic and will work with MySQL, MSSQL, PostgreSQL and others. You can create your
database tables as you normally would. When you create your Model classes, they’ll automatically map
to the tables that you’ve created. Table names are by convention lowercase and pluralized with multi-word
table names separated by underscores. For example, a Model name of Ingredient expects the table name in-
gredients. A Model name of EventRegistration would expect a table name of event_registrations. CakePHP

260 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

will inspect your tables to determine the data type of each field and uses this information to automate various
features such as outputting form fields in the view. Field names are by convention lowercase and separated
by underscores.

Using created and modified

By defining a created and/or modified field in your database table as datetime fields (default null),
CakePHP will recognize those fields and populate them automatically whenever a record is created or saved
to the database (unless the data being saved already contains a value for these fields).

The created and modified fields will be set to the current date and time when the record is initially
added. The modified field will be updated with the current date and time whenever the existing record is
saved.

If you have created or modified data in your $this->data (e.g. from a Model::read or Model::set)
before a Model::save() then the values will be taken from $this->data and not automagically updated. If you
don’t want that you can use unset ($this->data[’Model’] ['modified’]), etc. Alternatively
you can override the Model::save() to always do it for you:

class AppModel extends Model {

public function save ($data = null, Svalidate = true, S$fieldList = array())
// Clear modified field value before each save
Sthis->set ($data) ;
if (isset ($this->data[Sthis—->alias]['modified’])) {
unset (Sthis—>data[Sthis->alias] ['modified’]);
}

return parent::save($this->data, Svalidate, $fieldList);

Deleting Data

CakePHP’s Model class offers a few ways to delete records from your database.

delete

delete (integer $id = null, boolean S$cascade = true);

Deletes the record identified by $id. By default, also deletes records dependent on the record specified to be
deleted.

For example, when deleting a User record that is tied to many Recipe records (User ‘hasMany’ or ‘hasAnd-
BelongsToMany’ Recipes):

* if $cascade is set to true, the related Recipe records are also deleted if the model’s dependent-value is
set to true.

* if $cascade is set to false, the Recipe records will remain after the User has been deleted.

More on models 261

{

CakePHP Cookbook Documentation, Release 2.x

If your database supports foreign keys and cascading deletes, it’s often more efficient to rely on that feature
than CakePHP’s cascading. The one benefit to using the cascade feature of Model: :delete () is thatit
allows you to leverage behaviors and model callbacks:

Sthis—->Comment->delete ($Sthis->request->data (' Comment.id’)) ;

You can hook custom logic into the delete process using the beforeDelete and afterDelete call-
backs present in both Models and Behaviors. See Callback Methods for more information.

deleteAll

deleteAll (mixed S$conditions, $cascade = true, S$callbacks = false)

deleteAll () issimilarto delete (), exceptthat deleteAll () will delete all records that match the
supplied conditions. The $conditions array should be supplied as a SQL fragment or array.

* conditions Conditions to match
* cascade Boolean, Set to true to delete records that depend on this record
 callbacks Boolean, Run callbacks

Return boolean True on success, false on failure.

Example:

// Delete with array conditions similar to find()
Sthis—->Comment->deleteAll (array (' Comment.spam’ => true), false);

If you delete with either callbacks and/or cascade, rows will be found and then deleted. This will often
result in more queries being issued. Associations will be reset before the matched records are deleted in
deleteAll(). If you use bindModel() or unbindModel() to change the associations, you should set reset to
false.

Note: deleteAll() will return true even if no records are deleted, as the conditions for the delete query were
successful and no matching records remain.

Data Validation

Data validation is an important part of any application, as it helps to make sure that the data in a Model
conforms to the business rules of the application. For example, you might want to make sure that passwords
are at least eight characters long, or ensure that usernames are unique. Defining validation rules makes form
handling much, much easier.

There are many different aspects to the validation process. What we’ll cover in this section is the model side
of things. Essentially: what happens when you call the save() method of your model. For more information
about how to handle the displaying of validation errors, check out FormHelper.

The first step to data validation is creating the validation rules in the Model. To do that, use the
Model::validate array in the Model definition, for example:

262 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

class User extends AppModel {
public Svalidate = array();

In the example above, the $validate array is added to the User Model, but the array contains no validation
rules. Assuming that the users table has login, password, email and born fields, the example below shows
some simple validation rules that apply to those fields:

class User extends AppModel ({

public Svalidate = array (
"login’ => ’alphaNumeric’,
"email’ => ’"email’,
"born’ => ’"date’

)i

This last example shows how validation rules can be added to model fields. For the login field, only letters
and numbers will be accepted, the email should be valid, and born should be a valid date. Defining validation
rules enables CakePHP’s automagic showing of error messages in forms if the data submitted does not follow
the defined rules.

CakePHP has many validation rules and using them can be quite easy. Some of the built-in rules allow you
to verify the formatting of emails, URLs, and credit card numbers — but we’ll cover these in detail later on.

Here is a more complex validation example that takes advantage of some of these built-in validation rules:

class User extends AppModel ({

public Svalidate = array(
"login’ => array (
"alphaNumeric’ => array (
"rule’ => ’"alphaNumeric’,
"required’ => true,
"message’ => ’'Letters and numbers only’

),

"between’ => array (
"rule’ => array(’'between’, 5, 15),
"message’ => ’"Between 5 to 15 characters’

)I
"password’ => array (
"rule’ => array('minLength’, ’8’),
"message’ => 'Minimum 8 characters long’
)I
"email’ => ’'email’,
"born’ => array (
"rule’ => ’'date’,
"message’ => ’'Enter a valid date’,
"allowEmpty’ => true

)i

Two validation rules are defined for login: it should contain letters and numbers only, and its length should
be between 5 and 15. The password field should be a minimum of 8 characters long. The email should

More on models 263

CakePHP Cookbook Documentation, Release 2.x

be a valid email address, and born should be a valid date. Also, notice how you can define specific error
messages that CakePHP will use when these validation rules fail.

As the example above shows, a single field can have multiple validation rules. And if the built-in rules do
not match your criteria, you can always add your own validation rules as required.

Now that you’ve seen the big picture on how validation works, let’s look at how these rules are defined in
the model. There are three different ways that you can define validation rules: simple arrays, single rule per
field, and multiple rules per field.

Simple Rules
As the name suggests, this is the simplest way to define a validation rule. The general syntax for defining
rules this way is:

public $validate = array(’fieldName’ => ’'ruleName’);

Where, ‘fieldName’ is the name of the field the rule is defined for, and ‘ruleName’ is a pre-defined rule
name, such as ‘alphaNumeric’, ‘email’ or ‘isUnique’.

For example, to ensure that the user is giving a well formatted email address, you could use this rule:

public Svalidate = array(’user_email’ => ’"email’);

One Rule Per Field

This definition technique allows for better control of how the validation rules work. But before we discuss
that, let’s see the general usage pattern adding a rule for a single field:

public Svalidate = array (

"fieldNamel’ => array (
// or: array(’ruleName’, ’‘paraml’, ’‘param2’ ...)
"rule’ => 'ruleName’,

"required’ => true,

"allowEmpty’ => false,

// or: ’‘update’

"on’” => ’create’,

"message’ => ’'Your Error Message’

)i

The ‘rule’ key is required. If you only set ‘required’ => true, the form validation will not function correctly.
This is because ‘required’ is not actually a rule.

As you can see here, each field (only one field shown above) is associated with an array that contains five
keys: ‘rule’, ‘required’, ‘allowEmpty’, ‘on’ and ‘message’. Let’s have a closer look at these keys.

264 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

rule

The ‘rule’ key defines the validation method and takes either a single value or an array. The specified ‘rule’
may be the name of a method in your model, a method of the core Validation class, or a regular expression.
For more information on the rules available by default, see Core Validation Rules.

If the rule does not require any parameters, ‘rule’ can be a single value e.g.:

public Svalidate = array (
"login’ => array (
"rule’ => ’"alphaNumeric’

)
)

If the rule requires some parameters (like the max, min or range), ‘rule’ should be an array:

public Svalidate = array (
"password’ => array (
"rule’ => array('minLength’, 8)
)
)

Remember, the ‘rule’ key is required for array-based rule definitions.

required

This key accepts either a boolean, or create or update. Setting this key to t rue will make the field
always required. While setting it to create or update will make the field required only for update or
create operations. If ‘required’ is evaluated to true, the field must be present in the data array. For example,
if the validation rule has been defined as follows:

public Svalidate = array(
"login’ => array (
"rule’ => "alphaNumeric’,

"required’ => true
)i

The data sent to the model’s save() method must contain data for the login field. If it doesn’t, validation will
fail. The default value for this key is boolean false.

required => true does not mean the same as the validation rule notEmpty (). required =>
true indicates that the array key must be present - it does not mean it must have a value. Therefore
validation will fail if the field is not present in the dataset, but may (depending on the rule) succeed if the
value submitted is empty ().

Changed in version 2.1: Support for create and update were added.

More on models 265

CakePHP Cookbook Documentation, Release 2.x

allowEmpty

If set to false, the field value must be nonempty, where “nonempty” is defined as !empty (Svalue)
| | is_numeric ($value). The numeric check is so that CakePHP does the right thing when $value
is zero.

The difference between required and allowEmpty can be confusing. ’required’ => true
means that you cannot save the model without the key for this field being present in $this->data (the
check is performed with i sset); whereas, ' allowEmpty’ => false makes sure that the current field
value is nonempty, as described above.

on

The ‘on’ key can be set to either one of the following values: ‘update’ or ‘create’. This provides a mechanism
that allows a certain rule to be applied either during the creation of a new record, or during update of a record.

If a rule has defined ‘on” => ‘create’, the rule will only be enforced during the creation of a new record.
Likewise, if it is defined as ‘on’ => ‘update’, it will only be enforced during the updating of a record.

The default value for ‘on’ is null. When ‘on’ is null, the rule will be enforced during both creation and
update.

message

The message key allows you to define a custom validation error message for the rule:

public Svalidate = array (
"password’ => array (
"rule’ => array('minLength’, 8),
"message’ => ’'Password must be at least 8 characters long’

)

Note: Regardless of the rule, validation failure without a defined message defaults to “This field cannot be
left blank.”

Multiple Rules per Field

The technique outlined above gives us much more flexibility than simple rules assignment, but there’s an
extra step we can take in order to gain more fine-grained control of data validation. The next technique we’ll
outline allows us to assign multiple validation rules per model field.

If you would like to assign multiple validation rules to a single field, this is basically how it should look:

public $validate = array(
"fieldName’ => array (
"ruleName’ => array (
"rule’ => ’'ruleName’,

266 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

// extra keys like on, required, etc. go here...
)

"ruleName2’ => array (
"rule’ => ’'ruleName2’,
// extra keys like on, required, etc. go here...

)i

As you can see, this is quite similar to what we did in the previous section. There, for each field we had only
one array of validation parameters. In this case, each ‘fieldName’ consists of an array of rule indexes. Each
‘ruleName’ contains a separate array of validation parameters.

This is better explained with a practical example:

public Svalidate = array (
"login’ => array(
"loginRule-1" => array (
"rule’ => "alphaNumeric’,
"message’ => ’Only alphabets and numbers allowed’,

),
"loginRule-2’ => array (
"rule’ => array(’'minLength’, 8),
"message’ => ’'Minimum length of 8 characters’

)i

The above example defines two rules for the login field: loginRule-1 and loginRule-2. As you can see, each
rule is identified with an arbitrary name.

When using multiple rules per field the ‘required’ and ‘allowEmpty’ keys need to be used only once in the
first rule.

last

In case of multiple rules per field by default if a particular rule fails error message for that rule is returned
and the following rules for that field are not processed. If you want validation to continue in spite of a rule
failing set key last to false for that rule.

In the following example even if “rulel” fails “rule2” will be processed and error messages for both failing
rules will be returned if “rule2” also fails:

public Svalidate = array (
"login’ => array (

"rulel’ => array (
"rule’ => ’"alphaNumeric’,
"message’ => ’'Only alphabets and numbers allowed’,
"last’ => false

)I

"rule2’ => array (

"rule’ => array(’'minLength’, 8),

More on models 267

CakePHP Cookbook Documentation, Release 2.x

"message’ => ’'Minimum length of 8 characters’

)7

When specifying validation rules in this array form it’s possible to avoid providing the message key.
Consider this example:

public Svalidate = array (
"login’ => array (
"Only alphabets and numbers allowed’ => array (
"rule’ => ’"alphaNumeric’,

),
)

If the alphaNumeric rules fails the array key for this rule ‘Only alphabets and numbers allowed’ will be
returned as error message since the message key is not set.

Custom Validation Rules

If you haven’t found what you need thus far, you can always create your own validation rules. There are two
ways you can do this: by defining custom regular expressions, or by creating custom validation methods.

Custom Regular Expression Validation

If the validation technique you need to use can be completed by using regular expression matching, you can
define a custom expression as a field validation rule:

public Svalidate = array (
"login’ => array(
"rule’ => ' /"~[a-z0-9]1{3,}$/1’,
"message’ => ’'Only letters and integers, min 3 characters’

)

The example above checks if the login contains only letters and integers, with a minimum of three characters.

The regular expression in the rule must be delimited by slashes. The optional trailing ‘i’ after the last slash
means the reg-exp is case insensitive.

Adding your own Validation Methods

Sometimes checking data with regular expression patterns is not enough. For example, if you want to ensure
that a promotional code can only be used 25 times, you need to add your own validation function, as shown
below:

268 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

class User extends AppModel {

public Svalidate = array (
"promotion_code’ => array (
"rule’ => array(’limitDuplicates’, 25),
"message’ => ’'This code has been used too many times.’

) ;
public function limitDuplicates (Scheck, $limit) {

// Scheck will have value: array (’/promotion_code’ => ’some-value’)
// Slimit will have value: 25

SexistingPromoCount = S$this->find(’count’, array(
"conditions’ => S$check,
"recursive’ => -1

)) i

return SexistingPromoCount < S$limit;

The current field to be validated is passed into the function as first parameter as an associated array with
field name as key and posted data as value.

If you want to pass extra parameters to your validation function, add elements onto the ‘rule’ array, and
handle them as extra params (after the main $check param) in your function.

Your validation function can be in the model (as in the example above), or in a behavior that the model
implements. This includes mapped methods.

Model/behavior methods are checked first, before looking for a method on the Validation class. This
means that you can override existing validation methods (such as alphaNumeric ()) at an application
level (by adding the method to AppModel), or at model level.

When writing a validation rule which can be used by multiple fields, take care to extract the field value from
the $check array. The $check array is passed with the form field name as its key and the field value as its
value. The full record being validated is stored in $this->data member variable:

class Post extends AppModel {

public Svalidate = array (
"slug’ => array (
"rule’ => ’"alphaNumericDashUnderscore’,
"message’ => ’'Slug can only be letters,’
" numbers, dash and underscore’

)
public function alphaNumericDashUnderscore (Scheck) {

// Sdata array is passed using the form field name as the key
// have to extract the value to make the function generic

Svalue = array_values ($check);
Svalue = Svalue[0];
return preg _match(’ | [0-9a-zA-Z_-1x$S|’, Svalue);

More on models 269

CakePHP Cookbook Documentation, Release 2.x

Note: Your own validation methods must have public visibility. Validation methods that are
protected and private are not supported.

The method should return t rue if the value is valid. If the validation failed, return false. The other valid
return value are strings which will be shown as the error message. Returning a string means the validation
failed. The string will overwrite the message set in the $validate array and be shown in the view’s form as
the reason why the field was not valid.

Dynamically change validation rules

Using the $validate property to declare validation rules is a good way of statically defining rules for
each model. Nevertheless, there are cases when you want to dynamically add, change or remove validation
rules from the predefined set.

All validation rules are stored in a ModelValidator object, which holds every rule set for each field in
your model. Defining new validation rules is as easy as telling this object to store new validation methods
for the fields you want to.

Adding new validation rules

New in version 2.2.

The ModelValidator objects allows several ways for adding new fields to the set. The first one is using
the add method:

// Inside a model class

Sthis->validator () ->add ('’ password’, ’'required’, array (
"rule’ => "notEmpty’,
"required’ => ’create’

));

This will add a single rule to the password field in the model. You can chain multiple calls to add to create
as many rules as you like:

// Inside a model class
Sthis—->validator ()
—>add (' password’, ’'required’, array (
"rule’ => ’'notEmpty’,
"required’ => ’'create’
))
—>add (' password’, ’'size’, array(
"rule’ => array(’'between’, 8, 20),
"message’ => ’'Password should be at least 8 chars long’

)) i

It is also possible to add multiple rules at once for a single field:

270 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

Sthis->validator () —>add (' password’, array (
"required’ => array (
"rule’ => ’'notEmpty’,

"required’ => ’'create’
)I
"size’ => array (
"rule’ => array(’'between’, 8, 20),
"message’ => ’'Password should be at least 8 chars long’

)) i

Alternatively, you can use the validator object to set rules directly to fields using the array interface:

Svalidator = S$this->validator () ;
Svalidator[’username’] = array (
"unique’ => array (
"rule’ => ’"isUnique’,
"required’ => ’'create’
)I
"alphanumeric’ => array (
"rule’ => ’"alphanumeric’

)i

Modifying current validation rules

New in version 2.2.

Modifying current validation rules is also possible using the validator object, there are several ways in which
you can alter current rules, append methods to a field or completely remove a rule from a field rule set:

// In a model class
Sthis->validator () ->getField (' password’)->setRule (' required’, array (
"rule’ => ’"required’,
"required’ => true
)) i

You can also completely replace all the rules for a field using a similar method:

// In a model class

Sthis->validator () —>getField (' password’)->setRules (array (
"required’ => array(...),
"otherRule’ => array(...)

))

If you wish to just modify a single property in a rule you can set properties directly into the
CakeValidationRule object:

// In a model class
Sthis->validator () ->getField (’'password’)
—>getRule (' required’) ->message = ’'This field cannot be left blank’;

More on models 271

CakePHP Cookbook Documentation, Release 2.x

Properties in any CakeValidationRule get their name from the array keys one is allowed to use when
defining a validation rule’s properties, such as the array keys ‘message’ and ‘allowEmpty’ for example.

As with adding new rule to the set, it is also possible to modify existing rules using the array interface:

Svalidator = S$this—->validator();
Svalidator[’username’] ["unique’] = array (
"rule’ => ’"isUnique’,
"required’ => 'create’
)
Svalidator[’username’] ["unique’]->last = true;
Svalidator[’username’] ["unique’]->message = ’'Name already taken’;

Removing rules from the set

New in version 2.2.
It is possible to both completely remove all rules for a field and to delete a single rule in a field’s rule set:

// Completely remove all rules for a field
Sthis—->validator () —>remove (' username’) ;

// Remove ’required’ rule from password
Sthis->validator () —>remove (' password’, ’'required’);

Optionally, you can use the array interface to delete rules from the set:

Svalidator = S$this->validator();
// Completely remove all rules for a field
unset (Svalidator[’username’]) ;

// Remove ’required’ rule from password
unset ($validator [’ password’] [’ required’]);

Core Validation Rules

class Validation

The Validation class in CakePHP contains many validation rules that can make model data validation much
easier. This class contains many oft-used validation techniques you won’t need to write on your own. Below,
you’ll find a complete list of all the rules, along with usage examples.

static Validation: :alphaNumeric (mixed $check)
The data for the field must only contain letters and numbers.:

public Svalidate = array (
"login’ => array (
"rule’ => "alphaNumeric’,
"message’ => ’'Usernames must only contain letters and numbers.’

272 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

static Validation: :between (string $check, integer $min, integer $max)
The length of the data for the field must fall within the specified numeric range. Both minimum and
maximum values must be supplied. Uses = not.:

public S$validate = array (
"password’ => array (
"rule’ => array(’'between’, 5, 15),
"message’ => ’"Passwords must be between 5 and 15 characters long.’

)i
The length of data is “the number of bytes in the string representation of the data”. Be careful that it
may be larger than the number of characters when handling non-ASCII characters.

static Validation: :blank (mixed $check)
This rule is used to make sure that the field is left blank or only white space characters are present in
its value. White space characters include space, tab, carriage return, and newline.:

public S$validate = array(
id’ => array (

"rule’ => ’'blank’,

"on’ => 'create’

)i

static Validation: :boolean (string $check)
The data for the field must be a boolean value. Valid values are true or false, integers O or 1 or strings
‘0 or ‘1’

public Svalidate = array (
"myCheckbox’ => array (
"rule’ => array(’'boolean’),
"message’ => ’"Incorrect value for myCheckbox’

)i

static Validation: : ee (mixed $check, mixed $type = ‘fast’, boolean $deep = false, string $regex

= null)
This rule is used to check whether the data is a valid credit card number. It takes three parameters:
‘type’, ‘deep’ and ‘regex’.

The ‘type’ key can be assigned to the values of ‘fast’, ‘all’ or any of the following:
samex
*bankcard
ediners
edisc
esclectron
senroute

*jcb

More on models 273

CakePHP Cookbook Documentation, Release 2.x

*maestro
mc
*solo
eswitch
evisa

*voyager

If ‘type’ is set to ‘fast’, it validates the data against the major credit cards’ numbering formats. Setting
‘type’ to ‘all’ will check with all the credit card types. You can also set ‘type’ to an array of the types

you wish to match.

The ‘deep’ key should be set to a boolean value. If it is set to true, the validation will check the Luhn
algorithm of the credit card (http://en.wikipedia.org/wiki/Luhn_algorithm). It defaults to false.

The ‘regex’ key allows you to supply your own regular expression that will be used to validate the

credit card number:

public Svalidate = array (
"ccnumber’ => array (

"rule’ => array(’'cc’, array(’'visa’, ’'maestro’), false, null),
"message’ => ’'The credit card number you supplied was invalid.’

)i

static Validation: : comparison (mixed $checkl, string Soperator = null, integer $check2 =

null)

LRI G

Comparison is used to compare numeric values. It supports “is greater”, “is less”, “greater or equal”,

“less or equal”, “equal to”, and “not equal”. Some examples are shown below:

public Svalidate = array(
"age’ => array (
"rule’ => array(’'comparison’, ’'>=’, 18),
"message’ => ’'Must be at least 18 years old to qualify.’

)i

public Svalidate = array (
"age’ => array (
"rule’ => array (' comparison’, ’‘greater or equal’, 18),

"message’ => 'Must be at least 18 years old to qualify.’
) i

static Validation: : custom (mixed $check, string $regex = null)
Used when a custom regular expression is needed:

public Svalidate = array (
"infinite’ => array (
"rule’ => array(’custom’, ’'\u22lE’),
"message’ => ’'Please enter an infinite number.’

274 Chapter 8.

Models

http://en.wikipedia.org/wiki/Luhn_algorithm

CakePHP Cookbook Documentation, Release 2.x

)i

static Validation: :date (string $check, mixed $format = ‘ymd’, string $regex = null)
This rule ensures that data is submitted in valid date formats. A single parameter (which can be an

array) can be passed that will be used to check the format of the supplied date. The value of the
parameter can be one of the following:

*‘dmy’ e.g. 27-12-2006 or 27-12-06 (separators can be a space, period, dash, forward slash)
*‘mdy’ e.g. 12-27-2006 or 12-27-06 (separators can be a space, period, dash, forward slash)
*‘ymd’ e.g. 2006-12-27 or 06-12-27 (separators can be a space, period, dash, forward slash)
*‘dMy’ e.g. 27 December 2006 or 27 Dec 2006
*‘Mdy’ e.g. December 27, 2006 or Dec 27, 2006 (comma is optional)
*‘My’ e.g. (December 2006 or Dec 2006)
*‘my’ e.g. 12/2006 or 12/06 (separators can be a space, period, dash, forward slash)
*‘ym’ e.g. 2006/12 or 06/12 (separators can be a space, period, dash, forward slash)
*‘y’ e.g. 2006 (separators can be a space, period, dash, forward slash)

If no keys are supplied, the default key that will be used is “‘ymd’:

public Svalidate = array(
"born’ => array (
"rule’ => array(’date’, ’‘ymd’),
"message’ => ’'Enter a valid date in YY-MM-DD format.’,
"allowEmpty’ => true

)i

While many data stores require a certain date format, you might consider doing the heavy lifting by
accepting a wide-array of date formats and trying to convert them, rather than forcing users to supply
a given format. The more work you can do for your users, the better.

Changed in version 2.4: The ym and y formats were added.

static Validation: :datetime (array $check, mixed $dateFormat = ‘ymd’, string $regex =

null)
This rule ensures that the data is a valid datetime format. A parameter (which can be an array) can

be passed to specify the format of the date. The value of the parameter can be one or more of the
following:

*‘dmy’ e.g. 27-12-2006 or 27-12-06 (separators can be a space, period, dash, forward slash)
*‘mdy’ e.g. 12-27-2006 or 12-27-06 (separators can be a space, period, dash, forward slash)
*‘ymd’ e.g. 2006-12-27 or 06-12-27 (separators can be a space, period, dash, forward slash)
*‘dMy’ e.g. 27 December 2006 or 27 Dec 2006

*‘Mdy’ e.g. December 27, 2006 or Dec 27, 2006 (comma is optional)

More on models 275

CakePHP Cookbook Documentation, Release 2.x

*‘My’ e.g. (December 2006 or Dec 2006)
*‘my’ e.g. 12/2006 or 12/06 (separators can be a space, period, dash, forward slash)
If no keys are supplied, the default key that will be used is ‘ymd’:

public Svalidate = array (
"birthday’ => array(
"rule’ => array(’'datetime’, ’'dmy’),
"message’ => ’'Please enter a valid date and time.’

)i

Also a second parameter can be passed to specify a custom regular expression. If this parameter is
used, this will be the only validation that will occur.

Note that unlike date(), datetime() will validate a date and a time.

static Validation: :decimal (string $check, integer $places = null, string $regex = null)
This rule ensures that the data is a valid decimal number. A parameter can be passed to specify the
number of digits required after the decimal point. If no parameter is passed, the data will be validated
as a scientific float, which will cause validation to fail if no digits are found after the decimal point:

public Svalidate = array(
"price’ => array (
"rule’ => array(’decimal’, 2)
)
)i

static Validation: :email (string $check, boolean $deep = false, string $regex = null)
This checks whether the data is a valid email address. Passing a boolean true as the second parameter
for this rule will also attempt to verify that the host for the address is valid:

public S$validate = array(’email’ => array(’'rule’ => 'email’));
public Svalidate = array (
"email’ => array(

"rule’ => array(’'email’, true),
"message’ => ’'Please supply a valid email address.’

)i

static Validation: :equalTo (mixed $check, mixed $compareTo)
This rule will ensure that the value is equal to, and of the same type as the given value.

public Svalidate = array (
"food’ => array (
"rule’ => array(’'equalTo’, ’'cake’),
"message’ => ’'This value must be the string cake’

)i
static Validation: :extension (mixed $check, array $extensions = array(‘gif’, ‘jpeg’, ‘png’,

% ’

This rule checks for valid file extensions like .jpg or .png. Allow multiple extensions by passing them

276 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

in array form.

public Svalidate = array(
"image’ => array (
"rule’ => array (
"extension’,
array('qgif’, ’jpeg’, ’‘png’, ’Jpg’)
)

"message’ => ’'Please supply a valid image.’
) i

static Validation: : fileSize ($check, $operator = null, $size = null)
This rule allows you to check filesizes. You can use $operator to decide the type of comparison
you want to use. All the operators supported by comparison () are supported here as well. This
method will automatically handle array values from $_FILES by reading from the tmp_name key
if Scheck is an array an contains that key:

public Svalidate = array (
"image’ => array (
"rule’ => array(’fileSize’, ’'<=’, ’'1MB’),
"message’ => ’'Image must be less than 1MB’

)i

New in version 2.3: This method was added in 2.3

static Validation: : inList (string $check, array $list, boolean $caselnsensitive = false)
This rule will ensure that the value is in a given set. It needs an array of values. The field is valid if
the field’s value matches one of the values in the given array.

Example:

public Svalidate = array (
"function’ => array (
"allowedChoice’ => array (
"rule’ => array(’inlList’, array(’'Foo’, ’'Bar’)),
"message’ => ’'Enter either Foo or Bar.’

)i

Comparison is case sensitive by default. You can set ScaseInsensitive to true if you need case
insensitive comparison.

static Validation: : ip (string $check, string $type = ‘both’)
This rule will ensure that a valid IPv4 or IPv6 address has been submitted. Accepts as option ‘both’
(default), ‘IPv4’ or ‘IPv6’.

public Svalidate = array (
"clientip’ => array (
"rule’ => array(’ip’, ’'IPv4’), // or "IPv6’ or ’both’ (default)
"message’ => ’'Please supply a valid IP address.’

More on models 277

CakePHP Cookbook Documentation, Release 2.x

)i

Model: :isUnique ()
The data for the field must be unique, it cannot be used by any other rows:

public Svalidate = array(
"login’ => array (
rule’ => ’isUnique’,
"message’ => ’'This username has already been taken.’

)i

You can validate that a set of fields are unique by providing multiple fields and set Sor to false:

public Svalidate = array(
"email’ => array (
"rule’ => array(’isUnique’, array('email’, ’'username’), false),
"message’ => ’'This username & email combination has already been used.’

)i

Make sure to include the original field in the list of fields when making a unique rule across multiple
fields.

static Validation: : luhn (stringlarray $check, boolean $deep = false)
The Luhn algorithm: A checksum formula to validate a variety of identification numbers. See
http://en.wikipedia.org/wiki/Luhn_algorithm for more information.

static Validation: :maxLength (string $check, integer $max)
This rule ensures that the data stays within a maximum length requirement.

public Svalidate = array (
"login’ => array (
"rule’ => array (’'maxLength’, 15),
"message’ => ’Usernames must be no larger than 15 characters long.’

)i
The length here is “the number of bytes in the string representation of the data”. Be careful that it
may be larger than the number of characters when handling non-ASCII characters.

static Validation: :mimeType (mixed $check, arraylstring $mimeTypes)
New in version 2.2.

This rule checks for valid mime types. Comparison is case sensitive.
Changed in version 2.5.
Since 2.5 $mimeTypes can be a regex string.

public Svalidate = array (
"image’ => array (
"rule’ => array('mimeType’, array(’image/gif’)),
"message’ => ’'Invalid mime type.’

)y

278 Chapter 8. Models

http://en.wikipedia.org/wiki/Luhn_algorithm

CakePHP Cookbook Documentation, Release 2.x

"logo’ => array (
"rule’ => array('mimeType’, ’#image/.+#’),
"message’ => ’'Invalid mime type.’
)I
)

static Validation: :minLength (string $check, integer $min)
This rule ensures that the data meets a minimum length requirement.

public Svalidate = array (
"login’ => array (
"rule’ => array(’'minLength’, 8),
"message’ => ’'Usernames must be at least 8 characters long.’

)i

The length here is “the number of bytes in the string representation of the data”. Be careful that it
may be larger than the number of characters when handling non-ASCII characters.

static Validation: :money (string $check, string $symbolPosition = ‘left’)
This rule will ensure that the value is in a valid monetary amount.

Second parameter defines where symbol is located (left/right).

public Svalidate = array(
"salary’ => array (
"rule’ => array('money’, ’left’),
"message’ => ’'Please supply a valid monetary amount.’

)i

static Validation: :multiple (mixed $check, mixed $options = array(), boolean $caselnsensi-

tive = false)
Use this for validating a multiple select input. It supports parameters “in”, “max” and “min”.

public Svalidate = array (
"multiple’ => array(
"rule’ => array('multiple’, array (
in’ => array(’'do’, ’'re’, 'mi’, ’'fa’, ’'sol’, ’'la’, 'ti’),
"min’ => 1,
"max’ => 3

)) .,

"message’ => ’'Please select one, two or three options’
)i

Comparison is case sensitive by default. You can set ScaseInsensitive to true if you need case
insensitive comparison.

static Validation: :notEmpty (mixed $check)
The basic rule to ensure that a field is not empty.:

public Svalidate = array (
"title’ => array (

More on models 279

CakePHP Cookbook Documentation, Release 2.x

"rule’ => ’"notEmpty’,
"message’ => ’'This field cannot be left blank’

)i
Do not use this for a multiple select input as it will cause an error. Instead, use “multiple”.

static Validation: :numeric (string $check)
Checks if the data passed is a valid number.:

public Svalidate = array (

"cars’ => array (
"rule’ => ’'numeric’,
"message’ => ’'Please supply the number of cars.’

)i

static Validation: :naturalNumber (mixed $check, boolean $allowZero = false)
New in version 2.2.

This rule checks if the data passed is a valid natural number. If $allowZero is set to true, zero is
also accepted as a value.

public Svalidate = array (
"wheels’ => array (
"rule’ => ’'naturalNumber’,
"message’ => ’'Please supply the number of wheels.’
)I
"airbags’ => array (
"rule’ => array (’'naturalNumber’, true),
"message’ => ’'Please supply the number of airbags.’
)V
)i

static Validation: :phone (mixed $check, string $regex = null, string $country = ‘all’)
Phone validates US phone numbers. If you want to validate non-US phone numbers, you can provide
a regular expression as the second parameter to cover additional number formats.

public Svalidate = array (
"phone’ => array (
"rule’ => array (’'phone’, null, ’us’)

)i

static Validation: :postal (mixed $check, string $regex = null, string $country = ‘us’)
Postal is used to validate ZIP codes from the U.S. (us), Canada (ca), U.K (uk), Italy (it), Germany (de)
and Belgium (be). For other ZIP code formats, you may provide a regular expression as the second

parameter.
public Svalidate = array (
"zipcode’ => array (

"rule’ => array(’'postal’, null, ’us’)

280 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

static Validation: : range (string $check, integer $lower = null, integer Supper = null)
This rule ensures that the value is in a given range. If no range is supplied, the rule will check to
ensure the value is a legal finite on the current platform.

public Svalidate = array (
"number’ => array (
"rule’ => array(’'range’, -1, 11),
"message’ => ’"Please enter a number between -1 and 11’

)i

The above example will accept any value which is larger than -1 (e.g., -0.99) and less than 11 (e.g.,
10.99).

Note: The range lower/upper are not inclusive

static Validation: : ssn (mixed $check, string $regex = null, string $country = null)
Ssn validates social security numbers from the U.S. (us), Denmark (dk), and the Netherlands (nl). For
other social security number formats, you may provide a regular expression.

public Svalidate = array (
"ssn’ => array (
"rule’ => array(’ssn’, null, "us’)

)i

static Validation: :time (string $check)
Time validation, determines if the string passed is a valid time. Validates time as 24hr (HH:MM) or

am/pm ([HJH:MM]Jalp]m) Does not allow/validate seconds.

static Validation: :uploadError (mixed $check)
New in version 2.2.

This rule checks if a file upload has an error.

public Svalidate = array (
"image’ => array (
"rule’ => ’'uploadError’,
"message’ => ’'Something went wrong with the upload.’
)I
)i

static Validation: :url (string $check, boolean $strict = false)
This rule checks for valid URL formats. Supports http(s), ftp(s), file, news, and gopher protocols:

public Svalidate = array (

"website’ => array(
"rule’ => 'url’

)i

To ensure that a protocol is in the url, strict mode can be enabled like so:

More on models 281

CakePHP Cookbook Documentation, Release 2.x

public Svalidate = array(
"website’ => array (
"rule’ => array(’'url’, true)
)
)i

This validation method uses a complex regular expression that can sometimes cause issues with
Apache2 on Windows using mod_php.

static Validation: :userDefined (mixed $check, object $object, string $method, array $args

= null)
Runs an user-defined validation.

static Validation: :uuid (string $check)
Checks that a value is a valid UUID: http://tools.ietf.org/html/rfc4122

Localized Validation

The validation rules phone() and postal() will pass off any country prefix they do not know how to handle
to another class with the appropriate name. For example if you lived in the Netherlands you would create a
class like:

class NlValidation {
public static function phone (Scheck) {
VAP
}
public static function postal (Scheck) {
VY2
}
}

This file could be placed in APP/Validation/ or App/PluginName/Validation/, but must be
imported via App::uses() before attempting to use it. In your model validation you could use your NlVali-
dation class by doing the following:

public Svalidate = array (
"phone_no’ => array(’rule’ => array(’phone’, null, ’'nl’)),
"postal_code’ => array(’'rule’ => array(’'postal’, null, ’'nl’)),

)

When your model data is validated, Validation will see that it cannot handle the n1 locale and will attempt to
delegate out to N1Validation: :postal () and the return of that method will be used as the pass/fail
for the validation. This approach allows you to create classes that handle a subset or group of locales,
something that a large switch would not have. The usage of the individual validation methods has not
changed, the ability to pass off to another validator has been added.

Tip: The Localized Plugin already contains a lot of rules ready to use: https://github.com/cakephp/localized
Also feel free to contribute with your localized validation rules.

282 Chapter 8. Models

http://tools.ietf.org/html/rfc4122
https://github.com/cakephp/localized

CakePHP Cookbook Documentation, Release 2.x

Validating Data from the Controller

While normally you would just use the save method of the model, there may be times where you wish to
validate the data without saving it. For example, you may wish to display some additional information to
the user before actually saving the data to the database. Validating data requires a slightly different process
than just saving the data.

First, set the data to the model:

Sthis->ModelName->set ($this->request->data) ;

Then, to check if the data validates, use the validates method of the model, which will return true if it
validates and false if it doesn’t:

if ($this—->ModelName—>validates()) {
// it validated logic
} else {
// didn’t validate logic
Serrors = Sthis—>ModelName->validationErrors;

}

It may be desirable to validate your model only using a subset of the validations specified in your model.
For example say you had a User model with fields for first_name, last_name, email and password. In this
instance when creating or editing a user you would want to validate all 4 field rules. Yet when a user logs in
you would validate just email and password rules. To do this you can pass an options array specifying the
fields to validate:

if (Sthis->User—->validates (array(’fieldList’ => array(’'email’, ’'password’)))) {
// valid

} else ({
// invalid

}

The validates method invokes the invalidFields method which populates the validationErrors property of the
model. The invalidFields method also returns that data as the result:

Serrors = S$this->ModelName->invalidFields(); // contains validationErrors array

The validation errors list is not cleared between successive calls to invalidFields () So if you are
validating in a loop and want each set of errors separately don’t use invalidFields (). Instead use
validates () and access the validationErrors model property.

It is important to note that the data must be set to the model before the data can be validated. This is different
from the save method which allows the data to be passed in as a parameter. Also, keep in mind that it is
not required to call validates prior to calling save as save will automatically validate the data before actually
saving.

To validate multiple models, the following approach should be used:

if (Sthis->ModelName->saveAll (
Sthis->request->data, array(’validate’ => ‘only’)
)) A
// validates

More on models 283

CakePHP Cookbook Documentation, Release 2.x

} else {
// does not validate
}

If you have validated data before save, you can turn off validation to avoid second check:

if ($this—->ModelName—>saveAll (
Sthis—->request—->data, array(’'validate’ => false)

)) A

// saving without validation

}

Callback Methods

If you want to sneak in some logic just before or after a CakePHP model operation, use model callbacks.
These functions can be defined in model classes (including your AppModel) class. Be sure to note the
expected return values for each of these special functions.

When using callback methods you should remember that behavior callbacks are fired before model callbacks
are.

beforeFind

beforeFind(array Squery)

Called before any find-related operation. The Squery passed to this callback contains information about
the current query: conditions, fields, etc.

If you do not wish the find operation to begin (possibly based on a decision relating to the Squery options),
return false. Otherwise, return the possibly modified $query, or anything you want to get passed to find
and its counterparts.

You might use this callback to restrict find operations based on a user’s role, or make caching decisions
based on the current load.

afterFind

afterFind(array S$results, boolean S$primary = false)

Use this callback to modify results that have been returned from a find operation, or to perform any other
post-find logic. The $results parameter passed to this callback contains the returned results from the model’s
find operation, i.e. something like:

Sresults = array (
0 => array (

"ModelName’ => array (
fieldl’ => ’valuel’,
rfield2’ => ’value2’,

)I

284 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

),
)i

The return value for this callback should be the (possibly modified) results for the find operation that trig-
gered this callback.

The $primary parameter indicates whether or not the current model was the model that the query origi-
nated on or whether or not this model was queried as an association. If a model is queried as an association
the format of $results can differ; instead of the result you would normally get from a find operation, you
may get this:

Sresults = array (
"field_ 1" => ’'valuel’,
"field_ 2’ => ’'value2’

)

Warning: Code expecting Sprimary to be true will probably get a “Cannot use string offset as an
array” fatal error from PHP if a recursive find is used.

Below is an example of how afterfind can be used for date formatting:

public function afterFind(S$results, Sprimary = false) {

foreach ($results as S$key => Sval) {
if (isset(Sval[’Event’] [’begindate’])) {
Sresults[Skey] ["Event’] ["begindate’] = $this->dateFormatAfterFind (

Sval[’Event’] ["begindate’]
)i

}

return Sresults;

public function dateFormatAfterFind($dateString) {
return date('d-m-Y’, strtotime ($dateString));

}

beforeValidate

beforevValidate (array S$options = array())

Use this callback to modify model data before it is validated, or to modify validation rules if required. This
function must also return true, otherwise the current save() execution will abort.

afterValidate

aftervValidate ()

Called after data has been checked for errors. Use this callback to perform any data cleanup or preparation
if needed.

More on models 285

CakePHP Cookbook Documentation, Release 2.x

beforeSave

beforeSave (array S$Soptions = array())

Place any pre-save logic in this function. This function executes immediately after model data has been
successfully validated, but just before the data is saved. This function should also return true if you want the
save operation to continue.

This callback is especially handy for any data-massaging logic that needs to happen before your data is
stored. If your storage engine needs dates in a specific format, access it at $this->data and modify it.

Below is an example of how beforeSave can be used for date conversion. The code in the example is used
for an application with a begindate formatted like YYYY-MM-DD in the database and is displayed like
DD-MM-YYYY in the application. Of course this can be changed very easily. Use the code below in the
appropriate model.

public function beforeSave (Soptions = array()) {
if (!empty(Sthis->data[’Event’] [’begindate’]) &&
lempty (Sthis->data[’Event’][’ enddate’])

Sthis->data[’Event’] ['begindate’] = S$this->dateFormatBeforeSave (
Sthis->data[’Event’] ["begindate’]
)
Sthis->data[’Event’] [’enddate’] = S$this->dateFormatBeforeSave (
Sthis—->data[’Event’] [’ enddate’]
)i
}

return true;

public function dateFormatBeforeSave (SdateString) {
return date (' Y-m-d’, strtotime ($dateString));

}

Tip: Be sure that beforeSave() returns true, or your save is going to fail.

afterSave

afterSave (boolean S$created, array S$Soptions = array())

If you have logic you need to be executed just after every save operation, place it in this callback method.
The saved data will be available in $this->data.

The value of $created will be true if a new record was created (rather than an update).
The Soptions array is the same one passed to Model: : save ().

beforeDelete

beforeDelete (boolean $cascade = true)

286 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

Place any pre-deletion logic in this function. This function should return true if you want the deletion to
continue, and false if you want to abort.

The value of $cascade will be t rue if records that depend on this record will also be deleted.

Tip: Be sure that beforeDelete() returns true, or your delete is going to fail.

// using app/Model/ProductCategory.php

// In the following example, do not let a product category be deleted if it
// still contains products.

// A call of Sthis—>Product->delete (5$id) from ProductsController.php has set
// Sthis—->id

// Assuming ’‘ProductCategory hasMany Product’, we can access Sthis->Product
// 1in the model.

public function beforeDelete (Scascade = true) {
Scount = $this->Product->find("count", array (
"conditions" => array ("product_category_id" => Sthis->id)
))
if (Scount == 0) {
return true;
} else {

return false;

afterDelete

afterDelete ()
Place any logic that you want to be executed after every deletion in this callback method.

// perhaps after deleting a record from the database, you also want to delete
// an associated file
public function afterDelete () {

Sfile = new File(Sthis—->data[’ SomeModel’][’ file_path’]);

Sfile—->delete () ;

onError

onError ()

Called if any problems occur.

Behaviors

Model behaviors are a way to organize some of the functionality defined in CakePHP models. They allow
us to separate and reuse logic that creates a type of behavior, and they do this without requiring inheritance.
For example creating tree structures. By providing a simple yet powerful way to enhance models, behaviors

More on models 287

CakePHP Cookbook Documentation, Release 2.x

allow us to attach functionality to models by defining a simple class variable. That’s how behaviors allow
models to get rid of all the extra weight that might not be part of the business contract they are modeling, or
that is also needed in different models and can then be extrapolated.

As an example, consider a model that gives us access to a database table which stores structural information
about a tree. Removing, adding, and migrating nodes in the tree is not as simple as deleting, inserting, and
editing rows in the table. Many records may need to be updated as things move around. Rather than creating
those tree-manipulation methods on a per model basis (for every model that needs that functionality), we
could simply tell our model to use the TreeBehavior, or in more formal terms, we tell our model to
behave as a Tree. This is known as attaching a behavior to a model. With just one line of code, our
CakePHP model takes on a whole new set of methods that allow it to interact with the underlying structure.

CakePHP already includes behaviors for tree structures, translated content, access control list interac-
tion, not to mention the community-contributed behaviors already available in the CakePHP Bakery
(http://bakery.cakephp.org). In this section, we’ll cover the basic usage pattern for adding behaviors to
models, how to use CakePHP’s built-in behaviors, and how to create our own.

In essence, Behaviors are Mixins! with callbacks.

There are a number of Behaviors included in CakePHP. To find out more about each one, reference the
chapters below:

ACL

class AclBehavior

The Acl behavior provides a way to seamlessly integrate a model with your ACL system. It can create both
AROs or ACOs transparently.

To use the new behavior, you can add it to the $actsAs property of your model. When adding it to the actsAs
array you choose to make the related Acl entry an ARO or an ACO. The default is to create ACOs:

class User extends AppModel ({
public SactsAs = array(’Acl’ => array(’'type’ => ’requester’));

}

This would attach the Acl behavior in ARO mode. To join the ACL behavior in ACO mode use:

class Post extends AppModel ({
public SactsAs = array(’'Acl’ => array(’'type’ => ’'controlled’));

}

For User and Group models it is common to have both ACO and ARO nodes, to achieve this use:

class User extends AppModel {
public SactsAs = array(’Acl’ => array(’'type’ => ’"both’));
}

You can also attach the behavior on the fly like so:

"http://en.wikipedia.org/wiki/Mixin

288 Chapter 8. Models

http://bakery.cakephp.org
http://en.wikipedia.org/wiki/Mixin

CakePHP Cookbook Documentation, Release 2.x

Sthis->Post->Behaviors->load(’Acl’, array(’'type’ => ’'controlled’));

Changed in version 2.1: You can now safely attach AclBehavior to AppModel. Aco, Aro and AclNode now
extend Model instead of AppModel, which would cause an infinite loop. If your application depends on
having those models to extend AppModel for some reason, then copy AclNode to your application and have
it extend AppModel again.

Using the AclBehavior

Most of the AclBehavior works transparently on your Model’s afterSave(). However, using it requires that
your Model has a parentNode() method defined. This is used by the AclBehavior to determine parent->child
relationships. A model’s parentNode() method must return null or return a parent Model reference:

public function parentNode () {
return null;

}

If you want to set an ACO or ARO node as the parent for your Model, parentNode() must return the alias of
the ACO or ARO node:

public function parentNode () {
return ’'root_node’;

}

A more complete example. Using an example User Model, where User belongsTo Group:

public function parentNode () {
if (!$this->id && empty(sthis->data)) {
return null;

}

Sdata = S$this—->data;
if (empty (Sthis->data)) {
Sdata = Sthis->read();
}
if (!S$data[’User’][’'group_id’]) {
return null;
} else {
return array (' Group’ => array(’id’ => Sdata[’User’][’group_id’]));

}

In the above example the return is an array that looks similar to the results of a model find. It is important
to have the id value set or the parentNode relation will fail. The AclBehavior uses this data to construct its
tree structure.

node()

The AclBehavior also allows you to retrieve the Acl node associated with a model record. After setting
$model->id. You can use $model->node() to retrieve the associated Acl node.

More on models 289

CakePHP Cookbook Documentation, Release 2.x

You can also retrieve the Acl Node for any row, by passing in a data array:

Sthis—->User->id = 1;

Snode = $this->User->node () ;

Suser = array (’'User’ => array(
rid" => 1

)) i

Snode = $this->User->node (Suser) ;

Will both return the same Acl Node information.

If you had setup AclBehavior to create both ACO and ARO nodes, you need to specify which node type you
want:

Sthis—->User—->id = 1;
Snode = $this->User->node (null, ’'Aro’);
Suser = array (’'User’ => array (

rid’ => 1
)) i
Snode = $this->User->node (Suser, ’'Aro’);
Containable

class ContainableBehavior

A new addition to the CakePHP 1.2 core is the ContainableBehavior. This model behavior allows
you to filter and limit model find operations. Using Containable will help you cut down on needless wear
and tear on your database, increasing the speed and overall performance of your application. The class will
also help you search and filter your data for your users in a clean and consistent way.

Containable allows you to streamline and simplify operations on your model bindings. It works by temporar-
ily or permanently altering the associations of your models. It does this by using supplied the containments
to generate a series of bindModel and unbindModel calls. Since Containable only modifies existing
relationships it will not allow you to restrict results by distant associations. Instead you should refer to
Joining tables.

To use the new behavior, you can add it to the $actsAs property of your model:

class Post extends AppModel ({
public SactsAs = array(’'Containable’);

}

You can also attach the behavior on the fly:

Sthis—->Post—>Behaviors—->load(’Containable’);

Using Containable

To see how Containable works, let’s look at a few examples. First, we’ll start off with a find () call on a
model named ‘Post’. Let’s say that ‘Post’ hasMany ‘Comment’, and ‘Post’ hasAndBelongsToMany ‘Tag’.

290 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

The amount of data fetched in a normal £ind () call is rather extensive:

debug (Sthis->Post->find ("all’));

[0] => Array
(
[Post] => Array
(

[id] => 1

[title] => First article
[content] => aaa

[created] => 2008-05-18 00:00:00

)

[Comment] => Array

(
[0] => Array
(

created] => 2008-05-18 00:00:00

[id] => 1

[post_id] => 1

[author] => Daniel

[email] => danlexample.com
[website] => http://example.com
[

[

]
comment] => First comment
]

)
[1] => Array
(

id] => 2
post_id] => 1
author] => Sam
> sam(@example.net

website] => http://example.net
comment] => Second comment
]

[
[
[
[email]
[
[
[=> 2008-05-18 00:00:00

created

)
[Tag] => Array
(
[0] => Array
(
[id] => 1
[name] => Awesome

[1d] => 2
[name] => Baking

)
[1] => Array
(
[Post] => Array
(...

More on models 291

CakePHP Cookbook Documentation, Release 2.x

For some interfaces in your application, you may not need that much information from the Post model. One
thing the ContainableBehavior does is help you cut down on what find() returns.

For example, to get only the post-related information, you can do the following:

Sthis->Post->contain() ;
Sthis—>Post—>find (’all’);

You can also invoke Containable’s magic from inside the find() call:

Sthis->Post->find(’all’, array(’contain’ => false));

Having done that, you end up with something a lot more concise:

[0] => Array
(
[Post] => Array
(

[id] => 1

[title] => First article
[content] => aaa
[created] => 2008-05-18 00:00:00

)
[1] => Array
(
[Post] => Array

(

id] => 2

title] => Second article
content] => bbb
]

[
[
[
[created] => 2008-05-19 00:00:00

This sort of help isn’t new: in fact, you can do that without the ContainableBehavior doing something
like this:

Sthis->Post->recursive = -1;
Sthis—->Post—>find (’all’);

Containable really shines when you have complex associations, and you want to pare down things that sit
at the same level. The model’s $recursive property is helpful if you want to hack off an entire level of
recursion, but not when you want to pick and choose what to keep at each level. Let’s see how it works by
using the contain () method.

The contain method’s first argument accepts the name, or an array of names, of the models to keep in the
find operation. If we wanted to fetch all posts and their related tags (without any comment information),
we’d try something like this:

Sthis->Post->contain ('’ Tag’);
Sthis->Post->find (’all’);

Again, we can use the contain key inside a find() call:

292 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

Sthis->Post->find(’all’, array(’'contain’ => 'Tag’));

Without Containable, you’d end up needing to use the unbindModel () method of the model, multiple
times if you’re paring off multiple models. Containable creates a cleaner way to accomplish this same task.

Containing deeper associations

Containable also goes a step deeper: you can filter the data of the associated models. If you look at the
results of the original find() call, notice the author field in the Comment model. If you are interested in
the posts and the names of the comment authors — and nothing else — you could do something like the
following:

Sthis—->Post—>contain (/ Comment .author’) ;
Sthis—->Post—>find (’all’);

// or..
Sthis->Post->find(’all’, array(’contain’ => ’Comment.author’));

Here, we’ve told Containable to give us our post information, and just the author field of the associated
Comment model. The output of the find call might look something like this:

[0] => Array
(
[Post] => Array
(

[id] => 1
[title] => First article
[content] => aaa
[created] => 2008-05-18 00:00:00
)

[Comment] => Array
(
[0] => Array
(
[author] => Daniel
[post_id] => 1
)
[1] => Array
(
[author] => Sam
[post_id] => 1

)
[1] => Array
(...

As you can see, the Comment arrays only contain the author field (plus the post_id which is needed by
CakePHP to map the results).

You can also filter the associated Comment data by specifying a condition:

More on models 293

CakePHP Cookbook Documentation, Release 2.x

Sthis—->Post—>contain (’ Comment .author = "Daniel"’);
Sthis—->Post—->find(’all’);

//or. ..
Sthis->Post->find(’all’, array(’contain’ => ’'Comment.author = "Daniel"’));

This gives us a result that gives us posts with comments authored by Daniel:

[0] => Array
(

[Post] => Array
(
[id] => 1
[title] => First article
[content] => aaa
[created] => 2008-05-18 00:00:00
)
[Comment] => Array

(
[0] => Array
(

id] => 1
post_id] => 1
author] => Daniel
> dan(@example.com

website] => http://example.com

]
comment] => First comment
]

[
[
[
[email]
[
[
[=> 2008-05-18 00:00:00

created

There is an important caveat to using Containable when filtering on a deeper association. In the previous
example, assume you had 3 posts in your database and Daniel had commented on 2 of those posts. The
operation $this->Post->find(‘all’, array(‘contain’ => ‘Comment.author = “Daniel”’)); would return ALL
3 posts, not just the 2 posts that Daniel had commented on. It won’t return all comments however, just
comments by Daniel.:

[0] => Array
(
[Post] => Array
(

[id] => 1
[title] => First article
[content] => aaa
[created] => 2008-05-18 00:00:00
)
[Comment] => Array

(
[0] => Array
(
[id] => 1

294 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

)

post_id] => 1
author] => Daniel
email] > dan(@example.com

[
[
[
[website
[
[

] => http://example.com
comment] => First comment
created] => 2008-05-18 00:00:00

[1] => Array
(
[Post] => Array
(
[id] => 2
[title] => Second article
[content] => bbb
[created] => 2008-05-18 00:00:00
)
[Comment] => Array
(
)
)
[2] => Array
(
[Post] => Array
(
[id] => 3
[title] => Third article
[content] => ccc
[created] => 2008-05-18 00:00:00
)
[Comment] => Array
(
[0] => Array
(
[id] => 22
[post_id] => 3
[author] => Daniel
[email] => dan(@example.com
[website] => http://example.com
[comment] => Another comment
[created] => 2008-05-18 00:00:00

If you want to filter the posts by the comments, so that posts without a comment by Daniel won’t be returned,
the easiest way is to find all the comments by Daniel and contain the Posts.:

Sthis—->Comment—>fin
=>
P

"conditions’
"contain’ =>

));

d(’all’, array(
"Comment .author = "Daniel"’,
ost’

More on models

295

CakePHP Cookbook Documentation, Release 2.x

Additional filtering can be performed by supplying the standard find options:

Sthis->Post->find(’all’, array(’contain’ => array(
’Comment’ => array (
"conditions’ => array (’Comment.author =’ => "Daniel"),
"order’ => ’Comment.created DESC’

)))

Here’s an example of using the ContainableBehavior when you’ve got deep and complex model
relationships.

Let’s consider the following model associations:

User—->Profile

User—->Account—>AccountSummary
User—>Post->PostAttachment->PostAttachmentHistory->HistoryNotes
User—->Post->Tag

This is how we retrieve the above associations with Containable:

Sthis->User->find (’all’, array(
"contain’ => array (
"Profile’,
"Account’ => array (
"Account Summary’
)I
"Post’ => array (
"PostAttachment’ => array (
"fields’ => array(’id’, ’'name’),
"PostAttachmentHistory’ => array (
"HistoryNotes’ => array (
"fields’ => array(’id’, ’'note’)

),
"Tag” => array (
"conditions’ => array(’Tag.name LIKE’ => ’'S$happy%’)

)) i

Keep in mind that contain key is only used once in the main model, you don’t need to use ‘contain’ again
for related models.

Note: When using ‘fields’ and ‘contain’ options - be careful to include all foreign keys that your query
directly or indirectly requires. Please also note that because Containable must to be attached to all models

used in containment, you may consider attaching it to your AppModel.

296 Chapter 8. Models

CakePHP Cookbook Documentation, Release 2.x

ContainableBehavior options

The ContainableBehavior has a number of options that can be set when the Behavior is attached to a
model. The settings allow you to fine tune the behavior of Containable and work with other behaviors more
easily.

* recursive (boolean, optional) set to true to allow containable to automatically determine the recur-
siveness level needed to fetch specified models, and set the model recursiveness to this level. setting
it to false disables this feature. The default value is t rue.

* notices (boolean, optional) issues E_NOTICES for bindings referenced in a containable call that are
not valid. The default value is t rue.

 autoFields: (boolean, optional) auto-add needed fields to fetch requested bindings. The default value
is true.

* order: (string, optional) the order of how the contained elements are sorted.

From the previous example, this is an example of how to force the posts to be ordered by the date when they
were last updated:

Sthis—->User->find(’all’, array (

"contain’ => array (
"Profile’,
"Post’ => array (

"order’ => ’"Post.updated DESC’

)) i

You can change ContainableBehavior settings at run time by reattaching the behavior as seen in Behaviors
(Using Behaviors).

ContainableBehavior can sometimes cause issues with other behaviors or queries that use aggregate func-
tions and/or GROUP BY statements. If you get invalid SQL errors due to mixing of aggregate and non-
aggregate fields, try disabling the autoFields setting.:

Sthis->Post->Behaviors->load(’Containable’, array(’autoFields’ => false)) ;

Using Containable with pagination By including the ‘contain’ parameter in the Spaginate property
it will apply to both the find(‘count’) and the find(‘all’) done on the model.

See the section Using Containable for further details.
Here’s an example of how to contain associations when paginating:
Sthis->paginate[’User’] = array (

"contain’ => array(’'Profile’, ’"Account’),
"order’ => ’'User.username’

rs = Sthis->paginate (’User’);

More on models 297

CakePHP Cookbook Documentation, Release 2.x

Note: If you contained the associations through the model instead, it will not honor Containable’s recursive
option. So if you set recursive to -1 for example for the model, it won’t work:

S$this—>User->recursive = -1;
Sthis->User->contain (array ('Profile’, 'Account’));
$users = Sthis—>paginate(’User’);

Translate

class TranslateBehavior

TranslateBehavior is actually quite easy to setup and works out of the box with very little configuration. In
this section, you will learn how to add and setup the behavior to use in any model.

If you are using TranslateBehavior in alongside containable issue, be sure to set the ‘fields’ key for your
queries. Otherwise you could end up with invalid SQL generated.

Initializing the i18n Database Tables

You can either use the CakePHP console or you can manually create it. It is advised to use the console for
this, because it might happen that the layout changes in future versions of CakePHP. Sticking to the console
will make sure that you have the correct layout.:

./cake 118n

Select [I] which will run the i118n database initialization script. You will be asked if you want to drop any
existing and if you want to create it. Answer with yes if you are sure there is no i18n table already, and
answer with yes again to create the table.

Attaching the Translate Behavior to your Models

Add it to your model by using the Sact sAs property like in the following example.:

class Post extends AppModel {
public SactsAs = array (
"Translate’
)i
}

This will do nothing yet, because it expects a couple of options before it begins to work. You need to define
which fields of the current model should be tracked in the translation table we’ve created in the first step.

Defining the Fields

You can set the fields b