
bentnib.org

Propositions as Filenames, Builds as Proofs: The Essence of

Make

make program is a widely used tool for building files from existing files, according to a

set of build rules specified by the user. It is usually used to compile executable programs

from source code, but can also be used for many other jobs where a bunch of things are

generated from other things, like this website, for example.

Many alternatives to make have been proposed. Motivations for replacing make range from a

desire to replace make's very Unix-philosophy inspired domain-specific language for

describing build rules (Unix-philosophy in the sense that it often works by coincidence, but

falls over if you do something exotic, like have filenames with spaces in, or have an

environment variable with the “wrong” name), or make's slowness at some tasks, or a

perception that make doesn't treat the make-alternative implementor's favourite programming

language with the special treatment it so obviously deserves.

Nevertheless, I think that make (or at least the GNU variant I am most familiar with) has a

core essence that can be profitably extracted and analysed.

The Essence of make

The essence of make is this: make is an implementation of constructive logic programming,

using the following instantiation of the “Propositions-as-X” paradigm:

Atomic propositions are filenames. The filenames main.c, main.o and myprogram are

all examples of atomic propositions in make's logic. For make, the idea of “well-formed

formula” from traditional logic means “doesn't have spaces in”.

Compound propositions are build rules. A build rule that states that myprogram can be

Propositions as Filenames, Builds as Proofs: The ... about:reader?url=http://bentnib.org/posts/2015-0...

1 of 5 24.04.2015 22:17

built from main.o and module.o is a statement that the atomic propositions main.o

and module.o imply myprogram. Pattern rules like %.o: %.c; gcc -o $@ -c $<

are universally quantified compound propositions: this says that, for all x, the atomic

proposition x.c implies the atomic proposition x.o. Static pattern rules are essentially a

form of bounded quantification.

Note that the form of compound propositions allowed is extremely restricted, even by the

standards of logic programming: we are allowed at most one universal quantifier, which

quantifies over space-less strings, the rest of proposition must be of the form “f1 and f2 and

... and fn implies g”, and if there is a quantifier, the variable must appear in the goal formula

. This format corresponds to a restricted form of Horn Clauses, as used in normal logic

programming.

If we stopped here, then make would not be any more than an extremely restricted form of

Prolog. But what makes make special is that it implements a constructive logic: it generates

proofs, or evidence, for the propositions it proves.

Proof, or evidence, of an atomic proposition somefile is the content of an actual file

somefile in the filesystem. Some evidence is provided by the user, in the form of

source files. Evidence for deduced atomic propositions, e.g., .o files, is generated by the

proofs for compound propositions:

Proof of a compound proposition “x and y implies z” is a command to run that will

generate the proof of the atomic proposition z from the proofs of the atomic propositions

x and y. For pattern rules, this proof is parameterised by the instantiation of the

universally quantified variable. For some reason, in make, the universally quantified

variable is written as “%” in the proposition, and “$*” in the proof.

What make does

Using this mapping between logic and make, I see make as conceptually performing three

tasks when it is told to use Makefile to generate the target myprogram.

Propositions as Filenames, Builds as Proofs: The ... about:reader?url=http://bentnib.org/posts/2015-0...

2 of 5 24.04.2015 22:17

It executes the Makefile, expanding out variables. This generates a collection of build

rules.

It constructs a proof of the atomic proposition myprogram using backward-chaining

proof search from the goal, via the build rules (aka compound propositions), back to the

evidence for atomic propositions provided by the user in the file system. In traditional

logic, this proof would be represented using a tree, but obvious efficiency gains can be

had by exploiting sharing and representing it as a directed acyclic graph.

It executes the proof to generate the evidence of the atomic proposition myprogram.

The evidence for the provability of myprogram is a file myprogram in the filesystem,

generated by the proofs of the build rules and source files it's proof depends on. This

step can often be made more efficient by reusing existing pieces of evidence if the

evidence they were built from hasn't changed.

The GNU make manual's description combines the last two steps into one “run-the-build”

step, and in practice this is what an realistic implementation ought to do. (And the first step

is, in GNU make's reality, more complex because make can rebuild included files and restart

itself, but I'm glossing over that for now.)

So what?

I think that there are real benefits to seeing make-like systems as implementations of

constructive logic programming:

I believe that seeing make-like systems as a form of constructive logic programming

elucidates the differences between some of the make alternatives that have been

proposed. For instance, I think that the Ninja system essentially gets its speed ups by

caching the some of results of the proof search step by storing the expansions of all of

the universally quantified build rules that are needed. The OMake system allows for

targets to dynamically depend on dependencies listed in generated files, via “scanner”

dependencies. I think this corresponds to proof search in a dependently-typed logic that

allows propositions to depend on the generated evidence of other propositions.

Propositions as Filenames, Builds as Proofs: The ... about:reader?url=http://bentnib.org/posts/2015-0...

3 of 5 24.04.2015 22:17

We can start to look at makes's restrictions through the lens of logic programming, and

start to think about more expressive build tools:

Why are build rules restricted to at most one universal quantifier? What would we

gain my allowing unrestricted Horn clauses? What if the universally quantified

variables didn't have to appear in the goal formula, as in most other logic

programming languages?

Build rules that generate multiple files are Horn clauses with conclusions that are

conjunctions (ands) of atomic propositions. GNU make and others make multiple

targets difficult, but from a logical point-of-view, there is no problem.

What rules does make use to resolve the choice between multiple proofs of the one

atomic proposition? Could we have build systems that produce sets of proofs for

each proposition? Can this be used to do multi-platform builds? Can we assign

weightings to build rules so that make picks the overall “best” proof/build strategy?

make implements a “top-down” approach to evaluating its logic program. Why not

also implement a “bottom-up” evaluation too? This would enable us to ask questions

like “what can be built using these rules and these source files?”. This might finally

enable decent TAB-completion for make at the command line, and IDE introspection

capabilities.

Can logics that incorporate forms of (sound) circular reasoning be used to do build

jobs that require iteration until a fixpoint. Can we use fixpoint logic to work around

the tragedy of LaTeX's “Label(s) may have changed. Rerun to get cross-references

right.”?

Do all atomic propositions have to be filenames? Why not URLs? Why not proof-

irrelevant ephemeral propositions?

Can the connection between logic programming and relational databases be used?

Can we use a make-like tool to query a database, and generate reports?

Propositions as Filenames, Builds as Proofs: The ... about:reader?url=http://bentnib.org/posts/2015-0...

4 of 5 24.04.2015 22:17

Can we automatically augment the proof graphs that make implicitly generates to

add provenance information?

Interesting stuff, I think.

Propositions as Filenames, Builds as Proofs: The ... about:reader?url=http://bentnib.org/posts/2015-0...

5 of 5 24.04.2015 22:17

