
The Spy in the Sandbox: Practical Cache Attacks in
Javascript and their Implications

Yossef Oren, Vasileios P. Kemerlis, Angelos D. Keromytis and Simha Sethumadhavan,
Computer Science Department, Columbia University

ABSTRACT
We present a micro-architectural side-channel attack that
runs entirely in the browser. In contrast to previous work
in this genre, our attack does not require the attacker to
install any software on the victim’s machine—to facilitate
the attack, the victim needs only to browse to an untrusted
webpage that contains attacker-controlled content. This
makes our attack model highly scalable, as well as extremely
relevant and practical to today’s Web, especially because
most desktop browsers currently used to access the Inter-
net are vulnerable to such side channel analyses. Our at-
tack, which is an extension to the last-level cache attacks of
Liu et al. [14], allows a remote adversary to recover infor-
mation belonging to other processes, other users, and even
other virtual machines running on the same physical host
with the victim web browser. We describe the fundamentals
behind our attack, and evaluate its performance characteris-
tics. We show how this attack can be used to meaningfully
compromise user privacy in a common setting, letting an
attacker reliably spy after the browsing activity of a vic-
tim using a private browsing session. Defending against this
side-channel is possible, but the required countermeasures
can exact an impractical cost on benign uses of the browser.

1. INTRODUCTION
Side channel analysis is a remarkably powerful cryptana-

lytic technique. It allows attackers to extract secret informa-
tion hidden inside a secure device, by analyzing the physical
signals (e.g., power, heat) that the device emits as it per-
forms a secure computation [15]. Allegedly used by the intel-
ligence community as early as in WWII, and first discussed
in an academic context by Kocher et al. in 1996 [13], side
channel analysis has been shown to be effective in breaking
into a myriad of real-world systems, ranging from car immo-
bilizers to high-security cryptographic coprocessors [7, 19].
A particular kind of side-channel attack that is relevant to
personal computers is the cache attack, which exploits the
use of cache memory as a shared resource between different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

processes, to disclose secret information [10,18].
While the potency of side-channel attacks is established

without question, their application to practical settings is
debatable. The main limiting factor to the practicality of
side-channel attacks is the problematic attack model they as-
sume; with the exception of network-based timing attacks [6],
most side-channel attacks require the attacker be in “close
proximity” to the victim. Cache attacks, in particular, typ-
ically assume that the attacker is capable of executing arbi-
trary binary code on the victim’s machine. While this as-
sumption holds true for Infrastructure/Platform-as-a-Service
(IaaS/PaaS) environments, like Amazon’s cloud computing
platform, where multiple parties may share a common phys-
ical machine, it is less relevant in other settings.

In this paper, we challenge this limiting assumption by
presenting a successful cache attack that assumes a far more
relaxed and practical attacker model. In our model, the vic-
tim merely has to access a website owned by the attacker.
Despite this minimal model, we show how the attacker can
still launch an attack in a practical time frame and ex-
tract meaningful information from the system under attack.
Keeping in tune with this computing setting, we chose not to
focus on cryptographic key recovery, but rather on tracking
user behaviour. The attack(s) described herein are therefore
highly practical: (a.) practical in the assumptions and lim-
itations they cast upon the attacker, (b.) practical in the
time they take to run, and (c.) practical in terms of the
benefit they deliver to the attacker.

For our attack we assume that the victim is using a per-
sonal computer powered by a late-model Intel processor.
We furthermore assume that the user is accessing the web
through a browser with comprehensive HTML5 support. As
we show in Section 6.2, this covers the vast majority of
personal computers connected to the Internet. The vic-
tim is coerced to view a webpage containing an attacker-
controlled element, like an advertisement. The attack code
itself, which we describe in more detail in Section 3, ex-
ecutes a Javascript-based cache attack, which lets the at-
tacker track accesses to the victim’s last-level cache over
time. Since this single cache is shared by all CPU cores, its
information can provide the attacker with a detailed knowl-
edge regarding the user and system under attack.

Crafting a last-level cache attack that can be launched
over the web using Javascript code is quite challenging, as
Javascript cannot load shared libraries or execute native pro-
grams. Even more importantly, Javascript code is forced to
make timing measurements using scripting language func-
tion calls instead of dedicated assembler instructions.

1

32KB

L1 D−Cache

L2 Unified Cache

256KB

32KB

L1 I−Cache

32KB

L1 D−Cache

Core 3

L1 I−Cache

32KB

L2 Unified Cache

256KB

Core 1

L
3

S
h
a
r
e
d

C
a
c
h
e

6
M
B

32KB

L1 D−Cache

L2 Unified Cache

256KB

32KB

L1 I−Cache

32KB

L1 D−Cache

L2 Unified Cache

256KB

32KB

L1 I−Cache

Core 0

Core 2

CPU

Figure 1: Cache memory hierarchy of Intel CPUs
(based on Ivy Bridge Core i5-3470).

These challenges notwithstanding, we have successfully
extended cache attacks to the web environment:

• We present a novel method for creating a non-canonical
eviction set for the last-level cache. In contrast to the
recent work by Liu et al. [14], our method does not
require the system to be configured for large page sup-
port, and as such, it can immediately be applied to a
wider variety of systems. More importantly, we show
that our method runs in a practical time frame.

• We demonstrate a fully functional last-level cache at-
tack using unprivileged Javascript code. We evaluate
its performance using a covert channel method, both
among different processes running on the same ma-
chine and between a VM client and its host. The
nominal capacity of the Javascript-based channel is in
the order of hundreds of Kbit/s, comparable to that of
native code approaches [14].

• We show how cache-based methods can be used to ef-
fectively track the behaviour of the user. Specifically,
we present a simple classifier-based attack that lets a
malicious webpage spy on the user’s browsing activity,
detecting the use of common websites with an accu-
racy of over 80%. Remarkably, it is even possible to
spy on the private browsing session of a completely
different browser executable. While other works have
consistently shown that cache attacks are capable of
performing cryptographic key recovery, we believe this
particular application of cache attacks is more relevant
to our specific attack model.

• We describe possible countermeasures and discuss their
system-wide cost(s).

2. BACKGROUND AND RELATED WORK

2.1 Memory Hierarchy of Modern Intel CPUs

Computer systems typically incorporate a high-speed Cen-
tral Processing Unit (CPU) and a large amount of lower-
speed Random Access Memory (RAM). To bridge the per-
formance gap between these two components, modern sys-
tems make use of cache memory : a type of memory that
is smaller but faster than RAM (in terms of access time).
Cache memory contains a subset of the RAM’s contents re-
cently accessed by the CPU, and it is typically arranged in
a cache hierarchy (i.e., a series of progressively larger and
slower memory elements are placed in various levels between
the CPU and the RAM). Figure 1, shows the cache hierarchy
used by Intel Haswell CPUs, incorporating a small, fast level
1 (L1) cache, a slightly larger level 2 (L2) cache, and finally,
a larger level 3 (L3) cache, which in turn is connected to
RAM.1 Whenever the CPU wishes to access physical mem-
ory, the respective address is first searched for in the cache
hierarchy, saving the lengthy round-trip to RAM. If the CPU
requires an element which is not currently in the cache, an
event known as a cache miss, one of the elements currently
residing in the cache is evicted to make room for this new
element. The decision of which element to evict in the event
of a cache miss is made by a heuristic algorithm that has
changed between processor generations (see Section 4.1).

Intel’s cache micro-architecture is inclusive: all elements
in the L1 cache must also exist in the L2 and L3 caches. Con-
versely, if a memory element is evicted from the L3 cache,
it is also immediately evicted from the L2 and L1 cache. It
should be noted that the AMD cache micro-architecture is
exclusive, and thus, the attacks described in this paper are
not immediately applicable to that platform.

In this work we focus on the L3 cache, commonly referred
to as the last-level cache (LLC). The LLC is shared among
all cores, threads, processes, and even virtual machines run-
ning on a certain CPU chip, regardless of protection rings
or other protection mechanisms. On Intel CPUs, the LLC is
divided into several slices: each core of the CPU is directly
connected to one of these cache slices, but can also access
all other slices by using a ring bus interconnection.

Due to the LLC’s relatively large size, it is not efficient
to search its entire contents whenever the CPU accesses the
RAM. Instead, the LLC is divided into cache sets, each cov-
ering a fixed subset of the physical memory space. Each of
these cache sets contains several cache lines. For example,
the Intel Core i7-4960HQ processor, which belongs to the
Haswell family, includes 8192 (213) cache sets, each of which
is 12-way associative. This means that each cache set can
hold 12 lines of 64 (26) bytes each, giving a total cache size of
8192x12x64=6MB. When the CPU needs to check whether
a given physical address is present in the L3 cache, it cal-
culates which cache set is responsible for this address, and
then only checks the cache lines corresponding to this set.
As a consequence, a cache miss event for a physical address
will result in the eviction of only one of the relatively small
amount of lines sharing its cache set, a fact that we make
great use in our attack.

The method by which 64-bit physical addresses are mapped
into 12-bit or 13-bit cache set indices is undocumented and
varies among processor generations, as we discuss in Sec-
tion 4.1. In the case of Sandy Bridge, this mapping was
reverse-engineered in 2013 by Hund et al. [11], where they

1The current generation of Intel CPUs, codenamed
Haswell/Broadwell, extends this hierarchy by another level
of embedded DRAM (eDRAM), which is not discussed here.

2

showed that of the 64 physical address bits, bits 5 to 0 are
ignored, bits 16 to 6 are taken directly as the lower 11 bits of
the set index, and bits 63 to 17 are hashed to form the slice
index, a 2-bit (in the case of quad-core) or 1-bit (in the case
of dual-core) value assigning each cache set to a particular
LLC slice.

In addition to the above, modern computers use a virtual
memory mechanism, where user processes do not have di-
rect knowledge or access to the system’s physical memory.
Instead, these processes are allocated virtual memory pages.
When a virtual memory page is accessed by a currently exe-
cuting process, the Operating System (OS) dynamically as-
sociates the page with a page frame in physical memory. The
Memory Management Unit (MMU) of the CPU is in charge
of mapping between the virtual memory accesses made by
different processes and accesses to physical memory. The
size of pages and page frames in most Intel processors is
typically set to 4KB2, and both pages and page frames are
page-aligned (i.e., the starting address of each page is a mul-
tiple of the page size). This means that the lower 12 bits of
any virtual address and its corresponding physical address
are generally identical, another fact we use in our attack.

2.2 Cache Attacks
The cache attack is the most well-known representative of

the general class of micro-architectural side-channel attacks,
which are defined by Aciiçmez in his excellent survey [3], as
attacks that “exploit deeper processor ingredients below the
trust architecture boundary” to recover secrets from various
secure systems. Cache attacks make use of the fact that—
regardless of higher-level security mechanisms, like protec-
tion rings, virtual memory, hypervisors, and sandboxing—
both secure and insecure processes can interact through their
shared use of the cache. This allows an attacker to craft a
“spy” process which can measure and make inferences about
the internal state of a secure process through their shared
use of cache memory. First identified by Hu in 1992 [10],
several results have shown how the cache side-channel can
be used to recover AES keys [5,18], RSA keys [20], and even
allow one virtual machine to compromise another virtual
machine running on the same host [22].

Our attack is modeled after the Prime+Probe method,
which was first described by Osvik et al. [18] in the con-
text of the L1 cache, and later extended by Liu et al. [14]
to last-level caches on systems with large pages enabled. In
this work, we further extend this attack to last-level caches
in the more common case of 4KB-sized pages. In general,
the Prime+Probe attack follows a four-step pattern. In
the first step, the attacker creates one or more eviction sets.
An eviction set is a sequence of memory addresses which
are all mapped by the CPU into the same cache set. The
Prime+Probe attack also assumes that the victim code
uses this cache set for its own code or data. In the second
step, the attacker primes the cache set by accessing the evic-
tion set in an appropriate way. This forces the eviction of the
victim’s code or instructions from the cache set and brings
it to a known state. In the third step, the attacker triggers
the victim process, or passively waits for it to execute. Dur-
ing this execution step, the victim may potentially utilise
the cache and evict some of the attacker’s elements from the
cache set. In the fourth step, the attacker probes the cache
set by accessing the eviction set yet again. A low access la-

22MB and 1GB pages are also supported in newer CPUs.

tency suggests that the attacker’s eviction set is still in the
cache, while a higher access latency suggests that the vic-
tim’s code made use of the cache set and evicted some of the
attacker’s memory elements. The attacker thus learns about
the victim’s internal state. The actual timing measurement
is carried out by using the unprivileged assembler instruc-
tion rdtsc, which provides a very sensitive measurement
of the processor’s cycle count. Iterating over the eviction
set in the probing phase also serves a secondary purpose of
forcing the cache set yet again into an attacker-controlled
state, thus preparing for the next round of measurements.

2.3 The Web Runtime Environment
Javascript is a dynamically typed, object-based scripting

language with runtime evaluation, which powers the client
side of the modern web. Websites deliver Javascript pro-
grams to the browser in source-code form, which in turn
are (typically) compiled and optimized using a Just-In-Time
mechanism. The fierce competition among different browsers
has caused browser vendors to focus considerably on im-
proving Javascript performance; in fact, in certain scenar-
ios, Javascript code performs on a level which is on par with
that of native code.

The core functionality of the Javascript language is de-
fined by the Ecma International industry association in the
standard ECMA-262 [1]. The language standard is comple-
mented by a large set of application programming interfaces
(APIs) defined by the World Wide Web Consortium [23],
which make the language practical for developing web con-
tent. The Javascript API set is constantly evolving, and
browser vendors add support to new APIs over time accord-
ing to their own development schedules. Two specific APIs
that are of use to us in this work are the Typed Array Spec-
ification [8], which allows efficient access to unstructured
binary data, and the High-Resolution Time API [16], which
provides Javascript with submillisecond time measurements.
As we show in Section 6.2, the vast majority of Web browsers
that are in use today support both APIs.

In their default configurations, all common browsers will
automatically compile and execute every Javascript program
delivered to them by any webpage. To limit the potential
damage of this property, Javascript code runs in a highly
sandboxed environment—code delivered via Javascript has
severely restricted access to the system. For example, it
cannot open files, even for reading, without the permission
of the user. Also, it cannot execute native language code
or load native code libraries. Most importantly, Javascript
code has no notion of pointers. Thus, it is impossible to
determine the virtual address of a Javascript variable.

3. DESIGNING THE ATTACK
As described in Section 2.2, the four steps involved in a

successful Prime+Probe attack are the following: (i) cre-
ating an eviction set for one or more relevant cache sets, (ii)
priming the cache set, (iii) triggering the victim operation,
and finally, (iv.) probing the cache set again. In this sec-
tion, we describe how each of these steps was designed and
implemented in Javascript.

3.1 Creating an Eviction Set
Design. As stated by Liu et al. [14], in the first step

of a Prime+Probe attack the attacker creates an eviction
set for a cache set whose activity would like to track. This

3

eviction set consists of a sequence of variables that are all
mapped by the CPU into a cache set that is also used by the
victim process. We first show how we create an eviction set
for an arbitrary cache set, and later address the problem of
finding which cache set is particularly interesting from the
attacker’s perspective.

Prime+Probe attacks were first discussed in the context
of the L1 cache [18]. More specifically, the L1 cache deter-
mines the cache set assignment for a variable based on the
lower bits of its virtual address. Since the attacker is as-
sumed to know the virtual addresses of its own variables, it
is straightforward to create an eviction set in the L1 attack
model. In contrast, set assignments for variables in the LLC
are made by reference to their physical memory addresses,
which are not generally available to unprivileged processes.3

Liu et al. [14] partially circumvented this problem by as-
suming that the system is operating in large page (2MB)
mode, in which the lower 21 bits of the physical and virtual
addresses are identical, and by the additional use of an iter-
ative algorithm to resolve the unknown upper (slice) bits of
the cache set index.

In the attack model we consider, the system is not run-
ning in large page mode, but rather in the more common
4K page mode, where only the lower 12 bits of the physical
and virtual addresses are identical. To our further difficulty,
Javascript has no notion of pointers, so even the virtual ad-
dresses of our own variables are unknown to us. This makes
it very difficult to provide a deterministic mapping of mem-
ory address to cache set. Instead, we use a heuristic algo-
rithm as described below.

Let us now assume that the victim system has s = 8192
cache sets, each with a l = 12-way associativity. While inves-
tigating the way physical memory addresses are mapped into
cache set indices in the Sandy Bridge micro-architecture,
Hund et al. [11] discovered that accessing a contiguous 8MB
eviction buffer of physical memory will completely invalidate
all cache sets in the L3 cache. We could not allocate such
an eviction buffer in user-mode; in fact, the aforementioned
work was assisted by a kernel-mode driver. Instead, we allo-
cated an 8MB byte array in virtual memory using Javascript
(which was assigned by the operating system into an arbi-
trary and non-contiguous set of 4K physical memory pages),
and measured the system-wide effects of iterating over this
buffer. We discovered that access latencies to unrelated vari-
ables in memory were slowed by a noticeable amount when
accessed immediately after iterating through this eviction
buffer. We also discovered that the slowdown effect persisted
even if we did not access the entire buffer, but rather ac-
cessed it in offsets of once per every 64 bytes (this behaviour
was recently extended into a full covert channel [17]). How-
ever, it was not immediately clear how to map each of the
131K offsets we accessed inside this eviction buffer into each
of the 8192 possible cache sets, since we did not know the
physical memory locations of the various pages of our buffer.

A naive approach to solving this problem would be to
fix an arbitrary “victim” address in memory, and then find
by brute force which subset of size l = 12 offsets, out of the
8MB/64=131K possible addresses in the buffer, serves as the
eviction set for this address. To do so, we could randomly

3In Linux, until recently, the mapping between virtual
pages and physical page frames was exposed to unprivileged
user processes through the /proc/<pid>/pagemap inter-
face [?]. Starting with v4.0 this is no longer possible [?].

Algorithm 1 Profiling a Cache Set

Let S be the set of currently unmapped page-aligned ad-
dresses, and address x be an arbitrary page-aligned address
in memory.

1. Repeat k times:

(a) Iteratively access all members of S.

(b) Measure t1, the time it takes to access x.

(c) Select a random page s from S and remove it.

(d) Iteratively access all members of S\s.
(e) Measure t2, the time it takes to access x.

(f) If removing s caused the memory access to speed
up considerably (i.e., t1 − t2 > thres), then this
address is part of the same set as x. Place it back
into S.

(g) If removing s did not cause memory access to
speed up considerably, then s is not part of the
same set as x.

2. If |S| = 12, return S. Otherwise report failure.

choose a subset of 12 offsets, and then measure whether the
access latency to this victim address is increased after it-
erating through these offsets. If the latency increases, this
means the subset contains the 12 addresses sharing the set
with the victim address. If the latency does not change,
then the subset does not contain at least one of these 12 ad-
dresses, allowing the victim address to remain in the cache.
By repeating this process 8192 times, each time with a differ-
ent victim address, we would be able to identify each cache
set and create our data structure.

Optimization #1. An immediate application of this
heuristic would take an impractically long time to run. One
simple optimization would be to start with a subset con-
taining all 131K possible offsets, then gradually attempt to
shrink it by removing random elements and checking that
the access latency to the victim address stays high. Even this
optimization, however, is too slow for practical use. Fortu-
nately, the page frame size of the Intel MMU, as described
in Section 2.1, could be used to our great advantage. Since
virtual memory is page aligned, the lower 12 bits of each
virtual memory address are identical to the lower 12 bits of
each physical memory address. According to Hund et al., 6
of these 12 bits are used in uniquely determining the cache
set index. Thus, a particular offset in our eviction buffer can
only share a cache set with an offset whose bits 12 to 6 are
identical to its own. There are only 8K such offsets in the
8MB eviction buffer, speeding up performance considerably.

Optimization #2. Another optimization comes from
the fact that if physical addresses P1 and P2 share a cache
set, then for any value of ∆ physical addresses P1 ⊕∆ and
P2⊕∆ also share a (possibly different) cache set. Since each
4KB block of virtual memory maps to a 4KB block in phys-
ical memory, this implies that discovering a single cache set
can immediately teach us about 63 additional cache sets.
Joined with the discovery that Javascript allocates large
data buffers along page frame boundaries, this finally leads
to the greedy approach described in Algorithm 1.

By running Algorithm 1 multiple times, we can gradu-

4

CPU Model Micro-arch. L3 Cache Size Cache Assoc.

Core i5-2520M Sandy Bridge 3MB 12-way

Core i7-2667M Sandy Bridge 4MB 16-way

Core i5-3427U Ivy Bridge 3MB 12-way

Core i7-3667U Ivy Bridge 4MB 16-way

Core i7-4960HQ Haswell 6MB 12-way

Core i7-5557U Broadwell 4MB 16-way

Table 1: CPUs used to evaluate the performance of
the profiling cache set technique (Algorithm 1).

ally create eviction sets covering most of the cache, except
for those parts which are accessed by the Javascript run-
time itself. We note that, in contrast to the eviction sets
created by the algorithm of Liu et al. [14], our eviction set
is non-canonical : Javascript has no notion of pointers, and
therefore, we cannot identify which of the CPU’s cache sets
correspond to any particular eviction set we discover. Fur-
thermore, running the algorithm multiple times on the same
system will result in a different mapping each time it is run.
This property stems from the use of traditional 4KB pages
instead of large 2MB pages, and will hold even if the eviction
sets are created using native code and not Javascript.

1 // Inva l i da t e the cache se t
2 var currentEntry = star tAddres s ;
3 do {
4 currentEntry =
5 probeView . getUint32 (currentEntry) ;
6 } while (currentEntry != star tAddres s) ;
7
8 // Measure access time
9 var startTime =

10 window . performance . now () ;
11 currentEntry =
12 primeView . getUint32 (var iab leToAccess) ;
13 var endTime = window . performance . now () ;

Evaluation. We implemented Algorithm 1 in Javascript
and evaluated it on Intel machines using CPUs from the Ivy
Bridge, Sandy Bridge and Haswell families, running the lat-
est versions of Safari and Firefox on Mac OS X v10.10 and
Ubuntu 14.04 LTS, respectively. The specifications of the
CPUs we evaluated are listed in Table 1. The systems were
not configured to use large pages, but instead were running
with the default 4KB page size. The code snippet shown
in Listing ?? illustrates lines 1.d and 1.e of the algorithm,
and demonstrates how we iterate over the eviction set and
measure latencies using Javascript. The algorithm requires
some additional steps to run under Chrome and under In-
ternet Explorer, which we describe in Section 6.2.

Figure 2 shows the performance of the profiling algorithm,
as evaluated on an Intel i7-4960HQ running Firefox v35 for
Mac OS X v10.10. We were pleased to find that the algo-
rithm was able to map more than 25% of the cache in under
30 seconds of operation, and more than 50% of the cache
after 1 minute. On systems with smaller cache sizes, such as
the Sandy Bridge i5-2520M, profiling was even faster, taking
less than 10 seconds to profile 50% of the cache. The profil-
ing technique itself is very simple to parallelize, since most
of its execution time is spent on data structure maintenance
and only a small part is spent in the actual invalidate-and-
measure portion. Finally, note that the entire algorithm is
implemented in ∼ 500 lines of Javascript code.

To verify that our algorithm was indeed capable of identi-
fying cache sets, we designed an experiment that compares

0 25 50 75 100 125 150
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (s)

C
a
ch
e
se
ts

p
ro
fi
le
d

Figure 2: Cumulative performance of the profiling
algorithm (Haswell i7-4960HQ).

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Access Latency (ns)

P
ro
b
a
b
il
it
y
d
en

si
ty

Figure 3: Probability distribution of access times for
flushed vs. unflushed variable (Haswell i7-4960HQ).

the access latencies for a flushed and an unflushed variable.
Figure 3 shows two probability distribution functions com-
paring the time required to access a variable that has re-
cently been flushed from the cache by accessing the eviction
set (gray line), with the time required to access a variable
that currently resides in the L3 cache (black line). The tim-
ing measurements were carried out using Javascript’s high
resolution timer, and thus include the additional delay im-
posed by the Javascript runtime. It is clear that the two
distributions are distinguishable, confirming the correct op-
eration of our profiling method.

3.2 Priming and Probing
Once the attacker has an eviction set consisting of 12 en-

tries that share the same cache set, his next goal is to replace
all entries in the cache of the CPU with the elements of this
eviction set. In the case of the probe step, the attacker has
the added goal of precisely measuring the time required to
perform this operation. While this step seems trivial, there
are several performance-enhancing features of modern Intel
CPUs which must be considered.

5

Algorithm 2 Identifying Interesting Cache Regions

Let Si be the data structure matched to eviction set i.

• For each set i:

1. Iteratively access all members of Si to prime the
cache set.

2. Measure the time it takes to iteratively access all
members of Si.

3. Perform an interesting operation.

4. Measure once more the time it takes to iteratively
access all members of Si.

5. If performing the interesting operation caused the
access time to slow down considerably, then the
operation was associated with cache set i.

Modern high-performance CPUs are highly out-of-order,
meaning that instructions are not executed by their order
in the program, but rather by the availability of input data.
To ensure the in-order execution of critical code parts, In-
tel provides “memory barrier” functionality through various
instructions, one of which is the unprivileged instruction
mfence. As Javascript code is not capable of running it,
we had to artificially make sure the entire eviction set was
actually accessed before the timing measurement code was
run. We did so by accessing the eviction set in the form
of a linked list (as was also suggested by Osvik et al. [18]),
and by making the timing measurement code artificially de-
pendent on the eviction set iteration code. The CPU also
has a stride prefetching feature, which attempts to antici-
pate future memory accesses based on regular patterns in
past memory accesses. To avoid the effect of this feature we
randomly permute the order of elements in the eviction set.
We also access the eviction set in alternating directions to
avoid an excessive amount of cache misses (see Section 4.1).

A final challenge is the issue of timing jitter. In contrast
to native code Prime+Probe attacks, which use a single as-
sembler instruction to measure time, our code uses an inter-
preted language API call (Window.Performance.now()),
which is far more likely to be impacted by measurement
jitter. In our experiments we discovered that while some
calls to Window.Performance.now() indeed took much
longer to execute than expected (e.g., milliseconds instead
of nanoseconds), the proportion of these jittered events was
very small and inconsequential.

3.3 Identifying Interesting Cache Regions
The eviction set allows the attacker to monitor the activ-

ity of arbitrary cache sets. Since the eviction set we receive
is non-canonical, the attacker must now correlate the cache
sets he has profiled to data or code locations belonging to the
victim. This learning/classification problem was addressed
earlier by Zhang et al. [25] and by Liu et al. [14], where var-
ious machine learning methods were used to derive meaning
from the output of cache latency measurements.

To effectively carry out the learning step, the attacker
needs to induce the victim to perform an action, and then
examine which cache sets were touched by this action, as
formally defined in Algorithm 2.

Finding a function to perform the step (c) of the algorithm

was actually quite challenging due to the limited permissions
granted to Javascript code. This can be contrasted with the
ability of Irazoqui et al. to trigger a minimal kernel opera-
tion by invoking an empty sysenter call [4]. To carry out
this step, we had to survey the Javascript runtime to dis-
cover function calls which may trigger interesting behaviour,
such as file access, network access, memory allocation, etc.
We were also interested in functions which take a relatively
short time to run and left no background “trails”, such as
garbage collection, which would impact our measurement in
step (d). Several such functions were discovered in a differ-
ent context by Ho et al. [9]. Since our code will always detect
activity caused by the Javascript runtime, the high perfor-
mance timer code, and other components of the web browser
that are running regardless of the call being executed, we ac-
tually call two similar functions and examine the difference
between the activity profile of the two evaluations to identify
relevant cache sets. Another approach would be to induce
the user to perform an interesting behaviour (such as press-
ing a key on his keyboard) on the behalf of the attacker.
The learning process in this case might be structured (the
attacker knows exactly when the victim operation was exe-
cuted), or unstructured (the attacker can only assume that
relatively busy periods of system activity are due to victim
operations. We examine both of these approaches in the
attack we present in Section 5.

4. EVALUATION
In this section we evaluate the capabilities of Javascript-

based cache probing in a non-adversarial context. By se-
lecting a group of cache sets and repeatedly measuring their
access latencies over time, the attacker is provided with a
very detailed picture of the real-time activity of the cache.
We call the visual representation of this image a “memory-
gram”, since it looks quite similar to an audio spectrogram.

A sample memorygram, collected over an idle period of
400ms, is presented in Figure 4. The X axis corresponds
to time, while the Y axis corresponds to different cache
sets. The sample shown has a temporal resolution of 250µs
and monitors a total of 128 cache sets (the highest tem-
poral resolution we were able to achieve while monitoring
128 cache sets in parallel is approximately 5µs). The inten-
sity of each pixel corresponds to the access latency of this
particular cache set at this particular time, with black rep-
resenting a low latency, suggesting no other process accessed
this cache set between the previous measurement and this
one, and white representing a higher latency, suggesting that
the attacker’s data was evicted from the cache between this
measurement and the previous one.

Observing this memorygram can provide several immedi-
ate insights. First, it is clear to see that despite the use of
Javascript timers instead of machine language instructions,
measurement jitter is quite low and that active and inactive
sets are clearly differentiated. It is also easy to notice several
vertical line segments in the memorygram, indicating multi-
ple adjacent cache sets which were all active during the same
time period. Since consecutive cache sets (within the same
page frame) correspond to consecutive addresses in physical
memory, we believe this signal indicates the execution of a
function call which spans more than 64 bytes of assembler
instructions. Several smaller groups of cache sets are also ac-
cessed together. We theorise that the these smaller groups
correspond to variable accesses. Finally, the white horizontal

6

C
a
ch
e
S
et

(n
o
n
-c
a
n
o
n
ic
a
l)

Time (ms)
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

20

40

60

80

100

120

Figure 4: Sample memorygram collected over an idle period of 400ms. The X axis corresponds to time, while
the Y axis corresponds to different cache sets. The sample shown has a temporal resolution of 250µs and
monitors a total of 128 cache sets. The intensity of each pixel illustrates the access latency of the particular
cache set, with black representing a low latency and white representing a higher latency.

line indicates a variable which is constantly accessed during
our measurements. This variable probably belongs to the
measurement code or to the underlying Javascript runtime.
It is remarkable that such a wealth of information about the
system is available to an unprivileged webpage!

4.1 Micro-architecture insights
Despite the high-level language in which our attack was

written, it provides a glimpse into extremely low-level ele-
ments of the victim machine. As a consequence, we were
affected by minute design choices made by the designers of
the Intel microprocessor among the different processor gen-
eration we surveyed.

As stated in [3], two concepts can affect the functional
behavior of a cache: the mapping strategy and the replace-
ment policy. The mapping strategy determines which mem-
ory locations are mapped to each set in the cache, while
the replacement policy determines how the cache set will be
modified after a cache miss.

We noticed differing behaviour in the mapping strategy of
the systems we surveyed, specifically in the choice of the
slice index of each memory address. In the processors we
surveyed, each cache slice is assigned to a specific CPU core,
while all of the slices are interconnected via ring buffer.

While the work of [11] showed that on Sandy Bridge CPUs
the slice index was only a function of high-order bits of the
physical address, it was suggested in [14] that lower-order
bits are also considered in the calculation on newer microar-
chitectures. We confirmed this by measuring the cache hit
timing of each of the cache sets we were able to profile on a
quad-core Haswell processor. In a such a system there are
three possible times for an L3 cache hit - the slice associated
with the current core, the two slices a single core away, and
the single slice which is two cores away. As illustrated in
Figure 5, each consecutive set of 64 cache sets (associated in
memory with 4K consecutive addresses in physical memory)
exhibits a distinct 3-level timing graduation, suggesting that
newer CPUs choose the slice index by consulting lower-order
bits of the address. There are operative outcomes to this dis-
covery – two processes running on the same system can use
this measurement to discover whether they are running on
the same core or not, by comparing cache hit timings for

200 250 300 350 400 450 500 550

160

170

180

190

200

210

220

230

240

Cache Set (non-canonical)

C
a
ch
e
h
it

la
te
n
cy

(n
s)

Figure 5: L3 cache hit times show a 3-level gradua-
tion (Haswell i7-4960HQ)

the same cache sets. More importantly, once the mapping
of physical addresses to cache sets is reverse engineered on
newer systems, this behaviour will allow low-privilege pro-
cesses to infer some information about the physical addresses
of their own variables, reducing the entropy of several types
of attacks such as ASLR derandomization.

When investigating the cache replacement policy, we no-
ticed that the CPUs we surveyed transitioned between two
distinct replacement policies. As discussed in [?], modern
Intel CPUs usually employ least-recently-used (LRU) re-
placement policy, where the new entry added to the cache
is marked as least recently used, and is thus the last to
be replaced in the case of future cache misses. In certain
cases, however, these CPUs can transition to the bimodal
insertion policy (BIP) policy, where the new entry added to
the cache is marked most of the times as the most recently
used, and is thus the first to be replaced in the case of future
cache misses. In our measurements we noticed that Sandy
Bridge CPUs remained in the LRU policy throughout our

7

experiments. On Ivy Bridge processors, however, we wit-
nessed situations where some sets operated in LRU mode
and some in BIP mode. This suggests a “set dueling” mech-
anism, in which the two policies are compared in real time to
examine which generates less cache misses. On the Haswell
and Broadwell processors we noticed the system switching
between policies with high frequency, but could not locate
regions in time where both policies were in effect in different
cache sets. This suggests that Haswell and newer CPUs use
a different method to choose the optimal cache replacement
policy.

The choice of policy had a impact on our measurements,
since the BIP policy makes the priming and probing steps
more difficult. To avoid triggering the switch to BIP, we
designed our attack code to minimize the amount of cache
misses it generates in benign cases, both by choosing a zig-
zag access pattern (as suggested by [18]), and by actively
pruning our measurement data set to remove overly active
cache sets.

4.2 Covert Channel Bandwidth Estimation
As shown in [14,17], last-level cache access patterns can be

used to construct a high-bandwidth covert channel and ef-
fectively exfiltrate sensitive information between virtual ma-
chines co-resident on the same physical host. We used such
a construction to estimate the measurement bandwidth of
our attack system. The design of our covert channel system
was influenced by two requirements: first, we wanted the
transmitter part to be as simple as possible, and in particu-
lar we did not want it to carry out the eviction set algorithm
of Subsection 3.1. Second, since the receiver’s eviction set
is non-canonical, it should be as simple as possible for the
receiver to search for the sets onto which the transmitter
was modulating its signal.

To satisfy these requirements, our transmitter code sim-
ply allocates a 4K array in its own memory and continuously
modulates the collected data into the pattern of memory ac-
cesses to this array. There are 64 cache sets covered by this
4K array, allowing the us to transmit 64 bits per time period.
To make sure the memory accesses are easily located by the
receiver, the same access pattern is repeated in several addi-
tional copies of the array. Thus, a considerable percentage
of the cache is actually exercised by the transmitter.

The receiver code profiles the system’s physical memory,
then searches for one of the page frames containing the data
modulated by the transmitter. To evaluate the bandwidth
of this covert channel, we wrote a simple program that it-
erates over memory in a predetermined pattern. Next, we
attempted to search for this memory access pattern using a
Javascript cache attack, then measured the maximum sam-
pling frequency at which the Javascript code could be run.
We first evaluated our code when both transmitter and re-
ceiver were running on a normal host, then repeated our
measurements when the receiver was running inside a vir-
tual machine (Firefox 34 running on Ubuntu 14.01 inside
VMWare Fusion 7.1.0).

The nominal bandwidth of the covert channel was in the
standard case was measured to be approximately 320kbps,
a figure which compares well with the 1.2Mbps bandwidth
achieved by the native code cross-VM covert channel imple-
mented by [14]. When the receiver code was not running di-
rectly on the host, but rather on a virtual machine, the peak
bandwidth of the covert channel was severely degraded to

approximately 8kbps. Nevertheless, the fact that a webpage
running inside a virtual machine is capable of probing the
hardware of the underlying host is still quite surprising.

5. USER BEHAVIOUR TRACKING
Most works which evaluate cache attacks assume that the

attacker and the victim share a colocated machine inside a
cloud-provider data center. Such a machine is not typically
configured to accept interactive input, and accordingly most
works in this field focus on the recovery of cryptographic
keys or other secret state elements, such as random number
generator states [26]. For this work, we chose to examine
how cache attacks can be used to track the interactive be-
haviour of the user, a threat which is more relevant to the
attack model we consider. We note that [22] have already
attempted to track keystroke timing events using coarse-
grained measurements of system load on the L1 cache.

5.1 Detecting Hardware Events
Our first case study investigated whether our cache attack

can detect hardware events generated by the system. We
chose to focus on mouse and network activity because the
operating system code that handles them is non-negligible.
Thus, we expected them to have a relatively large cache
footprint. They are also easily triggered by content running
within the restricted Javascript security model, allowing our
attack to have a training phase.

5.1.1 Design
The structure of both attacks is similar. First, the pro-

filing phase is carried out, allowing the attacker to probe
individual cache sets using Javascript. Next, during a train-
ing phase, the activity to be detected (i.e. network activity
or mouse activity) is triggered, and the cache activity is
sampled multiple times with a very high temporal resolu-
tion. While the network activity was triggered directly by
the measurement script (by executing a network request),
we simply waved the mouse around over the webpage dur-
ing the training period 4.

By comparing the cache activity during the idle and ac-
tive periods of the training phase, the attacker learns which
cache sets are uniquely active during the relevant activity
and trains a classifier on these cache sets. Finally, during
the classification phase, the attacker monitors the interest-
ing cache sets over time to learn about the user’s activity.

We used a basic unstructured training process, assuming
that the most intensive operation performed by the system
during the training phase would be the one being measured.
To take advantage of this property, we calculated the Ham-
ming weight of each measurement over time (equivalent to
the count of cache sets which are active during a certain time
period), then applied a k-means clustering of these Hamming
weights to divide the measurements into several clusters. We
then calculated the mean access latency of each cache set in
every cluster, arriving at a centroid for each cluster. To
classify an unknown measurement vector, we measured the
Euclidean distance between this vector and each of these
centroids, classifying it as the closest one.

In the classification phase, we generated network traffic
using the command-line tool wget and moved the mouse

4In a full attack, the user can be enticed to move the mouse
by having him play a game or fill out a form.

8

Shared CPU

Code (JS)

Cache Attack

mode mode
Normal browsing Private browsing

Victim Browser Secure Browser

Sensitive Site

Figure 6: End-to-end attack scenario

outside of the browser window. To provide ground truth
for the network activity scenario, we concurrently measured
the traffic on the system using tcpdump, then mapped the
timestamps logged by tcpdump to the times detected by our
classifier. To provide ground truth for the mouse activity
scenario, we wrote a webpage that timestamps and logs all
mouse events, then moved the mouse over this webpage.

In our experiments we discovered that we were capable of
reliably detecting mouse and network activity. Our the net-
work classifier’s measurement rate was only 500Hz. Thus, it
could not count individual packets but rather periods of net-
work activity and inactivity. In contrast, our mouse detec-
tion code actually logged more events than the ground truth
collection code. This is due to the fact that the Chrome
browser throttles mouse events to web pages down to a rate
of approximately 60Hz. We stress that the mouse activity
detector did not detect network activity, and vice versa.

During our hardware measurement we unearthed a sur-
prising artifact. We discovered that our measurements were
affected by the ambient light sensor of the victim machine
– waving our hand in front of the laptop screen generated a
noticeable burst of hardware events. This means that cache-
based attacks can detect the presence of a user browsing the
computer, an item of information which is highly desirable
to advertisers.

5.2 An End-to-End Attack on Privacy
We now demonstrate how a cache attack can practically

and meaningfully compromise the privacy of a web user.

5.2.1 Motivation
Most consumer browsers on the market today implement a

private or incognito mode, which users use to carry out more
sensitive types of online activities. While private browsing
mode is enabled, the web browser does not disclose or collect
any cookies, web cache entries or other forms of local data
storage. Since private browsing sessions do not retain the
login credentials of the current user, they are cumbersome
to use for general purposes; Instead, users typically have
concurrent standard browsing sessions and private browsing
sessions running side-by-side on the same computer. Users
may even use different browser executables for the different
sessions, carrying out their standard browsing sessions in
one browser, but opening their private browsing sessions in a
different browser, perhaps one with more restrictive security
settings.

Let us now assume that one of the windows belonging
to the standard browsing session is capable of performing
a cache attack (either by malicious design, or incidentally
via a malicious ad banner or other affiliate content item).

As Figure 6 illustrates, we show how this attacker can de-
tect which websites are being loaded in the victim’s private
browsing session, thus compromising his privacy.

5.2.2 Experiment Setup
Our measurements were carried out on an Intel Core i7-

2667M machine running the latest version of Mac OS (10.10.3).
The attack code was run on a standard browsing session run-
ning on the latest version of Firefox (37.0.2), while the pri-
vate browsing session was run on the latest version of Safari
(8.0.6). To increase our measurement bandwidth we chose
to filter all hardware-related events. We thus we began our
attack with an extremely simple training phase, in which
the attacker measured which cache sets were idle when the
user was touching the trackpad but not moving his finger.
We detected a total of 61 such cache sets, out of a total of
2048 output by the profiling step.

In each experiment, we opened the private mode browsing
window, typed the URL of a website the address bar and al-
lowed the website to load completely. During this operation,
our attack code collected a 10-second memorygram with a
temporal resolution of 2ms. We collected a total of 39 mem-
orygrams for 8 of the top 10 sites on the web, according to
Alexa’s Top Global Sites ranking of May 2015. To further
reduce our processing load, we only saved the mean activ-
ity of the cache sets over time, resulting in a 5000-element
vector for each measurement. A representative set of these
memorygrams is provided in Figure 75.

Our classification step was extremely simple - we calcu-
lated the mean absolute value of the Fourier transforms for
each website’s memorygrams (discarding the DC compo-
nent), calculated the absolute value of the Fourier trans-
form of the current memorygram, then output the label of
the closest website according to the `2 distance metric. We
performed no other preprocessing, alignment or other mod-
ification of the data. In each experiment, we trained the
classifier on all traces but one, then recorded the label out-
put by the classifier for the missing trace.

5.2.3 Results
The confusion matrix of our classifier is shown in Table

2. The overall classification accuracy of our classifier was
82.1%, a value which can certainly be improved by more ad-
vanced classification heuristics such as measuring the timing
of the keystrokes of the URL as it is entered. The classifier
was the least successful in telling apart the Facebook and
Wikipedia memorygrams. We theorize that this is due to
the fact that both websites load a minimal website with a
blinking cursor which generates the distinct 2Hz pulse seen
in Figure 7.

Preliminary results suggest that it is possible to track
websites loaded by the highly secured Tor Browser using
the same method. However, as pages loaded over the Tor
network typically take longer than 10 seconds to load, our
current test setup was not able to capture enough data to
mount a successful attack.

6. DISCUSSION
This work shows how side-channel attacks can be applied

to an entirely different attack model. To the best of our
5While the memorygrams shown in the figure were manually
aligned for readability, our attack code did not perform this
alignment step.

9

Figure 7: Memorygram outputs for three popular websites

Classifier
Output→,

Ground
Truth↓

(1) (2) (3) (4) (5) (6) (7) (8)

Amazon (1) .8 - - - - - - .2
Baidu (2) .2 .8 - - - - - -

Facebook (3) - - .5 - - .5 - -
Google (4) - - - 1 - - - -
Twitter (5) - - - - 1 - - -

Wikipedia (6) - - .2 - - .8 - -
Yahoo (7) - - - - - - 1 -

Youtube (8) - - - - .4 - - .6

Table 2: Confusion matrix for FFT-based classifier

knowledge, this is the first side-channel attack which can
scale effortlessly into millions of targets, since in effect the
DUT is measuring itself.

6.1 Implications of the Attack
Webpages are protected from each other, and from the

underlying machine, by a series of trust boundaries. These
include web-centric defenses such as the Web Origin con-
cept the Javascript sandbox, but also OS-level mechanisms
such as process separation and privilege rings. The fact that
a webpage has read access outside of its own trust bound-
ary has troubling implications to systems running other pro-
cesses together with the web browser. In a sense, no process
on the system can be considered more secure than the least
secure webpage running on the system.

6.2 Prevalence of Vulnerable Systems
Our attack requires a personal computer powered by an

Intel CPU based on the Sandy Bridge, Ivy Bridge, Haswell or
Broadwell microarchitectures. According to data from IDC,
more than 80% of all PCs sold after 2011 satisfy this require-
ment. We furthermore assume that the user is using a web
browser which supports the HTML 5 High Resolution Time
API and the Typed Arrays specification. Table 3 notes the
earliest version at which these APIs are supported for each
of the common browser brands, as well as the proportion of
global Internet traffic coming from vulnerable browser ver-
sions, according to StatCounter GlobalStats measurements
as of January 2015 [2]. As the table shows, more than 80%

Brand Hi-Res
Time

Support

Typed
Arrays

Support

Worldwide
preva-
lence

Internet Explorer 10 11 11.77%
Safari 8 6 1.86%

Chrome 206 7 50.53%
Firefox 15 4 17.67%
Opera 15 12.1 1.2%
Total – – 83.03%

Table 3: Prevalence of vulnerable desktop
browsers [2].

of desktop browsers in use today are vulnerable to the attack
we describe.

The effectiveness of our attack depends on being able
to perform precise measurements using the Javascript High
Resolution Time API. While the W3C recommendation of
this API [16] specifies that the a high-resolution timestamp
should be “a number of milliseconds accurate to a thou-
sandth of a millisecond”, the maximum resolution of this
value is not specified, and indeed varies between browser
versions and operating systems. In our testing we discov-
ered, for instance, that the actual resolution of this times-
tamp for Safari for MacOS was on the order of nanoseconds,
while Internet Explorer for Windows had a 0.8µs resolution.
Chrome, on the other hand, offered a uniform resolution of
1µ on all operating systems we tested.

Since, as shown in Figure 3, the timing difference between
a single cache hit and a single cache miss is on the order
of 50ns, the profiling and measurement algorithms need to
be slightly modified to support systems with coarser-grained
timing resolution. In the profiling stage, instead of measur-
ing a single cache miss we repeat the memory access cycle
multiple times to amplify the time difference. We have used
this observation to successfully perform cache profiling on
versions of the Chrome browser whose timing resolution was
limited7. For the measurement stage, we cannot amplify a
single cache miss, but we can take advantage of the fact that
code access typically invalidates multiple consecutive cache
sets from the same page frame. As long as at least 20 out

7It should be noted that Chrome has an additional feature
called Portable Native Client (PNaCl), which offers direct
access to the native language clock gettime() API.

10

of the 64 cache sets in a single page frame register a cache
miss, our attack is successful even with microsecond time
resolution.

The attack we propose is also easily applied to mobile
devices such as smartphones and tablets. It should be noted
that the Android Browser supports High Resolution Time
and Typed Arrays starting from version 4.4, but at the time
of writing the most recent version of iOS Safari (8.1) did not
support the High Resolution Time API.

6.3 Additional Attack Vectors
The general attack mechanism we presented in this paper

can be used for many purposes other than the attack we
presented. We survey a few interesting directions below:

Kernel Space Derandomization: Control-flow hijack-
ing attacks, such as buffer overflow attacks, often rely on the
existence of pre-existing program code deployed by the op-
erating system. By forcing the program to jump to this code
(for instance by using a buffer overflow which overwrites a
function’s return address), attackers can execute arbitrary
code with heightened privileges and thus take over the en-
tire system. A common countermeasure to these attacks
is the Address Space Layout Randomization countermea-
sure (ASLR), which randomly relocates operating system
libraries in the process virtual memory, making it impossi-
ble for the attacker to hard-code a jump to operating system
code in their exploits. As discussed in [11], if a kernel-mode
function jumps to an incorrect address, this will lead to a
complete system crash, meaning an attacker only has a sin-
gle chance to attempt a control flow hijack.

Hund et al. show in [11] how probing the last-level cache
can help defeat this randomization countermeasure. We
demonstrated that LLC probing can also be carried out in
Javascript, implying that the attack of Hund et al. can also
be carried out by an untrusted webpage. This attack is es-
pecially suited to our attacker model, specifically that of
“drive-by exploit” sites, which attempt to profile and then
infect users with a particular strain of malware tailored to
be effective for their specific software configuration [21]. The
derandomization method we present can be used for “boot-
strapping” a drive-by exploit, by dividing the attack into
two phases. In the first phase, an unprivileged Javascript
function profiles the system and discovers the address of a
kernel data structure. Next, the Javascript code connects
to the web server again and downloads a custom-tailored
binary exploit which jumps directly to that address.

It should be noted that cache sets are not immediately
mappable to virtual addresses, specifically in the case of
Javascript where pointers are not available. The interme-
diate steps used in [11] to overcome this limitation are also
relevant to this discussion. An additional building block
used by Hund et al., which was not available to us, was the
call to sysenter with an unused syscall number. This call
resulted in a very quick and reliable trip into the kernel,
allowing efficient measurements.

Secret State Recovery: Cache-based key recovery has
been widely discussed in the scientific community and needs
no justification. In the particular case of cache attacks in
the browser, the adversary may be interested in discovering
the user’s TLS session key, any VPN or IPSec keys used by
the system, or perhaps the secret key used by the system’s
disk encryption software. There are additional secret state
elements which are even more relevant than cryptographic

keys in the context of network attacks. One secret which is
of particular interest in this context is the sequence number
in an open TCP session. Discovering this value will enable
traffic injection and session hijacking attacks. It would be
interesting to see if a cache attack can be used to discover
this value.

System and user profiling: As shown in [9] and [12],
unprivileged processes can gain considerable power by learn-
ing about the specific environment they are running in. A
cache attack can be used to survey a system for access pat-
terns related to common operating systems, programs or
activities (i.e. VoIP), and thus allow pinpointing the system
in future accesses. On the more offensive side, the system
can also be examined for the presence of antivirus programs,
vulnerable plugins or other loadable modules, and thus pave
the way for further exploitation by other means.

6.4 Countermeasures
The attacks described in this report are possible because

of a confluence of design and implementation decisions start-
ing at the micro-architectural level and ending at the Javascript
runtime: The method of mapping a physical memory ad-
dress to cache set; the inclusive cache micro-architecture;
Javascript’s high-speed memory access and high-resolution
timer; and finally, Javascript’s permission model. Mitigation
steps can be applied at each of these junctions, but each will
impose a drawback on the benign uses of the system.

On the micro-architectural level, changes to the way
physical memory addresses are mapped to cache lines will
severely confound our attack, which makes great use the fact
that 6 of the lower 12 bits of the address are used directly to
select a cache set. Similarly, the move to an exclusive cache
micro-architecture, instead of an inclusive one, will make it
impossible for our code to trivially evict entries from the
L1 cache, making measurement much more difficult. These
two design decisions, however, were chosen deliberately to
make the CPU more efficient in its design and in its use of
cache memory, and changing them will exact a performance
cost on many other applications. In addition, modifying a
CPU’s micro-architecture is far from trivial, and definitely
impossible as an upgrade to already deployed hardware.

On the Javascript level, it seems that reducing the res-
olution of the high-resolution timer will make this attack
more difficult to launch. However, the hi-res timer was cre-
ated to address a real need of Javascript developers for appli-
cations ranging from music and games to augmented reality
and telemedicine. A possible stopgap measure would be to
restrict access to this timer to applications which gain the
user’s consent (for example, by displaying a confirmation
window) or the approval of some third party (for example,
by being downloaded from a trusted “app store”).

An interesting approach could be the use of heuristic pro-
filing to detect and prevent this specific kind of attack. Just
like the abundance of arithmetic and bitwise instructions
was used by Wang et al. to indicate the existence of crypto-
graphic primitives [24], it can be noted that the various mea-
surement steps of our attack access memory in a very par-
ticular pattern. Since modern Javascript runtimes already
scrutinize the runtime performance of code as part of their
profile-guided optimization mechanisms, it should be pos-
sible for the Javascript runtime to detect profiling-like be-
havior from executing code and then modify its response ac-
cordingly (for example by jittering the high-resolution timer,

11

dynamically moving arrays around in memory, etc).

7. CONCLUSION
In this paper, we demonstrated how the micro-architectural,

side-channel cache attack, which is already recognised as an
extremely potent attack method, can be effectively launched
from an untrusted web page. Instead of the traditional
cryptanalytic application of the cache attack, we instead
showed how user behaviour can be successfully tracked us-
ing our method(s). The potential reach of side-channel at-
tacks has been extended, meaning that additional classes of
secure systems must be designed with side-channel counter-
measures in mind.

8. REFERENCES
[1] ECMA-262: ECMAScript Language Specification.

Online, June 2011.
http://www.ecma-international.org/
publications/standards/Ecma-262.htm.

[2] Statcounter globalstats. Online, January 2015.
http://gs.statcounter.com.

[3] O. Aciiçmez. Yet another MicroArchitectural Attack:
Exploiting I-Cache. In Proc. of ACM CSAW, Fairfax,
VA, USA, November 2007.

[4] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and
B. Sunar. Wait a minute! A fast, cross-vm attack on
AES. In A. Stavrou, H. Bos, and G. Portokalidis,
editors, Research in Attacks, Intrusions and Defenses
- 17th International Symposium, RAID 2014,
Gothenburg, Sweden, September 17-19, 2014.
Proceedings, volume 8688 of Lecture Notes in
Computer Science. Springer, 2014.

[5] D. J. Bernstein. Cache-timing attacks on AES. Online,
April 2005.
http://cr.yp.to/papers.html#cachetiming.

[6] D. Brumley and D. Boneh. Remote Timing Attacks
are Practical. Computer Networks, 48(5), 2005.

[7] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar,
M. Salmasizadeh, and M. T. M. Shalmani. On the
Power of Power Analysis in the Real World: A
Complete Break of the KEELOQ Code Hopping
Scheme. In Proc. of IACR CRYPTO, Santa Barbara,
CA, USA, August 2008.

[8] D. Herman and K. Russell. Typed Array Specification.
Online, July 2013. https://www.khronos.org/
registry/typedarray/specs/latest/.

[9] G. Ho, D. Boneh, L. Ballard, and N. Provos. Tick
tock: Building browser red pills from timing side
channels. In S. Bratus and F. F. X. Lindner, editors,
8th USENIX Workshop on Offensive Technologies,
WOOT ’14, San Diego, CA, USA, August 19, 2014.
USENIX Association, 2014.

[10] W. Hu. Lattice Scheduling and Covert Channels. In
Proc. of IEEE S&P, Oakland, CA, USA, May 1992.

[11] R. Hund, C. Willems, and T. Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In
Proc. of IEEE S&P, San Fransisco, CA, USA, May
2013.

[12] S. Jana and V. Shmatikov. Memento: Learning secrets
from process footprints. In IEEE Symposium on
Security and Privacy, SP 2012, 21-23 May 2012, San

Francisco, California, USA. IEEE Computer Society,
2012.

[13] P. C. Kocher. Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems. In
Proc. of IACR CRYPTO, Santa Barbara, CA, USA,
August 1996.

[14] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee.
Last-Level Cache Side-Channel Attacks are Practical.
In Proc. of IEEE S&P, San Jose, CA, US, May 2015.

[15] S. Mangard, E. Oswald, and T. Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards.
Springer-Verlag New York, Inc., 2007.

[16] J. Mann. High Resolution Time. Online, December
2012. http://www.w3.org/TR/hr-time/.

[17] C. Maurice, C. Neumann, O. Heen, and A. Francillon.
C5: Cross-cores cache covert channel. In DIMVA
2015, Detection of Intrusions and Malware, and
Vulnerability Assessment, July 9-10, 2015, Milano,
Italy, Milano, ITALY, 07 2015.

[18] D. A. Osvik, A. Shamir, and E. Tromer. Cache
Attacks and Countermeasures: The Case of AES. In
Proc. of CT-RSA, San Jose, CA, USA, February 2006.

[19] D. Oswald and C. Paar. Breaking Mifare DESFire
MF3ICD40: Power Analysis and Templates in the
Real World. In Proc. of IACR CHES, Nara, Japan,
September 2011.

[20] C. Percival. Cache Missing for Fun and Profit. Online,
May 2005. http://www.daemonology.net/
hyperthreading-considered-harmful/.

[21] N. Provos, P. Mavrommatis, M. A. Rajab, and
F. Monrose. All your iframes point to us. In P. C. van
Oorschot, editor, Proceedings of the 17th USENIX
Security Symposium, July 28-August 1, 2008, San
Jose, CA, USA. USENIX Association, 2008.

[22] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In E. Al-Shaer,
S. Jha, and A. D. Keromytis, editors, Proceedings of
the 2009 ACM Conference on Computer and
Communications Security, CCS 2009, Chicago,
Illinois, USA, November 9-13, 2009. ACM, 2009.

[23] W3C. Javascript APIs. Online.
http://www.w3.org/standards/techs/js.

[24] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace.
Reformat: Automatic reverse engineering of encrypted
messages. In M. Backes and P. Ning, editors,
Computer Security - ESORICS 2009, 14th European
Symposium on Research in Computer Security,
Saint-Malo, France, September 21-23, 2009.
Proceedings, volume 5789 of Lecture Notes in
Computer Science. Springer, 2009.

[25] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-vm side channels and their use to extract
private keys. In T. Yu, G. Danezis, and V. D. Gligor,
editors, the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18, 2012. ACM, 2012.

[26] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-Tenant Side-Channel Attacks in PaaS Clouds.
In Proc. of ACM CCS, Scottsdale, AZ, USA,
November 2014.

12

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://gs.statcounter.com
http://cr.yp.to/papers.html#cachetiming
https://www.khronos.org/registry/typedarray/specs/latest/
https://www.khronos.org/registry/typedarray/specs/latest/
http://www.w3.org/TR/hr-time/
http://www.daemonology.net/hyperthreading-considered-harmful/
http://www.daemonology.net/hyperthreading-considered-harmful/
http://www.w3.org/standards/techs/js

	Introduction
	Background and Related Work
	Memory Hierarchy of Modern Intel CPUs
	Cache Attacks
	The Web Runtime Environment

	Designing the Attack
	Creating an Eviction Set
	Priming and Probing
	Identifying Interesting Cache Regions

	Evaluation
	Micro-architecture insights
	Covert Channel Bandwidth Estimation

	User Behaviour Tracking
	Detecting Hardware Events
	Design

	An End-to-End Attack on Privacy
	Motivation
	Experiment Setup
	Results

	Discussion
	Implications of the Attack
	Prevalence of Vulnerable Systems
	Additional Attack Vectors
	Countermeasures

	Conclusion
	References

