## Question 1 (60%)

Given a directed graph, where the values indicate upper bounds:



- a. (15%) List all cuts between node 1 and node 7. Find the minimum cut (or cuts).
- b. (15%) Find the maximum flow between 1 and 7 using the Augmenting Algorithm. List all algorithmic steps.
- c. (15%) Find the maximum flow between 1 and 7 using the Simplex Algorithm. Show the objective function and constraints. List the algorithmic steps. You can use any available software (Solver, Lindo, etc.)
- d. (10%) Formulate the dual problem. Show the objective function and constraints.
- e. (5%) find the range of the capacity of arc (3, 4) that does NOT change the maximum flow.

## Question 2 (40%)

The following table lists the arcs of a directed graph:

| Arc capacity | Cost of Flow <sup>1</sup> | To Node | From Node |
|--------------|---------------------------|---------|-----------|
| 40           | 2                         | 2       | 1         |
| 90           | 3                         | 4       | 1         |
| 90           | 3                         | 3       | 2         |
| 20           | 1                         | 5       | 2         |
| 40           | 2                         | 6       | 3         |
| 40           | 2                         | 5       | 4         |
| 160          | 4                         | 7       | 4         |
| 20           | 1                         | 6       | 5         |
| 40           | 2                         | 8       | 5         |
| 40           | 2                         | 9       | 6         |
| 90           | 3                         | 8       | 7         |
| 40           | 2                         | 9       | 8         |

- a. (10%) List all simple paths between 1 and 9 and calculate each path cost.
- b. (10%) Find the maximum flow between 1 and 9 and the flow distribution in the network.
- c. (10%) In which arc (or arcs) you should increase the capacity, in order to increase the maximum flow? Take into account the cost of each arc.
- d. (10%) Is it possible to decrease the total cost in the solution found in item (b) without decreasing the maximum flow?

<sup>1</sup> Each use of a specific arc will incur the mentioned cost, regardless of the volume of flow.