
TouchSignatures: Identification of User Touch Actions
based on Mobile Sensors via JavaScript

Maryam Mehrnezhad, Ehsan Toreini, Siamak F. Shahandashti, Feng Hao
School of Computer Scinece, Newcastle University

Newcastle upon Tyne, United Kingdom
{m.mehrnezhad, ehsan.toreini, siamak.shahandashti, feng.hao}@ncl.ac.uk

Introduction. Conforming to the recent W3C specifica-
tions (www.w3.org/TR/orientation-event), modern mobile
web browsers generally allow JavaScript code in a web page
to access motion and orientation sensor data without the
user’s permission. The associated risks to user privacy are
however not considered in W3C specifications. In this work,
for the first time, we show how user privacy can be compro-
mised using device motion and orientation sensor data avail-
able in-browser, despite the fact that the data rate is 5 to
10 times slower than what is attainable in-app. We examine
different browsers on the Android and iOS platforms and
study their policies in granting permissions to JavaScript
code with respect to access to motion and orientation sen-
sor data and identify multiple vulnerabilities. Based on our
findings, we propose TouchSignatures, implementation of an
attack in which malicious JavaScript code on an inactive tab
listens to such sensor data measurements. Based on these
streams, TouchSignatures is able to distinguish the user’s
touch actions (e.g., tap, scroll, hold, and zoom) on an active
tab, allowing the remote website to learn the client-side user
activities. Finally, we demonstrate the practicality of this
attack by collecting real-world user data and reporting high
success rates using our proof-of-concept implementation.

Vulnerabilities. We have developed JavaScript code to
record the sensor data streams, and have carried out tests
on different combinations of mobile operating systems and
browsers. As shown in Table 1, all major browsers allow
JavaScript code to access the sensor data if the user is in-
teracting with the same tab. Furthermore, this access is
provided to all separate frames of a web page. This means
that malicious code within an iframe (e.g., showing a third-
party ad) is able to get access to the sensor data available
to the main web page despite the fact that the iframe has
a different web origin from the main page. We show this in
the table under intra tab and identify it as a privacy leakage
vector. Even worse, in some cases, access to the sensor data
is provided even to JavaScript code in a tab other than the
one with which the user is interacting. This is shown under
other tab in the table and obviously demonstrates a flaw in

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
ASIA CCS ’15, Apr 14-17, 2015, Singapore, Singapore
ACM 978-1-4503-3245-3/15/04.
http://dx.doi.org/10.1145/2714576.2714650

Device Browser (version) same intra other
mobile OS tab tab tab
Nexus 5 Chrome (38.0.2125.102) yes yes —
Android 4.4.4 Firefox (33) yes yes —

Opera (21.0.1619.86037) yes yes —
iPhone 5 Safari (8.0) yes yes —
iOS 8.1 Chrome (38.0.2125.67) yes yes yes

Opera Mini (8.0.5) yes yes yes

Table 1: Mobile browser access to the motion and
orientation sensor on Android and iOS. A yes (in
italics) indicates a potential privacy leakage vector.

browser security policies. In some browsers, e.g., Maxthon
on Android and UC Browser on iOS, (not included in the
table due to space constraint), the code has access to the
sensor data even if the browser is in the background.

Each user touch action, such as click, scroll, zoom, and
hold, induces a distinctive device motion and orientation
trace. TouchSignatures tries to identify these touch actions
given access to the sensor data through malicious JavaScript
code embedded either intra-tab within an iframe or within
another tab. This reveal potentially sensitive information
about the user’s interaction with other webpages or apps.

Implementation and Experiments. To collect labelled
data, we have implemented JavaScript code for the client
side which asks the user to follow certain steps and collects
touch actions and their associated sensor streams. On the
server side, we have developed a NodeJS-based server to
handle communications, and a NoSQL database to handle
the storage of the captured sensor data continuously. To
implement the attack, we apply two classifiers: the first one
classifies click, hold, scroll, zoom in, and zoom out and the
second one identifies the type of scroll: up, down, right, and
left. We identify appropriate time- and frequency-domain
features that are extracted from the eavesdropped sensor
trace. The classifiers then apply the k-nearest neighbour
(k-NN) algorithm to identify user’s touch actions.

Results. Our two classifiers achieve total identification
rates of 87.39% and 61.59%, respectively. Our attacks high-
light major flaws in the access control policy of both mobile
OSs and mobile browsers with respect to user privacy. As
a countermeasure which strikes a balance between security
and usability, we suggest that device motion and orientation
data be treated similarly to GPS, and comparable user noti-
fications and control mechanisms are implemented in mobile
OSs and browsers. (Acknowledgement: the last three au-
thors are supported by ERC Starting Grant 106591.)

673




