
Vulnerability Disclosure 
 

 

Vulnerability Disclosure 

 
 

 

SQL Injection 

In 

Bugzilla 

 

 

 

 

Netanel Rubin 

26.11.2015 

  

https://www.bugzilla.org/
https://www.bugzilla.org/


Vulnerability Disclosure 
 

 

 

Vulnerable Versions 

? – Fully Patched (5.0.1) 

 

Summary 

Bugzilla is a very popular open source bug tracking software written in Perl. It allows an 

organization to easily organize the bugs in its products and developers to conveniently 

document any bug they’ve found or fixed. 

This vulnerability allows an unauthenticated attacker to perform an SQL Injection attack, 

effectively allowing the complete compromise of the server in some cases. The only 

requirement for the successful exploitation of the vulnerability is that Perl’s “Taint Mode” is set 

to “Off” in the particular vulnerable script (or in general). 

Although the exploitation of the vulnerability is restricted by Perl’s “Taint Mode”, some 

installations are deliberately disabling/removing parts of it due to conflicts with some 3rd party 

modules, and Mozilla even considers disabling it (link1, link2) in their own Bugzilla installation 

(from our test it looks like it is actually disabled) and possibly setting it as an optional 

configuration value for all installations.  

https://bugzilla.mozilla.org/show_bug.cgi?id=161402
https://bugzilla.mozilla.org/show_bug.cgi?id=161402
http://mozilla.6506.n7.nabble.com/Taint-mode-td342467.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1186416
http://mozilla.6506.n7.nabble.com/Taint-mode-tt342467.html#a342523


Vulnerability Disclosure 
 

 

Technical Description 

Bugzilla, like a lot of other Perl projects, makes heavy use of the “ref” keyword. The “ref” 

keyword is responsible for returning the variable type, and Bugzilla uses it a lot, especially in its 

object initialization functions. 

Such function is ‘_load_from_db()’, which can be seen here: 

 

It is easy to see that the function acts very differently based on ‘$param’ data type. 

In case ‘$param’ is a scalar, it is converted into an integer by removing all non-numeric 

characters from it. On the other hand, if it’s a hash, specific keys are extracted from it and used 

inside the SQL query. 

This means that if we control ‘$param’ value, and, of course, its data type, we will be able to 

exploit an SQL Injection attack on the system. 

Even though controlling ‘$param’ value is easy, controlling its data type will prove to be rather 

sub _load_from_db { 
    my $class = shift; # The object instance 
    my ($param) = @_; # The input parameter 
    my $dbh = Bugzilla->dbh; # The DB handler 
 
    # Get the ID from the parameter 
    my $id = $param; 
    if (ref $param eq 'HASH') { 
        $id = $param->{id}; 
    } 
 
    ## Regular, scalar parameter check ## 
    if (defined $id) { 
        # Force the ID to be numeric 
        detaint_natural($id); 
 
        $object_data = $dbh->selectrow_hashref(qq{ 
            SELECT $columns FROM $table 
             WHERE $id_field = ?}, undef, $id); 
    ## Special, hash parameter check ## 
    } else { 
     # Get the special values from the hash 
       $condition = $param->{'condition'}; 
       push(@values, @{$param->{'values'}}); 
   
 # Query using them ($condition is used as it) 
       $object_data = $dbh->selectrow_hashref( 
            "SELECT $columns FROM $table WHERE $condition", undef, @values); 
         
    } 
    return $object_data; 
} 



Vulnerability Disclosure 
 

 

difficult. Thinking about it, it sounds like an impossible thing to do – How can one even control 

input parameters data type? 

Well, the answer lies in how the input is being parsed. Bugzilla uses the ‘CGI.pm’ module, which 

allows to set lists as the input freely (something an attacker can abuse), but restricts the use of 

any other data types. In fact, neither hashes nor arrays can be created using this module. 

Luckily for us, ‘CGI.pm’ is not the only module parsing the user input. Another module assigned 

to that task is, of course, the XMLRPC module. 

Bugzilla implemented several ways of communicating with the system API remotely, using REST 

API, JSONRPC, and our XMLRPC. 

When a user sends an XMLRPC request, the server parses it using the XMLRPC standard, which 

allows the use of arrays and dictionaries as input types. Because of that, Bugzilla also allows the 

use of these non-standard data types as parameters in its RPC functions. 

Unfortunately, the input data-type check is missing on several occasions in this RPC. One of 

those occasions can be seen in the ‘get()’ function inside the ‘bug’ web service module: 

 

As we control ‘$params’, we control ‘$ids’. Because the input came from the RPC module, we 

are not restricted to scalar values only as the input, we can also use arrays and hashes. 

So we can insert a hash into ‘Bug->check()’, and cause an SQLI if we insert a hash into 

‘_load_from_db()’, but we still need to correlate between the two. 

This correlation is, in fact, very obvious. Since ‘check()’ is responsible for extracting a specific 

bug out of the database, it uses the ‘_load_from_db()’ function to do so. Because ‘check()’ 

assumes hash arguments are entirely system controlled, and are not dangerous, it passes them 

as-is into ‘_load_from_db()’. 

This allows us to exploit our SQLI freely, without any special permissions. 

sub get { 
    # Get the bug IDs from the user input 
    my $ids = $params->{ids}; 
     
    # Loop through the bug IDs 
    foreach my $bug_id (@$ids) { 
      # Check the given bug (basically extract it from the DB and 
      # check for permissions) 
        $bug = Bugzilla::Bug->check($bug_id); 
         
        # Add the bug to the bugs array 
        push(@hashes, $self->_bug_to_hash($bug, $params)); 
    } 
 
    # Return the bugs array 
    return { bugs => \@hashes, faults => \@faults }; 
} 



Vulnerability Disclosure 
 

 

Unfortunately, Perl’s “Taint Mode” restricts our injection. 

Taint Mode is basically a “safe mode” for Perl applications that makes sure input must be 

validated prior to its usage in dangerous functions such as ‘open()’, ‘eval()’, or even DB 

functions such as ‘selectrow()’.  

As with any language-specific, built-in-security-mechanism, “Taint Mode” cannot be counted 

on, mainly because it can be disabled, removed, or changed by 3rd party entities. Therefore, 

relying solely on it is extremely risky, just like relying on a WAF or other 3rd party software 

rather than securing your code. 

That said, removing it is also a bad idea. As Mozilla already removed parts of it from some of 

Bugzilla’s code and is considering setting it as an optional configuration value (see summary for 

more details) for the rest of the system, this vulnerability report is critical.  

Without “Taint Mode”, the severity of this vulnerability would be massive, effectively exposing 

the entire database to any attacker on any Bugzilla installation worldwide.  



Vulnerability Disclosure 
 

 

 

POC 

 

 

Suggested Fix 

The easiest fix is to restrict the use of non-scalar values in RPCs. A more sophisticated fix would 

require a function-by-function supervision to determine which variables require scalar values 

and which don’t. 

POST /jsonrpc.cgi HTTP/1.1 
Host: localhost 
Content-Type: application/json 
Content-Length: XX 
 
{"method":"Bug.update_attachment","params":[{ 
"Bugzilla_login": "USERNAME", 
"Bugzilla_password": "PASSWORD", 
"ids": [{"condition":"[SQLI]","values":["test"]}] 
}]} 


