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ABSTRACT
In this paper, we present a systematic study of browser cache poi-
soning (BCP) attacks, wherein a network attacker performs a one-
time Man-In-The-Middle (MITM) attack on a user’s HTTPS ses-
sion, and substitutes long-lived malicious resources for the orig-
inal ones. BCP attacks require users to click through one SSL
warning on any site, after which the poisoned resources are per-
sistently cached, affecting the user’s future HTTPS sessions in that
web browser. We investigate the feasibility of such attacks on five
mainstream desktop browsers (e.g., Chrome, Firefox, etc.) and 16
popular mobile browsers. We find that browsers are highly incon-
sistent in their caching policies for loading resources over broken
SSL connections. In particular, the majority of desktop browsers
(99% of the market share) and mobile browsers (over a billion user
downloads) are affected to BCP attacks to a large extent. Exist-
ing solutions for safeguarding HTTPS connections fail to provide
comprehensive defenses against this threat. We provide guide-
lines for users and browser vendors to defeat BCP attacks, and
propose defense techniques for website developers to mitigate an
important subset of BCP attacks on the existing deployed base of
browsers. We have reported our findings to the related browser ven-
dors. For Chrome, Google has confirmed our reported vulnerability
in HTML5 AppCache and is deploying a fix.

1. INTRODUCTION
In today’s browsers, an HTTPS session can be rendered insecure

if a user Alice clicks through the browser’s SSL warnings under a
Man-in-the-middle (MITM) attack. Recent works have measured
the click-through rates for SSL warnings in the field [15, 26, 54]
indicating that 50% or more users click through SSL warnings, and
investigated ways for improving warnings [31, 54]. Even worse,
users sometimes may not have a choice but to click through the
warnings, e.g., when in a hotel WiFi with a proxy that intercepts
web sessions [23]. In this paper, we study the extent to which
Alice’s future HTTPS sessions are rendered insecure if she clicks
through one SSL warning. Our experiments find that a single un-
suspecting click-through on the targeted site A can compromise all
of Alice’s future HTTPS sessions with site A, and worse — even
with sites other than A she visits in the same browser. These attacks
persist over time and across websites because of browsers’ caching
of resources loaded over broken SSL connections. In addition, the
policies for browser caching on SSL errors are implemented differ-

ently in different browsers opening a large fraction of mobile and
desktop users to such threats.

We study browser cache poisoning (BCP) attacks, wherein net-
work attackers intercept connections and substitute malicious re-
sources for the original ones in the targeted site A over HTTPS,
if Alice clicks through one SSL warning on any site. By setting
long-lived cache headers, the malicious copies will be cached in Al-
ice’s browser for a long time, and these poisoned resources persis-
tently compromise all future sessions using that browser even over
correct HTTPS. We classify BCP attack vectors into three types:
same-origin, cross-origin and extension-assisted. For same-origin
BCP attacks on an origin A, the attacker poisons A’s pages once,
and persists them over time using the browser’s cache. Attack-
ers can mount cross-origin BCP attacks by corrupting subresources
imported by the target site A from a different domain B. Finally,
subresources injected by browser extensions 1 can be used to affect
all sessions originating from a browser. Poisoned resources in web
cache 2 are shared across all sites, irrespective of whether they are
intercepted on a different site or the same one. The implication of
these attacks is that if Alice clicks through one SSL warning on any
site, all her future sessions on that browser may be compromised
until she clears the cache.

Browsers vary substantially on how they display warnings about
broken HTTPS connections and in their caching policies. We eval-
uate browser cache poisoning attacks on five mainstream desk-
top browsers (e.g., Firefox and Chrome) and 16 popular mobile
browsers (e.g., Android Default Browser and Dolphin), which cover
over 99% desktop browser users3 [13] and more than one billion
mobile browser users (by download statistics). For SSL warnings,
we find that CM browser that has 10 million users does not check
the validity of sites’ certificates and never shows SSL warnings. In
Firefox 3.6, Internet Explorer 8, and other old version browsers,
SSL warnings can be hidden/overlaid in frames using clickjacking
techniques. Further, a majority of mobile browsers prompt users
with incomplete information in SSL warnings, making it difficult
for security-conscious users to make informed decisions. For ex-
ample, when users visit sites with wrong certificates, several SSL
1Extensions includes extensions in Chrome and Safari, and add-ons
in Firefox and Opera.
2In this paper, we use web cache to refer to the default browser
cache, which caches all HTTP/HTTPS resources unless the
no-cache header is set.
3The other desktop browsers have less than 1% market share.



warnings do not contain the site’s name and certificate’s content,
or contain the name of the top-level URL rather than the hijacked
site’s actual URL. Browser extensions in Safari and Opera can in-
ject HTTP scripts into the HTTPS site without raising any SSL or
mixed-content warnings, unlike in Chrome and Firefox. Inconsis-
tencies of SSL warnings affect Alice’s decision to click through on
certain sites, opening up the opportunity for BCP attacks.

Browsers provide more than one kind of cache, e.g., web cache
and HTML5 AppCache, and enforce different caching policies. For
correct HTTPS connections, all browsers respect the header’s di-
rectives and cache resources properly. However, for click-through
HTTPS connections, all 20 browsers but Safari (desktop version)
cache resources in web cache or in HTML5 AppCache. Caching
policies for the HTML5 AppCache are different between Chrome
and Safari. Although Safari has a proper caching policy for HTTPS,
it is still vulnerable to such attacks via extensions which do not
raise SSL warnings if they inject HTTP scripts into HTTPS sites.
We discuss these differences in depth in Section 3, and show that
all five desktop browsers and 16 mobile browsers are susceptible
to browser cache poisoning attacks. We have reported our findings
to these browser vendors. For Chrome, Google has confirmed our
reported bug in AppCache and is deploying a fix by not caching
resources over broken HTTPS in AppCache as we suggest in Sec-
tion 5.

Many existing defenses against HTTPS MITM attacks, e.g., Chan-
nel IDs [16], SISCA [45], HSTS [36], HPKP [28], and other
best practices (e.g., enabling CSP [3]) are witnessing real-world
adoption. However, none of them provide a comprehensive de-
fense, although these incidentally protect against a subset of BCP
attacks. We study the Alexa Top 100 websites, and find that only
five sites, such as facebook.com and twitter.com, are protected in
some browsers due to these defenses. By analyzing 31,377 HTTPS
websites out of Alexa Top 1,000,000 sites, we find that only 510
(1.63%) sites enable the proper protection. Therefore, developers
should not rely on these defenses as a panacea for BCP attacks.
We discuss how browser vendors can make their browser caching
policies consistent and correct, thereby eliminating the threat. We
also provide guidelines for users, and propose defense techniques
for web developers to mitigate the impact of these attacks on the
existing deployment of browsers.
Contributions. BCP attacks have been conceptually discussed in
previous works [47, 52, 55]. In this work, we make the following
contributions:

• Susceptibility of desktop and mobile browsers. Through
experiments, we find the inconsistency of SSL warnings that
can mislead victims to click through warnings and the inco-
herence of browser caching policies that makes browsers vul-
nerable to BCP attacks. We find that five mainstream desktop
browsers and 16 popular mobile browsers are susceptible to
such attacks, and 99% desktop browser users and over one
billion mobile users are affected. Meanwhile, only five sites
of Alexa Top 100 and 1.63% of 31,377 HTTPS websites of
Alexa Top 1,000,000 have partial protections.

• Analysis of existing defenses & new defense techniques.
We discuss pros and cons of potential defenses, and con-
clude that none of them provide full protection against BCP
attacks. We provide guidelines for users and browser vendors
to defeat such attacks completely, and propose defense tech-
niques for website developers to mitigate cross-origin BCP
attacks.

• Systematic study & additional attack vectors. We present
a systematic study of BCP attacks against HTTPS. In addi-
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Figure 1: Illustration of loading resources in browsers via network
(path 1© and 2© with solid lines) and via cache (path 3© and 4© with
dotted lines).

tion to same-origin and cross-origin BCP attacks, we also
identify a new attack vector: extension-assisted BCP attack
vector.

2. OVERVIEW

2.1 Background: Browser Cache
The main purpose of browser cache is to reduce the loading

time of web pages and resources. Current browsers employ mem-
ory cache and disk cache to store resources, e.g., HTML pages,
JavaScript files, CSS files, PDFs and so on [7]. When the user re-
quests such resources, the browser automatically loads the cached
resources instead of sending requests to the server, as Figure 1
shows. The main types of browser cache are as follows.
Web Cache Shared across All Sites. Web cache is the default
browser cache for all HTTP/HTTPS resources. By default, web
cache is shared across all sites. Thus, once the browser caches a
site’s resources over HTTP/HTTPS, if another site requests for the
same resources, the browser loads the cached copies instead of is-
suing new requests. HTTP/1.1 provides cache-control and expires
headers to specify the expiration time of caching resources, with
the former having higher precedence [33]. During the specified
lifetime, when cached resources are requested, the browser will not
issue any GET requests for the resources until the expiry date or
maximum age is reached. Thus once the attacker poisons the tar-
geted site’s resources in web cache by setting the cache headers,
the browser will directly load the cached resources from cache for
all sites including these resources.
HTML5 AppCache Dedicated per Site. HTML5 introduces a
new type of cache, i.e., HTML5 application cache (AppCache).
With AppCache, an entire web application can be cached, including
pages and resources, and they are accessible by the same origin for
a long period of time even without Internet connection [12]. App-
Cache requires the web application to include a cache manifest that
specifies which resources should be cached and which should not.
When the web application is stored in AppCache, the browser will
load the cached resources until the manifest file is changed or the
AppCache is programmatically refreshed. Once the attacker crafts
malicious copies for the targeted site or poisons the targeted site’s
resources in AppCache, the victim’s browser will directly load the
poisoned pages from application cache when the victim visits the
targeted site even offline.

In this paper, we show that the caching policies implemented in
various browsers allow the attacker to compromise any session and
make persistent impact over time, when an SSL error is ignored by
a user.

2.2 Threat Model



The adversary is a one-time MITM attacker against HTTPS, who
intercepts HTTPS connections between Alice’s browser and the tar-
geted site’s server only once. The MITM attacker can utilize a host
of well-known MITM techniques (e.g., ARP poisoning and DNS
pharming attacks) to re-route all the traffic of Alice to himself.
To avoid either suspicion, or subsequently being blocked by ad-
ditional security mechanisms, once the attacker completes the one-
time MITM attack, he no longer intercepts the traffic from/to Alice.
As a recent example, the Heartbleed vulnerability allows attackers
to launch MITM attacks against HTTPS sessions, and security ex-
perts recommend a two-step fix to it [35]. However, as we show in
this paper, a one-time MITM attack is sufficient for the adversary
to persistently compromise the victim site’s future HTTPS sessions
even after the fix.

We assume that the adversary mounts MITM attacks with forged
certificates, e.g., self-signed or domain mismatch but authorized by
trusted CAs. These are expected to raise SSL warnings to users.
If attackers compromise CAs to forge certificates, e.g., security
breaches of Comodo [2] and DigiNotar [4], no browser warnings
will be raised to users when under MITM attacks.

We assume that when under a one-time MITM attack, Alice
clicks through one SSL warning on a site over either HTTP or
HTTPS. In reality, the majority of web users are inclined to click
through SSL warnings on various scenarios. For example, a re-
cent study shows that 70.2% of users choose to click through SSL
warnings on various websites, e.g., google.com and facebook.com,
on Chrome [15]. Dhamija et al. observe a 68% click-through rate,
and Sunshine et al. even record 90%-95% click-through rates on
various pages [26,54]. These studies focus on the SSL warning for
top-level URL on the targeted site A over HTTPS. In addition to
this warning, we also consider other three types of warnings, i.e.,
the SSL warning for A’s subresource shown on another site N, the
warning for mixed content on A, and the SSL warning for one ex-
tension’s injected script shown on any site, which have not been
well explored. In this work, we demonstrate the in-depth implica-
tion of a single click-through on an SSL warning. As we discuss
below, browser cache poisoning attacks can compromise all future
sessions with A, once Alice clicks through one warning of these
four types.

2.3 Problem: Browser Cache Poisoning
In a traditional MITM attack against HTTPS, the network at-

tacker has to intercept each session “on the wire” to compromise
the targeted site over HTTPS. We demonstrate browser cache poi-
soning (BCP) attacks, which employ one-time MITM and have per-
sistent effects. Based on scenarios of click-through warnings, we
classify the browser cache poisoning attacks into three categories
below.
Same-Origin. Suppose the targeted site over HTTPS is an online
banking website. If Alice clicks through an SSL warning on the
banking site, the attacker can impersonate as the site, and replace
the page and the targeted subresources4 with his malicious ones.
By setting long-lived cache headers, the attacker instructs Alice’s
browser to store the malicious copies for a long time. The attacker
can substitute the malicious resources for just the essential ones,
e.g., jquery.js, which may be included in the bank’s login page.
Alternatively, the attacker can utilize HTML5 AppCache to instruct
Alice’s browser to store the malicious page, manifest, and subre-

4The targeted subresources refer to external (not inline) resources
that can alter the document content in the targeted site, e.g.,
JavaScript and CSS files, but not static resources, e.g., images.

sources in the dedicated storage for the banking site for one year or
longer. Regardless of whether Alice is online or offline, when she
revisits the banking site, her browser will directly load the whole
page from AppCache without issuing any requests. Since the SSL
warning occurs on the banking site, and this attack only affects the
same site, we term such attack as same-origin BCP attack.
Cross-Origin. In a cross-origin attack, the attacker first injects
the banking site’s HTTPS subresource into an HTTP response for
another site, such as a news site. When Alice’s browser sends a
request for the subresource, the attacker substitutes his malicious
resource for the original one. Since he self-signs the banking site’s
subresource with his certificate, Alice’s browser may raise a warn-
ing for the invalid certificate on the news site. If Alice clicks through
the SSL warning, the damage is that the banking site over HTTPS
is compromised by the news site over HTTP, even if the bank-
ing site’s HTTPS connection is unintercepted and no warnings are
shown on the banking site in Alice’s browser. Even worse, if the
poisoned subresource (e.g., jquery.js) is a common script library
shared across numerous websites, all future sessions with these
sites are compromised. Since the SSL warning shown on the news
site is for the poisoned subresource, which is a cross-origin re-
source loaded in the banking site, we term such attack as cross-
origin BCP attack.
Extension-Assisted. Targets for compromise can be further am-
plified by browser extensions. Many desktop browser extensions
inject resources, e.g., scripts and CSS files, into every page. If
Alice clicks through an SSL warning for one extension’s injected
resource on any site over either HTTP or HTTPS, the attacker can
poison it as explained above. The consequence is more devastat-
ing than previous two scenarios. Whenever Alice visits any site
e.g., the banking site, the poisoned resource will be loaded into
each visiting page. In addition, if the extension’s resource is over
HTTP, the attacker can directly intercept the HTTP connection and
replace it with malicious resources without causing any warnings
in Alice’s browser. After that, if Alice clicks through the warning
for mixed content (Safari and Opera do not have such warning) on
the banking site, the poisoned HTTP resource will be loaded into
the banking site, and the site over HTTPS is no longer secure.

As we have shown above, clicking through an SSL warning has
persistent implications beyond the security of the present web ses-
sion. Since this attack is based on poisoning the extension’s in-
jected scripts, we term it as extension-assisted BCP attack.

We are not aware of any systematic study of BCP attacks on
existing desktop and mobile browsers, though attacks via browser
cache have been discussed in previous works [32,43,46,52,55,57]
[18,20,47]. We introduce the new extension-assisted attack vector,
and present a comprehensive study on BCP attacks.

SSL warnings’ presentations and browser caching policies vary
a lot across browsers, and these variances have different impact on
browser cache poisoning attacks. We will discuss the following
research questions in next section.

1. What information is displayed in the warning, e.g., hijacked
site’s URL and certificate?

2. What are the caching policies for resources over broken HTTPS
on different browsers?

3. How many browsers, users and websites are susceptible to
browser cache poisoning attacks?

3. BROWSER MEASUREMENT
We measure BCP attacks on five mainstream desktop browsers

and 16 popular mobile browsers. We investigate the information
displayed on warnings and caching policies across these browsers.



These studies show that all evaluated browsers are susceptible to
such attacks.

3.1 Experimental Methodology
We set up an Apache server as the attacker’s server, host the sub-

stituted resources for the targeted site’s resources on the server, and
configure “Cache-Control:public, max-age=31536000” in the re-
sources’ response headers to instruct browses to cache them for one
year. We utilize mitmproxy [8] to intercept the traffic from/to the
victim, replace the targeted site’s resources with malicious ones in
the attacker’s server, and send the substituted responses to the vic-
tim’s browser. To forge certificates for target sites, we use OpenSSL
to create custom self-signed SSL certificates for the targeted do-
main.

For the targeted site, because online banking websites contain
users’ credential information, e.g., credit card number, these sites
are often targeted by attackers. We choose Citibank’s website 6

as the targeted site, and pick the site’s essential subresource7 for
poisoning.

We mount BCP attacks on most popular browsers (e.g., Chrome,
Firefox, Safari, Opera, IE, Maxthon, UC etc.) on various plat-
forms (e.g., Mac OS X 10.9.3, Linux 12.04, Windows 7, Android
4.4.3, iOS 6, and Windows Phone 8). As Table 1 shows, these
browsers cover over 99% desktop browser users, and more than
1,000,000,000 mobile browser users. We describe the details of
our evaluation below.

3.2 The Inconsistency of SSL Warnings
The Secure Socket Layer (SSL) and its successor, Transport Layer

Security (TLS) are the basis of the end-to-end security provided by
HTTPS8. In a MITM attack against HTTPS, the attacker’s certifi-
cate either mismatches with the targeted site’s domain, or is self-
signed that is not authorized by trusted CAs, thus the certificate is
not trusted by the victim’s browser. Browsers usually prompt with
SSL warnings to ask the victim whether to trust the certificate. This
is the last defense of protecting HTTPS connections from MITM
attacks. Once the user clicks through the warning, the browser will
trust the attacker’s certificate, and the attacker can impersonate as
the targeted site’s server.

However, as per our evaluation, browsers do not agree with each
other on when and how to show such warnings. We gather SSL
warnings and address bar warnings on various browsers and show
them in our supplementary website [11]. We discuss the variances
in information displayed for broken HTTPS resources below.
No SSL Warnings. One browser, i.e., CM browser (5.0.22), does
not check the validity of certificates, and never shows SSL warn-
ings for invalid certificates. As Figure 2 shows, CM browser always
displays “Green Shield” in the address bar for all HTTPS connec-
tions, regardless of the invalid server-side certificate9. This browser
has more than 10 million users on Google Play.
SSL warnings can be overlaid. The attacker can utilize click-

5For mobile default browsers, e.g., Safari and Android Default
Browser, we use # of sold devices to represent # of users. For
other browsers, we treat # of downloads in the official market as #
of users.
6https://online.citibank.com/US/JSO/signon/
LocaleUsernameSignon.do?locale=en_US
7https://online.citibank.com/JFP/js/jquery/
jquery-1.7.2.js
8We use the more widely used term SSL to refer to both TLS and
SSL in this paper.
9The vendor adds SSL warnings in the latest version, but CM is
still vulnerable to BCP attacks when the user ignores the warning.

Figure 2: CM Browser always displays “Green Shield” for hijacked
sites.

Figure 3: Chrome displays “Broken Lock” for sites with invalid
certificates.

jacking [38] or tapjacking [50] to overlay and camouflage the SSL
warning in an iframe, to further lure the victim to click through the
warning. We have successfully tested this technique on Firefox 3.6,
IE 8, IE 10 for Windows Phone and other old version browsers.
Incomplete SSL Warnings. As Table 1 shows, the majority of cur-
rent browsers show SSL warnings for broken HTTPS connections
with invalid certificates. For desktop browsers, whereas Firefox,
Chrome and IE show in-page SSL warnings for hijacked sites, Sa-
fari and Opera display pop-up warnings. For mobile browsers, Fire-
fox, Chrome, Opera, IE and UC display in-page warnings, but other
10 browsers (i.e., Android Default Browsers, Safari, Baidu, Max-
thon, Next, Web Explorer Browser, Web Browser, Javelin, Dolphin
and Boat), alert users with pop-up SSL warnings. All warnings
have the same intended goal, i.e., to alert users that the server’s
certificate is not trusted, but they have different presentations, e.g.,
various messages and appearances, as shown in Figure 4 and 5. We
demonstrate the variances of the presented information below, and
discuss their potential implications.

1) Default blocking or warning for hijacked subresources?
For cross-origin subresources with invalid certificates, Firefox, Sa-
fari, Chrome, Opera, IE for Windows Phone and UC directly block
these resources from being loaded into the current page without
showing any warnings. Other browsers, e.g., Android Default Browser,
Baidu, Maxthon, Next, CM, Javelin, Dolphin, Boat, Web Explorer
and Web Browser, prompt with SSL warnings shown in Figure 4
and 5 to caution users. For cross-origin BCP attacks, the attacker
can inject the targeted site’s subresource into any site over HTTP.
Since the warning appears on the HTTP site, e.g., news site, the
user may be inclined to ignore it and continue browsing the site
over HTTP. Once the subresource is hijacked by BCP attacks and
cached in browsers, all the user’s future HTTPS sessions with the
targeted site are compromised.

2) Missing the hijacked site’s URL in the warning. As Ta-
ble 1, Figure 4 and 5 show, except Firefox, Chrome, Safari, Opera,
IE (desktop and mobile version) and Android Default Browser, the
other 10 mobile browsers (e.g., Dolphin with 50 million down-
loads) do not display the hijacked site’s URL in the warning. For
Baidu, Maxthon, Next, Dolphin, and Boat browsers, after clicking
“View certificate” and “View page info” buttons, the current page’s
URL (not the hijacked subresource’s URL) will be shown. Since
the hijacked subresource’s URL is missing in the warning, when
under cross-origin or extension-assisted BCP attacks, the user may
tend to notice that the warning is not for the current HTTP site and
may be inclined to click through it.

3) No warnings for hijacked sites in the address bar. As Ta-
ble 1 shows, when the user clicks through an SSL warning, all desk-
top browsers display warnings, e.g., “Broken Lock” in Chrome (as
shown in Figure 3), in the address bar for sites with invalid certifi-
cates. For mobile browsers, though Baidu, Maxthon, Next, Javelin,
Web Explorer and Web Browser have pop-up SSL warnings for hi-
jacked sites, they do not display warnings in the address bar for
these sites, e.g., “Green Shield” in CM browser as shown in Fig-



Table 1: SSL Warnings, Address Bar Warnings & Default Caching Policies in Mainstream Browsers

Mobile Browsers I II III IV V VI VII VIII IX
Firefox (31.0)(Android) 50,000,000 3 3 3 – 3 3 3 3
Chrome (36.0.1985.125)(Android & iOS) 500,000,000 3 3 3 – 3 3 – 3
Safari (7.0)(iOS) 800,000,000 [1] 3 3 3 – 3 3 – 3
Opera (22.0.1485.78487)(Android & iOS) 50,000,000 3 3 3 – 3 3 – 3
IE (10)(Windows Phone) 30,000,000 [9] 3 – 3 – 3 3 3 3
Android Default Browser(4.4.3) (Android) 1,000,000,000 [5] 3 3 – – 3 3 3 3
Baidu (4.0.0.4)(Android) 10,000,000 3 – – – – 3 3 3
Maxthon (4.2.6.2000)(Android) 5,000,000 3 – – – – 3 3 3
Next (1.16)(Android) 5,000,000 3 – – – – 3 3 3
CM (5.0.22)(Android) 10,000,000 – – – – – – 3 3
Javelin (3.1.1)(Android) 100,000 3 – – – – – 3 3
Web Explorer (2.0.6)(Android) 1,000,000 3 – – – – – 3 3
Web Browser (1.2)(Android) 100,000 3 – – – – – 3 3
Dolphin (11.1.6)(Android) 50,000,000 3 3 – – – 3 3 3
Boat (7.7)(Android) 5,000,000 3 3 – – – 3 3 3
UC (9.8.0)(Android) 50,000,000 3 3 3 – – – 3 3
Desktop Browsers
Firefox (31.0)(Linux, Windows & OS X) 15.54% [13] 3 3 3 – 3 3 3 3
Chrome (36.0.1985.125)(Linux, Windows & OS X) 19.34% 3 3 3 – 3 3 – 3
Safari (7.0.4)(Windows & OS X) 5.28% 3 3 3 – 3 3 – –
Opera (22.0.1471.70)(Linux, Windows & OS X) 1.05% 3 3 3 – 3 3 – 3
IE (10.0.9200.16540)(Windows) 58.38% 3 3 – – 3 3 3 3

I : Market Share [13]/# of Users5 3 : Yes – : No
II : Show Pop-up/In-page SSL Warnings for Sites with Invalid Certificates
III: Show Address Bar Warnings for Sites with Invalid Certificates
IV: Block Cross-Origin Subresources with Invalid Certificates by Default
V : Show Address Bar Warnings for Cross-Origin Subresources with Invalid Certificates
VI: Display the Hijacked Site’s URL in the SSL Warning
VII: Display the Invalid Certificate’s Content in the SSL Warning
VIII: Cache Resources over Broken HTTPS in Web Cache
IX: Cache Resources over Broken HTTPS in AppCache

Figure 4: The SSL warning in Javelin displays incomplete infor-
mation, e.g., missing the hijacked site’s URL.

Figure 5: The SSL warning in Safari shows the hijacked site’s URL
and the certificate.

ure 2. For this case, once the targeted site is hijacked by the same-
origin BCP attack on these browsers, these browsers will always
load the substituted one without any warnings in the address bar.

4) Missing the invalid certificate’s content. When HTTPS con-
nections are intercepted, the certificate’s content in the SSL warn-
ing can help users identify whether the certificate should be trusted
or not. For example, in some enterprises, employees need to trust
the company’s certificate, even if it is invalid. Thus based on the
certificate’s content, the employee can determine to trust their com-
pany’s certificate, but not hijacked sites’ certificates. However, sev-
eral mobile browsers, e.g., Javelin, Web Explorer, Web Browser
and UC, do not display the certificate’s content, which may con-
fuse users to make blind decisions.

Such inconsistency among today’s web browsers in warning users

of SSL errors has implications of clicking through the warnings.
Especially, the improper warnings on certain mobile browsers, e.g.,
no warnings in the address bar and missing the hijacked site’s URL,
confuse users to be more susceptible to BCP attacks. Even worse,
browsers’ policies for caching resources when SSL errors are ig-
nored by users’ consent are heavily browser-specific. In Section 3.3,
we discuss the incoherence of browser policies for broken HTTPS
connections.

3.3 Incoherence of Browser Caching Policies
As we discuss in Section 3.2, SSL warnings are inconsistent

among browsers and often do not provide enough information to
caution users away from hijacked sites. If these browsers em-
ploy proper caching policies, they can limit the damage of BCP
attacks to one session. However, our evaluation shows that caching
policies for broken HTTPS connections are not consistent across
browsers. For correct HTTPS connections, all browsers will re-
spect the header’s directives and cache the resources properly. For
broken HTTPS connections after clicking through SSL warnings,
different browsers deploy different caching policies. No specifica-
tion defines this behavior properly.
Caching resources over broken HTTPS in web cache. As Ta-
ble 1 shows, only Chrome, Safari and Opera do not cache resources
over broken HTTPS in web cache, but all other browsers (e.g.,
UC with 50 million downloads) cache the resources. Since web
cache is shared across all sites, if common JavaScript libraries are
substituted by BCP attacks and cached in vulnerable browsers, all
the sites that contain the same libraries are affected by such at-
tacks. Meanwhile, once the JavaScript resources from extensions
are replaced by BCP attacks and cached in web cache, all the pages
opened in the future will be compromised.



Caching resources over broken HTTPS in HTML5 AppCache.
Table 1 demonstrates that only Safari does not cache resources over
Broken HTTPS in AppCache, but other desktop browsers and mo-
bile browsers cache these resources. Thus once one site is under
BCP attacks and substituted by a malicious one with a long-lived
AppCache manifest, the victim’s browser will load the cached site
for the specified duration.
No pop-up/in-page warnings for loading resources over broken
HTTPS from browser cache. From our evaluation, we find that
no browsers show pop-up/in-page warnings for loading resources
over broken HTTPS from either web cache or AppCache. Once
resources are cached, all these resources are trusted and there are
no more integrity checks. Before these cached resources expire,
browsers will load them for sites repeatedly without issuing new
requests to fetch them from servers.

We have reported the incoherence of browser caching policies to
the related browser vendors. Google acknowledges the importance
of these findings and is deploying a fix in Chrome by not caching
resources over broken HTTPS in HTML5 AppCache as we suggest
in Section 5.

3.4 Summarizing Susceptibility of Browsers
Same-Origin. As Table 1 demonstrates, all browsers cache re-
sources over broken HTTPS in either web cache or AppCache, ex-
cept Safari on desktop platform. Thus for these browsers, once
the victim clicks through one SSL warning on the targeted site, the
browser will cache the substituted resources from the attacker, and
the site is affected by same-origin BCP attacks.
Cross-Origin. Table 1 shows that only Chrome, Safari, and Opera
do not utilize web cache to cache resources over broken HTTPS.
Thus all the other browsers are affected by cross-origin BCP at-
tacks. Because web cache is shared across different sites, web
cache can be used by such attacks. As we discuss in Section 2.3,
once the victim clicks through the warning for the targeted site’s
subresource on any HTTP site, the targeted subresources can be re-
placed by the BCP attacker and cached in the victim’s browser for
a long time. Thus the warning on any other site can affect the target
site’s security.
Extension-Assisted. We observe that many extensions inject re-
sources, e.g., JavaScript files, into every page, e.g., Free Smileys &
Emoticons (1,820,058 users), Lightning Newtab (4,397,781 users)
on Chrome, and WindowShopper (32,206 users) on Firefox. On
Firefox, Chrome, Safari and Opera, we develop a tool to automati-
cally download extensions and analyze their injection features. We
show part of our results in Table 2. We mount extension-assisted
BCP attacks on these extensions in four browsers and summary the
results in Table 3. As Table 1 shows, only Firefox caches the in-
jected JavaScript files over broken HTTPS, while Chrome, Safari
and Opera do not. However, all these browsers allow extensions
to inject HTTP scripts into sites over HTTPS. Safari and Opera do
not display warnings for mixed content, and they will directly load
the extension’s subresources over HTTP. Without the last line of
defense in displaying the warning, the sites that contain mixed con-
tent can also be easily attacked. Once the extension’s subresources
are poisoned by BCP attacks, all subsequently opened pages in Sa-
fari and Opera will be compromised. On the other side, Firefox
and Chrome do not allow HTTPS pages to load subresources over
HTTP by default, but users can override the default by clicking
through a warning button for mixed content as Figure 6 shows.
Once the victim clicks through the warning, these two browsers

10We collected the data in August, 2014.

Table 3: Caching and Mixed Content Policies for Extensions’ In-
jected Resources on Chrome, Firefox, Safari & Opera

I II
Firefox (Linux, Windows & OS X) 3 3
Chrome (Linux, Windows & OS X) – 3
Safari (OS X & Windows) – 3
Opera (Linux, Windows & OS X) – 3

I : Cache Extensions’ Injected Resources
over Broken HTTPS
II : Allow Extensions to Inject HTTP Re-
sources into Sites over HTTPS
3 : Yes – : No

(a) The warning for mixed content in
Chrome.

(b) The warning for mixed content in
Firefox.

Figure 6: The warnings for mixed content in Chrome 36 & Firefox
31. If users clicks through these warnings, Chrome & Firefox will
load HTTP resources into HTTPS sites. Safari 7 and Opera 2211

allow HTTPS sites to load mixed content by default, and do not
have mixed content warnings.

will load the subresources over HTTP, which can be affected by
our attacks.

In conclusion, all the evaluated browsers are susceptible to BCP
attacks to some extent. Safari (desktop version) is only affected by
extension-assisted BCP attacks, and Chrome and Opera (desktop
and mobile version) are vulnerable to same-origin and extension-
assisted BCP attacks. The other browsers, especially mobile browsers
are susceptible to all the three series of attacks.
# of Susceptible Users. Since all browsers we evaluate are vulner-
able to BCP attacks to some extent, at least 99% desktop browser
users and over 1 billion mobile browser users (as shown in Table 1)
are susceptible to such attacks. We conduct our experiments on the
browsers with relatively latest version as shown in Table 1, and we
believe that the old version browsers are supposed to have the same
problems and even severe ones.
Susceptible Websites in Alexa Top 100 & 1,000,000. Websites
cannot completely thwart BCP attacks by themselves (discussed in
Section 4), but by enabling proper settings, e.g., HSTS, they can
partially mitigate such attacks. After our investigation on Alexa
Top 100 websites, we find that 51 sites are over HTTPS, 22 sites
set cache headers properly (e.g., no-cache), 2 sites (i.e., apple.com
& bing.com) do not contain cross-origin resources, 6 sites set CSP
headers 12 and 5 sites 13 enable HSTS headers. Therefore, only 6
sites that set CSP, 5 sites that enable HSTS and 2 sites that do not
contain cross-origin resources have better defenses to BCP attacks.

Furthermore, we send HTTPS requests to Alexa Top 1,000,000
sites to fetch their homepages, but only receive 31,377 responses.
By analyzing the response headers of 31,377 HTTPS websites, we
find that 510 (1.63%) sites enforce HSTS headers, 375 (1.20%)
sites set cache-control headers, and only 45 (0.14%) sites enable
CSP. The majority of HTTPS websites do not have any protection

11Opera’s next version 23.0.1522.60 starts to support mixed content
warnings.

12plus.google.com, facebook.com, twitter.com, mail.yandex.ru,
pinterest.com and e.mail.ru set CSP headers.

13facebook.com, twitter.com, dropbox.com, paypal.com and ali-
pay.com enable HSTS headers.



Table 2: Extensions/Add-ons that Inject Scripts into Every Page on Firefox, Chrome, Safari and Opera
Name I II Name I II Name I II
Free Smileys & Emoticons (C) 1,598,606 1 friGate-unlock sites (C) 265,191 2 Mini Clock (C) 8,243 9
Printer button (C) 7,164 7 Everplex Dark (C) 19,676 8 Video download helper (C) 467,430 9
3Dnator (C) 62,861 1 Pacman (C) 82,654 5 Iminent (C) 2,357,926 1
Emoji for Chrome (C) 768 3 PiccShare (C) 94,693 3 Album Downloader (C) 64,415 10
EXIF Viewer (C) 39,674 1 Imageshack-Clickberry (C) 23,020 1 Dailymotion downloader (C) 15,957 3
Lightning Newtab (C) 4,397,781 1 Search Switch (C) 307,889 9 Search All (C) 305,701 9
ShopperPro (C) 305,386 11 Slick Savings (C) 470,422 5 Shopping Helper (C) 575,752 4
uTorrent for Chrome (C) 89,564 4 San Antonio Spurs (C) 3,111 6 Boston Red Sox (C) 2,720 6
St. Louis Cardinals (C) 1,773 6 Chicago Blackhawks (C) 1,613 6 San Francisco 49ers (C) 1,658 6
New York Yankees (C) 1,554 6 Los Angeles Dodgers (C) 1,344 6 Los Angeles Angels (C) 314 6
Chicago Cubs (C) 738 6 St. Louis Blues (C) 241 6 Detroit Tigers (C) 1,095 6
MLB.com (C) 1,141 6 San Francisco Giants (C) 1,038 6 Ohio State (C) 938 6
Atlanta Braves (C) 859 6 Save My Ass !!! (F) 83 2 Moujaz Summary (F) 115 2
Curiyo (F) 1,586 5 paintitgreyscale (F) 11 1 WindowShopper (F) 32,206 7
X-notifier (S) - 4 PinChoose (S) - 5 Rundavoo (S) - 2
Emoticons For FB (F) 5,688 2 FreeStyler (O) 20,238 1 Tawea (O) 1,432 4

I : # of Users10 II : # of Injected Scripts – : No Statistics C : Chrome F : Firefox S : Safari O : Opera

Table 4: Various Techniques for Mitigating Browser Cache Poison-
ing Attacks

I II III
HSTS [36]/HPKP [28] 3 – –
Channel IDs [16]/SISCA [45] – – –
DANE [37]/CAA [34] – – –
CSP [3] – – –
Web Cryptography [25]/Subresource Integrity [19] – 3 –
Private Browsing Mode [14] – – –
Randomization of Resources’ URLs [42] – 3 –
Segregating Browser Cache [41] – 3 3

I : Same-Origin Browser Cache Poisoning Attacks
II : Cross-Origin Browser Cache Poisoning Attacks
III: Extension-Assisted Browser Cache Poisoning Attacks
3 : Mitigate – : Not Mitigate

against BCP attacks.

4. INSUFFICIENCY OF EXISTING SOLU-
TIONS

One straightforward defense for browsers is not to cache re-
sources over broken HTTPS. Since the hijacked resources over
HTTPS cannot be cached in browsers, this solution can prevent
browser cache poisoning attacks over HTTPS. As Table 1 shows,
Chrome, Opera, and Safari have already implemented this caching
policy for web cache, but only Safari deploys it for HTML5 Ap-
pCache. However, the majority of mobile browsers, e.g., Android
Default Browser, Firefox for Android and Maxthon, do not apply
this policy and are susceptible to both kinds of poisoned caches.

Various existing defenses against HTTPS attacks or attacks via
browser cache can help defend against BCP attacks. However,
they are not sufficient. As Table 4 summarizes, CSP [3], Channel
IDs [16], SISCA [45], DANE [37], CAA [34], and private browsing
mode [14] cannot thwart any series of BCP attacks; HSTS [36] and
HPKP [28] can mitigate same-origin BCP attacks; Web Cryptogra-
phy API [25], Subresource Integrity [19] and randomization of re-
sources’ URLs [42] prevent cross-origin BCP attacks; segregating
browser cache [41] protects users from cross-origin and extension-
assisted BCP attacks. Therefore, none of these techniques provide
comprehensive protection against BCP attacks. We describe details
below.

4.1 Defenses against MITM Attacks
Strict Transport Security (HSTS) & Public Key Pinning (HPKP).
HSTS [36] is the successor of ForceHTTPS [40], which is proposed
to mitigate SSL stripping attacks [49]. It provides an HTTP re-

sponse header for a website to force browsers to make SSL connec-
tions mandatory for all subresources on this site. Once HSTS is set
in the HTTP header, none of HSTS-compliant browsers give users
the option to ignore SSL errors. However, for HSTS, browsers must
first connect to the legitimate websites securely to fetch the au-
thorized certificates before connecting to untrusted networks [39].
Thus if the BCP attack occurs before the victim connects to the
legitimate site, the attacker can still poison the targeted site’s re-
sources. After testing four sites that enable HSTS headers on Fire-
fox, i.e., facebook.com, github.com, paypal.com and alipay.com,
we find that the HSTS headers can be stripped by the attacker if it
is the user’s first visit, and after that the sites are not protected by
HSTS.

Public Key Pinning (HPKP) [28] allows websites to specify their
own public keys with a HTTP header, and instructs browsers not to
accept any certificates with unknown public keys. Without con-
necting to the legitimate websites securely for the first time, some
browsers, e.g., Chrome and Firefox, pre-load the public keys for
well-known websites, e.g., google.com, to deploy HPKP or HSTS [6,
10]. While current browsers only pre-load public keys of selected
sites, it is impractical for them to pre-load the public keys of all
sites over HTTPS. Both HSTS and HPKP instruct browsers to cease
connections with servers over broken HTTPS to protect these sites
from MITM attacks. However, if the targeted site contains cross-
origin subresources that are not protected by HSTS/HPKP, these
resources can be poisoned by cross-origin BCP attacks over broken
HTTPS. We conduct experiments on two sites with HSTS headers
(i.e., github.com and twitter.com), which both contain https://
www.google-analytics.com/analytics.jswithout HSTS
headers. We find that after poisoning analytics.js, when visiting
these two sites over correct HTTPS, the browser will load the hi-
jacked script into these two sites without any warnings. For extension-
assisted BCP attacks, HSTS/HPKP cannot prevent browsers from
loading the hijacked extensions’ scripts over HTTP/HTTPS into the
targeted site. Meanwhile, currently the majority of mobile browsers,
e.g., IE 10 (Windows Phone), Android Default Browser, Baidu,
Maxthon, Next, CM, Javelin, Web Explorer, Web Browser, Dol-
phin, Boat, and UC, do not support HSTS/HPKP.
Channel IDs & SISCA. Channel IDs [16] is a TLS extension,
which was originally proposed as Origin-Bound Certificates (OBCs) [27].
Channel IDs enables browsers to generate self-signed certificate to
conduct TLS client-side authentication, and further prevent MITM
attackers to impersonate as victims’ browsers. Server Invariance
with Strong Client Authentication (SISCA) [45] combines Chan-
nel IDs-based client authentication and server invariance to protect



against MITM attackers who impersonate the user to the server.
However, the attackers discussed in this work impersonate the server
to the user, and therefore Channel IDs/SISCA do not prevent BCP
attacks.

In particular, BCP attacks can compromise SISCA’s guarantees.
To prevent resource caching poisoning, SISCA sets the ETags header
to instruct browsers to check the integrity of the cached resource,
and sets the If-Non-Match header to verify that the local version
matches the lasted version on the server. Nevertheless, these set-
tings are in response headers, which can be easily replaced by the
BCP attacker when poisoning the targeted resources with setting
long-lived cache headers. The attacker can also poison the cross-
origin subresources or the extension’s injected resources in the tar-
geted site. Therefore, when the user visits the targeted site, the
browser will load these malicious cached resources rather than the
original ones. The poisoned resources, e.g., JavaScript, have unre-
stricted access over the credentials belonging to the site on behalf
of the user. Thus SISCA cannot mitigate BCP attacks.
DANE & CAA. The Certification Authority Authorization (CAA)
DNS Resource Record [34] allows a DNS domain name holder to
specify Certification Authorities (CAs) authorized to issue certifi-
cates for that domain. DNS-based Authentication of Named Enti-
ties (DANE) [37] enables the administrators of domain names to
sign SSL certificates for websites on their domains. Nevertheless,
these approaches are based on DNSSEC, which are not widely de-
ployed on the Internet. Furthermore, these solutions do not impel
browsers not to cache resources over broken HTTPS, thus they can-
not mitigate BCP attacks.

4.2 Content Restriction & Document Integrity
Content Security Policy (CSP). CSP [3] provides HTTP headers
for a website to declare approved resources (e.g., JavaScript, CSS,
frames, etc.), which are whitelisted to be loaded on the page in
browsers. Other resources that violate the policy will be blocked
and reported to the site. CSP helps detect and mitigate cross site
scripting (XSS) and some subresource-injection attacks. However,
CSP is a parser-level defense, and it does not check the integrity
of a resource. With preserving the same URLs, cross-origin BCP
attacks replace approved subresources with malicious ones, thus
CSP cannot detect the differences and mitigate such attacks. Fur-
thermore, same-origin BCP attacks can hijack the whole site and
substitute the forgery site without CSP headers for the original one.
In addition, browser extensions are exempt to CSP, and can inject
scripts into websites regardless of the origins of the scripts [53].
Thus CSP does not interfere with extension-assisted BCP attacks.
Overall, CSP does not provide any prevention against BCP attacks.
Web Cryptography API & Subresource Integrity. Web Cryp-
tography API [25] provides a JavaScript API for performing ba-
sic cryptographic operations in web applications, e.g., encryption,
decryption, hashing, and signature generation. Subresource In-
tegrity [19] introduces a mechanism for browsers to verify that sub-
resources in web applications have been delivered without unex-
pected manipulation. Subresource Integrity extends several HTML
elements with a integrity attribute that contains a cryptographic
hash of the representation of the resource below.

<script src=‘https://www.google-analytics.com/analytics.
js’
integrity=‘ni:///sha-256;ptdSz0i-j-P9_TJ-CmNY-

YXjDzeQL5UbgNQJj1KoCAA=?ct=application/
javascript’>

</script>

Both Web Cryptography API and Subresource Integrity provide the
functionality for browsers to check data integrity for subresources.

Thus browsers can realize that the poisoned subresources are not
the same ones in the original site, which mitigates cross-origin BCP
attacks. However, for same-origin BCP attacks, the attacker can re-
place the subresource, re-compute the hash value and set the new
one in the targeted site. For extension-assisted BCP attacks, the
injected scripts from extensions are beyond the control of these
two techniques. Thus Web Cryptography API and Subresource
Integrity cannot defeat these two attacks. These two techniques
are still in W3C working drafts, which are not supported by any
browsers at this moment.

4.3 Defenses via Browser Cache
Private Browsing Mode. Private browsing modes 14 prevent browsers
from permanently storing any cookies, histories, caches or other
site related states. However, during private browsing mode, browsers
still cache resources of different websites [14]. Browsers only clear
the cached resources after closing windows by users. Thus when
browsers are in private browsing mode before closing, they are still
susceptible to BCP attacks. For Chrome and Opera, they disable
extensions in private browsing mode by default, thus they partially
prevent extension-assisted BCP attacks. Meanwhile, comparing to
desktop browsers, many mobile browsers, e.g., CM, UC and Dol-
phin, do not support private browsing mode.
Randomization of Resources’ URLs. Randomization of resources’
URLs instructs client-side browsers not to cache these resources by
adding a unique random string in each resource’s URL, e.g., www.
google-analytics.com/analytics.js?19991. Thus when
a user visits the targeted site, the site includes a different URL for
the same resource, and the user’s browser always fetches the latest
one from the server instead of loading from cache. Jakobsson et al.
neutralize attacks via browser cache by means of URL personaliza-
tion with this idea [42]. As users cannot predict all the URLs, the
targeted site will provide at least one static URL for a starting page.
Thus users can visit the site by typing the URL in the address bar
or from search results on search engine. Since the attacker cannot
predict URLs of the targeted site’s subresources, cross-origin BCP
attacks cannot work. Nevertheless, in same-origin BCP attacks,
the attacker can substitute a malicious page for the targeted site’s
starting page to compromise the future sessions. Meanwhile, the
extension’s hijacked resources are not obfuscated and still cached
in the victim’s browser. Therefore, this technique does not defeat
the same-origin and extension-assisted attack vectors, but protects
against cross-origin attacks.
Segregating Browser Cache. Jackson et al. proposed to deploy
Same-Origin Policy on browser cache to prevent websites from
loading cached resources from other sites [41]. This approach pre-
vents hijacked resources from being shared across different sites,
and every site can only load its own cached resources. Therefore,
this technique thwarts cross-origin and extension-assisted BCP at-
tacks, but not same-origin BCP attacks. However, Jia et al. demon-
strate that this defense introduces significant performance over-
head [43]. That may be one reason why this solution has not been
adopted by current browsers in the default setting.

5. OUR DEFENSE TECHNIQUES
As we discussed in Section 4, no existing defenses provide full

protection against browser cache poisoning attacks. In this section,
we first discuss guidelines for users and browser vendors to defeat

14Private browsing modes represent Private Browsing in Safari and
Firefox, Incognito Mode in Chrome, Private Window in Opera, and
inPrivate Browsing in IE



(a) “Clear cache” setting in An-
droid Default Browser.

(b) “Clear browsing data” setting in
Chrome for Android.

Figure 7: “Clear cache” setting in Android Default Browsers does
not specify web cache and HTML5 AppCache. “Clear browsing
data” setting in Chrome provides various options for users to clear
browsing data.

BCP attacks. However, user faults and browser implementation
errors are the main reasons for browser cache poisoning attacks.
We then propose defense techniques for web developers to mitigate
cross-origin BCP attacks with minor performance overhead.
Guidelines for Users. Users should not click through SSL warn-
ings on any site in normal browsing mode. As a precaution, they
should also clear browser cache, i.e., web cache and HTML5 App-
Cache, before visiting a site requesting credentials, especially after
an SSL warning is clicked.

After investigating the settings of 21 browsers, we find that Javelin,
Web Explorer and Web Browser do not provide the option for users
to clear cache. Safari (mobile and desktop version), IE (Windows
Phone version), Android Default Browser and Maxthon have the
“Clear cache” button as shown in Figure 7a, but the setting does
not specify web cache and AppCache. The other browsers, e.g.,
Chrome and Firefox, support various options for users to clear
browsing data as shown in Figure 7b. However, clearing cache
takes several steps. For example, on Chrome (Android version),
users need to click “Setting”, “Privacy”, and “Clear browsing data”
to trigger the clearing.

However, even if users follow the setting to clear cache, Baidu,
Next, Javelin, Web Explorer, Web Browser and CM do not clear
AppCache. Once an attacker poisons the targeted resources in Ap-
pCache, these six browsers will cache the malicious resources until
the user uninstalls them. Therefore, never clicking through any SSL
warnings is the only proper way for users protect themselves from
BCP attacks.
Guidelines for Browser Vendors. From the perspective of a browser
vendor, to completely defeat BCP attacks, there are two require-
ments that suffice: (1) No caching for resources over broken HTTPS
in either web cache or AppCache; (2) Default blocking sites over
HTTPS from loading HTTP resources.

The first requirement protects users from same-origin, cross-origin,
and extension-assisted BCP attacks over HTTPS, and the second
one prevents the extension-assisted attack vector over HTTP. As
Table 1 depicts, only Safari (desktop version) meets the first re-
quirement, but other browsers especially mobile browsers do not
provide such protection. For Chrome, after receiving our report,
Google has confirmed the vulnerability in AppCache and is de-
ploying a fix to meet the first requirement. For the second policy,
Chrome and Firefox (desktop version) block mixed content by de-
fault with warnings as shown in Figure 6, but other browsers do not
have such policy. By implementing these two policies, browsers
can protect users from BCP attacks without the server-side modifi-
cation and the assistance from users.

Browser

Web Application  

Parser
Network 
Module

Cache

Figure 8: Illustration of the defense we propose, which ensures
only fresh and unpoisoned subresources can be loaded into the
targeted site’s page. As red dotted lines depict, the poisoned
JavaScript subresources can be directly loaded from browser cache
by default. In our approach (as green dashed lines show), the tar-
geted site checks the integrity of all cached subresources before
loading them into the page from cache.

Defense Techniques for Website Developers
As we discussed in Section 3, the inconsistency of SSL warnings
and the incoherence of caching policies increase the vulnerability
to BCP attacks. Websites cannot impel all browsers to implement
proper protections or force all users to use the upgraded browser.
Thus for websites with users’ credential information, e.g., online
banking sites, they have the responsibilities to protect users from
BCP attacks even without browsers and users’ additional coopera-
tion.

To defeat extension-assisted BCP attacks without the support
from browsers and users is difficult. However, most desktop browser
extensions do not inject scripts into every page, and all mobile
browsers do not support extensions, which alleviates such threats.
Users may be more inclined to click through warnings on the sites
with which users do not exchange any sensitive information, e.g.,
news and blog sites, than on the sensitive sites, e.g., online banking
sites. The cross-origin BCP attack makes it a powerful vector for
exploits. Thus the cross-origin attack vector is the most deluding
vector and can affect most users comparing to the other two vectors.

As discussed in Section 4, Web Cryptography API, Subresource
Integrity, segregating browser cache and randomization of all re-
sources’ URLs can mitigate cross-origin BCP attacks. However,
the first three defenses currently are not deployed on any browsers,
and require browser vendors to modify source code and add these
new features. The last technique impels browsers not to cache any
resources at the expense of increased performance overhead. We
propose a balanced approach to mitigate cross-origin BCP attacks
with minor performance overhead (<5%), which works on all com-
modity browsers without browser’s modification.
Approach Overview. Our main goal is to prevent the targeted site
from loading the poisoned JavaScript subresources in the user’s
browser cache. As Figure 8 illustrates, in our approach, the tar-
geted site checks the integrity of all cached JavaScript subresources
before loading them into the page. Therefore, only fresh and un-
poisoned subresources can be loaded into the targeted site’s page.

For any subresource B included in the targeted site’s page, we
use inline scripts to follow the procedure in Algorithm 1. By send-
ing two XMLHttpRequests for B, the inline scripts check the caching
status of B by timing techniques. If B is not cached, the scripts ap-
pend B with the original URL into the page; otherwise, the scripts
check the integrity of B. If B is through the check, which indi-
cates B is not poisoned, the scripts append B with the original URL
into the page; otherwise, B is poisoned, thus the scripts append B
with B’s URL and a random string into the page, which triggers



Data: Suspicious subresource
Result: Load sanitized subresource
let B be a subresource.
Given B, check the caching status of B by timing techniques.
if B is not cached then

Append B with the original URL into the page;
else

compute SHA256(B);
check the Integrity of B;
if B passes the check then

append B with the original URL into the page;
else

/* B is poisoned; */
append B with B’s URL and a random string into the
page;
fetch the latest version of B from the server;

end
end

Algorithm 1: Check the Caching and Integrity Status of a
Subresource

the browser to fetch the lasted version of B from the server. Since
the browser never load the poisoned subresources into the targeted
site’s page, this approach mitigates cross-origin BCP attacks. We
describe the implementation details below.
Implementation Details. Suppose the targeted web application
is a website A with the domain a.com. We configure TLS to en-
able that A is over HTTPS. For infrequently changed resources,
e.g., common libraries, we set long-lived cache headers for them.
For other resources, e.g., dynamic JavaScript files, we set no-cache
headers for them, and add random strings in the URLs in case that
browsers do not support cache headers.

1) For the resources with random strings in the URLs, we di-
rectly add them as external scripts in the page. For the infrequently
changed JavaScript files, we use inline scripts in every page to send
XMLHttpRequests to the server to fetch these resources before in-
serting them. When fetching the JavaScript subresources, we use
inline scripts to check the caching status of these scripts. We set
the start time in the onloadstart event handler, and set the end time
in the onreadystatechange event handler. We measure two rounds
of the request load time of each subresource. If the time difference
is larger than the threshold, e.g., 100 ms, it indicates a cache miss
for the subresource. If the request load time is approximately same
for two rounds, the subresource is cached in the user’s browser.

Below is the piece of code to measure the load time of XML-
HttpRequests.
var startTime, endTime, loadTime;
var xmlhttp = new XMLHttpRequest();
xmlhttp.onloadstart = function(){

startTime = (new Date()).getTime();
}
xmlhttp.onreadystatechange = function(){

endTime = (new Date()).getTime();
loadTime = endTime - startTime;
......

}

2) Based on the caching status of each JavaScript subresource,
we have different logic to handle it. The client-side scripts fetch the
file C containing the latest SHA256 values for infrequently changed
subresources from the server via a URL containing a random string.
If the subresource B is not cached, which indicates that it is not
poisoned by the attacker, the inline scripts directly add B in the
page as an external script without the integrity check to reduce per-
formance overhead. Otherwise the scripts calculate the SHA256

hashing value for B. If the hashing value equals to the value for B
in C, which means that B is not poisoned, the inline scripts append
B as an external script in the page. Otherwise, B is poisoned, and
the inline scripts will add B with B’s URL and a random string in
the page, which automatically fetches B’s latest version from A’s
server. Below is the piece of code to handle different cache and
integrity status for one subresource.
var xmlhttp, loadTime, loadTimeOld, threshold, realHash,

link, url;
var xmlhttp = new XMLHttpRequest();
var rand = Math.floor((Math.random() * 1000000000) + 1);
var head = document.getElementsByTagName("head")[0];
var script = document.createElement("script");
script.type = "text/javascript";
if ( Math.abs(loadTime - loadTimeOld) < threshold){
//cached

var hash = CryptoJS.SHA256(xmlhttp.responseText);
if (realHash == hash){

url = link;
}
else{

url = link + "?" + rand;
}

}
else{

//not cached
url = link;

}
script.src = url;
head.appendChild(script);

3) By default the client-side scripts in A can only issue XML-
HttpRequests to fetch A’s resources but not the resources from other
domains. Although the “Access-Control-Allow-Origin” header loose
the restriction to allow other domains to access the resource, few re-
sources set the header as “*” (allow all sites to access the resources)
or explicitly specify a.com as a privileged domain.

To solve this problem, by setting a reverse proxy, we enable
the web server to provide cross-origin resources with URLs under
a.com. Take apache as an example, we enable the proxy module
and set “ProxyPass /service/ https://www.google
-analytics.com/” in the configuration file. After the setting,
in any page of A, <script src=“/service/analytics.
js”></script> equals <script src=“https://www.google
-analytics.com/analytics.js” ></script>. There-
fore, www.google-analytics.com/analytics.js is trans-
parently hosted on a.com. We configure the reverse proxy and con-
vert the URLs of all cross-origin resources in A, e.g., third-party
analytics scripts, common libraries, and advertisement resources, to
the URLs under a.com. Thus the client-side scripts in A can fetch
cross-origin resources under a.com with XMLHttpRequests. To
avoid introducing security loopholes, the reverse proxy only pro-
cesses such resource requests that 1) come from A, and 2) fetch a
selected set of URLs maintained by A’s developers.

As we describe above, in the targeted site A, all JavaScript sub-
resources can be classified into four categories: never cached re-
sources with URLs containing a random string, not cached ones
with normal URLs, the resources that are cached and pass the in-
tegrity check with normal URLs, and cached but poisoned ones
with random URLs. Since the subresources with random URLs
cannot be predicted by the browser cache poisoning attacker, and
the ones with normal URLs are not poisoned, this approach miti-
gates cross-origin BCP attacks.
Performance Evaluation. To understand the performance impact
of our proposed technique, we applied it to 10 popular web appli-
cations within two days. Since attackers usually compromise login
pages to steal users’ credentials, we use the login page of each web
application to measure the performance overhead. We fetch the lo-
gin page of these 10 websites and host them on our server. We



Table 5: Page Load Time for the Original Login Page & the Modi-
fied One (in milliseconds) with Browser Cache

Website Time (Original) Time (Modified) Overhead
google.com 779 810.5 4.04%

facebook.com 467 487.8 4.45%
youtube.com 2134 2235.8 4.77%
yahoo.com 1523 1587 4.20%
twitter.com 331 346.9 4.80%

linkedin.com 1340 1387 3.51%
dropbox.com 1225 1265.9 3.34%
paypal.com 548.5 574.1 4.67%
github.com 723.6 752.7 4.02%

workpress.com 1652 1712.5 3.66%

retrofit these websites to adopt our solution, measure the page load
time of the original page and the modified one (averaged on 10
runs).

Table 5 summarizes the results of page load time for the origi-
nal login page and that for the modified one. We can see our solu-
tion introduces the negligible performance overhead (<5%) to these
websites. Different from randomization of all resources’ URLs,
we only randomize the poisoned resources’ URLs and the browser
can still load unpoisoned resources from cache. Thus our approach
causes minor performance overhead.

6. RELATED WORK
There has been extensive research on attacks on browser cache

and HTTPS/SSL connections, as well as the corresponding de-
fenses. The browser cache poisoning attacks discussed in this work
exposes HTTPS web sessions to far more persistent threat, and thus
require more sophisticated countermeasures beyond existing solu-
tions.
Attacks via Browser Cache. Felten et al. and Bortz et al. de-
ploy timing attacks on browser cache to sniff users’ browsing his-
tories and steal private information [18, 32]. Wondracek et al. de-
anonymize social network users by analyzing users’ visited URLs [57].
More recently, Jia et al. show that timing attacks on browser cache
can also be used to infer victim users’ geolocations [43]. On the
other hand, researchers have also examined attacks by poisoning
web cache, HTML5 AppCache, and other storage [44, 46–48, 52,
56] [20, 55].

Although some of the attack vectors discussed in this paper have
been briefly experimented in previous studies, in this paper, we pro-
vide the first in-depth evaluation of the susceptibility of desktop and
mobile browsers to all three BCP attack vectors, as well as a com-
prehensive analysis on whether existing solutions can mitigate such
attacks. Our evaluation results raise serious concern on the security
of HTTPS web sessions with all of today’s popular browsers. We
further propose novel defense techniques for websites to protect
their sessions immediately before browsers might adopt any BCP
prevention mechanisms in future.
Defenses against Browser Cache Attacks. To prevent privacy
leakage via browser cache, Jackson et al. propose a refined same-
origin policy to segregate browser cookie and cache to protect browser
states [41]. Jakobsson et al. neutralize browser sniffing by per-
forming URL personalization on the fly at the server side [42]. Jia
et al. [43] advocate not to cache location-sensitive resources to pre-
vent leaking users’ geolocations. However, as we discuss in Sec-
tion 4, defenses on browser cache alone cannot prevent browser
cache poisoning attacks.
Clicking through of SSL Warnings. When an SSL warning is
shown for a web page, the user is supposed to close the page to

protect him/her from MITM attacks. However, 33.0% and 70.2%
of users choose to click through SSL warnings on various websites
in Mozilla Firefox (beta channel) and Google Chrome (stable chan-
nel) respectively, according to Akhawe et al [15]’s investigation.
Dhamija et al. observe a 68% click-through rate, and Sunshine
et al. even record 90%-95% click-through rates depending on the
type of page [26, 54]. In addition, Sunshine et at. find that many
respondents do not understand SSL warnings, so they simply ig-
nore the warnings [54]. These studies demonstrate that users easily
click through SSL warnings. In this paper, we present BCP attacks
after users’ clicking through SSL warnings and show that ignoring
warnings can bring disastrous damage to the security and privacy
of their web sessions.
Attacks against HTTPS. Prior research has unravelled numerous
attacks to compromise HTTPS [17, 21–23, 45, 49, 51]. For exam-
ple, Karapanos et al. present Man-In-The-Middle-Script-In-The-
Browser (MITM-SITB) attacks to bypass enhanced Channel IDs-
based defenses [45]. Fahl et at. mount MITM attacks on mobile
applications to analyze SSL security in Android [29] and iOS [30].
In this work, instead of examining ways to directly thwart HTTPS
security, we focus on the implications of one-time compromise of
an HTTPS session. We show that the effect is persistent compro-
mise of the victim’s future sessions, far beyond the boundary of the
particular web session or even the website.
Defenses against HTTPS attacks. On the defense side, numerous
researchers propose various solutions to protect HTTPS connec-
tions from attacks [3,16,17,19,24,25,27,28,34,36,37,39,40,45].
However, as we elaborate in Section 4, none of these existing solu-
tions prevent our browser cache poisoning attacks completely.

7. CONCLUSION
In this paper, we present a systematic study of browser cache

poisoning attacks against HTTPS, which persistently compromise
the victim’s future web sessions with the targeted site by poisoning
the victim’s browser cache. Through experiments on five main-
stream desktop browsers and 16 popular mobile browsers, we find
the inconsistency of SSL warnings and incoherence of browser
caching policies. In particular, the majority of mobile browsers,
e.g., Android Default Browser, do not deploy SSL warnings prop-
erly, and always cache resources over broken HTTPS. In our eval-
uation, we demonstrate that all 21 browsers that cover over 99%
desktop browser users and 1,000,000,000 mobile users, are sus-
ceptible to BCP attacks. Meanwhile, only five sites of Alexa Top
100 and 1.63% of 31,377 HTTPS websites have partial protections.
Furthermore, we discuss pros and cons of potential defenses, and
provide guidelines for users and browser vendors to defeat BCP at-
tacks. We also propose defense techniques for website developers
to mitigate these attacks.
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