Proposition 11. $\Gamma(A ; B)$ is a boolean lattice, a sublattice of the lattice $\mathscr{P}(A \times B)$.
Proof. That it's a sublattice is obvious. That it has complement, is also obvious. Distributivity follows from distributivity of $\mathscr{P}(A \times B)$.

4 Main part

Theorem 12. Let A, B be sets. The following are mutually reverse order isomorphisms between $\mathfrak{F}(\Gamma(A ; B))$ and $\operatorname{FCD}(A ; B)$:

1. $\mathcal{A} \mapsto \Pi^{\mathrm{FCD}} \mathcal{A}$;
2. $f \mapsto \mathrm{up}^{(\mathrm{FCD}(A ; B) ; \Gamma(A ; B))} f$.

Proof. Let's prove that up ${ }^{(\operatorname{FCD}(A ; B) ; \Gamma(A ; B))} f$ is a filter for every funcoid f. We need to prove that $P \cap Q \in$ up f whenever

$$
P=\bigcap_{i=0, \ldots, n-1}\left(X_{i} \times Y_{i} \cup \overline{X_{i}} \times B\right) \quad \text { and } \quad Q=\bigcap_{i=0, \ldots, m-1}\left(X_{i}^{\prime} \times Y_{i}^{\prime} \cup \overline{X_{i}^{\prime}} \times B\right) .
$$

This follows from $P \in$ up $f \Leftrightarrow \forall i \in 0, \ldots, n-1:\langle f\rangle X_{i} \sqsubseteq Y_{i}$ and likewise for Q, so having $\langle f\rangle\left(X_{i} \cap X_{j}^{\prime}\right) \sqsubseteq Y_{i} \cap Y_{j}^{\prime}$ for every pair $(i ; j)$. From this it follows that $P \cap Q \in$ up f. [TODO: more detailed proof of this]
[TODO: More detailed proof in both directions.]
Let \mathcal{A}, \mathcal{B} be filters on Γ. Let $\Pi^{\mathrm{FCD}} \mathcal{A}=\Pi^{\mathrm{FCD}} \mathcal{B}$. We need to prove $\mathcal{A}=\mathcal{B}$. (The rest follows from the theorem 6.104 from my book [1]). We have:

$$
\begin{aligned}
& \mathcal{A}=\prod\{X \times Y \cup \bar{X} \times B \in \mathcal{A} \mid X \in \mathscr{P} A, Y \in \mathscr{P} B\}= \\
& \rceil\{X \times Y \cup \bar{X} \times B \mid X \in \mathscr{P} A, Y \in \mathscr{P} B, \exists A \in \mathcal{A}: P \subseteq X \times Y \cup \bar{X} \times B\}= \\
& \left.\prod\left\{X \times Y \cup \bar{X} \times B \mid X \in \mathscr{P} A, Y \in \mathscr{P} B, \exists P \in \mathcal{A}:\langle A\rangle^{*} X \subseteq Y\right\}={ }^{*}\right) \\
& \begin{array}{r}
\prod\left\{X \times Y \cup \bar{X} \times B \mid X \in \mathscr{P} A, Y \in \mathscr{P} B, \prod\left\{\langle P\rangle^{*} X \mid A \in \mathcal{A}\right\} \sqsubseteq Y\right\}= \\
\prod\left\{X \times Y \cup \bar{X} \times B \mid X \in \mathscr{P} A, Y \in \mathscr{P} B, \prod\left\{\langle P\rangle^{*} X \mid A \in \uparrow \uparrow \mathcal{A}\right\} \sqsubseteq Y\right\}=
\end{array} \\
& \prod\{X \times Y \cup \bar{X} \times B \mid X \in \mathscr{P} A, Y \in \mathscr{P} B,\langle(\mathrm{FCD}) \uparrow \mathcal{A}\rangle X \sqsubseteq Y\}=\left(^{* *}\right) \\
& \prod\left\{X \times Y \cup \bar{X} \times B \mid X \in \mathscr{P} A, Y \in \mathscr{P} B,\left\langle\mid \prod \uparrow \mathcal{A}\right\rangle X \sqsubseteq Y\right\}= \\
& \prod\{X \times Y \cup \bar{X} \times B \mid X \in \mathscr{P} A, Y \in \mathscr{P} B,\langle\lceil\mathcal{A C D}\rangle X \sqsubseteq Y\} .
\end{aligned}
$$

$\left(^{*}\right)$ by properties of generalized filter bases, because $\left\{\langle P\rangle^{*} X \mid P \in \mathcal{A}\right\}$ is a filter base.
$(* *)$ by theorem 8.3 in [1].
Similarly

$$
\mathcal{B}=\rceil\left\{X \times Y \cup \bar{X} \times B \mid X \in \mathscr{P} A, Y \in \mathscr{P} B,\left\langle\left\langle\prod^{\mathrm{FCD}} \mathcal{B}\right\rangle X \sqsubseteq Y\right\} .\right.
$$

Thus $\mathcal{A}=\mathcal{B}$.
[TODO: The above bijection preserves composition?]
[TODO: Which properties of funcoids follow?] [TODO: Specifically, what about relationships with reloids?] [TODO: What about analogs of reloids properties?]
[TODO: properties of the filtrator $(\operatorname{FCD}(A ; B) ; \Gamma(A ; B))]$
[TODO: For pointfree funcoids?]
Proposition 13. $\uparrow \uparrow$ and $\downarrow \downarrow$ are mutually inverse bijections between $\mathfrak{F}(\Gamma(A ; B))$ and funcoidal reloids.

