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 We often think of networks being organized 
into modules, cluster, communities:
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 Find micro-markets by partitioning the 
query-to-advertiser graph:

advertiser

qu
er

y

[Andersen, Lang: Communities from seed sets, 2006]
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 Clusters in Movies-to-Actors graph:

[Andersen, Lang: Communities from seed sets, 2006]
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 Discovering social circles, circles of trust:

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]
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How to find communities?
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We will work with undirected (unweighted) networks



 Edge betweenness: Number of 
shortest paths passing over the edge

 Intuition:
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Edge strengths (call volume) 
in a real network

Edge betweenness
in a real network

b=16
b=7.5



 Divisive hierarchical clustering based on the 
notion of edge betweenness:

Number of shortest paths passing through the edge
 Girvan-Newman Algorithm:

 Undirected unweighted networks

 Repeat until no edges are left:
 Calculate betweenness of edges
 Remove edges with highest betweenness

 Connected components are communities
 Gives a hierarchical decomposition of the network
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[Girvan-Newman ‘02]
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Need to re-compute 
betweenness at 

every step

49
33

121
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Step 1: Step 2:

Step 3: Hierarchical network decomposition:
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Communities in physics collaborations 



 Zachary’s Karate club: 
Hierarchical decomposition
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1. How to compute betweenness?
2. How to select the number of 

clusters?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14



 Want to compute 
betweenness of 
paths starting at 
node 𝑨𝑨

 Breath first search 
starting from 𝑨𝑨:
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 Count the number of shortest paths from 
𝑨𝑨 to all other nodes of the network:
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 Compute betweenness by working up the 
tree: If there are multiple paths count them 
fractionally
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1 path to K.
Split evenly

1+0.5 paths to J
Split 1:2

1+1 paths to H
Split evenly

The algorithm:
•Add edge flows:
-- node flow = 

1+∑child edges 
-- split the flow up 

based on the parent 
value
• Repeat the BFS 
procedure for each 
starting node 𝑈𝑈



 Compute betweenness by working up the 
tree: If there are multiple paths count them 
fractionally
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1 path to K.
Split evenly

1+0.5 paths to J
Split 1:2

1+1 paths to H
Split evenly

The algorithm:
•Add edge flows:
-- node flow = 

1+∑child edges 
-- split the flow up 

based on the parent 
value
• Repeat the BFS 
procedure for each 
starting node 𝑈𝑈



1. How to compute betweenness?
2. How to select the number of 

clusters?
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 Communities: sets of 
tightly connected nodes

 Define: Modularity 𝑸𝑸
 A measure of how well 

a network is partitioned 
into communities
 Given a partitioning of the 

network into groups 𝒔𝒔∈ 𝑺𝑺:
Q  ∝ ∑s∈ S [ (# edges within group s) –

(expected # edges within group s) ]

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 20

Need a null model!



 Given real 𝑮𝑮 on 𝒏𝒏 nodes and 𝒎𝒎 edges, 
construct rewired network 𝑮𝑮𝑮
 Same degree distribution but 

random connections
 Consider 𝑮𝑮𝑮 as a multigraph
 The expected number of edges between nodes 

𝒊𝒊 and 𝒋𝒋 of degrees 𝒌𝒌𝒊𝒊 and 𝒌𝒌𝒋𝒋 equals to: 𝒌𝒌𝒊𝒊 ⋅
𝒌𝒌𝒋𝒋
𝟐𝟐𝒎𝒎

= 𝒌𝒌𝒊𝒊𝒌𝒌𝒋𝒋
𝟐𝟐𝒎𝒎

 The expected number of edges in (multigraph) G’:

 = 𝟏𝟏
𝟐𝟐
∑𝒊𝒊∈𝑵𝑵∑𝒋𝒋∈𝑵𝑵

𝒌𝒌𝒊𝒊𝒌𝒌𝒋𝒋
𝟐𝟐𝒎𝒎

= 𝟏𝟏
𝟐𝟐
⋅ 𝟏𝟏
𝟐𝟐𝒎𝒎

∑𝒊𝒊∈𝑵𝑵𝒌𝒌𝒊𝒊 ∑𝒋𝒋∈𝑵𝑵𝒌𝒌𝒋𝒋 =

 = 𝟏𝟏
𝟒𝟒𝒎𝒎

𝟐𝟐𝒎𝒎 ⋅ 𝟐𝟐𝒎𝒎 = 𝒎𝒎
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𝑘𝑘𝑢𝑢 = 2𝑚𝑚
Note:



 Modularity of partitioning S of graph G:
 Q ∝ ∑s∈ S [ (# edges within group s) –

(expected # edges within group s) ]

 𝑸𝑸 𝑮𝑮,𝑺𝑺 = 𝟏𝟏
𝟐𝟐𝒎𝒎

∑𝒔𝒔∈𝑺𝑺∑𝒊𝒊∈𝒔𝒔∑𝒋𝒋∈𝒔𝒔 𝑨𝑨𝒊𝒊𝒋𝒋 −
𝒌𝒌𝒊𝒊𝒌𝒌𝒋𝒋
𝟐𝟐𝒎𝒎

 Modularity values take range [−1,1]
 It is positive if the number of edges within 

groups exceeds the expected number
 0.3-0.7<Q means significant community structure
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Aij = 1 if i→j, 
0 elseNormalizing cost.: -1<Q<1



 Modularity is useful for selecting the 
number of clusters:
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Next time: Why not optimize Modularity directly?

Q

Presenter
Presentation Notes
HW: Question – come up with  a graph where GIRVAN-NEWMAN MODULARITY IS NOT UNIMODAL





 Undirected graph 𝑮𝑮(𝑽𝑽,𝑬𝑬):

 Bi-partitioning task:
 Divide vertices into two disjoint groups 𝑨𝑨,𝑩𝑩

 Questions:
 How can we define a “good” partition of 𝑮𝑮?
 How can we efficiently identify such a partition?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 25

1

3
2

5

4 6

A B

1

3

2

5

4 6



 What makes a good partition?
 Maximize the number of within-group 

connections
 Minimize the number of between-group 

connections
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A B



A B

 Express partitioning objectives as a function 
of the “edge cut” of the partition

 Cut: Set of edges with only one vertex in a 
group:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 27

cut(A,B) = 2
1

3

2

5

4 6



 Criterion: Minimum-cut
 Minimize weight of connections between groups

 Degenerate case:

 Problem:
 Only considers external cluster connections
 Does not consider internal cluster connectivity
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arg minA,B cut(A,B)

“Optimal cut”
Minimum cut



 Criterion: Normalized-cut [Shi-Malik, ’97]
 Connectivity between groups relative to the 

density of each group

𝒗𝒗𝒗𝒗𝒗𝒗(𝑨𝑨): total weight of the edges with at least 
one endpoint in 𝑨𝑨: 𝒗𝒗𝒗𝒗𝒗𝒗 𝑨𝑨 = ∑𝒊𝒊∈𝑨𝑨 𝒌𝒌𝒊𝒊

Why use this criterion?
 Produces more balanced partitions

 How do we efficiently find a good partition?
 Problem: Computing optimal cut is NP-hard
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[Shi-Malik]



 A: adjacency matrix of undirected G
 Aij =1 if (𝒊𝒊, 𝒋𝒋) is an edge, else 0

 x is a vector in ℜn with components (𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏)
 Think of it as a label/value of each node of 𝑮𝑮

 What is the meaning of A⋅ x?

 Entry yi is a sum of labels xj of neighbors of i
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 jth coordinate of A⋅ x :
 Sum of the x-values 

of neighbors of j
 Make this a new value at node j

 Spectral Graph Theory:
 Analyze the “spectrum” of matrix representing 𝑮𝑮
 Spectrum: Eigenvectors 𝒙𝒙𝒊𝒊 of a graph, ordered by 

the magnitude (strength) of their corresponding 
eigenvalues 𝝀𝝀𝒊𝒊:
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𝑨𝑨 ⋅ 𝒙𝒙 = 𝝀𝝀 ⋅ 𝒙𝒙



 Suppose all nodes in 𝑮𝑮 have degree 𝒅𝒅
and 𝑮𝑮 is connected

 What are some eigenvalues/vectors of 𝑮𝑮? 
𝑨𝑨⋅ 𝒙𝒙 = 𝝀𝝀 ⋅ 𝒙𝒙 What is λ?  What x?
 Let’s try: 𝒙𝒙 = (𝟏𝟏,𝟏𝟏, … ,𝟏𝟏)
 Then: 𝑨𝑨 ⋅ 𝒙𝒙 = 𝒅𝒅,𝒅𝒅, … ,𝒅𝒅 = 𝝀𝝀 ⋅ 𝒙𝒙.  So: 𝝀𝝀 = 𝒅𝒅
 We found eigenpair of 𝑮𝑮: 𝒙𝒙 = (𝟏𝟏,𝟏𝟏, … ,𝟏𝟏), 𝝀𝝀 = 𝒅𝒅
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Remember the meaning of 𝒚𝒚 = 𝑨𝑨⋅ 𝒙𝒙:



 G is d-regular connected, A is its adjacency matrix
 Claim: 
 d is largest eigenvalue of A, 
 d has multiplicity of 1 (there is only 1 eigenvector 

associated with eigenvalue d)
 Proof: Why no eigenvalue 𝒅𝒅′ > 𝒅𝒅?
 To obtain d we needed 𝒙𝒙𝒊𝒊 = 𝒙𝒙𝒋𝒋 for every 𝑖𝑖, 𝑗𝑗
 This means 𝒙𝒙 = 𝑐𝑐 ⋅ (1,1, … , 1) for some const. 𝑐𝑐
 Define: 𝑺𝑺 = nodes 𝒊𝒊 with maximum possible value of 𝒙𝒙𝒊𝒊
 Then consider some vector 𝒚𝒚 which is not a multiple of 

vector (𝟏𝟏, … ,𝟏𝟏). So not all nodes 𝒊𝒊 (with labels 𝒚𝒚𝒊𝒊 ) are in 𝑺𝑺
 Consider some node 𝒋𝒋 ∈ 𝑺𝑺 and a neighbor 𝒊𝒊 ∉ 𝑺𝑺 then 

node 𝒋𝒋 gets a value strictly less than 𝒅𝒅
 So 𝑦𝑦 is not eigenvector! And so 𝒅𝒅 is the largest eigenvalue!
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Details!



 What if 𝑮𝑮 is not connected?
 𝑮𝑮 has 2 components, each 𝒅𝒅-regular

 What are some eigenvectors?
 𝒙𝒙 = Put all 𝟏𝟏s on 𝑨𝑨 and 𝟎𝟎s on 𝑩𝑩 or vice versa
 𝒙𝒙𝒙 = (𝟏𝟏, … ,𝟏𝟏,𝟎𝟎, … ,𝟎𝟎) then 𝐀𝐀 ⋅ 𝒙𝒙𝒙 = 𝒅𝒅, … ,𝒅𝒅,𝟎𝟎, … ,𝟎𝟎
 𝒙𝒙𝒙𝒙 = (𝟎𝟎, … ,𝟎𝟎,𝟏𝟏, … ,𝟏𝟏) then 𝑨𝑨 ⋅ 𝒙𝒙𝒙𝒙 = (𝟎𝟎, … ,𝟎𝟎,𝒅𝒅, … ,𝒅𝒅)
 And so in both cases the corresponding 𝝀𝝀 = 𝒅𝒅

 A bit of intuition:
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A B

A B
𝝀𝝀𝒏𝒏 = 𝝀𝝀𝒏𝒏−𝟏𝟏

|A| |B|

A B

𝝀𝝀𝒏𝒏 − 𝝀𝝀𝒏𝒏−𝟏𝟏 ≈ 𝟎𝟎

2nd largest eigval. 
𝜆𝜆𝑛𝑛−1 now has
value very close
to 𝜆𝜆𝑛𝑛



 More intuition:

 If the graph is connected (right  example) then we 
already know that 𝒙𝒙𝒏𝒏 = (𝟏𝟏, …𝟏𝟏) is an eigenvector
 Since eigenvectors are orthogonal then the 

components of 𝒙𝒙𝒏𝒏−𝟏𝟏 sum to 0.
 Why? Because 𝒙𝒙𝒏𝒏 ⋅ 𝒙𝒙𝒏𝒏−𝟏𝟏 = ∑𝒊𝒊 𝒙𝒙𝒏𝒏 𝒊𝒊 ⋅ 𝒙𝒙𝒏𝒏−𝟏𝟏[𝒊𝒊]

 So we can look at the eigenvector of the 2nd largest 
eigenvalue and declare nodes with positive label in A 
and negative label in B. 
 But there is still lots to sort out.
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A B
𝝀𝝀𝒏𝒏 = 𝝀𝝀𝒏𝒏−𝟏𝟏

A B
𝝀𝝀𝒏𝒏 − 𝝀𝝀𝒏𝒏−𝟏𝟏 ≈ 𝟎𝟎

2nd largest eigval. 
𝜆𝜆𝑛𝑛−1 now has
value very close
to 𝜆𝜆𝑛𝑛



 Adjacency matrix (A):
 n× n matrix
 A=[aij], aij=1 if edge between node i and j

 Important properties: 
 Symmetric matrix
 Eigenvectors are real and orthogonal
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1

3

2

5

4
6

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0



 Degree matrix (D):
 n× n diagonal matrix
 D=[dii], dii = degree of node i
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1

3

2

5

4
6

1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2



 Laplacian matrix (L):
 n× n symmetric matrix

 What is trivial eigenpair?
 𝒙𝒙 = (𝟏𝟏, … ,𝟏𝟏) then 𝑳𝑳 ⋅ 𝒙𝒙 = 𝟎𝟎 and so 𝝀𝝀 = 𝝀𝝀𝟏𝟏 = 𝟎𝟎

 Important properties:
 Eigenvalues are non-negative real numbers
 Eigenvectors are real and orthogonal
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𝑳𝑳 = 𝑫𝑫 − 𝑨𝑨

1

3

2

5

4 6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



(a) All eigenvalues are ≥ 0
(b) 𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 = ∑𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 0 for every 𝑥𝑥
(c) 𝐿𝐿 = 𝑁𝑁𝑇𝑇 ⋅ 𝑁𝑁
 That is, 𝐿𝐿 is positive semi-definite

 Proof:
 (c)⇒(b): 𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 = 𝑥𝑥𝑇𝑇𝑁𝑁𝑇𝑇𝑁𝑁𝑥𝑥 = 𝑥𝑥𝑁𝑁 𝑇𝑇 𝑁𝑁𝑥𝑥 ≥ 0
 As it is just the square of length of 𝑁𝑁𝑥𝑥
 (b)⇒(a): Let 𝝀𝝀 be an eigenvalue of 𝑳𝑳. Then by (b)
𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 ≥ 0 so 𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 = 𝑥𝑥𝑇𝑇𝜆𝜆𝑥𝑥 = 𝜆𝜆𝑥𝑥𝑇𝑇𝑥𝑥 ⇒ 𝝀𝝀 ≥ 𝟎𝟎
 (a)⇒(c): is also easy! Do it yourself.
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Details!



 Fact: For symmetric matrix M:

 What is the meaning of min xT L x on G?
 xTL x = ∑𝑖𝑖,𝑖𝑖=1𝑛𝑛 𝐿𝐿𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 = ∑𝑖𝑖,𝑖𝑖=1𝑛𝑛 𝐷𝐷𝑖𝑖𝑖𝑖 − 𝐴𝐴𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖
 = ∑𝑖𝑖 𝐷𝐷𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2 − ∑ 𝑖𝑖,𝑖𝑖 ∈𝐸𝐸 2𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖

 = ∑ 𝑖𝑖,𝑖𝑖 ∈𝐸𝐸(𝑥𝑥𝑖𝑖2 + 𝑥𝑥𝑖𝑖2 − 2𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖) = ∑ 𝒊𝒊,𝒋𝒋 ∈𝑬𝑬 𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋
𝟐𝟐
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xx
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T

T

x

 min2 =λ

Node 𝒊𝒊 has degree 𝒅𝒅𝒊𝒊. So, value 𝒙𝒙𝒊𝒊𝟐𝟐 needs to be summed up 𝒅𝒅𝒊𝒊 times.
But each edge (𝒊𝒊, 𝒋𝒋) has two endpoints so we need 𝒙𝒙𝒊𝒊𝟐𝟐 +𝒙𝒙𝒋𝒋𝟐𝟐

Presenter
Presentation Notes
Sum_i Dii xi^2 = \sum_ij xi^2 + xj^2Node i has degree Dii so for each edge I sum xi^2 once.But edge has 2 endpoints so I have to take + xj^2 



 Write 𝑥𝑥 in axes of eigenvecotrs 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛 of 
𝑴𝑴. So, 𝑥𝑥 = ∑𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑤𝑤𝑖𝑖

 Then we get: 𝑀𝑀𝑥𝑥 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑀𝑀𝑤𝑤𝑖𝑖 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝜆𝜆𝑖𝑖𝑤𝑤𝑖𝑖
 So, what is 𝒙𝒙𝑻𝑻𝑴𝑴𝒙𝒙?
 𝑥𝑥𝑇𝑇𝑀𝑀𝑥𝑥 = ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝑤𝑤𝑖𝑖 ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝜆𝜆𝑖𝑖𝑤𝑤𝑖𝑖 = ∑𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝜆𝜆𝑖𝑖𝛼𝛼𝑖𝑖𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖

= ∑𝑖𝑖 𝛼𝛼𝑖𝑖𝜆𝜆𝑖𝑖𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖 = ∑𝒊𝒊 𝝀𝝀𝒊𝒊𝜶𝜶𝒊𝒊𝟐𝟐

 To minimize this over all unit vectors x orthogonal to: 
w = min over choices of (𝛼𝛼1, …𝛼𝛼𝑛𝑛) so that:
∑𝛼𝛼𝑖𝑖2 = 1 (unit length) ∑𝛼𝛼𝑖𝑖 = 0 (orthogonal to 𝑤𝑤1)
 To minimize this, set 𝜶𝜶𝟐𝟐 = 𝟏𝟏 and so ∑𝒊𝒊 𝝀𝝀𝒊𝒊𝜶𝜶𝒊𝒊𝟐𝟐 = 𝝀𝝀𝟐𝟐
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xx
xMx

T

T

x

 min2 =λ

𝝀𝝀𝒊𝒊𝒘𝒘𝒊𝒊 = 𝟎𝟎 if 𝒊𝒊 ≠ 𝒋𝒋
1 otherwise

Details!



 What else do we know about x?
 𝒙𝒙 is unit vector: ∑𝒊𝒊 𝒙𝒙𝒊𝒊𝟐𝟐 = 𝟏𝟏
 𝒙𝒙 is orthogonal to 1st eigenvector (𝟏𝟏, … ,𝟏𝟏) thus: 
∑𝒊𝒊 𝒙𝒙𝒊𝒊 ⋅ 𝟏𝟏 = ∑𝒊𝒊 𝒙𝒙𝒊𝒊 = 𝟎𝟎

 Remember:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 42

∑
∑ −

= ∈
2

2
),(

2  
)(

min
ii

jiEji

x
xx

λ
All labelings
of nodes 𝑖𝑖 so 
that ∑𝑥𝑥𝑖𝑖 = 0

We want to assign values 𝒙𝒙𝒊𝒊 to nodes i such 
that few edges cross 0.

(we want xi and xj to subtract each other)

𝑥𝑥𝑖𝑖 0
x

𝑥𝑥𝑖𝑖
Balance to minimize



 Back to finding the optimal cut
 Express partition (A,B) as a vector

𝒚𝒚𝒊𝒊 = �+𝟏𝟏
−𝟏𝟏

𝒊𝒊𝒇𝒇 𝒊𝒊 ∈ 𝑨𝑨
𝒊𝒊𝒇𝒇 𝒊𝒊 ∈ 𝑩𝑩

 We can minimize the cut of the partition by 
finding a non-trivial vector x that minimizes:
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𝑦𝑦𝑖𝑖 = −1 0 𝑦𝑦𝑖𝑖 = +1
Can’t solve exactly. Let’s relax 𝒚𝒚 and
allow it to take any real value.
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 𝝀𝝀𝟐𝟐 = 𝐦𝐦𝐦𝐦𝐦𝐦
𝒚𝒚

𝒇𝒇 𝒚𝒚 : The minimum value of 𝒇𝒇(𝒚𝒚) is 

given by the 2nd smallest eigenvalue λ2 of the 
Laplacian matrix L

 𝐱𝐱 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦𝐦𝐦𝐲𝐲 𝒇𝒇 𝒚𝒚 : The optimal solution for y
is given by the corresponding eigenvector 𝒙𝒙, 
referred as the Fiedler vector

𝑥𝑥𝑖𝑖 0 x𝑥𝑥𝑖𝑖



 Suppose there is a partition of G into A and B 
where 𝐴𝐴 ≤ |𝐵𝐵|, s.t. 𝜶𝜶 = (# 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴 𝑡𝑡𝑓𝑓 𝐵𝐵)

𝐴𝐴
then 2𝜶𝜶 ≥ 𝝀𝝀𝟐𝟐
 This is the approximation guarantee of the spectral 

clustering. It says the cut spectral finds is at most 2
away from the optimal one of score 𝜶𝜶.

 Proof: 
 Let: a=|A|, b=|B| and e= # edges from A to B
 Enough to choose some 𝒙𝒙𝒊𝒊 based on A and B such 

that: 𝜆𝜆2 ≤
∑ 𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗

2

∑𝑖𝑖 𝑥𝑥𝑖𝑖
2 ≤ 2𝛼𝛼 (while also ∑𝑖𝑖 𝑥𝑥𝑖𝑖 = 0)
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Details!

𝝀𝝀𝟐𝟐 is only smaller 



 Proof (continued): 

 1) Let’s set: 𝒙𝒙𝒊𝒊 = �
− 𝟏𝟏

𝒂𝒂

+ 𝟏𝟏
𝒃𝒃

𝒊𝒊𝒇𝒇 𝒊𝒊 ∈ 𝑨𝑨
𝒊𝒊𝒇𝒇 𝒊𝒊 ∈ 𝑩𝑩

 Let’s quickly verify that ∑𝑖𝑖 𝑥𝑥𝑖𝑖 = 0: 𝑎𝑎 − 1
𝑎𝑎

+ 𝑏𝑏 1
𝑏𝑏

= 𝟎𝟎

 2) Then:
∑ 𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗

2

∑𝑖𝑖 𝑥𝑥𝑖𝑖
2 =

∑𝑖𝑖∈𝐴𝐴,𝑗𝑗∈𝐵𝐵
1
𝑏𝑏+

1
𝑎𝑎

2

𝑎𝑎 −1𝑎𝑎
2
+𝑏𝑏 1

𝑏𝑏

2 =
𝑒𝑒⋅ 1

𝑎𝑎+
1
𝑏𝑏

2

1
𝑎𝑎+

1
𝑏𝑏

=

𝑒𝑒 1
𝑎𝑎

+ 1
𝑏𝑏
≤ 𝑒𝑒 1

𝑎𝑎
+ 1

𝑎𝑎
≤ 𝒆𝒆 𝟐𝟐

𝒂𝒂
= 𝟐𝟐𝜶𝜶
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Details!

Which proves that the cost 
achieved by spectral is better 
than twice the OPT coste … number of edges between A and B



 Putting it all together:

𝟐𝟐𝜶𝜶 ≥ 𝝀𝝀𝟐𝟐 ≥
𝜶𝜶𝟐𝟐

𝟐𝟐𝒌𝒌𝒎𝒎𝒂𝒂𝒙𝒙
 where 𝑘𝑘𝑓𝑓𝑎𝑎𝑥𝑥 is the maximum node degree 

in the graph
 Note we only provide the 1st part: 𝟐𝟐𝜶𝜶 ≥ 𝝀𝝀𝟐𝟐

 We did not prove 𝝀𝝀𝟐𝟐 ≥
𝜶𝜶𝟐𝟐

𝟐𝟐𝒌𝒌𝒎𝒎𝒂𝒂𝒙𝒙

 Overall this always certifies that 𝝀𝝀𝟐𝟐 always gives a 
useful bound
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Details!



 How to define a “good” partition of a graph?
 Minimize a given graph cut criterion

 How to efficiently identify such a partition?
 Approximate using information provided by the 

eigenvalues and eigenvectors of a graph

 Spectral Clustering
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 Three basic stages:
 1) Pre-processing
 Construct a matrix representation of the graph

 2) Decomposition
 Compute eigenvalues and eigenvectors of the matrix
 Map each point to a lower-dimensional representation 

based on one or more eigenvectors

 3) Grouping
 Assign points to two or more clusters, based on the new 

representation
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 1) Pre-processing:
 Build Laplacian

matrix L of the 
graph

 2)
Decomposition:
 Find eigenvalues λ

and eigenvectors x
of the matrix L

 Map vertices to 
corresponding 
components of λ2
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0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

λ= X =

How do we now 
find the clusters?

-0.66

-0.35

-0.34

0.33

0.62

0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



 3) Grouping:
 Sort components of reduced 1-dimensional vector
 Identify clusters by splitting the sorted vector in two

 How to choose a splitting point?
 Naïve approaches: 
 Split at 0 or median value

 More expensive approaches:
 Attempt to minimize normalized cut in 1-dimension 

(sweep over ordering of nodes induced by the eigenvector)
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-0.66

-0.35

-0.34

0.33

0.62

0.31 Split at 0:
Cluster A: Positive points

Cluster B: Negative points

0.33

0.62
0.31

-0.66

-0.35

-0.34

A B
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Rank in x2
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2
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Rank in x2

Va
lu

e 
of

 x
2

Components of x2
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Components of x1

Components of x3



 How do we partition a graph into k clusters?

 Two basic approaches:
 Recursive bi-partitioning [Hagen et al., ’92]
 Recursively apply bi-partitioning algorithm in a 

hierarchical divisive manner
 Disadvantages: Inefficient, unstable

 Cluster multiple eigenvectors [Shi-Malik, ’00]
 Build a reduced space from multiple eigenvectors
 Commonly used in recent papers
 A preferable approach…
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 Approximates the optimal cut [Shi-Malik, ’00]
 Can be used to approximate optimal k-way normalized 

cut
 Emphasizes cohesive clusters
 Increases the unevenness in the distribution of the data
 Associations between similar points are amplified, 

associations between dissimilar points are attenuated
 The data begins to “approximate a clustering”

 Well-separated space
 Transforms data to a new “embedded space”, 

consisting of k orthogonal basis vectors
 Multiple eigenvectors prevent instability due to 

information loss
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 Searching for small communities in 
the Web graph

 What is the signature of a community / 
discussion in a Web graph?

[Kumar et al. ‘99]

Dense 2-layer graph

Intuition: Many people all talking about the same things

… …
Use this to define “topics”:
What the same people on 
the left talk about on the right
Remember HITS!
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 A more well-defined problem:
Enumerate complete bipartite subgraphs Ks,t
 Where Ks,t : s nodes on the “left” where each links 

to the same t other nodes on the “right”

K3,4

|X| = s = 3
|Y| = t = 4X Y

Fully connected
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 Market basket analysis. Setting:
 Market: Universe U of n items
 Baskets: m subsets of U: S1, S2, …, Sm ⊆ U

(Si is a set of items one person bought)
 Support: Frequency threshold f

 Goal:
 Find all subsets T s.t. T ⊆ Si of at least  f sets Si

(items in T were bought together at least f times)
 What’s the connection between the 

itemsets and complete bipartite graphs?

[Agrawal-Srikant ‘99]
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Frequent itemsets = complete bipartite graphs!

 How?
 View each node i as a 

set Si of nodes i points to
 Ks,t = a set Y of size t

that occurs in s sets Si

 Looking for Ks,t set of 
frequency threshold to s
and look at layer t – all 
frequent sets of size t

[Kumar et al. ‘99]

i
b

c

d

a

Si={a,b,c,d}

j

i

k

b

c

d

a

X Y

s … minimum support (|X|=s)
t … itemset size (|Y|=t)
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[Kumar et al. ‘99]

i
b

c

d

a

Si={a,b,c,d}

x

y

z

b

c

a

X Y

Find frequent itemsets:
s … minimum support
t … itemset size

x
b

c

a

We found Ks,t! 
Ks,t = a set Y of size t
that occurs in s sets Si

View each node i as a 
set Si of nodes i points to

Say we find a frequent 
itemset Y={a,b,c} of supp s
So, there are s nodes that 
link to all of {a,b,c}:

z
a

b

c

y
b

c

a
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 Support threshold s=2
 {b,d}: support 3
 {e,f}: support 2

 And we just found 2 bipartite 
subgraphs:

c

a b

d

f

Itemsets:
a = {b,c,d}
b = {d}
c = {b,d,e,f}
d = {e,f}
e = {b,d}
f  = {}

e

c

a b

d

e

c
d

f
e
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 Example of a community from a web graph

Nodes on the right Nodes on the left

[Kumar, Raghavan, Rajagopalan, Tomkins: Trawling the Web for emerging cyber-communities 1999]
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