
CacheBleed: A Timing Attack on OpenSSL Constant
Time RSA

Yuval Yarom1, Daniel Genkin2, and Nadia Heninger3

1 The University of Adelaide and NICTA
yval@cs.adelaide.edu.au

2 Technion and Tel Aviv University
danielg3@cs.technion.ac.il

3 University of Pennsylvania
nadiah@cis.upenn.edu

Abstract. The scatter-gather technique is a commonly-implemented approach to
prevent cache-based timing attacks. In this paper we show that scatter-gather is
not constant-time. We implement a cache timing attack against the scatter-gather
implementation used in the modular exponentiation routine in OpenSSL version
1.0.2f. Our attack exploits cache-bank conflicts on the Sandy Bridge microar-
chitecture. We have tested the attack on an Intel Xeon E5-2430 processor. For
4096-bit RSA our attack can fully recover the private key after observing 16,000
decryptions.

Keywords: side-channel attacks, cache attacks, cryptographic implementations,
constant-time, RSA

1 Introduction

1.1 Overview

Side-channel attacks are a powerful method for breaking theoretically secure crypto-
graphic primitives. Since the first works by Kocher [30], these attacks have been used
extensively to break the security of numerous cryptographic implementations. At a high
level, it is possible to distinguish between two types of side-channel attacks, based on
the means used by the attacker: hardware based attacks which monitor the leakage
through measurements (usually using dedicated lab equipment) of physical phenom-
ena such as electromagnetic radiation [40], power consumption [28, 29], or acoustic
emanation [19], and software based attacks which do not require additional equipment
but rely instead on the attacker software running on or interacting with the target ma-
chine. Examples of the latter include timing attacks which measure timing variations
of cryptographic operations [7, 14, 15] and cache attacks which observe cache access
patterns [35, 36, 46].

Percival [36] published in 2005 the first cache attack, which targeted the
OpenSSL [39] 0.9.7c implementation of RSA. In this attack, the attacker and the victim
are colocated on the same machine and processor, and thus share the same processor

mailto:yval@cs.adelaide.edu.au
mailto:danielg3@cs.technion.ac.il
mailto:nadiah@cis.upenn.edu

cache. The attack exploits the structure of the processor cache by observing minute
timing variations due to cache contention. The cache consists of fixed-size cache lines.
When a program accesses a memory address, the cache-line-sized block of memory that
contains this address is stored in the cache and is available for future use. The attack
traces the changes that executing the victim makes in the cache and, from this trace, the
attacker is able to recover the private key used for the decryption.

In order to implement the modular exponentiation routine required for performing
RSA public and secret key operations, OpenSSL 0.9.7c uses a sliding-window expo-
nentiation algorithm [9]. This algorithm precomputes some values, called multipliers,
which are used throughout the exponentiation. The access pattern to these precomputed
multipliers depends on the exponent, which, in the case of decryption and digital signa-
ture operations, should be kept secret. Because each multiplier occupies a different set
of cache lines, Percival [36] was able to identify the accessed multipliers and from that
recover the private key. To mitigate this attack, Intel implemented a countermeasure that
changes the memory layout of the precomputed multipliers. The countermeasure, of-
ten called scatter-gather, interleaves the multipliers in memory to ensure that the same
cache lines are accessed irrespective of the multiplier used [12]. While this countermea-
sure ensures that the same cache lines are always accessed, the offsets of the accessed
addresses within these cache lines depend on the multiplier used and, ultimately, on the
private key.

Both Osvik et al. [35] and Bernstein [7] have warned that accesses to different off-
sets within cache lines may leak information through timing variations due to cache-
bank conflicts. To facilitate concurrent access to the cache, the cache is often divided
into multiple cache banks. Concurrent accesses to different cache banks can always
be handled, however each cache bank can only handle a limited number of concurrent
requests—often a single request at a time. A cache-bank conflict occurs when too many
requests are made concurrently to the same cache bank. In the case of a conflict, some
of the conflicting requests are delayed. While timing variations due to cache-bank con-
flicts are documented in the Intel Optimization Manual [25], no attack exploiting these
has ever been published. In the absence of a demonstrated risk, Intel continued to con-
tribute code that uses scatter-gather to OpenSSL [20, 21] and to recommend the use
of the technique for side-channel mitigation [10, 11]. Consequently, the technique is in
widespread use in the current versions of OpenSSL and its forks, such as LibreSSL [38]
and BoringSSL [8]. It is also used in other cryptographic libraries, such as the Mozilla
Network Security Services (NSS) [34].

1.2 Our Contribution

In this work we present CacheBleed—the first side-channel attack to exploit cache-bank
conflicts. In Section 3, we describe how CacheBleed creates contention on a cache bank
and measures the timing variations due to conflicts. We use CacheBleed to attack the
scatter-gather implementation of RSA in the current version of OpenSSL (1.0.2f). After
observing 16,000 decryptions, we are able to recover 60% of the exponent bits. Our
attack is described in more detail in Section 4. To find the remaining bits we adapt the
Heninger-Shacham algorithm [22] to the information we collect with CacheBleed. Our
offline attack requires two CPU hours to completely reconstruct the private key, which

2

our parallelized implementation was able to compute in minutes. Section 5 describes
our implementation in more detail.

1.3 Targeted Software and Hardware

Software. In this paper we target the modular exponentiation operation as imple-
mented in OpenSSL version 1.0.2f which was the latest version of OpenSSL prior to
our disclosure to OpenSSL. As mentioned above, similar (and thus potentially vul-
nerable) code can be found in several forks of OpenSSL such as LibreSSL [38] and
BoringSSL [8]. Other cryptographic libraries, such as the Mozilla Network Security
Services (NSS) [34] use similar techniques and may be vulnerable as well.

Hardware. Our attacks exploit cache-bank conflicts present in Intel Sandy Bridge
Processor family. We ran our experiments on an Intel Xeon E5-2430 processor which is
a six-core Sandy Bridge machine with a 2.20GHZ clock. Our target machine is running
CentOS 6.7 installed with its default parameters and with huge pages enabled.

Current Status. We reported our results to the developers of the four cryptographic li-
braries mentioned above. The OpenSSL team assigned CVE-2016-0702 to the issue and
has worked with us on a countermeasure which has been released as part of OpenSSL
1.0.2g. The BoringSSL team reported that they will incorporate the OpenSSL counter-
measure. The LibreSSL team is working on a fix, but does not have a timeline yet. We
also notified NSS. As of writing this paper, they have not given us a timeline for release
of countermeasures.

2 Background

2.1 OpenSSL’s RSA implementation

RSA [41] is a public-key cryptosystem which supports both encryption and digital sig-
natures. To generate an RSA key pair, the user generates two prime numbers p, q and
computes N = pq. Next, given a public exponent e (OpenSSL uses e = 65537), the
user computes the secret exponent d ≡ e−1 mod φ(N). The public key is the integers
e and N and the secret key is d and N . In textbook RSA encryption, a message m
is encrypted by computing me mod N and a ciphertext c is decrypted by computing
cd mod N .

RSA-CRT. RSA decryption is often implemented using the Chinese remainder theo-
rem (CRT), which provides a speedup. Instead of computing cd mod n directly, RSA-
CRT splits the secret key d into two parts dp = d mod (p−1) and dq = d mod (q−1),
and then computes two parts of the message asmp = cdp mod p andmq = cdq mod q.
The message m can then be recovered from mp and mq using Garner’s formula [18]:

h = (mp −mq)(q
−1 mod p) mod p and m = mq + hq.

The main operation performed during RSA decryption is the modular exponentia-
tion, that is, calculating ab mod k for some secret exponent b. Several algorithms for

3

modular exponentiation have been suggested. In this work we are interested in the two
algorithms that OpenSSL has used.

Fixed-Window Exponentiation. In the fixed-window exponentiation algorithm, also
known as m-ary exponentiation, the n-bit exponent b is represented as an dn/we
digit integer in base 2w for some chosen window size w. That is, b is rewritten as
b =

∑dn/we−1
i=0 2wibi where 0 ≤ bi < 2w. The pseudocode in Algorithm 1 demon-

strates the fixed-window exponentiation algorithm. In the first step, the algorithm pre-
computes a set of multipliers aj = aj mod k for 0 ≤ j < 2w. It then scans the base
2w representation of b from the most significant digit (bdn/we−1) to the least significant
(b0). For each digit bi it squares an intermediate result w times and then multiplies the
intermediate result by abi . Each of the square or multiply operations is followed by a
modular reduction.

Algorithm 1: Fixed-window exponentiation

input : window size w, base a, modulus k, n-bit exponent b =
∑dn/we

i=0 bi · 2wi

output: ab mod k

//Precomputation
a0 ← 1
for j = 1, . . . , 2w − 1 do

aj ← aj−1 · a mod k
end

//Exponentiation
r ← 1
for i = dn/we − 1, . . . , 0 do

for j = 1, . . . , w do
r ← r2 mod k

end
r ← r · abi mod k

end
return r

Sliding-Window Exponentiation. The sliding-window algorithm, represents the ex-
ponent b as a sequence of digits bi such that b =

∑n−1
i=0 2ibi, with bi being either 0

or an odd number 0 < bi < 2w. The algorithm first precomputes a1, a3, . . . a2w−1 as
for the fixed-window case. It then scans the exponent from the most significant to the
least significant digit. For each digit, the algorithm squares the intermediate result. For
non-zero digit bi, it also multiplies the intermediate result by abi .

The main advantages of the sliding-window algorithm over the fixed-window al-
gorithm are that, for the same window size, sliding window needs to precompute half
the number of multipliers, and that fewer multiplications are required during the ex-
ponentiation. The sliding-window algorithm, however, leaks the position of the non-
zero multipliers to adversaries that can distinguish between squaring and multiplication
operations. Furthermore, the number of squaring operations between consecutive mul-

4

tipliers may leak the values of some zero bits. Up to version 0.9.7c, OpenSSL used
sliding-window exponentiation. As part of the mitigation of the Percival [36] attack,
which exploits these leaks, OpenSSL changed to using the fixed-window exponentia-
tion algorithm.

Since both algorithms precompute a set of multipliers and access them throughout
the exponentiation, a side-channel attack that can discover which multiplier is used in
the multiplication operations can recover the digits bi and from them obtain the secret
exponent b.

2.2 The Intel cache hierarchy

We now turn our attention to the cache hierarchy in modern Intel processors. The cache
is a small, fast memory that exploits the temporal and the spatial locality of memory
accesses to bridge the speed gap between the faster CPU and the slower memory. In the
processors we are interested in, the cache hierarchy consists of three levels of caching.
The top level, known as the L1 cache, is the closest to the execution core and is the
smallest and the fastest cache. Each successive cache level is larger and slower than the
preceding one, with the last-level cache (LLC) being the largest and slowest.

Cache Structure. The cache stores fixed-sized chunks of memory called cache lines.
Each cache line holds 64 bytes of data that come from a 64-byte aligned block in mem-
ory. The cache is organized as multiple cache sets, each consisting of a fixed number
of ways. A block of memory can be stored in any of the ways of a single cache set.
For the higher cache levels, the mapping of memory blocks to cache sets is done by
selecting a range of address bits. For the LLC, Intel uses an undisclosed hash function
to map memory blocks to cache sets [27, 33, 47]. The L1 cache is divided into two sub
caches: the L1 data cache (L1-D) which caches the data the program accesses, and the
L1 instruction cache (L1-I) which caches the code the program executes. In multi-core
processors, each of the cores has a dedicated L1 cache. However, multithreaded cores
share the L1 cache between the two threads.

Cache Sizes. In the Intel Sandy Bridge microarchitecture, each of the L1-D and L1-I
caches has 64 sets and 8 ways to a total capacity of 64 · 8 · 64 = 32,768 bytes. The L2
cache has 512 sets and 8 ways, with a size of 256 KiB. The L2 cache is unified, storing
both data and instruction. Like the L1 cache, each core has a dedicated L2 cache. The
L3 cache, or the LLC, is shared by all of the cores of the processor. It has 2,048 sets
per core, i.e. the LLC of a four core processor has 8,192 cache sets. The number of
ways varies between processor models and ranges between 12 and 20. Hence the size
of the LLC of a small dual core processor is 3 MiB, whereas the LLC of an 8-cores
processor can be in the order of 20 MiB. The Intel Xeon E5-2430 processor we used
for our experiments is a 6-core processor with a 20-way LLC of size 15 MiB. More re-
cent microarchitectures support more cores and more ways, yielding significantly larger
LLCs.

Cache Lookup policy. When the processor attempts to access data in memory, it
first looks for the data in the L1 cache. In a cache hit, the data is found in the cache.
Otherwise, in a cache miss, the processor searches for the data in the next level of the

5

cache hierarchy. By measuring the time to access data, a process can distinguish cache
hits from misses and identify whether the data was cached prior to the access.

2.3 Microarchitectural side-channel attacks

In this section we review related works on microarchitectural side-channel timing at-
tacks. These attacks exploit timing variations that are caused by contention on microar-
chitectural hardware resources in order to leak information on the usage of these re-
sources, and indirectly on the internal operation of the victim. Acıiçmez and Seifert [5]
distinguish between two types of channels: those that rely on a persistent state and those
that exploit a transient state. Persistent-state channels exploit the limited storage space
within the targeted microarchitectural resource. Transient-state channels, in contrast,
exploit the limited bandwidth of the targeted element.

Persistent-State Attacks. The PRIME+PROBE attack [35, 36] is an example of a
persistent-state attack. The attack exploits the limited storage space in cache sets to
identify the sets used for the victim’s data. The attacker preloads data to the cache and
allows the victim to execute before measuring the time to access the preloaded data.
When the victim accesses its data it is loaded into the cache, replacing some of the
attacker’s preloaded data. Accessing data that has been replaced will be longer than
accessing data still in the cache. Hence, the attacker can identify the cache sets that the
victim has accessed. Persistent-state channels have targeted the L1 data cache [7, 13,
35, 36], the L1 instruction cache [1, 4, 48], the branch prediction buffer [2, 3], the last-
level cache [24, 26, 32, 43, 46], and DRAM open rows [37]. The PRIME+PROBE attack
was used to recover the accessed multipliers in the sliding-window exponentiation of
OpenSSL 0.9.7c [36] and of GnuPG 1.4.18 [24, 32].

Transient-state Attacks. Transient-state channels have been investigated mostly
within the context of covert channels, where a Trojan process tries to covertly exfil-
trate information. The idea dates back to Lampson [31] who suggests that processes can
leak information by modifying their CPU usage. Covert channels were also observed
with shared bus contention [23, 45], Acıiçmez and Seifert [5] are the first to publish
a side-channel attack based on a transient state. The attack monitors the usage of the
multiplication functional unit in a hyperthreaded processor. Monitoring the unit allows
an attacker to distinguish between the square and the multiply phases of modular ex-
ponentiation. The attack was tested on a victim running fixed-window exponentiation.
Hence, no secret information was obtained.

Another transient-state channel uses bus contention to leak side-channel informa-
tion [44]. By monitoring the capacity of the memory bus allocated to the attacker, the
attacker is able to distinguish the square and the multiply steps. Because the attack was
only demonstrated in a simulator, the question of whether actual hardware leaks such
high-resolution information is still open.

2.4 Scatter-Gather implementation

One of the countermeasures Intel recommends against side-channel attacks is to avoid
secret-dependent memory access at coarser than cache line granularity [10, 11]. This

6

M0[0] M0[63]M0[2]M0[1] •••

M0[128] M0[191]M0[130]M0[129] •••

M0[64] M0[127]M0[66]M0[65] •••

M2[0] M2[63]M2[2]M2[1] •••

M2[64] M2[127]M2[66]M2[65] •••

M1[0] M1[63]M1[2]M1[1] •••

M1[128] M1[191]M1[130]M1[129] •••

M1[64] M1[127]M1[66]M1[65] •••Line 4

Line 1

Line 3

Line 7

Line 5

Line 6

M2[128] M2[191]M2[130]M2[129] •••Line 8

Line 0

Line 2

•
•
•

•
•
•

•
•
•

•
•
•

M63[128] M63[191]M63[130]M63[129] •••Line 191

offset 0 1 2 63

M0[0] M63[0]M2[0]M1[0] •••

Line 4

Line 1

Line 3

Line 7

Line 5

Line 6

Line 8

Line 0

Line 2

M0[1] M63[1]M2[1]M1[1] •••

M0[2] M63[2]M2[2]M1[2] •••

M0[3] M63[3]M2[3]M1[3] •••

M0[4] M63[4]M2[4]M1[4] •••

M0[5] M63[5]M2[5]M1[5] •••

M0[6] M63[6]M2[6]M1[6] •••

M0[7] M63[7]M2[7]M1[7] •••

•
•
•

M0[8] M63[8]M2[8]M1[8] •••
•
•
•

•
•
•

•
•
•

Line 191 M0[191] M63[191]M2[191]M1[191] •••

offset 0 1 2 63

Fig. 1. Conventional (left) vs. scatter-gather (right) memory layout.

approach is manifested in the patch Intel contributed to the OpenSSL project to mitigate
the Percival [36] attack. The patch1 changes the layout of the multipliers in memory.
Instead of storing the data of each of the multipliers in consecutive bytes in memory,
the new layout scatters each multiplier across multiple cache lines [12]. Before use, the
fragments of the required multiplier are gathered to a single buffer which is used for the
multiplication. Figure 1 contrasts the conventional memory layout of the multipliers
with the layout used in the scatter-gather approach. This scatter-gather design ensures
that the order of accessing cache lines when performing a multiplication is independent
of the multiplier used.

Because Intel cache lines are 64 bytes long, the maximum number of multipliers
that can be used with scatter-gather is 64. For large exponents, increasing the number
of multipliers reduces the number of multiply operations performed during the exponen-
tiations. Gopal et al. [20] suggest dividing the multipliers into 16-bit fragments rather
than into bytes. This improves performance by allowing loads of two bytes in a sin-
gle memory access, at the cost of reducing the maximum number of multipliers to 32.
Gueron [21] recommends 32-bit fragments, thus reducing the number of multipliers to
16. He shows that the combined savings from the reduced number of memory accesses
and the smaller cache footprint of the multipliers outweighs the performance loss due
to the added multiplications required with less multipliers.
OpenSSL Scatter-Gather Implementation. The implementation of exponentiation
in the current version of OpenSSL (1.0.2f) deviates slightly from the layout described
above. For 2048-bit and 4096-bit key sizes the implementation uses a fixed-window
algorithm with a window size of 5, requiring 32 multipliers. Instead of scattering the
multipliers in each cache line, the multipliers are divided into 64-bit fragments, scat-
tered across groups of four consecutive cache lines. (See Figure 2.) That is, the table
that stores the multipliers is divided into groups of four consecutive cache lines. Each
group of four consecutive cache lines stores one 64-bit fragment of each multiplier. To
avoid leaking information on the particular multiplier used in each multiplication, the

1 https://github.com/openssl/openssl/commit/46a643763de6d8e39ecf6f76fa79b4d04885aa59

7

https://github.com/openssl/openssl/commit/46a643763de6d8e39ecf6f76fa79b4d04885aa59

gather process accesses all of the cache lines and uses a bit mask pattern to select the
ones that contain fragments of the required multiplier. Furthermore, to avoid copying
the multiplier data, the implementation combines the gather operation with the multi-
plication. This spreads the access to the scattered multiplier across the multiplication.

Line 4

Line 1

Line 3

Line 7

Line 5

Line 6

Line 8

Line 0

Line 2

•
•
•

•
•
•

•
•
•

Line 95

M0[0-7] M1[0-7] ••• M7[0-7]

M8[0-7] M9[0-7] ••• M15[0-7]

M16[0-7] M17[0-7] ••• M23[0-7]

M24[0-7] M25[0-7] ••• M31[0-7]

M0[8-15] M1[8-15] ••• M7[8-15]

M8[8-15] M9[8-15] ••• M15[8-15]

M16[8-15] M17[8-15] ••• M23[8-15]

M24[8-15] M25[8-15] ••• M31[8-15]

M0[16-23] M1[16-23] ••• M7[16-23]

M24[184-191] M25[184-191] ••• M31[184-191]

offset 7 15 630 8 56

Fig. 2. The memory layout of the multipliers table in OpenSSL

Key-Dependent Memory Accesses. Because the fragments of each multiplier are
stored in a fixed offset within the cache lines, all of the scatter-gather implementations
described above have memory accesses that depend on the multiplier used and thus on
the secret key. For a pure scatter-gather approach, the multiplier is encoded in the low
bits of the addresses accessed during the gather operation. For the case of OpenSSL’s
implementation, only the three least significant bits of the multiplier number are en-
coded in the address while the other two bits are used as the index of the cache line
within the group of four cache lines that contains the fragment.

We note that because these secret-dependent accesses are at a finer than cache line
granularity, the scatter-gather approach has been considered secure against side-channel
attacks [21].

2.5 Intel L1 cache banks

With the introduction of superscalar computing in Intel processors, cache bandwidth
became a bottleneck to the processor performance. To alleviate the issue, Intel intro-
duced a cache design consisting of multiple banks [6]. Each of the banks serves part of
the cache line specified by the offset in the cache line. The banks can operate indepen-
dently and serve requests concurrently. However, each bank can only serve one request
at a time. When multiple accesses to the same bank are made concurrently, only one
access is served, while the rest are delayed until the bank can handle them.

Fog [16] notes that cache-bank conflicts can cause memory stalls on the Pentium 2
and Pentium 3 processors. Delays due to cache-bank conflicts are also documented for
other processor versions [17, 25].

8

Both Osvik et al. [35] and Bernstein [7] mention that cache-bank conflicts cause
timing variations and warn that these may result in a timing channel which may leak
low address bits information. Tromer et al. [42] note that while scatter-gather has no
secret-dependent accesses to cache lines it does have secret-dependent access to cache
banks. However, although the risk of side-channel attacks based on cache-bank conflicts
has been identified long ago, no attacks exploiting them have ever been published.

3 The CacheBleed Attack

We now proceed to describe CacheBleed, the first side-channel attack to exploit cache-
bank conflicts. The attack identifies the times at which a victim accesses data in a mon-
itored cache bank by measuring the delays caused by contention on the cache bank.

In our attack scenario, we assume that the victim and the attacker run concurrently
on two hyperthreads of the same processor core. Thus, the victim and the attacker share
the L1 data cache. Recall that the Sandy Bridge L1 data cache is divided into multiple
banks and that the banks cannot handle concurrent load accesses. The attacker issues
a large number of load accesses to a cache bank and measures the time to fulfill these
accesses. If during the attack the victim also accesses the same cache bank, the victim
accesses will contend with the attacker for cache bank access, causing delays in the
attack. Hence, when the victim accesses the monitored cache bank the attack will take
longer than when the victim accesses other cache banks.

1 r d t s c p
2 movq %rax , %r10
3
4 a d d l 0 x000(% r9) , %eax
5 a d d l 0 x040(% r9) , %ecx
6 a d d l 0 x080(% r9) , %edx
7 a d d l 0 x0c0(% r9) , %e d i
8 a d d l 0 x100(% r9) , %eax
9 a d d l 0 x140(% r9) , %ecx

10 a d d l 0 x180(% r9) , %edx
11 a d d l 0 x1c0(% r9) , %e d i

.

.

.
256 a d d l 0 xf00 (% r9) , %eax
257 a d d l 0 xf40 (% r9) , %ecx
258 a d d l 0 xf80 (% r9) , %edx
259 a d d l 0 x fc0 (% r9) , %e d i
260
261 r d t s c p
262 subq %r10 , %r a x

Listing 1.1. Cache-Bank Collision Attack Code

9

To implement CacheBleed we use the code in Listing 1.1. The bulk of the code
(Lines 4–259) consists of 256 addl instructions that read data from addresses that are
all in the same cache bank. (The cache bank is selected by the low bits of the memory
address in register r9.) We use four different destination registers to avoid contention
on the registers themselves. Before starting the accesses, the code takes the value of the
current cycle counter (Line 1) and stores it in register r10 (Line 2). After performing
256 accesses, the previously stored value of the cycle counter is subtracted from the
current value, resulting in the number of cycles that passed during the attack.

We run the attack code on an Intel Xeon E5-2430 processor—a six-core Sandy
Bridge processor, with a clock rate of 2.20GHz. Figure 3 shows the histogram of the
running times of the attack code under several scenarios.2

Scenario 1: Idle. In the first scenario, idle hyperthread, the attacker is the only pro-
gram executing on the core. That is, one of the two hyperthreads executes the attack
code while the other hyperthread is idle. As we can see, the attack takes around 230
cycles, clearly showing that the Intel processor is superscalar and that the cache can
handle more than one access in a CPU cycle.

0%

5%

10%

15%

20%

25%

30%

35%

40%

 200 250 300 350 400 450 500

N
u

m
b

e
r

o
f

C
a

s
e

s

Time (cycles)

Idle hyperthread
Pure compute

Mixed load---NC
Mixed load

Pure memory

Fig. 3. Distribution of time to read 256 entries from a cache bank.

Scenario 2: Pure Compute. The second scenario has a victim running a computation
on the registers, without any memory access. As we can see, access in this scenario
is slower than when there is no victim. Because the victim does not perform memory
accesses, cache-bank conflicts cannot explain this slowdown. Hyperthreads, however,
share most of the resources of the core, including the execution units, read and write
buffers and the register allocation and renaming resources [17]. Contention on any of
these resources can explain the slowdown we see when running a pure-compute victim.

Scenario 3: Pure Memory. At the other extreme is the pure memory victim, which
continuously accesses the cache bank that the attacker monitors. As we can see, the
attack code takes almost twice as long to run in this scenario. The distribution of attack
times is completely distinct from any of the other scenarios. Hence, identifying the

2 For clarity, the presented histograms show the envelope of the measured data.

10

victim, in this scenario, is trivial. This scenario is, however, not realistic—programs
usually perform some calculation.

Scenarios 4 and 5: Mixed Load. The last two scenarios aim to measure a slightly
more realistic scenario. In this case, one in four victim operations is a memory access,
where all of these memory accesses are to the same cache bank. In this scenario we
measure both the case that the victim accesses the monitored cache line (mixed-load)
and when there is no cache-bank contention between the victim and the attacker (mixed-
load–NC). We see that the two scenarios are distinguishable, but there is some overlap
between the two distributions. Consequently, a single measurement may be insufficient
to distinguish between the two scenarios.

In practice, even this mixed-load scenario is not particularly realistic. Typical pro-
grams will access memory in multiple cache banks. Hence the differences between
measurement distributions may be much smaller than those presented in Figure 3. In
the next section we show how we overcome this limitation and correctly identify a
small bias in the cache-bank access patterns of the victim.

4 Attacking the OpenSSL Implementation of Modular
Exponentiation

To demonstrate the technique in a real scenario, we use CacheBleed to attack the imple-
mentation of the RSA decryption in the current version of OpenSSL (version 1.0.2f).
This implementation uses a fixed-window exponentiation with w = 5. As discussed in
Section 2.4 OpenSSL uses a combination of the scatter-gather technique with mask-
ing for side-channel attack protection. Recall that the multipliers are divided into 64 bit
fragments. These fragments are scattered into 8 bins along the cache-lines such that the
three least significant bits of the multiplier select the bin. The fragments of a multiplier
are stored in groups of four consecutive cache lines. The two most significant bits of the
multiplier select the cache line out of the four in which the fragments of the multiplier
are stored. See Figure 2. The multiplication code selects the bin to read using the least
significant bits of the multiplier. It then reads a fragment from the selected bin in each
of the four cache lines and uses masking to select the fragment of the required mul-
tiplier. Because the multiplication code needs to access the multiplier throughout the
multiplication, the cache banks of the bin containing the multiplier are accessed more
often than other cache banks. We use CacheBleed to identify the bin and, consequently,
to find the three least significant bits of the multiplier.

Identifying Exponentiations. We begin by demonstrating that it is possible to iden-
tify the exponentiation operations using cache-bank conflicts. Indeed, using the code in
Listing 1.1, we create a sequence of measurements of cache-bank conflicts. As men-
tioned in Section 3, the difference between the distributions of measurements in similar
scenarios may be very small. Consequently, a single measurement is unlikely to be suffi-
cient for identifying the bin used in each multiplication. To distinguish the distributions,
we create multiple sequences and average the measurements at each trace point to get a
trace of the average measurement time. Figure 4 shows the traces of measurements of
two bins, each averaged over 1,000 decryptions using a 4096-bit key.

11

 260

 270

 280

 290

 300

 310

 320

 0 20000 40000 60000 80000 100000

T
im

e
 (

C
y
c
le

s
)

Measurement number

Bin 0
Bin 1

Fig. 4. Measurement trace of OpenSSL RSA decryption

The figure clearly shows the two exponentiations executed as part of the RSA-CRT
calculation. Another interesting feature is that the measurements for the two bins differ
by about 4 cycles. The difference is the result of the OpenSSL modular reduction algo-
rithm, which accesses even bins more often than odd bins. Consequently, there is more
contention on even bins and measurements on even bins take slightly longer than those
on odd bins.

 290

 292

 294

 296

 298

 300

 302

 304

 1000 1100 1200 1300 1400 1500

Multiplications

T
im

e
 (

C
y
c
le

s
)

Measurement number

Bin 1 Bin 3 Bin 5 Bin 7

Fig. 5. Measurement trace of OpenSSL RSA decryption—detailed view

Identifying Multiplication Operations. Next, we show that is also possible to iden-
tify the individual multiplication operations performed during the modular exponentia-
tion operation. Indeed, Figure 5 shows a small section of the traces of the odd bins. In
these traces, we can clearly see the multiplication operations (marked with arrows) as
well as the spikes for each of the squaring and modular reduction operations. Recall that

12

the OpenSSL exponentiation repeatedly calculate sequences of five modular squaring
and reduction operations followed by a modular multiplication.
Identifying Multiplier Values. We notice that in the second and fourth multiplica-
tions, the measurements in the trace of bin 3 (yellow) take slightly longer than the mea-
surements of the other bins. This indicates that the three least significant digits of the
multiplier used in these multiplications are 011. Similarly, the spike in the green trace
observed during the third multiplication indicates that the three least significant bits of
the multiplier used are 001. This corresponds to the ground truth where the multipliers
used in the traced section are 2, 11, 1, 11.

As we can see, we can extract the multipliers from the trace. However, there are
some practical challenges that complicate both the generation of the traces and their
analysis. We now discuss these issues.
Aligning CacheBleed measurement sequences for averaging. Recall that the traces
shown in Figure 5 are generated by averaging the sequences of CacheBleed measure-
ments over 1,000 decryptions. When averaging, we need to ensure that the sequences
align with each other. That is, we must ensure that each measurement is taken in the
same relative time in each multiplication.

To ensure that the sequences are aligned, we use the FLUSH+RELOAD attack [46] to
find the start of the exponentiation. Once found, we start collecting enough CacheBleed
measurements to cover the whole exponentiation. FLUSH+RELOAD has a resolution
of about 500 cycles, ensuring that the sequences start within 500 cycles, or up to two
measurements, of each other.
Relative clock drift. Aligning the CacheBleed sequences at the start of the exponen-
tiation is not enough. Both the victim and the attacker are user processes and they may
be interrupted by the operating system. The most common interruption is due to timer
interrupts. On Linux, the timer ticks every millisecond. Each modular exponentiation
in the calculation of a 4096-bit RSA-CRT decryption takes 5 ms. Consequently, we ex-
perience 5–6 timer interrupts during the exponentiation. The attacker can identify the
timer interrupts because serving them takes over 5,000 cycles whereas non-interrupted
measurements take around 300 cycles. Consequently, if a measurement takes more than
1,000 cycles, the attacker can assume that it was interrupted and ignore the measure-
ment.

The attacker, however, does not have exact information on the interrupts that affect
the victim. Consequently, the clocks at the victim and at the attacker drift. The result
is that as we progress through the exponentiation the signal we capture becomes more
noisy. Figure 6 shows the signal towards the end of the exponentiation. As we can see,
the multiplications are barely visible.

To reduce the noise, we pass the signal through a low-pass filter. this removes the
high frequencies from the signal, and highlights the behavior at a resolution of a multi-
plication. Figure 7 shows the result of passing the above trace through the filter. In the
figure, we can clearly see three multiplications, using bins 7, 5 and 1.
Aligning traces of multiple bins. As discussed above, measurements in even bins are
on average slower than measurements in odd bins. This creates two problems. The first
is that we need to normalize the traces before comparing them to find the multiplier.
The second problem is that we use the measurements as a virtual clock. Consequently,

13

 295

 295.5

 296

 296.5

 297

 297.5

 298

 41100 41200 41300 41400 41500 41600

T
im

e
 (

C
y
c
le

s
)

Measurement number

Bin 1 Bin 3 Bin 5 Bin 7

Fig. 6. CacheBleed average trace towards the end of the exponentiation

when we measure over a fixed period of time, traces of even bins will be shorter, i.e.
have less measurements, than traces of odd bins. This create a clock shift that becomes
larger as the exponentiation progresses.

To normalize the traces we remove element 0 of the frequency domain. This effec-
tively subtracts the trace’s average from each trace measurement.

We then find the frequency of multiplications in the trace by looking at the frequency
domain of the trace. Figure 8 shows the frequency spectrum of two of the traces. For
a 4096-bit key, OpenSSL performs two exponentiations with 2048-bit exponents. With
a window size of 5, there are 2048/5 ≈ 410 multiplications. As we can see, there is
a spike around the frequency 410 matching the number of multiplications. Using the
frequency extracted from the trace, rather than the expected number of multiplications,
allows us to better adjust to the effects of noise at the start and end of the exponentiation
which may result in a loss of some multiplications.

Partial Key Extraction. We use CacheBleed to collect 16 traces, one for each of the
8 bins in each of the two exponentiations. Each trace is the average of 1,000 sequences
of measurements, totalling 16,000 decryption operations. Figure 9 shows a sample of
the analyzed traces, i.e. after averaging, passing through a low-pass filter, normalizing
the signal and resampling. As we can see, the used bins are clearly visible in the figure.

We manage to recover the three least significant bits of almost all of the multipliers.
Due to noise at the start and the end of the exponentiations, we miss one or two of the
leading and trailing multiplications of each exponentiation. Next, in Section 5, we show
that the information we obtain about the three least significant bits of almost all of the
multipliers is enough for key extraction.

14

 295

 295.5

 296

 296.5

 297

 297.5

 298

 41100 41200 41300 41400 41500 41600

T
im

e
 (

C
y
c
le

s
)

Measurement number

Bin 1 Bin 3 Bin 5 Bin 7

Fig. 7. Measurement trace after a lowpass filter

 0
 500

 1000
 1500
 2000
 2500
 3000

 100 200 300 400 500 600

A
m

p
lit

u
d

e

Frequency

Bin 1 Bin 3

Fig. 8. The frequency spectrum of a trace

5 Recovering the RSA Public Key

Successfully carrying out the attack in the previous sections for a 4096-bit modulus
allowed us to learn the three least significant bits of every window of five bits for the
Chinese remainder theorem coefficients dp = d mod p − 1 and dq = d mod q − 1. In
this section, we describe how to use this knowledge to recover the full private RSA key.
We use the techniques of Heninger and Shacham [22] and İnci et al. [24].
Solving For The Modular Multipliers. We have partial knowledge of the bits of dp
and dq , where each satisfies the relation edp = 1+ kp(p− 1) and edq = 1+ kq(q− 1)
for positive integers kp, kq < e. In the common case of e = 65537, this leaves us with
at most 232 possibilities for pairs of kp, kq to test. Following [24], the kp and kq are
related, so we only need to search 65,537 possible values of kp.

We start by rearranging the relations on dp and dq to obtain edp − 1 − kp = kpp
and edq − 1− kq = kqq. Multiplying these together, we obtain the relation

(edp − 1 + kp)(edq − 1 + kq) = kpkqN. (1)

Reducing modulo e yields (kp − 1)(kq − 1) ≡ kpkqN mod e.

15

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 40000 40500 41000 41500 42000

N
o

rm
a

lis
e

d
 T

im
e

 (
C

y
c
le

s
)

Resampled measurement number

Bin 0
Bin 1

Bin 2
Bin 3

Bin 4
Bin 5

Bin 6
Bin 7

7 7 7 4 0 1 2 4 6 7 2 1 7 3 3

Fig. 9. Normalized resampled traces

Thus, given a value for kp we can solve for the unique value of kq mod e. We do
not have enough information about dp and dq to deduce further information, so we must
test all e values of kp.

Branch and Prune Algorithm. For each candidate kp and kq , we will use Equa-
tion 1 to iteratively solve for dp and dq starting from the least or most significant bits,
branching to generate multiple potential solutions when bits are unknown and pruning
potential solutions when known bits contradict a given solution. In contrast to [22], the
bits we know are not randomly distributed. Instead, they are synchronized to the three
least significant bits of every five, with one or two full windows of five missing at the
least and most significant positions of each exponent. This makes our analysis much
simpler: when a bit of dp and dq is unknown at a location i, we branch to generate two
new solutions. When a bit of dp and dq is known at a particular location, using the same
heuristic assumption as in [22], an incorrect solution will fail to match the known bit of
dp and dq with probability 0.5. When kp and kq are correct, we expect our algorithm to
generate four new solutions for every pair of unknown bits, and prune these to a single
correct solution at every string of three known bits. When kp and kq are incorrect, we
expect no solutions to remain after a few steps.

Empirical Results. We tested key recovery on the output of our attack run on a 4096-
bit key, which correctly recovered the three least significant bits of every window of five,
but missed the two least significant windows and one most significant window for both
dp and dq . We implemented this algorithm in Sage and ran it on a Cisco UCS Server
with two 2.30GHz Intel E5-2699 processors and 128 GiB of RAM. For the correct
values of kp and kq , our branch-and-prune implementation recovered the full key in
1 second on a single core after examining 6,093 candidate partial solutions, and took
about 160 ms to eliminate an incorrect candidate pair of kp and kq after examining
an average of 1,500 candidate partial solutions. A full search of all 65,537 candidate
pairs of kp and kq parallelized across 36 hyperthreaded cores took 3.5 minutes. We

16

assumed the positions of the missing windows at the most and least significant bits
were known. If the relative positions are unknown, searching over more possible offsets
would increase the total search time by a factor of 9.

6 Mitigation

Countermeasures for the CacheBleed attack can operate at the hardware, the system
or the software level. Hardware based mitigations include increasing the bandwidth
of the cache banks. Our attack does not work on Haswell processors, which do not
seem to suffer from cache-bank conflicts [17, 25]. But, as Haswell does show timing
variations that depend on low address bits [17], it may be vulnerable to similar attacks.
Furthermore, this solution does not apply to the Sandy Bridge processors currently in
the market.

The simplest countermeasure at the system level is to disable hyperthreading. Dis-
abling hyperthreading, or only allowing hyperthreading between processes within the
same protection domain, prevents any concurrent access to the cache banks and elimi-
nates any conflicts. Unlike attacks on persistent state, which may be applicable when a
core is time-shared, the transient state that CacheBleed exploits is not preserved during a
context switch. Hence the core can be time-shared between non-trusting processes. The
limited security of hyperthreading has already been identified [5]. We recommend that
hyperthreading be disabled even on processors that are not vulnerable to CacheBleed
for security-critical scenarios where untrusted users share processors.

CacheBleed demonstrates that secret-dependent memory access at a finer than cache
line granularity is vulnerable to timing attacks. In particular, the scatter-gather tech-
nique is not safe. Sensitive software should be written to eliminate all secret-dependent
memory access.

7 Conclusions

In this work we present CacheBleed, the first timing attack to recover low address bits
from secret-dependent memory accesses. We demonstrate that the attack is effective
against state-of-the-art cryptographic software, widely thought to be immune to timing
attacks.

The timing variations that underlie this attack and the risk associated with them have
been known for over a decade. Osvik et al. [35] warn that “Cache bank collisions (e.g.,
in Athlon 64 processors) likewise cause timing to be affected by low address bits.” Bern-
stein [7] mentions that “For example, the Pentium 1 has similar cache-bank conflicts.”
A specific warning about the cache-bank conflicts and the scatter-gather technique ap-
pears in Footnote 38 of Tromer et al. [42].

Our research illustrates the risk to users when cryptographic software developers
dismiss a widely hypothesized potential attack merely because no proof-of-concept has
yet been demonstrated. This is the prevailing approach for security vulnerabilities, but
we believe that for cryptographic vulnerabilities, this approach is risky, and developers
should be proactive in closing potential vulnerabilities even in the absence of a fully
practical attack.

17

Acknowledgements

We would like to thank Dan Bernstein for suggesting the name CacheBleed.
NICTA is funded by the Australian Government through the Department of Com-

munications and the Australian Research Council through the ICT Centre of Excellence
Program.

This material is based upon work supported by the U.S. National Science Foun-
dation under Grants No. CNS-1408734, CNS-1505799, and CNS-1513671, and a gift
from Cisco. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the U.S.
National Science Foundation.

This work was additionally funded by the Blavatnik Interdisciplinary Cyber Re-
search Center; by the Check Point Institute for Information Security; by a Google Fac-
ulty Research Award; by the Israeli Centers of Research Excellence I-CORE program
(center 4/11); by the Leona M. & Harry B. Helmsley Charitable Trust; and by NATO’s
Public Diplomacy Division in the Framework of ”Science for Peace”.

18

Bibliography

[1] Onur Acıiçmez. Yet another microarchitectural attack: exploiting I-cache. In
CSAW, Fairfax, VA, US, 2007.

[2] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch prediction
vulnerabilities in openSSL and necessary software countermeasures. In 11th IMA
International Conference on Cryptography and Coding, pages 185–203, Cirences-
ter, UK, 2007.

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret keys
via branch prediction. In 2007 CT-RSA, pages 225–242, 2007.

[4] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New results on instruc-
tion cache attacks. In CHES, Santa Barbara, CA, US, 2010.

[5] Onur Acıiçmez and Jean-Pierre Seifert. Cheap hardware parallelism implies cheap
security. In Fourth International Workshop on Fault Diagnosis and Tolerance in
Cryptography, pages 80–91, Vienna, AT, 2007.

[6] Donald B. Alpert, Mustafiz R. Choudhury, and Jack D. Mills. Interleaved cache
for multiple accesses per clock cycle in a microprocessor. US Patent 5559986,
Sep 1996.

[7] Daniel J Bernstein. Cache-timing attacks on AES, 2005. Preprint available at
http://cr.yp.to/papers.html#cachetiming.

[8] BoringSSL. Boringssl. https://boringssl.googlesource.com/
boringssl/.

[9] Jurjen Bos and Matthijs Coster. Addition chain heuristics. In CRYPTO’89, pages
400–407, Santa Barbara, CA, US, Aug 1989.

[10] Ernie Brickell. Technologies to improve platform security. CHES’11 Invited
Talk, Sep 2011. URL http://www.iacr.org/workshops/ches/ches2011/
presentations/Invited%201/CHES2011_Invited_1.pdf.

[11] Ernie Brickell. The impact of cryptography on platform security. CT-RSA’12
Invited Talk, Feb 2012. URL http://www.rsaconference.com/writable/
presentations/file_upload/cryp-106.pdf.

[12] Ernie Brickell, Gary Graunke, and Jean-Pierre Seifert. Mitigating cache/timing
based side-channels in AES and RSA software implementations. RSA Conference
2006 session DEV-203, Feb 2006.

[13] Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks. In 15th
ASIACRYPT, pages 667–684, Tokyo, JP, Dec 2009.

[14] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practical.
In 16th ESORICS, Leuven, BE, 2011.

[15] David Brumley and Dan Boneh. Remote timing attacks are practical. In 12th
USENIX Security, pages 1–14, Washington, DC, US, 2003.

[16] Agner Fog. How to optimize for the Pentium family of microprocessors. https:
//cr.yp.to/2005-590/fog.pdf, Apr 2004.

[17] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs: An optimization
guide for assembly programmers and compiler makers. http://www.agner.
org/optimize/microarchitecture.pdf, Jan 2016.

http://cr.yp.to/papers.html#cachetiming
https://boringssl.googlesource.com/boringssl/
https://boringssl.googlesource.com/boringssl/
http://www.iacr.org/workshops/ches/ches2011/presentations/ Invited%201/CHES2011_Invited_1.pdf
http://www.iacr.org/workshops/ches/ches2011/presentations/ Invited%201/CHES2011_Invited_1.pdf
http://www.rsaconference.com/writable/presentations/ file_upload/cryp-106.pdf
http://www.rsaconference.com/writable/presentations/ file_upload/cryp-106.pdf
https://cr.yp.to/2005-590/fog.pdf
https://cr.yp.to/2005-590/fog.pdf
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

[18] Harvey L. Garner. The residue number system. IRE Trans. Electron. Computers,
EC-8(2):140–147, Jun 1959.

[19] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In CRYPTO 2014, pages 444–461, Santa Bar-
bara, CA, US, Aug 2014.

[20] Vinodh Gopal, James Guilford, Erdinc Ozturk, Wajdi Feghali, Gil Wolrich, and
Martin Dixon. Fast and constant-time implementation of modular exponentiation.
In Embedded Systems and Communications Security, Niagara Falls, NY, US, Sep
2009.

[21] Shay Gueron. Efficient software implementations of modular exponentiation. J.
Cryptographic Engin., 2(1):31–43, May 2012.

[22] Nadia Heninger and Hovav Shacham. Reconstructing RSA private keys from
random key bits. In CRYPTO 2009, pages 1–17, Santa Barbara, CA, US, Aug
2009.

[23] Wei-Ming Hu. Reducing timing channels with fuzzy time. In 1991 Comp. Soc.
Symp. Research Security & Privacy, pages 8–20, Oakland, CA, US, 1991.

[24] Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui, Thomas Eisenbarth, and
Berk Sunar. Seriously, get off my cloud! Cross-VM RSA key recovery in a public
cloud. IACR Cryptology ePrint Archive, Report 2015/898, Sep 2015.

[25] Intel 64 & IA-32 AORM. Intel 64 and IA-32 Architectures Optimization Reference
Manual. Intel Corporation, Apr 2012.

[26] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A shared cache attack
that works across cores and defies VM sandboxing – and its application to AES.
In S&P, San Jose, CA, US, May 2015.

[27] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic reverse engineer-
ing of cache slice selection in Intel processors. IACR Cryptology ePrint Archive,
Report 2015/690, Jul 2015.

[28] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, volume 1666 of LNCS, pages 388–397, 1999.

[29] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to
differential power analysis. J. Cryptographic Engin., 1:5–27, Apr 2011.

[30] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In 16th Annual International Cryptology Conference on Ad-
vances in Cryptology, pages 104–113. Springer, 1996.

[31] Butler W. Lampson. A note on the confinement problem. CACM, 16:613–615,
1973.

[32] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level
cache side-channel attacks are practical. In S&P, pages 605–622, San Jose, CA,
US, May 2015.

[33] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. Reverse engineering Intel last-level cache complex ad-
dressing using performance counters. In RAID, Kyoto, Japan, Nov 2015.

[34] Mozilla. Network security services. https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/NSS.

[35] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: The case of AES. In 2006 CT-RSA, 2006.

20

[36] Colin Percival. Cache missing for fun and profit. In BSDCan 2005, Ottawa, CA,
2005.

[37] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. Reverse engineering Intel DRAM addressing and exploitation. arXiv
preprint arXiv:1511.08756, 2015.

[38] LibreSSL Project. Libressl. https://www.libressl.org, .
[39] OpenSSL Project. Openssl. https://openssl.org, .
[40] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):

Measures and counter-measures for smart cards. In E-Smart’01, pages 200–210,
Cannes, FR, Sep 2001.

[41] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. CACM, 21:120–126, 1978.

[42] Eran Tromer, DagArne Osvik, and Adi Shamir. Efficient cache attacks on AES,
and countermeasures. Journal of Cryptology, 23(1):37–71, 2010.

[43] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little bit more. In 2015
CT-RSA, pages 3–21, San Francisco, CA, USA, Apr 2015.

[44] Yao Wang and G Edward Suh. Efficient timing channel protection for on-chip
networks. In 6th NoCS, pages 142–151, Lyngby, Denmark, 2012.

[45] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-space: High-
speed covert channel attacks in the cloud. In 21st USENIX Security, Bellevue,
WA, US, 2012.

[46] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a high resolution, low noise,
L3 cache side-channel attack. In 23rd USENIX Security, pages 719–732, San
Diego, CA, US, 2014.

[47] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser. Mapping
the Intel last-level cache. http://eprint.iacr.org/, Sep 2015.

[48] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-VM
side channels and their use to extract private keys. In 19th CCS, pages 305–316,
Raleigh, NC, US, Oct 2012.

21

https://www.libressl.org
https://openssl.org

	CacheBleed: A Timing Attack on OpenSSL Constant Time RSA

