
Hash Collisions break TLS Signatures

1. INTRODUCTION
Since the discovery of collisions in MD5 and near-collisions

in SHA-1, the use of these hash algorithms in various pro-
tocols have come under question [4]. We consider the se-
curity of client and server signatures in the TLS protocol.
In particular, does authentication in TLS rely on a collision
resistant hash function or would a second preimage-resistant
hash function be sufficient?

It is commonly believed that current collision attacks on
MD5 affect only non-repudiable signatures such as those on
documents and PKI certificates, but not to the signatures
used within protocols, since these signatures are over struc-
tured text and include nonces [3].1

On the contrary, we show that if TLS signatures use a hash
function for which chosen-prefix collisions can be computed
in real-time, then a man-in-the-middle attacker can imper-
sonate TLS 1.2 [1] clients and TLS 1.3 [2] servers. Moreover,
if the server nonce is chosen by the client (hypothetically),
then TLS 1.2 server signatures can be impersonated. Fi-
nally, if the client nonce is fresh but predictable, then all of
these attacks can be converted to practical offline attacks.

2. COLLIDING TLS 1.2 CLIENT AUTHEN-
TICATION

• Suppose a server S authenticates a client C using TLS
client authentication

• Suppose the client C is willing to also use the same
certificate at another server M

• Suppose C is willing to create signatures with a hash
function for which chosen-prefix collisions are easy to
compute (e.g. RSA-MD5)

1http://www.rtfm.com/dimacs.pdf,http://events.iaik.
tugraz.at/HashWorkshop07/slides/ekr_Indigestion.
pdf

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

• Then, M can force C to create a signature that M can
use to impersonate C at S

In a client-authenticated TLS 1.2 (EC)DHE handshake,
C hashes and signs the following transcript

CH | SH | SC | SKE | SCR | SHD | CC | CKE

• ClientHello(CH): has a fresh random value (cr), and
an arbitrary number of extensions; we denote the last
extension ext.

• ServerHello(SH): has a fresh random value (sr)

• ServerCertificate(SC): has the server’s certificate
(scert)

• ServerKeyExchange(SKE): has the server’s (EC)DHE
key share and signature

• CertificateRequest(SCR): has a certificate request
with an arbitrary number of certificate authorities; we
denote the last authority auth.

• ServerHelloDone(SHD): completes the server flight

• ClientCertificate(CC): has the client’s certificate (ccert)

• ClientKeyExchange(CKE): has the client’s (EC)DHE
key share

Suppose C connects to the malicious server M and sends
CH(cr). M will respond to C with a seqence of messages
SH’ SC’ SKE’ SCR’(auth’) SHD’, where we show how auth’
is computed below. Then C will send its own certificate CC

and key exchange message CKE and then sign the full tran-
script: CH SH’ SC’ SKE’ SCR’(auth’) SHD’ CC CKE.

Independently, M connects to the honest server S and
sends CH’(cr’,ext’), where we show how ext’ is computed
below. Suppose S responds with a sequence of messages
SH SC SKE SCR SHD. To impersonate C, M now forwards C’s
certificate and key exchange messages CC CKE and has to
produce a signature over the transcript:
CH’(cr’,ext’) SH SC SKE SCR SHD CC CKE.

Let us suppose the size of the server S’s message sequence
SH SC SKE SCR is known in advance to be L. To compute
ext’ and auth’, M finds a hash collision with the following
two chosen prefixes:

P1 = CH(cr) SH’ SC’ SKE’ SCR’(auth0)

P2 = CH’(cr’,ext0)

In P1, the SCR’ message has an empty last certificate au-
thority auth0 whose length is set to C + L, where C is the
number of collision bytes desired. That is, P1 still needs
C+L bytes to be added to complete the SCR’ message. In
P2, the CH’ message has an empty last extension ext0 whose
length is set to C. That is, P2 still needs C bytes to be added
to complete the CH’ message.

Now, M computes two byte array B1 and B2 of C bytes
that make Hash(P1 B1) = Hash(P2 B2). Note that auth’
still has room to accommodate the L bytes of S’s response
SH SC SKE SCR. We then add a common suffix as follows:

T1 = P1 B1 SH SC SKE CR SHD CC CKE

T2 = P2 B2 SH SC SKE CR SHD CC CKE

Here, T1 corresponds to the transcript that C is will-
ing to sign for M, and T2 corresponds to the transscript
that M needs to sign for S. Effectively, we have set ext’
to ext0 B2 and we have set auth’ to auth0 SH SC SKE SCR.
Now Hash(T1) = Hash(T2) even though the two traces have
different certificates and different key exchanges.

Hence, M can get C to sign T1 and then forward the sig-
nature to S pretending to be C.

Exploiting the collision.
The collision on C’s digital signature already violates the

high-level client authentication goal, but we need one more
step to ensure that M can complete the handshake with S
and fully impersonate C. M needs to know the master secret
established in the handshake with transcript T2.

Suppose C and M are engaged in a DHE handshake. M
forces C to choose a public value for which it already knows
the secret exponent as follows. In its SKE’ message to C, M
sends a bogus Diffie-Hellman group (p,g) with a non-prime
p = k^2 - k and generator g = k. This ensures that the
public value that C sends in CKE has to be g^c = k. Hence,
M can force C to sign a CKE with an arbitrary value k for
which it knows the discrete log for the real group chosen by
S. Hence, M can finish the handshake with S by computing
the master secret and connection keys and then exchange
data with S pretending to be C.

Online vs. Offline collisions.
As a proof-of-concept, we computed a collision for two

RSA-MD5 client signatures. On a standard desktop, the
computation took 24 hours, but the problem is highly par-
allelizable. With more advanced hardware such collisions
can be computed in far less time; the best published re-
sult in 2009 took 7 hours for chosen-prefix collisions on
academic-scale hardware. Still, a man-in-the-middle attack
as described above is not entirely practical (we can mount it
on long-lived connections used by Curl and Git, and back-
ground connections in Firefox, but not on standard website
interactions.)

We note that the collision here depends upon P1 and P2,
where the only unknown value is the client random cr. If this
value were to be predictable or if it were to be repeated with
high frequency, the collision can be computed offline making
the impersonation attack practical. The client random can
become predictable under some implementation bugs (e.g.
see CVE-2015-0285 in OpenSSL); moreover, we note that
the TLS standard only requires this value to be unique, not
unpredictable. However, our collision attack shows that the

client random in TLS needs to be unpredictable to mitigate
against signature collisions.

3. COLLIDING TLS 1.3 SERVER AUTHEN-
TICATION

In TLS 1.3, the server hashes and signs the full message
transcript in a new ServerCertificateVerify message that
occurs immediately after the following sequence:

CH CKS SH SKS SC SCR

This sequence includes two new kinds of messages:

• ClientKeyShare(CKS): has several client key shares
for different (EC)DH groups; we denote the last key
share cks.

• ServerKeyShare(SKS): has the server’s key share sks

for the chosen group.

Suppose C sends CH(cr) CKS(cks) to S. S responds with
SH(sr) SKS(sks) SC SCR(auth) to C. The man-in-the-middle
M allows the exchange to proceed unmodifies except that it
changes SKS(sks) to SKS’(k’), where k’ is a chosen public
value for which M knows the secret, and it changes SCR(auth)
to SCR’(auth’), where auth’ is computed as shown below.

M computes a C-byte suffix that causes a hash collision
after the following two chosen prefixes:

P1 = CH CKS’(cks0)

P2 = CH CKS SH SKS’ SC SCR’(auth0)

Here, the client key share cks0 is empty but its length is
set to C, and the client authority field auth0 is empty but its
length is set to C + L where L is the length of the message
sequence SH SKS SC SCR(auth) usually sent by S.

Suppose B1 and B2 are the colliding suffixes,
that is Hash(P1 B1) = Hash(P2 B2). Then the hashes are
the same for the full transcripts:

T1 = P1 B1 SH SKS SC SCR(auth)

T2 = P2 B2 SH SKS SC SCR(auth)

where in T2, the sequence SH SKS SC SCR(auth) fits into the
auth’ field of the original SCR’ in P2.

Consequently, an M that gets S to sign T1 can impersonate
S at C. As before the attack can be performed offline if the
client random were to be predictable or reused.

4. COLLIDING TLS 1.2 SERVER AUTHEN-
TICATION

In the DHE handshake in TLS 1.2, the server’s signature
is over a message of the form:

SKE = cr sr p g gy

Here, cr is chosen by the client, and usually sr is chosen
by the server. Notably, the size of cr sr is one block of
MD5 (64 bytes). What if sr were also chosen by the client?
Alternatively, what if cr were large enough to be one MD5
block? Then, a malicious client M can get the server to sign
one SKE but send a different one to an honest client C.

Suppose C sends ClientHello(cr) to S. S responds with
ServerHello(sr) and the man-in-the-middle M allows the
exchange to proceed unmodified until the ServerKeyExchange.
M then computes a single-block collision with the following
two chosen prefixes:

P1 = cr sr p’ g’ gy’

P2 = <empty>

where gy’ is an empty bytearray with length set to 64 + L.
Suppose the two MD5 blocks B1 and B2 collide the above

prefixes, that is MD5(P1 B1) = MD5(P2 B2). Then the two
messages below will have the same hashes:

SKE1 = P1 B1 p g gy

SKE2 = B2 p g gy

Note that in SKE1, the sequence B1 p g gy all fits into gy’.
Hence, if M can choose both random values cr sr = B2,

then it can get S to sign SKE2 and hence obtain S’s signature
on SKE1 for an arbitrary prime and generator. This enables
M to impersonate S at C

Practicality of the attack.
In normal TLS, this attack is prevented because the size

of the client random is less than one MD5 block size and
because the client usually cannot control the server random.
However, in recent enhancements to TLS, some designs (e.g.
Snap Start) have considered allowing clients to choose the
server random, which would then lead to this kind of attack.

Computing a single-block collision is even more time con-
suming than the multi-block collision of the previous section.
As before, if the client random sent by C were predictable,
the collision can be found offline.

5. OTHER CONSTRUCTIONS
More generally, collisions in TLS signatures can affect not

only DHE but also ECDHE and SRP key exchanges. Hash
function collisions also affects the security of the finished
messages in TLS, but those messages usually use stronger
hash functions than MD5.

We have focused on signature collisions in TLS, but sim-
ilar collisions occur in other signed Diffie-Hellman proto-
cols such as IKEv2. Challenge-response signature protocols
(EAP/SASL) over TLS and IKEv2 are also potentially vul-
nerable to these kinds of attacks.

In conclusion, we believe that collision resistance is an
essential property for hash functions used in popular channel
establishment protocols. Second preimage-resistance is not
enough.

6. REFERENCES
[1] T. Dierks and E. Rescorla. The Transport Layer

Security (TLS) Protocol Version 1.2. IETF RFC 5246,
2008.

[2] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.3. Internet Draft,
2014.

[3] P. Hoffman. Use of hash algorithms in internet key
exchange (ike) and ipsec. Technical report, RFC 4894,
2007.

[4] P. Hoffman and B. Schneier. Attacks on cryptographic
hashes in internet protocols. Technical report, RFC
4270, November, 2005.

