
Exploring Complex Text Layout
Frank Oberle; July, 2015

PREFACE

This document is meant to be an informal – and therefore sometimes less than precise – introduction to
what are commonly considered Complex Text attributes. In spite of the CTL acronym’s appearance in
many pieces of software that purport to handle such layouts, many of them are rather vague about what
exactly is being supported and use the term rather indiscriminately. Published standards occasionally allude
to some of these attributes in one guise or another, but provide no formal definitions.1

OBJECTIVES

The objectives of this document therefore are to provide:

• a broad overview of the subject area referred to with the unfortunate name Complex Text Layout,
usually given the acronym CTL;

• specific examples of various CTL characteristics in at least one appropriate script and language;

• specific instructions on how each example can be duplicated by a user/writer/developer who may
have no familiarity with the script or language used;

• an implicit justification that ‘complex’ has, over time, become an arbitrary and obsolete categori-
zation that should be abandoned as quickly (but in as non-disruptive a manner) as possible. What’s
now considered ‘complex’ – ‘oddities’ or ‘exceptions’ – should be viewed simply as equally
legitimate alternatives. With generalized design made possible by advances in software technology
and continued progress toward globalization, these distinctions can and should be abandoned.

• supporting background material for a document related to LibreOffice titled ‘Bugs-and-a-Horse.’

REQUIREMENTS

To experiment with these CTL behaviors, rather than simply reading about them, you will need:

• Knowledge of at least one technique for entering Unicode characters that don’t appear as keys on
whatever keyboard is in use. An overview of such techniques is provided in Character Entry
Methods on page 31.

• An installed font containing the Unicode Basic Latin, Latin-1, Thai, Devanagari, Basic Hebrew,
and Basic Arabic Code Blocks; the FreeSerif font2 is recommended unless you know how to
confirm the presence of the scripts listed above on your own.

• Access to a decent source of reasonably identical text samples in many languages. The opening
section of the United Nations Universal Declaration of Human Rights3 is a good source.

1 Tellingly, the phrases ‘complex text’ and ‘language’ are seldom found in these formal discussions!
2 The FreeFont family can be downloaded from http://www.gnu.org/software/freefont/ and likely other sites. Although there

is no such thing as a “pan-unicode” font, everyone who deals with multiple scripts and/or languages should have a decent
single fallback font that can be used to cover all the languages you will need.

3 “Human beings are born free in dignity and equal rights.” The site www.omniglot.com/udhr/index.htm contains links to the
text of Article 1 of this declaration translated into over 300 languages which can easily be copied into any test documents.

EXPLORING_CTL PAGE 1 OF 36

TABLE OF CONTENTS

Exploring Complex Text Layout...1
Preface..1
Objectives...1
Requirements..1

Defining Complex Text Layout – What it is and what it isn’t!...4
FIGURE 1 – LANGUAGES DIALOG IN LIBREOFFICE WRITER...4

Role of System Components in Managing text Layouts...4
Characteristics of so-called Complex Text Layout (CTL)...6

Characters and Character Cells..6
Alphabetic Characters...6

A IS FOR APPLE...6

Consonants and Vowels...6
Vowel Varieties...6
Characters as Diacritics...7
Tones, Accents, and Breathing Marks as Diacritics..7
Character Cells...7
Contextual Character Forms (Alternative Characters)...7
Contextual Character Shaping (Shape Changing)..8
Character Reordering and Placement..8
Illegal Character Combinations...9
Composite Characters...9
Ligatures (Composite Glyphs)...9
Dead Keys...9

FIGURE 2 – DEAD KEYS ON A MANUAL THAI TYPEWRITER (CIRCA 1970)...9

Text Layout Direction (Writing Mode)...10
Perceived Cultural Issues...10

FIGURE 3 – BOUSTROPHEDON TEXT LAYOUT...11
FIGURE 4 – REVERSE BOUSTROPHEDON TEXT LAYOUT..11
FIGURE 5 – THE PHAESTOS DISK..11

Mixed Text Directions – Bidirectional Text..12
Default Paragraph Direction (Primary Text Direction) in Text with Mixed Directions.........................12
Cursor Movement when Entering or Editing Text in Bidirectional Paragraphs.....................................12
Paired Symbols in Text with Mixed Directions..14

FIGURE 6 – ENGLISH (US) KEYBOARD LAYOUT SEGMENT...14
FIGURE 7 – HEBREW KEYBOARD LAYOUT SEGMENT..14

Rulers, Guides, and Tabs in Text with Mixed Directions...15
Left, Right, and Center Tab Stops..15
FIGURE 8 – LEFT-TO-RIGHT RULER WITH TAB SETTINGS...16
FIGURE 9 – RIGHT-TO-LEFT RULER WITH MIRRORED TAB SETTINGS..16

EXPLORING_CTL PAGE 2 OF 36

Decimal Tab Stops...16
FIGURE 10 – LEFT-TO-RIGHT RULER WITH A DECIMAL TAB SETTING...16
FIGURE 11 – MIRRORED RTL RULER WITH A DECIMAL TAB SETTING..16

Detecting Primary Text Direction in Paragraphs..17
Text Alignment in Documents with Mixed Directions...17

FIGURE 12 – LEFT ALIGN..17
FIGURE 13 – BIDIRECTIONAL..17

Transitioning between Text Directions within Paragraphs..17
Justification..18
Ragged Justification..18
Full Justification..18

Kashideh..18
Word Breaks, Line Breaks, and Hyphenation...19
Collation and Sorting..19

CTL Examples in Practice..20
Disclaimer...20

Thai Script examples using ภาษาไทย (the Thai Language)..21
Brief Comments about Thai..21
Examples for Experimentation (No knowledge of Thai needed)..21

FIGURE 14 – SAMPLE THAI TEXT BLOCK...22

Devanagari Script examples using हहनदद भभषभ (the Hindi Language)...23

Brief Comments about Hindi..23
Examples for Experimentation (No knowledge of Hindi needed)..23

FIGURE 15 – SAMPLE HINDI TEXT BLOCK..24

Arabic Script examples using العربيه 24...(the Arabic Language) اللغة
Brief Comments about Arabic...24
Examples for Experimentation (No knowledge of Arabic needed)...24
Kashideh Justification and emphasis...25

FIGURE 16 – SAMPLE ARABIC TEXT, INCLUDING KASHIDEH JUSTIFICATION..26

Hebrew Script examples using עברית 26...(the Hebrew Language) שפת
Brief Comments about Hebrew...26
Examples for Experimentation (No knowledge of Hebrew needed)...26

FIGURE 17 – SAMPLE HEBREW TEXT BLOCKS WITH AND WITHOUT VOWEL INDICATORS..............................27

Transitioning between English and Hebrew in a Bidirectional Paragraph – an Example............................27
Character Entry Methods...31

FIGURE 18 – “INSERT > SPECIAL CHARACTER...” DIALOG BOX IN LIBREOFFICE WRITER.............................31
FIGURE 19 – “ONBOARD” ON-SCREEN KEYBOARD – TYPICAL OF MANY AVAILABLE......................................32

UTF-8 (ISO-10646) Code Point Representations...33

EXPLORING_CTL PAGE 3 OF 36

Defining Complex Text Layout – What it is and what it isn’t!
A minimal definition of “Text Layout” for this document would be: “the placement of single or composite
characters and/or symbols into virtual character cells, and arranging those cells in the sequence and
direction in which they are intended to be displayed or printed.” It is important to stress that this sequence
does not always match the order in which these “characters” are stored or transmitted. The definition of a
character cell and how it differs from its contents is likewise important to understanding the significance of
many of the attributes of so-called “complex text.” At this point, it is only necessary to be aware that such
cells exist; the use and significance of character cells will become clear as the document proceeds.

So what makes text layout “complex?” On a Microsoft FAQ page,4 the author says: “A complex script is
one that requires special processing to display and process.” The page continues with some examples, but
nothing that could be considered a definition.

The LibreOffice Writer Guide5 says that
Writer offers “support for Asian languages
(Chinese, Japanese, Korean) and support for
CTL (complex text layout) languages such as
Hindi, Thai, Hebrew, and Arabic.” On the
surface, these distinctions seem reasonable,
but that is questionable.

Its Getting Started Guide offers a somewhat
different interpretation of CTL: “LibreOffice
… provides support for both Complex Text
Layout (CTL) and Right to Left (RTL)
layout languages (such as Urdu, Hebrew, and
Arabic).” Writer’s configuration dialog
layouts imply moreover that these categories
are related to Language or Locale which, while not entirely untrue, is misleading.

Wikipedia says that complex text layout is “the typesetting of writing systems in which the shape or
positioning of a grapheme depends on its relation to other graphemes. The term is used in the field of
software internationalization, where each grapheme is a character.”6 The first sentence in this quote is
correct, but the second is questionable. You can research the precise meaning of words such as character,
symbol, glyph and grapheme if you wish, but with no obvious consensus on the distinctions, this paper will
simply discuss the concepts using words that seem to me appropriate.

The common thread in all these comments is that “complex” is a relative and often quite arbitrary term,
and one could be forgiven for suspecting it is mostly used to refer to layout issues the software developers
were unfamiliar with, had never encountered, or had never even heard of.

ROLE OF SYSTEM COMPONENTS IN MANAGING TEXT LAYOUTS

There are often many elements of a system that contribute to what is considered the layout of text on a
screen or on paper, some of which work together well, and some where conflicts occur. Such components

4 See https://msdn.microsoft.com/en-us/goglobal/bb688172.aspx; this is a bit dated, but still seems to be their view.
5 Page 67; see https://wiki.documentfoundation.org/images/e/e6/WG42-WriterGuideLO.pdf to view or download.
6 See http://en.wikipedia.org/wiki/Complex_text_layout

EXPLORING_CTL PAGE 4 OF 36

Figure 1 – Languages Dialog in LibreOffice Writer

include the Keyboard used to enter the text and the low level BIOS and boot managers of the machine that
initially recognize the keyboard and determine what to do with its transmissions. Layered above those are
the Operating System, which refines the interpretation of inputs passed to it from the hardware, and
optional input method editors and utilities, which serve to translate (map) any input key sequences from
native button pushes7 to characters normally not relevant to a particular operating system.

Finally, there are individual applications, ranging from command line terminals, shells and desktop
managers to much larger and more sophisticated8 applications and suites for a wide variety of uses – many
not obviously affected by text layout, although all are to some degree or another. Word processors and
publishing suites come to mind immediately, but even graphics programs make use of text layout
capabilities, both for display and printing. Music players should have no difficulty displaying the native-
language names of recordings that are available from any location in the world. Genealogy software should
be able to discuss texts from the many languages that have been spoken by a user’s ancestors. Enough said.

Early systems were quite limited in their text layout capabilities and generalization and internationalization
of software designs was simply technically prohibitive and too expensive. As technology matured, handling
of many characteristics discussed here were added in a totally ad hoc basis.

Over the past decades, however, as various desired capabilities became technically feasible and appeared
more often, the most efficient and appropriate locations for many of these functions in the hierarchy of
system components have become settled. Printer support, for example, once handled by individual
applications based on their own specific needs, has long since migrated into the operating system, which
presents such support as a service to any application that might need it.

The distribution of significant portions of text layout capabilities now seems to be in the late stages of such
a migration. The proliferation of incompatible character encodings has now been settled with the adoption
of Unicode standards, although many obsolete or primitive mappings linger on. Storage layouts of
character encodings in UTF-8 format has provided even further generalization and standardization. In most
modern operating systems, the alphabets of any languages – given the appropriate fonts to render them –
can be freely intermixed, with their correct ordering and display transformations kept intact. Mostly.

So far, the recognition of language (as opposed to merely the writing system or script9 used to represent it
on screen or paper) remains the province of applications rather than operating systems or even input
methods. Capabilities related specifically to language, such as Spelling, Style and Grammar Checking and
the like are examples of such functions, although even these appear to some extent as operating system
services. The appropriate home for other functions, such as Collation and Sorting still hasn’t been settled
and, particularly where these encompass multiple languages,10 may likely always remain the province of
specialized software.

7 Regardless of the characters printed on the key tops, keyboards have no concept at all of languages or scripts; they’re simply
a collection of switches arranged and grouped into what is hopefully a useful layout for a particular user or group.

8 Well, most attempt to be, but the results can of course vary wildly.
9 See the accompanying document Bugs-and-a-Horse.pdf for a detailed discussion of the terms Language, Dialect, Country,

Writing System, Script, Abjad, Abugida, Alphabet, Key Code, Scan Code, Character Code, Character Cell, Locale,
Typeface, Glyph, and Font. Some of these terms will be used in this document; if any of their meanings is unclear, refer to
that document.

10 This does occur, although I’ve never seen a convincing case that there is any useful purpose to doing so. Even in publications
with side-by-side translations, indexes that intermingle words of different languages can often be more difficult to use than if
they are kept separate.

EXPLORING_CTL PAGE 5 OF 36

Characteristics of so-called Complex Text Layout (CTL)
Attempting to cover all the CTL characteristics that go into supporting a useful multilingual text editor or
word processor would be impractical, but this section will introduce and at least informally define selected
characteristics related to text layout. Following this overview, examples of the more interesting ones will be
presented using appropriate languages in CTL Examples in Practice beginning on page 20.

CHARACTERS AND CHARACTER CELLS

In languages like English, we tend to think of a character as a single entity – a letter of the alphabet, a
symbol used for punctuation (comma, period and such), a number or a mathematical symbol (0-9, plus and
minus signs, etc.), and various other symbols such as @, #, & and |. Thus, we don’t tend to distinguish
between characters and character cells, but for any text layout discussion, this becomes necessary. First,
however, we’ll look at some further distinctions among the variety of characters and symbols we use.

Alphabetic Characters

An alphabetic character can be defined most simply as one that is part of a language’s alphabet. The
alphabet song taught to school children in the U.S., for instance, does not include the comma, semicolon,
period, the tab, or even the space. Obvious, perhaps, but this paper will show how
fuzzy interpretation of this term can result in user interface oddities, particularly in
paragraphs that mix script directions. A simple summary might be:

• All writing is done with symbols of some sort.
• All characters are symbols but not all symbols are characters;
• Not all characters are part of an alphabet;
• Some alphabetic characters may not “look like” what we call “letters.”

Detection of alphabetic characters is key to handling multi- or bidirectional paragraph layouts in
multilingual documents; an illustration of this is included in the section titled Transitioning between English
and Hebrew in a Bidirectional Paragraph – an Example that begins on page 27.

Consonants and Vowels

In English, we don’t consider there to be any distinction between the representation of consonants and
vowels in our text layouts; a vowel like ‘e’ is just as much of an alphabetic character as a consonant like ‘f.’
But this is not universally true in the world’s alphabets. In order to be pronounced out loud, every syllable
(every phoneme, if you will) must have a vowel sound but need not have any consonant, and in spite of the
fact that no consonant can be spoken without adding some implicit vowel sound, consonants are considered
more important in some writing systems. Vowels may even be considered optional in some of those.

Vowel Varieties

In some writing systems, vowels aren’t recorded at all. In others, vowel sounds in a particular syllable are
indicated with techniques as varied as adding certain modifications to a syllable’s consonant,11 placing them
as diacritics above or below the consonant, or – as in English – recording the vowel as a “real” independent
character. To make things more interesting, even vowels that have full character status may not always be
placed in the order in which they are pronounced in a particular syllable.12

11 This is known as Contextual Shaping; see the eponymous section on page 8.
12 See the Thai and Hindi Examples for Experimentation beginning on pages 21 and 23 respectively, but if you’re thinking such

bizarre anomalies never occur in English, consider the spelling of the last syllable in the word “syllable.” Other
considerations related to vowel varieties in particular are presented in Character Reordering and Placement on page 8.

EXPLORING_CTL PAGE 6 OF 36

A is for Apple

Recognition of this variety of vowel placements will help when considering text layout in multiple scripts
and languages. Examples of each type of vowel placement will be given in CTL Examples in Practice.

Characters as Diacritics

Vowel markings that are placed above or below a consonant belong to a symbol class called diacritics;
other examples of diacritic “characters”13 include the cedilla, the umlaut, and various tones, accents and
breathing marks, any of which help indicate a difference in pronunciation of the base syllable.

Tones, Accents, and Breathing Marks as Diacritics

These symbols are also common examples of diacritics. One fallacy in some CTL discussions is that
complex text layout is more commonly required in so-called “tonal languages.” Languages often mentioned
in this context include Chinese and Japanese but, except when spoken by politicians during their corruption
trials, all spoken languages use both accents and tones. The phrase “tonal languages” simply refers to
writing systems that explicitly represent these – even in cases where these representations are optional.

To clarify this distinction: Say the following sentence out loud: “But you know that left is the opposite of
right, right?” – first with an accent on the word “you” and then again with the accent on the word “know.”
Each suggests an entirely different interpretation, but the difference in placement of the vocal accent
supplies enough information that a listener would get a sense of which was meaning was intended.

The differences heard between the last two words (“right” and “right”) is clearly a tonal one. No matter how
hard you try, it is difficult to pronounce the last two words the same; you will use different tones and
inflections. In English, we’re just expected to know which tones and accents to use based on the context.
From childhood, we learn to recognize and use tones and accents in the same way we learn to memorize
the secret rules for pronouncing words with ‘ough’ in them.14 We are just deprived of a way to write them!

Character Cells

Many languages utilize “characters” that, in fact, are actually composed of multiple symbols intended to be
displayed as if they were a single entity. Thus, the importance of a character cell – a position on a display
or page that is treated as if it were one character, but may in fact “contain” more than one stored symbol.

Contextual Character Forms (Alternative Characters)

Character Form should not be confused with a simple difference in the shape of a character such as those
encountered when using different fonts. The “A” character might appear as A in one font and as A in
another, but these differences are due to the font designs, and are irrelevant to text layout considerations.15

When discussing text layout, Character Forms are actual differences in a character based on its position in
a word or what its neighboring characters are. Positions are generally characterized as:

• isolated: the form used when a character is displayed by itself, and not part of a larger word.
• initial: the form used when a character is the first character in a word.
• median: the form used when a character is somewhere in the middle of the word.
• final: the form used when a character is the last character in a word.

Not all scripts have contextual character forms, and those that do might have few or many examples. The

13 Distinguishing between “diacritic characters” (those considered actual characters in Latin scripts) and simple “diacritics” is
another case of inconsistent usage among the “experts.” For this paper, the word “diacritic” will generally be used, even for
diacritics that are full alphabetic characters; for text layout purposes – complex or otherwise – the distinction isn’t relevant.

14 You’re certainly familiar with the rules for determining the correct pronunciations of Through, Though, Tough, Cough,
Hiccough, Bough, Bought, and Lough. Right? Luckily, most folks use the modern spellings of hiccup and loch.

15 … except for glyph widths of course. The fonts are Monotype Corsiva in the first instance and Carbon Block in the second.

EXPLORING_CTL PAGE 7 OF 36

lowercase Greek letter Sigma, for instance, generally is given the form σ (U+03C3), but has a final form ς
(U+03C2) that is (and must be) used at the end of a word.16 While these are both the same character in the
Greek alphabet,17 each is given a separate code point, and stored in memory and on disk as a separate
character. Existing technology could automatically perform such a substitution either on disk or just for
display if, for instance, σ was followed by a space, but no purpose would be served, as the current usage is
firmly entrenched. The lowercase Sigma is the only instance of a contextual character form in Greek.

Contextual Character Shaping (Shape Changing)

Contextual character shaping seems similar to contextual character forms, and the shaping is determined
by the same character position categories (isolated, initial, median, and final). The difference is that, rather
than being different characters, contextual shaping alters the character’s form to suit its position. The
changes in shape do not, however, represent different alphabetic characters, although a computer system
may display – but not store – the different shapes by using substitute symbols located in a suitable font.

In Arabic, for instance, the character that is more or less equivalent to the Latin “B” is ب (U+0628).
That “isolated form” is changed to several other forms when required: the ب character is written as ٻ
(U+FB54) in its initial form, ٻ (U+FB55) in its medial form, and ٻ (U+FB53)18 in its final form. Twenty-two of
the twenty-eight Arabic letters use all four contextual character forms, but only their isolated forms are
stored in memory or on disk – none of the variants are stored and all of them are used only for display.19

Another form of character alteration that looks similar to contextual character shaping is the deliberate
“stretching” of some characters in scalable fonts in order to assist with justification, but this shouldn’t be
confused with Contextual Character Shaping, which is language-related rather than layout-related. Details
of such alterations are mentioned in Full Justification on page 18 and in the reference given in footnote 35.

Symbols in Boustrophedon writing systems (see discussion on page 11) also make use of different forms.

Character Reordering and Placement

Despite the previously mentioned discrimination against the lowly vowel classes in some cultures,20 even
vowels that are stored in consonant-vowel order are displayed in vowel-consonant order in certain scripts.
The phrase हहनदद भभषभ in the Examples for Experimentation (No knowledge of Hindi needed) section on
page 23 gives an example of this in which the second character entered, a vowel, is displayed before the
first character, a consonant. In this example, the character reordering is done transparently by the system.

The term Character Reordering, however, is appropriately used only in cases where the entry order and
storage sequence differs from the written/printed presentation. Although swapping of consonant and vowel
sounds when a word is spelled correctly occurs often – as in the word ไทย illustrated and described toward
the end of the section Examples for Experimentation (No knowledge of Thai needed) or any English word
ending with “le,” (e.g. “double,” “triple,” and similar examples), these apparent exchanges are simply part
of the language, and their spelling is the writer’s responsibility.

In many cases, Character Reordering behavior affects how words are sorted in a given language or script;
this is addressed in more detail in Collation and Sorting on page 19.

16 With Latin keyboard remapping provided by Input Methods, these are typed using the s and w keys respectively.
17 The upper case Sigma Σ is used for both but, given that upper case letters aren’t used to end words, this isn’t surprising.

Many (but not all) Latin keyboards that are remapped will produce the capital Σ whether the capital S or W keys are used.
18 Look closely; there are two dots at the bottom rather than one.
19 The reasons for this relate to sorting, spell checking, and so forth. Still, some applications inexplicably ignore these issues.
20 See Vowel Varieties on page 6.

EXPLORING_CTL PAGE 8 OF 36

Illegal Character Combinations

Microsoft considers handling of “illegal character combinations” to be an element of complex text layout,
noting that “Since Thai syllables consist of a consonant optionally followed by one vowel and/or one tone
mark, some character combinations (e.g., two vowel marks in succession) are nonsensical. Thus, one of the
tasks of complex script enabling is to filter out or disallow illegal character combinations.”21

Such “help” is questionable, and seems to straddle whatever line exists between text layout implementation
and auto-correct capabilities. My experience is that Thais generally consider such things to be in the same
class as an English writer uses a word processor’s auto-correct facility to alter “teh” to “the.”

Composite Characters

The contents of character cells containing more than one symbol are generally known as composite
characters, but not all composite characters are the same. The difference is that while some combinations
are assembled “on the fly” for display from symbols that are stored separately on disk, others are formed by
some combination of symbols for which a single preassembled replacement has been defined.

In most Latin scripts, for example, the letter ‘a’ with an acute accent (a diacritic) is both stored on disk and
displayed as the single character ‘á’ regardless of whether it was entered directly on a keyboard or via some
“compose key” sequence (e.g. Compose + a + ') or similar feature of the operating system or application.

In other scripts, characters may be stored and transmitted separately, but still displayed in one character
cell.22 In Thai, for example, while the consonant บ and vowel ิ are considered individual letters, each of
which is stored separately on disk, they are displayed in one character cell as a composite character บ.ิ

Some implications of these differences will be discussed in “Cursor Movement and Editing Keys” below.

Ligatures (Composite Glyphs)

In the world outside computers, a Ligature is something used to bind or wrap two or more things together.
In typography, however, it refers to two or more characters that are displayed as if they were one; the
combination, which is treated as a single character cell, is not a composite character but a composite glyph.
The word aesthetic could be displayed with a common a+e ligature as æsthetic, but if stored in that manner
would fail a spell check. The difference, once again, is that æ is not a letter of the alphabet, while an n+~
ligature, such as ñ, is an actual alphabetic character. The differences affect collation sequences as well as
spell checking. Once again, some applications support stored ligatures with convoluted work-arounds.

Dead Keys

This term originated with older
manual typewriters, and is often
encountered in discussions about
the entry of composite characters.
Normally, when a key was typed,
the platen carrying the paper moved
to place the next printing position
where a hammer would strike. Keys
intended to place diacritics above or
below another were offset so this
could happen, and designed so that

21 See the reference in footnote 4.
22 In the reference cited in footnote 4, the Microsoft FAQ refers to such character cells containing multiple elements as “piles.”

EXPLORING_CTL PAGE 9 OF 36

Figure 2 – Dead Keys on a manual Thai Typewriter (circa 1970)

the platen roller and paper would not move when the key was struck. Hence, the name “Dead Key.” In the
segment of a Thai keyboard shown, the symbols on the eight “dead key” hammers in the center are offset
both horizontally and vertically to permit them to be printed above or below the character previously typed.

While in Thai and Greek, diacritics are typed after the base character as shown in Figure 2, the dead keys
on European typewriters had no offset on their hammers, requiring that dead keys for diacritics needed to
be entered before the base character. Thus, software developers must accommodate yet another set of
conflicting conventions to insure the resulting applications work according to local habits.

Symbols entered as Dead Keys are stored in memory either as separate individual characters and only
displayed together in a cell, or stored as composite characters, replacing the individual symbols in storage
as well as the display. Most Latin composite characters such as À, à, Ë, ë and the like are given discrete
Unicode values for legacy reasons that are beyond the scope of this paper. The Unicode Consortium has
publicly stated, however, that no more of these will be added in order to minimize redundancy,23 since
current technology can compose such characters for display quite flexibly and efficiently.

TEXT LAYOUT DIRECTION (WRITING MODE)

Text direction refers to the direction the symbols in a line
of text are laid out, but has nothing at all to do with how
the data representing that line is transmitted or stored on
disk. Text direction is a characteristic of the writing
system/alphabet rather than the Language, and should be
determined by the Unicode block of whatever character has
been entered. Text direction is also called by the vague
term ‘writing mode’ and is usually classified – and not very
well – as either ‘normal’ or ‘RTL.’

“Normal” typically means that a line of text is displayed or
printed horizontally from left to right; RTL means that the
text runs from right to left. The expected acronym LTR is
seldom encountered and text direction is generally never
mentioned or considered unless it is RTL. See the note
about such inconsistent perceptions to the right.

Of course, some languages can also be written vertically, so
we would be forgiven for expecting some acronym like
TTB (top to bottom), but that doesn’t seem to be the case.
Instead, such languages/scripts are referred to as ‘Asian.’
Vertical text layout is indeed usually Asian, but any
suggestion that ‘Asian’ languages in general are written
vertically reflects at least some level of ignorance. Scripts
written from top to bottom are apparently even less
“normal” than those written from right to left.

Given the current state of the art, there should be no need
whatever for a user to explicitly select right-to-left or any

23 The simple reason is that if one has five base characters that can accept any of five diacritics, a set of additional composite
characters would total 5*5, or 25, whereas if the characters can be assembled for display as needed, no additional characters
would be needed but the basic 5+5, or 10. Obviously, this calculation can get more interesting, but you get the idea.

EXPLORING_CTL PAGE 10 OF 36

Perceived Cultural Issues
Why is left-to-right text considered “normal” and not even
given its own acronym?

And why aren’t top-to-bottom scripts given their own
acronyms? These two questions have no good answer.

And why, as some wonder, do writers using English and
other western scripts get the prime real estate (the seven bit
codes) in the Unicode block tables?

The answer to this is more a matter of technical reality than
cultural insensitivity. The modern computer era began and
was primarily driven by English speakers during and
immediately after World War II. The result is that the
world’s operating systems, kernels, command lines,
programming languages, APIs and so forth continue to
require what is affectionately known as lower ASCII.

This is why even nationally sanctioned “official” fonts
include Latin scripts as well as their country’s own.

Menu options and error messages can now be routinely
presented in host languages without a great deal of pain
using Locale definitions, but attempts over the years to
translate programming language key words generally offer
far too few advantages to justify the effort involved. Sharing
source code across borders and dealing with differences in
paired symbol usage are just a few difficulties.

Well designed internationalized applications, along with
UTF-8, really insures that actual users of computers can be
provided with all that these devices have to offer.

Most apparent ‘cultural’ issues are differences in perspective
that can be and are being accommodated through better
generalization, although many such issues still remain.

other direction; directionality is a characteristic of a particular script and can easily be determined from the
Unicode block of any alphabetic character entered. If desirable, a user should of course be able to alter the
direction.

In order to present a more rational approach to discussing text direction in the examples that follow, several
new acronyms will be introduced.24 These are simply:

• LRTB: Left-to-Right; Top-to-Bottom. Examples include almost all European and Southeast Asian
scripts. This layout is becoming a common alternative used with many vertical scripts as well.

• RLTB: Right-to-Left; Top-to-Bottom. Examples are middle-eastern scripts such as Hebrew and
Arabic. RLTB layouts preceded LRTB layouts in history, giving them a prior claim to ‘Normal!’

• TBRL: Top-to-Bottom; Right-to-Left. This acronym reflects a change in precedence from
horizontal to vertical; examples of traditional TBRL scripts include many Chinese, Japanese, and
Korean scripts, although not all scripts used by even those languages are laid out vertically.
Horizontal left-to-right layouts are becoming ever more common with globalization.

• TBLR: Top-to-Bottom; Left-to-Right. An example of a script using a TBLR layout is Mongolian.

Other interesting text layout directions include Boustrophedon, Reverse Boustrophedon, and Spiral, none
of which are used in any contemporary language unless intended as decorative elements.

Boustrophedon writing examples are horizontal, but
alternate direction as each line is presented, reversing
the character shapes as well. Actual Boustrophedon
writing isn’t normally used with the Latin alphabet as
shown on the right, but that seems the best way to
illustrate it for non-archeologists who combine the
Boustrophedon layout with often obscure character sets to write scholarly articles about – what else? –
ancient Boustrophedon writings in Safaitic, Sabaean, early Greek & Latin. The undeciphered Rongorongo
inscriptions found on Easter Island are another, but unrelated, example of a Boustrophedon layout.

Reverse Boustrophedon, simulated on the right, is
quite similar, but the characters in the alternating
lines of text are inverted as well as reversed. The
etymology of the term Boustrophedon derives from
the alternating path taken by an ox while plowing a field. No acronym is used for Boustrophedon, since it
isn’t now, and will not likely be, supported by anything other than graphics software.

Spiral layouts are also used in the Linear-A syllabic script used in at least one
dead language – believed most likely to be Hittite, or an early form of one
of the Semitic or Greek languages. The Phaestos disk, illustrated on the
right, is the primary example of such writing although, since it has never
been convincingly translated, some scholars dispute whether it is read
from the inside out – the obvious assumption – or from the outside in.
Spiral layouts also aren’t given their own acronym, although its tempting
to use SPRL, since the final RL will introduce the same sort of confusion
promoted by the common pairing of RTL with CTL, rather than LTR.

24 New obscure acronyms, after all, are a traditional means by which technologists simulate progress and pretend to innovate!

EXPLORING_CTL PAGE 11 OF 36

Figure 3 – Boustrophedon Text Layout

Figure 4 – Reverse Boustrophedon Text Layout

Figure 5 – The Phaestos Disk

MIXED TEXT DIRECTIONS – BIDIRECTIONAL TEXT

Although many documents are written with just one language and, therefore, one script and text direction,
any modern system should be able to transparently support the use of multiple languages without requiring
user intervention. When mixing text segments having different directionality in the same document
however, a number of interesting issues arise. These issues – and their typical solutions – depend on a
variety of factors which are discussed (again informally) in this section.

Default Paragraph Direction (Primary Text Direction) in Text with Mixed Directions

Even in the case of side-by-side or interleaved translations of one language to another, or commentary
in one language regarding text in another, it is usually the case that a document will be written with
one language being considered as the primary. This language is known as the Document Default
Language, and the direction of the script used for that language is then considered the Paragraph
Default. At least conceptually, the primary, or document default, language is not at all related to the
default language of the operating system, the application, or any other user interface in use, although
these distinctions are commonly blurred in applications designed without multilingual use in mind.

It is more practical, however, to ignore the document and consider each paragraph to have its own
primary language and, therefore, default direction, since that offers the most granular control of text
layout. The default Paragraph Direction will of course default to the document’s default language.

The most interesting circumstance is the pairing of horizontal and vertical text segments, shown in the
band on the right side of the page, where the primary paragraph language is Chinese.25 Sections of the
normally horizontal English text that are included will also be laid out vertically, usually with the
characters rotated as shown here, although this can vary depending on the actual content. Thus,
LRTB segments are transformed into simply TB segments. If the non-Chinese text happened to be a
normally RLTB language such as Arabic, it would by the same convention, be arranged as simply BT.

To say that there are technical difficulties with mixing horizontal and vertical text, however, is a bit
simplistic and misleading. The primary difficulty is determining what any such technical solution
ought to accomplish – what a resulting mixture should look like on paper in order to make sense for
an average reader. For this and various other reasons, the use of vertically oriented text layouts is
gradually disappearing, with the Chinese government itself driving that change as early as 1956.

Page margins generally remain the same where scripts having multiple directions are mixed, unless
there is some specific design need, which is usually unrelated to simply LRTB-RLTB considerations.

Cursor Movement when Entering or Editing Text in Bidirectional Paragraphs

If handled incorrectly by an application, cursor movement or character selection with a mouse during
bidirectional text entry can be quite disconcerting to a user. Confusing cursor behavior during text
entry is most often the result of incorrectly identifying transitions from one script to another. An
example of this is provided in the section Transitioning between English and Hebrew in a Bidirectional
Paragraph – an Example on page 27, which includes a step by step review of transitions in either
direction to illustrate both proper and improper cursor behavior.

Transitions between different text layout directions can also occur in paragraphs in which only a single
language is used; many right-to-left languages display numeric characters from left-to-right. An
example of how this is handled is provided in Figure 9 – Right-to-Left Ruler with Mirrored Tab
Settings and its accompanying explanation on page 16.

25 The Chinese text is from the opening of the United Nations Universal Declaration of Human Rights. See Footnote 3.

EXPLORING_CTL PAGE 12 OF 36

人
人
生
而
自
由,
在
尊
严
和
权
利
上
一
律
平
等。

L
A

T
IN IS R

O
T

A
T

E
D IN P

R
E

D
O

M
IN

A
N

T
LY V

E
R

T
IC

A
L T

E
X

T B
LO

C
K

S.

The table below summarizes the actions of various keys during cursor movement, character entry, and
editing in paragraphs with different default text layout directions:

Cursor Movement Keys

Home Key
in LRTB Layouts

The Home key will move the cursor to the beginning of
the line, which is the left-most position.

in RLTB Layouts
The Home key will also move the cursor to the
beginning of the line, which is the right-most position.

End Key
in LRTB Layouts

The End key will move the cursor to the end of the
line, which is the right-most position.

in RLTB Layouts
The End key will also move the cursor to the end of the
line, which is the left-most position.

→ Key (Forward Key)

in LRTB Layouts
The → key will move the cursor right (in the direction
indicated by the arrow) to the next character cell.

in RLTB Layouts
The → key will also move the cursor to the next
character cell, but in the case of right-to-left scripts,
that character cell is on the left.

← Key (Reverse Key)

in LRTB Layouts
The ← key will move the cursor left (in the direction
indicated by the arrow) to the previous character cell.

in RLTB Layouts
The ← key will also move the cursor to the previous
character cell, but in the case of right-to-left scripts,
that character cell is on the right.

Character Entry and Editing Keys

← Backspace Key

in LRTB Layouts
The ←Backspace key will delete the character to the left
of the cursor, the direction indicated by the arrow.

in RLTB Layouts
In spite of the left-facing arrow on the Backspace key
of many keyboards, this will delete the character to the
right of the cursor.

Delete Key
in LRTB Layouts

The Delete key will delete the character to the right of
the cursor.

in RLTB Layouts
The Delete key will delete the character to the left of
the cursor.

Tab→ Key (Forward)

in LRTB Layouts

During text entry or editing, the Tab→ key will insert a
usually invisible character that will move the cursor to a
character cell beginning at the next tab stop to the right.
The Tab→ key is also used in some applications to
move the cursor to the “left” or “next” cell in layout
structures such as tables.

in RLTB Layouts

During text entry or editing, the Tab→ key will usually
do nothing, but it is used in some applications to move
the cursor to the “right” or “previous” cell in layout
structures such as tables.

←Tab Key (Back) in LRTB Layouts During text entry or editing, the ←Tab key will usually
do nothing, but it is used in some applications to move
the cursor to the “previous” cell in layout structures

EXPLORING_CTL PAGE 13 OF 36

such as tables.

in RLTB Layouts

The ←Tab key will insert a usually invisible character
that will move the cursor to a character cell beginning
at the next tab stop to the right. See the comments
below regarding tab stops in documents having
bidirectional layouts.

Comments: The motion of the → and ← cursor keys seems particularly contrary unless they
are referred to by names similar to the Fwd and Rev keys seen on media players; such
symbols can only be considered intuitive in the Microsoft sense of the word – which is to say
it’s been done that way for so long, that users’ habits have become stratified. That’s just how
it’s done and, like the pronunciations given in footnote 14 (see page 7), these likely won’t ever
change. Implementation of Tab behavior in right-to-left text is seldom seen in any but very
specialized applications, however. If such support is implemented in more mainstream
applications, it should likely be accompanied by an option to reverse the behavior of the left
and right cursor keys as well for consistency. See Rulers, Guides, and Tabs in Text with Mixed
Directions on page 15 for illustrations.

Paired Symbols in Text with Mixed Directions

Most written languages use a variety of paired delimiter symbols, such as parentheses, braces, brackets,
and quotation marks. With parentheses – to use one such pair as an example – the first of the symbol in
left-to-right scripts is typically referred to as either an ‘opening parenthesis’ or a ‘left parenthesis.’ The
second of the pair is correspondingly known as a ‘right parenthesis’ or a ‘closing parenthesis.’26 Other paired
symbols are similarly named. Most scripts, whether left-to-right or right-to-left, use identical Unicode
characters for the ‘opening’ parenthesis (U+0028) and ‘closing’ parenthesis (U+0029) regardless of their
position on the keyboard.

Such seemingly minor variations in naming reflect the sorts
of perspective differences that a user needs to be aware of
when mixing scripts within a single document, particularly
when Input Method Editors are used to dynamically switch
keyboard layouts. Three common pairs of such delimiters –
the Parentheses, Curly Brackets, and Square Brackets – are
shown in Figure 6 as they are laid out on the upper right of a
typical “western” keyboard layout.27 In the case of a left-to-right layout such as this, whether the phrase
“left parenthesis” or “opening parenthesis” is used makes no difference when describing the (key.

So what about right-to-left scripts such as Hebrew or Arabic?
As can be seen in the equivalent keyboard segment on the
right, the Hebrew perspective is that the key combination of
Shift + 9 is likewise used as an opening parenthesis, and the
Shift + 0 as the closing parenthesis, regardless of what the
symbol looks like. Thus, when mixing Latin and Hebrew
scripts by switching keyboards, an identical perspective

26 The Unicode Consortium originally used the names ‘opening parenthesis’ for the ‘(‘ character U+0028 and ‘closing
parenthesis’ for the ‘)’ character U+0029, but later adopted the more neutral ‘left’ and ‘right’ terms as the official names,
leaving ‘opening’ and ‘closing’ as alternate names.

27 Many languages also share these and other paired symbols, but place them in different keyboard locations.

EXPLORING_CTL PAGE 14 OF 36

*
8

(
9

)
0

_
-

+
=

←

I O P {
[

}
]

Figure 6 – English (US) Keyboard Layout Segment

*
8

)
9

(
0

_
-

+
=

←

I
ן

O
ם

P
פ

}
]

{
[

Figure 7 – Hebrew Keyboard Layout Segment

applies. The same perspective carries through to the other paired characters on the Hebrew layout,
including the ‘<’ and ‘>’ symbols that are not shown in the illustration.

This difference in perspective is not reflected in all right-to-left languages keyboards, however; some
Arabic keyboards have the paired delimiters in the same locations as on Latin keyboards.28 This perhaps
reflects the wide variety of languages that use the Arabic script. Choose keyboard layouts wisely!

Quotation marks, another common symbol pair, appear in many interesting varieties. What the French call
guillements (« and »), are used in many languages.29 Danish and Hungarian writing uses the same symbols,
but in reverse; the » marks the beginning of a quotation and the « indicates the ending. Similar, though not
identical symbols (《 and 》) are used in Korean and simplified Chinese, but are different code points.30

In order to avoid headaches, we’ll ignore any discussion of how paired character matching algorithms31 are
affected by the different open-close-left-right perspectives. And we certainly don’t want to consider what
implications there might be of exchanging the / and \ keys, which is left for the reader to ponder.

Rulers, Guides, and Tabs in Text with Mixed Directions

Perspective in the treatment of ruler displays, guides, tab stops, line indents, and the like is somewhat
analogous to that of paired parentheses, where the└ symbol may be viewed as representing a “left tab
stop” or a “forward tab stop,” i.e. one continuing the left-to-right motion of the text being displayed. In a
right-to-left paragraph, however, it is the ┘symbol or a “right tab stop” that represents forward motion.

Common conventions for tab stop symbols should help: a user can view the vertical bar on the tab marker
as the location where placement of character cells will resume after the Tab key is pressed. The bottom
right angle “hook” should always point in the direction that character cells will be laid out from that point.

Unfortunately, many applications treat these various guides inconsistently. Some consider them as Page-
centric rather than Paragraph-centric or, even worse, as being dependent on the installation’s user-interface
language; many applications require elaborate configurations to handle bi-directional text on a paragraph
basis, and some simply ignore the issues involved with handling multiple text directions. Documentation
for many products will often provide clues to the level of support for mixing text directions.32

Before discussing decimal tabs, which have their own unique issues, we should begin with the more
common left, right, and center tabs, since proper handling of these seems to be rather straightforward.
Left, Right, and Center Tab Stops

Assume that the Default Language of a document uses a left-to-right Script; this implies that, unless
explicitly changed by a user, the default paragraph direction is also left-to-right. For this example, assume
also that the default paragraph style uses a customized set of tab stops. The following illustrates how these
tab stops would be mirrored as defaults for any independent right-to-left paragraphs in that document:

The user’s defined tab settings are shown in Figure 8, and listed in tab setting dialogs as follows:

28 Both forms can be found on Amazon, for instance, but there is no mention in their descriptions that this difference exists.
29 Including Armenian, Azerbaijani, Basque, Belarusian, Catalan, Swiss, German, Greek, Italian, Latvian, Norwegian, Persian,

Portuguese, Russian, Spanish and Ukrainian. In Finnish and Swedish, the » is sometimes used to open and close a phrase.
30 The Unicode values for these are « (U+00AB), » (U+00BB), 《 (U+300A), 》(U+300B). The latter two are ‘full width’ symbols to

match the fixed width of vertical columns of symbols; when primarily written horizontally, symbol use is more flexible.
31 e.g. where placing the cursor on one symbol of a pair causes its twin to be indicated in some fashion.
32 Although LibreOffice, for example, supports multiple interface languages, it has only minimal support for mixing text

directions. The help in its Writer component says, for instance, “Initially the default tabs are shown on the horizontal ruler.
Once you set a tab, only the default tabs to the right of the tab that you have set are available.” Use of the phrase “to the
right of the tab” is a clear indication that Writer assumes a predominantly left-to-right world as many applications do.

EXPLORING_CTL PAGE 15 OF 36

0.50" Left Text continues Forward (right) from this point.
2.00" Centered Text spreads in both directions around this point.
3.80" Right Text continues in Reverse (left) from this point.

These tab settings are, of course, measured from
the left margin – the LRTB point of reference.

Where the Default Paragraph Direction is right-to-
left in a document that is primarily left-to-right,
the Tab Settings would be mirrored, as seen here:
0.50" Right Text continues Forward (left) from this point.
2.00" Centered Text spreads in both directions around this point.
3.80" Left Text continues in Reverse (right) from this point.

With right-to-left “exception” paragraphs in this example document, the default tab direction settings
should be reversed, and measured from the right margin. The tab at 0.5" remains a “forward tab,” but in
this case needs to be transformed to a “right tab” in order to correctly mirror the left-to-right settings.33

It must be noted that some mainstream applications consider Tabs within text to be white space (which is
correct), but also interpret such Tabs as Latin characters (which they are not) due to their 0X09 code point.
Decimal Tab Stops

Because numbers are generally displayed from left-to-right even in languages that are otherwise laid out in
the opposite direction, mirroring of tab settings presents more interesting challenges when those settings
include decimal tab stops. Figure 10 illustrates a left-to-right layout with three tab stops:
0.30" Left Text continues Forward (right) from this point.
2.40" Decimal Digits continue in Reverse (left) from this point

until the decimal point is entered, after which
the digits continue Forward (right) until the number
entry has been completed.

2.80" Left Text continues Forward (right) from this point.

The small red triangles indicate the points at which
the user pressed the Tab key while typing the
phrase. After “3.” was typed, the tab key moved the cursor to the 2.40" position and the numbers were
entered right-to-left until the decimal key restored its normal left-to-right direction. When the tab after the
final “8” was typed, the cursor moved to the 2.80" position, at which point the user typed “in …,” etc.

Transformation of decimal tab settings for use in mirrored right-to-left paragraphs is a bit more complex
than the simple swap and direction reversal described above. As with the earlier example, the 0.3" and 2.8"
tabs are simply converted from Left Tabs to Right Tabs but, in this example, the decimal tab value for the
RLTB Arabic text would be converted from 2.40" to perhaps 1.20" as shown in Figure 11 below.
0.30" Right Text continues Forward (left) from this point.
1.20" Decimal Digits continue in Forward (left) from this point

until the decimal point is entered, after which
the digits continue Reversed (right) until the number
entry has been completed with the “$” entry.

2.80" Right Text continues Forward (left) from this point.

Assuming that the values expected to be displayed
in the mirrored layouts are similar in terms of the

33 The user may need to alter these settings for various reasons, or in specific paragraphs, but in many cases, a well-designed
interface will preclude such a need.

EXPLORING_CTL PAGE 16 OF 36

Figure 9 – Right-to-Left Ruler with Mirrored Tab Settings

 في اليانصيب90،123،456.78فاز $
 tab keys pressed → ▴ ▴

.3
 ▴

Figure 11 – Mirrored RTL Ruler with a Decimal Tab Setting

3. He won $90,123,456.78 in the Lottery.
 ▴ ▴ ▴ ← tab keys pressed

Figure 10 – Left-to-Right Ruler with a Decimal Tab Setting

Figure 8 – Left-to-Right Ruler with Tab Settings

quantity of digits expected before and after the decimal point,34 the relative distance between the tab stop
preceding the decimal location and that following it need to be swapped, but things aren’t that simple. In
the left-to-right example, the larger distance we wish to swap from one side to the other is not the distance
from the 0.3" tab to the 2.4" tab, but rather the average distance between the endings of whatever text
begins at the 0.3" tab to the 2.4" tab. In Figure 10, this would be from about 0.85" to the 2.4" tab stop.

Without delving into how this is calculated (because, after all, such an arbitrary result can only serve as a
useful starting point that will likely need to be fine tuned by a user depending on a particular combination
of languages, font sizes, and other factors), we can refer to the original 0.3", 2.4" and 2.8" tabs respectively
as α, δ, and ω. The mirrored decimal tab would then be set at 2.25 x (ω-δ) + α, or, in this case 1.20".

More precise layouts would likely be handled by tables or grids that have been available in most word
processors for decades. Note that similar mirroring considerations also apply to bullets, numbering, etc.

Detecting Primary Text Direction in Paragraphs

In dedicated multilingual applications, a convention evolved at least twenty-five years ago that the Primary
Text Direction for a given paragraph should be determined by the initial character of the paragraph, but the
meaning of “the initial character,” which meant quite narrowly the first alphabetic character, was often lost
when that convention was eventually adopted in more general purpose editors and word processors.

The term “alphabetic character” does not include shared values (e.g. common punctuation as well as the
space and tab characters) in what is still called the lower ASCII range. A good example of this can be seen
in Figure 11, where the first “character” (the numeric character “3”) is shared across many scripts. The
paragraph, clearly intended as right-to-left Arabic, is mistakenly set as left-to-right by several applications
when such a decision should be deferred until an actual alphabetic character is encountered.

Text Alignment in Documents with Mixed Directions

A common default for the beginning of text lines in left-to-right layouts such as
those shown in Figures 8 and 10 is the left margin. This is reflected in, and often
controlled by, icons such as those shown in Figure 12 on the right.

Unlike the settings for tab stops, such choices are not subject to differences in
perspective; left and right, after all, have the same interpretation regardless of
language or culture. Furthermore, two of the alignment choices shown in Figure 13
would be interpreted the same regardless of perspective.

What is often overlooked in some application interfaces is how paragraph alignment
defaults should be handled if the primary text direction of a paragraph differs from
the document’s primary text direction. When such a change is detected, a user should reasonably expect the
text alignment in use to be mirrored as well. If the default paragraph direction is left-to-right, for instance,
and the default alignment for that paragraph is left, the alignment should be mirrored (i.e. set to be right-
aligned) when the paragraph direction is changed.

Transitioning between Text Directions within Paragraphs

Smooth transitions for users entering text in bidirectional paragraphs can be disrupted when the current
paragraph script is detected improperly. A detailed example of how this occurs is presented beginning on
on page 27 in Transitioning between English and Hebrew in a Bidirectional Paragraph – an Example.

34 Currency, as shown here, assumes a greater possible number of integer units than decimal units, but the same reasoning
would apply for different value types. Remember too that there are a variety of delimiters used in numbers (not applicable in
this example), and a variety of currency indicator placements (seen here with the $ being placed after the value).

EXPLORING_CTL PAGE 17 OF 36

Figure 12 – Left Align

Figure 13 – Bidirectional

JUSTIFICATION

Justification describes not the direction in which the text is laid out, but how it relates to the page margins.
The choices given for justification in most contemporary applications are Left, Center, Right, and Full, as
shown in Figure 12, but these terms actually represent two general classes: Ragged and Full.

Ragged Justification

The term Justification is often used rather loosely to indicate which margin any lines of displayed text are
aligned against. Most lines of text in this document, for instance, begin at the left margin and, while such a
layout is colloquially known as “left justification,” it is more correctly known as “flush left” and/or “ragged
right” – ragged because the lines of text are usually of different lengths. Text may be and is often set either
“ragged left” or “ragged right” regardless of a paragraph’s default layout direction.

Full Justification

Justification, in its more formal use, is altering a line of text in order to extend it so that the lines in a
paragraph are laid out to align evenly against both margins. The exception to this is that the last line in a
paragraph will not be altered in cases where it is short enough to produce humorous results if so extended.

There are several techniques used by software to justify text. The simplest is to stretch the spaces between
words to extend the line length sufficiently to meet35 the ending margin. This can become problematic with
languages that don’t delimit words with spaces, although there are techniques for overcoming this.

Slightly more pleasing36 results can be obtained by also adding slight increases to the space between the
displayed character cells – but not between characters as some sources incorrectly suggest. This is one
example of why there is a distinction between characters and character cells. Of course, spaces that would
otherwise appear at the beginning or ending of lines need to be suppressed in any justified output.

Another technique involves subtle37 ‘stretching’ or ‘shrinking’ the widths of individual character cell
contents (selective contextual shaping) to minimize the need for extending space widths excessively.

The best results when applying full justification are obtained when the paragraph is considered as a whole,
rather than simply on a line by line basis. Further discussion is out of scope for a document like this, but
searches for the following justification algorithms are recommended for those with an interest:

• Knuth and Plass: 1981; This is the same Donald Knuth any good programmer should already know.
• Hochuli and Kinross: 1996;
• Hàn Thé Thành: 1999; See footnote 35 for one interesting link.
• Haralambous and Bella: 2006;
• Elyaakoubi and Lazrek: 2010; 38

Kashideh

An interesting alternate technique for obtaining full justification is known by the Arabic term Kashideh.
Kashideh layout can be used for justification in a variety of languages that use Arabic scripts, including
Persian, Urdu, Pashto, and Jawi, as well as with Devanagari scripts in languages like Hindi, Sanskrit,
Bengali, Nepali, etc. See Figure 16 – Sample Arabic Text, including Kashideh Justification on page 26 for a

35 There is actually a difference between having character edges aligned against the margin and merely “appearing” to be
aligned against the margin edges; see http://www.tug.org/TUGboat/Articles/tb25-1/thanh.pdf for a discussion.

36 This is of course a subjective term, but is based on centuries of typography practices across many cultures and technologies.
37 The are, of course, often some “not-so-subtle” differences in various designers’ interpretations of “subtle.”
38 See http://quod.lib.umich.edu/j/jep/3336451.0013.105?view=text;rgn=main to download their article in the Journal of

Electronic Publishing (v13#1).

EXPLORING_CTL PAGE 18 OF 36

detailed comparison of ragged right and Kashideh justification.

Perhaps this form of justification actually does qualify as “complex,” although “elegant” would seem to be
a better term.

WORD BREAKS, LINE BREAKS, AND HYPHENATION

Although the majority of contemporary scripts use spaces between words, and at least some form of
punctuation to delimit sentences, some do not. As mentioned earlier, for example, Thai uses no spaces
between words. This can be seen in Figure 14 – Sample Thai Text Block on page 22. Observe that the first
space is only seen between the words อิสระ and เรา about two-thirds of the way into the first line, which is
the break between the first two sentences.39 The detection of the line break causing the large space at the
end of the first line occurs after the whole word มม, since the following word ความ won’t fit on the line.

The mechanisms by which this occurs, while considered by some to be a Complex Text Layout function,
are beyond the scope of this document, but in most modern systems are provided by lower level services
and not by higher level applications such as word processors.

COLLATION AND SORTING

Collation and Sorting is determined for the primary user interface by the Locale setting but, as noted
earlier, well-designed applications make no assumption that such choices have any inherent relation to the
choice of primary language in any particular document other than perhaps setting a default starting point
for new documents.

Collation and Sorting is only tangentially related to what applications call Complex Text Layout, and is
more properly in the Language or possibly the Script domain, but the sorting orders in many languages
don’t always follow what is commonly called “alphabetical order.”

Depending on the language, Composite Characters may or may not be considered when sorting. In
German, the displayed character ä, although stored as an independent character, is considered simply a
variant of the base character a (i.e. an a with a diacritic umlaut) for purposes of sorting. The ä in Swedish,
however, is actually the second last letter in the Swedish alphabet between å and ö (none of which therefore
are composite characters) and sorted accordingly.

In English, vowels are distributed among the consonants in the alphabet, with a, e, i, o and u being the 1st,
5th, 9th, 15th, and 21st characters respectively. In other languages the alphabetic vowels – whether actual
characters or dead key diacritics – are considered a separate sequence. In Hindi, the Vowel order (अ आ इ
ई उ ऊ ऋ ए ऐ ओ and औ) is distinct from and comes before the Consonant order (क ख ग घ ङ च छ ज झ
ञ ट ठ ड ढ ण त थ द ध न प फ ब भ म य र ल व श ष स and ह) and the sorting reflects this.40 In Thai, the
situation is reversed; the vowels (ะ ั า า ิ ม ื ึ ุ ู ฺ เ แ โ ใ ไ and ๅ) are grouped together at the end of the
alphabet, but the sort order considers each vowel after every consonant.41

The next section will present examples of CTL attributes in the context of actual scripts and languages.

39 For the curious, the word เรา that appears at the beginning of all three sentences in this selection translates to “we.”
40 It’s not quite that simple in practice, but this document is intended only as an introduction.
41 Thai sorting is even more interesting in practice, but you get the idea. Note that the intermingling of both full character and

the upper and lower diacritic vowels indicates that the only difference between them in Thai is display placement.

EXPLORING_CTL PAGE 19 OF 36

CTL Examples in Practice
DISCLAIMER

The examples provided in this document are not intended as a comprehensive means of testing of what are
inexplicably known as Complex Text Layout capabilities, but are merely intended as a means to determine
if such capabilities exist in a particular environment and how well they are supported. The primary intent is
to permit those with little or no knowledge of the languages requiring such capabilities to explore how and
under what conditions those capabilities function when working properly.

Of course, it is necessary to insure that a font containing the required character glyphs is present on
whatever system is being tested. Since both contemporary operating systems and applications often
perform both font substitution as well as glyph substitution – often without warning or any apparent
rationale, care must be taken to select an appropriate font for these examples so that CTL capabilities
rather than font or glyph substitution capabilities are being tested. If these tests are run within an
application, any CTL processing should be turned OFF to begin with.

It should also be noted that all comments refer to Unicode used with UTF-842 operating systems and
applications; except for very arcane usage requirements, this combination should be viewed as “standard”
for modern systems.

There are a number of ways to enter these characters. If there is an “input method” active (such as iBus),
and configured for Thai using the keyboard layout specified, the character combinations can be typed on a
Latin keyboard using the keys shown immediately below each sample. The “บิบ” in column 1, for instance, is
typed as “[bj”. This, of course, requires that the active font contains the Thai script. See footnote 2.

The two lines below the Latin equivalent keys indicates the Unicode values and their decimal equivalents,
and can be used as described in the Character Entry Methods section that begins on page 31.

42 See the section UTF-8 (ISO-10646) Code Point Representations on page 33 for details of UTF representations.

EXPLORING_CTL PAGE 20 OF 36

Thai Script examples using ภาษาไทย (the Thai Language)
BRIEF COMMENTS ABOUT THAI

In addition to the Thai language itself, Thai script is also used for Pali, some versions of Sanskrit, and
other minority languages.

The Thai language alphabetic characters, as well as its diacritic vowels and tone markings, are defined in
Unicode Block U+0E00-0E7F under Southeast Asian Scripts.43 Thai is written from left-to-right, and top-to-
bottom (LRTB), and has no case differences; the Shift key is used in Thai to type different characters.

Thai uses no spaces between individual words, but its syllables are constructed in a precise enough fashion
that identification of word and syllable breaks is fairly straightforward, making hyphenation and line
breaking equally straightforward. Spaces delimit sentences in Thai, and Thai characters are not generally
connected to each other in print unless the intent is decorative, such as with posters and advertising.

Thai has its own set of digits – the 0 to 9 equivalents are: ๐ ๑ ๒ ๓ ๔ ๕ ๖ ๗ ๘ ๙ – but generally uses the
shared numerals defined in the Latin code block. On computer keyboards with separate numeric keypads,
the Thai convention is that the keys on the main area of the keyboard produce the Thai digits ๐ to ๙, while
those on the numeric keypad produce the “western/European/Indian/Arabic” characters 0 to 9.

EXAMPLES FOR EXPERIMENTATION (NO KNOWLEDGE OF THAI NEEDED)

The recommended keyboard mapping for these examples is that defined by TIS-820.2538,44 although the
Kedmanee keyboard layout is very similar and can be used if TIS-820 is not available. Latin key presses
used with the TIS-820 layout are shown directly below the Thai characters; the following lines provide the
Unicode hexadecimal values and their decimal equivalents for use with single character entry methods.

In the center two columns (4 and 5) of this table are two similar Thai consonants (บ and ป) that school
children call Baw-Baimai (Baimai means leaf in English) and Bpaw Bplah (fish); the only difference in
appearance between these characters is that the right side extends higher in the บ than in the ป.

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8

Vowel + Tone45 Mai-ek Tone “i” vowel Baw (leaf) Bpaw (fish) “i” vowel Mai-ek Tone Vowel + Tone

บิบ บบ บิ บ ป ปิ ปบ ปิบ
[b j [j [b [x x b x j x b j

U+0E1A
U+0E34
U+0E48

U+0E1A
U+0E48

U+0E1A
U+0E34

U+0E1A U+0E1B U+0E1B
U+0E34

U+0E1B
U+0E48

U+0E1B
U+0E34
U+0E48

3610d, 3636d,
3656d

3610d, 3656d 3610d, 3636d 3610d 3611d 3611d, 3636d 3611d, 3656d 3611d, 3636d,
3656d

The บ and ป characters appear again in columns 3 and 6 with the diacritic vowel ิ, one of several that are
positioned above their associated consonant. Note that in column 3, the vowel is in its normal position. In

43 See http://www.unicode.org/charts/PDF/U0E00.pdf; a full index of Unicode charts is at http://www.unicode.org/charts/.
44 2538 is the Thai year corresponding to 1995 in most calendars.
45 This is an example of diacritic ordering or ranking. In Thai, a diacritic vowel “outranks” a tone mark, and is thus placed

closer to the base character. Very few applications correct such entry errors.

EXPLORING_CTL PAGE 21 OF 36

 E
xa

m
p

le
s

in
 th

e
 T

h
a

i L
a

ng
ua

ge
 –

 ภ
าษ
าไ
ทย

column 6, however, it is shifted to the left to accommodate the ป character’s right side ascender.46

In columns 2 and 7 respectively, the Mai-ek, one of four diacritic tone indicators used in Thai, has been
placed above each letter. Again, because of the right side ascender of the ป character, the tone mark in
column 7 needs to be shifted to the left relative to the position shown in column 2.

Columns 1 and 8 illustrate the correct placement of the vowel and tone mark diacritics when used together.
Diacritic vowels in Thai “outrank” tone marks and so remain where they were shown in columns 3 and 6,
but the tone mark needs to be placed higher than its normal position. Thus, tone marks in Thai can appear
in any of four distinct positions depending on the circumstances.

Thai also has some other diacritic vowels that are placed below their related
consonants, such as the vowel ุ in the second word (ท ุก – the 4th and 5th

character cells) highlighted in Figure 14. In the illustration to the right, a
similar vowel ู is shown paired with the Yaw consonant ญ to illustrate another
interesting layout convention. The ญ character itself appears to be composite,
since its lower element is separated,47 but isn’t. When combined with the lower
diacritic vowel ู however, the lower element is simply replaced in the cell.

At least in Linux operating systems, the Thai contextual diacritic placements and shape changing described
in this section are provided by the operating system or input method and are not dependent on any features
of higher level applications, including so-called Complex Text Layout (CTL) functions.

In Thai, Dead Keys for diacritics are typed after the consonants48 with which they are associated; diacritic
vowels are expected to be entered before any tone marks they are paired with. The expanded grep-like
techniques of the m17n library’s font layout tables49 used by many operating systems to perform all of the
arrangements and modifications described above are also able to correct paired diacritics that are entered
in the wrong order, but don’t generally do this – considering these to be typing rather than layout errors.

Thai also has a class of vowels that are full characters (as opposed to diacritics), but some, such as the ไ in
the word ไทย (“Thai”) are placed before the consonant – in this case, the ท (≈ the Latin t) – with which they
are paired, while others like ะ are laid out more traditionally and follow the consonant. Entry order of
these, while also “correctable,” is considered a user’s responsibility. Although word processors that have
auto-correct functionality could reasonably support such instances, this isn’t considered extensible.

Snippets from the United Nations Universal Declaration of
Human Rights (see footnote 3) have been used earlier; on
the right is the entire Article 1 in Thai which, like all these
translations, is more idiomatic than literal. The English
version is “All people are born free and equal in dignity
and rights. They are endowed with reason and conscience
and should act towards one another in a spirit of brotherhood.”

Cursor and editing keys in Thai (arrows, backspace, delete, etc.) operate on character cells rather than
individual characters, but many applications permit modifier keys to cause them to work on characters.

46 As a matter of interest, the word บ ิin column 3 happens to mean “business” in Thai, but the other examples in this table are
not actual Thai words; they are simply used to illustrate flexible diacritic positioning – considered a CTL characteristic.

47 At some time in history it seems to have been, but has been considered a single letter for centuries.
48 See Figure 2 on page 9 for an illustration of how dead keys function on manual Thai typewriters.
49 In Ubuntu, such *.flt files are located in /usr/share/m17n; their location in other distributions varies.

EXPLORING_CTL PAGE 22 OF 36

เราท ุกคนเกิดมาอยบางอิสระ เราท ุกคนมม
ความคิดและความเขขาใจเปปนของเราเอง เรา
ท ุกคนควรไดขร ั บการปฏิบ ั ติในทางเดมยวก ัน.

Figure 14 – Sample Thai Text Block

ญ ญ
P P ^

U+0E0D
U+0E0D
U+0E39

3597d 3797d, 3641d

 E
xa

m
p

le
s

in
 th

e
 T

h
a

i L
a

ng
ua

ge
 –

 ภ
าษ
าไ
ทย

Devanagari Script examples using हहिन्ददी भभाषभा (the Hindi Language)
BRIEF COMMENTS ABOUT HINDI

The South Asian Devanagari script used for Hindi is likely used in more languages than any other, being
the primary script used for Bodo, Konkani, Maithili, Marathi, Nepali, Pali, classical Sanskrit and Sindi as
well as in more than one hundred other languages in the areas around India, Nepal, and Bhutan.

Hindi itself is one of India’s official languages and the official language for several of its twenty-nine states
including Bihar, Haryana, Himachal Pradesh, Jharkhand, Madhya Pradesh, and Uttar Pradesh.

The Devanagari script is defined in Unicode blocks U+0900-097F and U+A8E0-A8FF,50 and is written from left-
to-right, and top-to-bottom (LRTB). Unlike many scripts, the baseline for Devanagari scripts is more
pronounced and is closer to the top of its character cells than the bottom, making this a recognizable script
even for those unfamiliar with any languages with which it is used. Devanagari characters are typically
connected to one another within any individual word.

Devanagari script has its own set of numeric digits – the 0 to 9 equivalents are: ० १ २ ३ ४ ५ ६ ७ ८ ९ – but
generally uses the shared numerals defined in the Latin code block. The computer keyboard used for these
examples can only produce the Devanagari digits with the AltGr modifier key, but others, like the “Hindi
(Wx)” keyboard mentioned below, place these on the top row, with the 0-9 digits on the numeric keypad.

EXAMPLES FOR EXPERIMENTATION (NO KNOWLEDGE OF HINDI NEEDED)

The keyboard mapping used to create these examples is named “Hindi (Bolnagri),” one of several phonetic
keyboards used to type Devanagari script using Latin letters that produce similar sounds. The Latin key
presses when using this layout are shown directly below the Hindi characters, and the following lines
provide the Unicode hexadecimal values and their decimal equivalents as in the earlier Thai example.

This example illustrates a two word, ten character sequence हहनदद भभषभ meaning “(the) Hindi language.”
The word “the” is parenthesized because Hindi doesn’t use articles (e.g. “a,” “the,” and similar words).

Char 1 Char 2 Char 3 Char 4 Char 5 Char 6 Char 7 Char 8 Char 9 Char 10

ह हि न द िद भिभ ष िभ
h i51 n d I space B a S a

0x939 0x93f 0x928 0x922 0x940 0x20 0x92d 0x93e 0x937 0x93e

2361d 2367d 2344d 2338d 2368d 32d 2349d 2366d 2359d 2366d

ह हह हहन हहनद हहनदद भ भभ भभष भभषभ
If the “Hindi (Bolnagri)” keyboard is not available, “Hindi (Wx)” can be used, but the Latin letters above
should be replaced by h i n x I space B A R A . In either case, take care to use the Shift key to create
the Latin upper case letters shown. As we saw with Thai, there is no concept of upper and lower case with
Devanagari script and, when shifted, the same keys produce entirely different and unrelated characters.

50 See http://www.unicode.org/charts/PDF/U0900.pdf & http://www.unicode.org/charts/PDF/UA8E0.pdf respectively.
51 The dotted circle is not part of the Devanagari characters; it is a convention used to indicate their relative placement for

vowels that cannot or do not stand on their own. Some languages, such as Thai, whose vowels are often used in syllables
without consonants, explicitly pair such vowels with a “holder” consonant (the อ), so the circle convention isn’t seen as often.

EXPLORING_CTL PAGE 23 OF 36

 E
xa

m
p

le
s

in
 th

e
 H

in
d

i L
a

ng
ua

g
e

 –
 ह
ह
नद
द भ
भष
भ

Devanagari fonts without all the appropriate ligatures will still produce readable text,52 but for extended use
of any particular language in these families, the presence of any desired ligatures should be confirmed.

The first two characters are an example of Character Reordering, introduced on page 8. When the vowel
हिis entered after the consonant ह, it is placed to the left of it in a manner similar to what happens with
sequential entry of characters in a right-to-left (RTL) script. Unlike the Thai example above, Hindi
illustrates the use of the CTL characteristic known as character reordering, which appears not only with
Devanagari script, but many others. Support for character reordering such as illustrated is needed because
of the wide variety of keyboard layouts in use. With phonetic keyboards, the sounds produced by the initial
characters in this example need a reversal as part of their correct display placement.

On the right is the entire Article 1 of the United
Nations Universal Declaration of Human Rights (see
footnote 3) in Hindi for comparison to the other
examples used throughout this document.

Etymology buffs might note the similarity between the
Hindi (हहनदद) and Thai (ภาษา) words for “language.”

Arabic Script examples using اللغة العربيه (the Arabic Language)
BRIEF COMMENTS ABOUT ARABIC

Not surprisingly, the Arabic language uses characters from the Arabic script in Unicode’s Middle Eastern
group,53 defined in Block U+0600-06FF as well as several supplemental blocks.54 Arabic is written from right-
to-left and top-to-bottom (RLTB). Arabic script is said to appear “cursive,” although that is subjective.

Arabic script is used to write what is known as “Modern Standard Arabic,” as well as Arabic dialects55 or
variants (e.g. Algerian, Egyptian, Lebanese, Moroccan, and Syrian), and less related languages such as
Äynu, Azeri, Baluchi, Beja, Bosnian, Brahui, Chechen, Crimean Tatar, Dari, Gilaki, Hausa, Kabyle,
Karakalpak, Konkani, Kashmiri, Kazakh, Khowar, Kurdish, Kyrgyz, Malay, Marwari, Mandekan,
Mazandarani, Morisco, Pashto, Persian/Farsi, Punjabi, Rajasthani, Salar, Saraiki, Shabaki, Shughni,
Sindhi, Somali, Tatar, Tausūg, Turkish, Urdu, Uyghur, Uzbek, Wakhi and a number of other languages

Arabic script includes a set of digits – the 0 to 9 equivalents56 are: ٠ ١ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩ , although the shared
numerals defined in the Latin code block are often used depending on the specific language and context.

Arabic characters within a word are very often connected, and Arabic script makes extensive use of
Contextual Shaping, with many characters having isolated, initial, median and final versions. Additionally,
some median versions may vary depending on the specific characters surrounding them.

EXAMPLES FOR EXPERIMENTATION (NO KNOWLEDGE OF ARABIC NEEDED)

Here we show how to enter the thirteen character sequence for the Arabic phrase اللغة العربيه (meaning
“the Arabic Language”) using the same three methods described earlier.

52 The 3rd and 4th characters above combine to display the word as हहनदद, but the uncombined form हहनढद is still understood.
53 See http://www.unicode.org/charts/PDF/U0600.pdf
54 These include the Arabic Supplement (u+0750-077f), Arabic Extended-A (u+08a0-08ff), Arabic Presentation Forms-A

(u+fb50-fdff) and Arabic Presentation Forms-B (u+fe70-feff). Presentation Forms are discussed later.
55 And recall that there is no widely accepted definition of “dialect.” Its usage is often based as much on politics as linguistics.
56 Note the similarity of the digits 1, 2, 3, and 9 to ASCII numerals. Persian and Urdu flavors of Arabic have variants of these.

EXPLORING_CTL PAGE 24 OF 36

सभद मनन ष्ययों कको गगौरव और अहधकभरयों कके मभमलके ममें
जनमजभत स्वतनत त्रतभ और समभनतभ प त्रभप्त हहै । उनहमें
 बनद त्हध और अनतरभत्मभ कद दकेन प त्रभप्त हहै और परस्पर
उनहमें भभईचभरके कके भभव सके बतभरव करनभ चभहहए।

Figure 15 – Sample Hindi Text Block

E

xa
m

p
le

s
in

 t
he

 A
ra

b
ic

 L
an

gu
ag

e

The top row, labeled “Char 1” through “Char 13” shows the sequence in which the characters are entered
and stored in memory and on disk, while the second row shows the individual Arabic characters.

The keyboard mapping used here is the “Arabic (qwerty/digits)” and the third row shows the letters to be
typed on a standard Latin keyboard if that keyboard is selected as the input method.

The fourth and fifth rows show the Unicode values in hexadecimal and decimal respectively. Finally, the
fifth row shows the resulting progression of the modifications made to the characters as each word is typed.
Char 1 Char 2 Char 3 Char 4 Char 5 Char 6 Char 7 Char 8 Char 9 Char 10 Char 11 Char 12 Char 13

ا ل ل غ ة ا ل ع ر يب ه
h g g y m space h g u v f d i

0x627 0x644 0x644 0x63a 0x629 0x20 0x627 0x644 0x639 0x631 0x628 0x64a 0x647

1575d 1604d 1604d 1594d 1577d 32d 1575d 1604d 1593d 1585d 1576d 1610d 1607d

ا ال الل اللغ اللغة ا ال الع العر العرب العربي العربيه

When the first character is typed, the computer should immediately recognize that a right-to-left script is
being used, even if the default paragraph is set as left-to-right; the new character (ا) will appear as usual
with the exception that the cursor should now be located to the right of the character instead of its left. If
this entry is in a bidirectional paragraph, some applications will alter the cursor to indicate the direction the
text will flow when the next character is entered. More details will be presented in the Hebrew section.

Then, as expected, when the second character ل is entered, it will be placed to the left of the first. When
the third character, which notably is the same character as the second, is entered,57 the variation in
character display becomes evident. The new ل is placed, as expected to the left of the previous one, but
the previous one has changed form. This alteration is generally handled transparently by modern Input
Method utilities, regardless of whether a specific script has been activated as the current keyboard or not;
these utilities will generally recognize the script that has been entered and act accordingly.

The appearance of the fourth character entered (غ) is likewise altered for display with the previous ل
character. Also note how the eleventh character was altered when the twelfth (ي) was entered.

The sixth character entered is a space. As can be seen from its hexadecimal and decimal values, the space
character is not part of the Arabic script block, but is the same character shared with and used by a variety
of scripts. The difficulties in handling such shared characters in paragraphs with bidirectional text will be
deferred for the moment, but are discussed in the Hebrew Script examples section that begins on page 26.

KASHIDEH JUSTIFICATION AND EMPHASIS

An interesting use of Contextual Shaping in certain Arabic and Devanagari scripts is a method of full
justification known by the Arabic term Kashideh; with handwritten manuscripts, this was accomplished by
stretching certain connecting lines between characters rather than simply inserting spaces. Most scripts are
fully justified by expanding the spacing between either words, letters or both, but when Kashideh is
implemented with technology, this is typically accomplished using character variations available in the
Arabic Presentation Forms.58

57 And, importantly, placed in memory or on disk using the same character code (u+0644).
58 See footnote 54 for further information.

EXPLORING_CTL PAGE 25 OF 36

E

xa
m

p
le

s
in

 t
he

 A
ra

b
ic

 L
an

gu
ag

e

To the right are two Arabic renditions of
Article 1 from the Universal Declaration of
Human Rights used throughout this document.

The top example shows the text in its basic
right-to-left, flush right, ragged left layout.

The lower sample displays the same text fully
justified using the Kashideh layout technique.

Specific examples of the differences are
highlighted for clarity. Note that, in this
example, none of the spacing between words
or characters was altered to achieve full
justification, although the use of Kashideh
doesn’t prohibit this.

Kashideh is often used automatically when full
justification of an all-Arabic paragraph is
requested in many applications, but it can also
be applied, usually at an application user’s
request, to emphasize an important word or to
correspond to phonetic inflection – similar in
principle to how Bold and Underline are sometimes utilized in Latin scripts.

Hebrew Script examples using שפת עברית (the Hebrew Language)
BRIEF COMMENTS ABOUT HEBREW

The Middle Eastern Hebrew Script, defined in Unicode block U+0590-05FF,59 is used in several unrelated
languages, primarily the Hebrew language of course, but also Judeo-Arabic, Ladino, Yiddish and others.

Hebrew script is written from right-to-left and top-to-bottom (RLTB) similar to the Arabic script above.
Unlike Arabic, however, the Hebrew perspective of paired symbols60 is that characters such as parentheses,
brackets, and braces are the reverse of what they are in Arabic or in most western scripts.

Hebrew script includes five characters with different final forms. The character כ, for instance is written as
 at the end of a word. Although there is no upper and lower case, Hebrew text, unlike most non-Latin ך
scripts, does have both serif and sans-serif typeface designs.

EXAMPLES FOR EXPERIMENTATION (NO KNOWLEDGE OF HEBREW NEEDED)

The keyboard mapping used for these examples is a very basic “Hebrew” rather than any of the biblical or
phonetic variants that may also be available. The first example illustrates the two word, nine character
sequence שפת עברית, meaning “(the) Hebrew language.” The bottom row shows the cumulative results as
each character is entered.

59 See http://www.unicode.org/charts/PDF/U0590.pdf and http://www.unicode.org/charts/PDF/UFB00.pdf, the latter
containing the Hebrew “Alphabetic Presentation Forms” Unicode block U+FB00-FB4F.

60 See “Paired Symbols in Text with Mixed Directions” on page 14.

EXPLORING_CTL PAGE 26 OF 36

Figure 16 – Sample Arabic Text, including Kashideh Justification

E

xa
m

p
le

s
in

 t
he

 H
eb

re
w

 L
an

gu
ag

e

E

xa
m

p
le

s
in

 t
he

 A
ra

b
ic

 L
an

gu
ag

e

Char 1 Char 2 Char 3 Char 4 Char 5 Char 6 Char 7 Char 8 Char 9

ש פ ת ע כ ר י ת
a p , space g f r h ,

0x5e9 0x5e4 0x5ea 0x20 0x5e2 0x5d1 0x5e8 0x5d9 0x5ea

1513d 1508d 1514d 32d 1506d 1489d 1512d 1497d 1514d

ש שפ שפת ע עכ עכר עכרי עכרית

Display of the characters is straightforward, since only the five characters with final forms will change “on
the fly” when a word ending is reached, and Hebrew requires no character reordering. The only issue is the
treatment of the space character which, as with the Arabic script discussed earlier, is not a Hebrew-specific
character, but one that also appears in many scripts, both LRTB and RLTB. The implications of this
symbol sharing are discussed after presenting a sample paragraph of Hebrew.

Figure 14 below presents the United Nations Universal Declaration of Human Rights Article 1 (see
footnote 3) in Hebrew for comparison to other examples used earlier. In this example, however, the text is
shown in versions with and without the inclusion of Hebrew’s optional diacritic vowels:

כּככם רְר עֶרע כב רְ וִיוים כּש רְו וִירין נֵיני חו כב רְ כו רְלדו כּדום נו כּהאָ נֵיני כב רְ כככל
עֶרהם נֵיתי כיו כֻכ רְז וִיב כון. כו כפ רְצ מַמ רְב כו כּנה כו רְכתב כב מַ כו רְננ כּכלם חו רְך, כֻככ כּכ וִיפי רְל

כּוה חֲח מַא עֶרשל מַח כו כבר רְ כו נֵיעה נֵיר כב רְ וִיאיש כהוג רְנ וִיל עֶרהם נֵילי חֲע כּבה .חו

כל בני האדום נולדוו בני חורין ושווים בערכם
לפיכך, כולם חוננו בתבונה ובמצפון. ובזכויותיהם

.חובה עליהם לנהוג איש ברעהו ברוח של אחווה

Figure 17 – Sample Hebrew Text Blocks with and without Vowel indicators

TRANSITIONING BETWEEN ENGLISH AND HEBREW IN A BIDIRECTIONAL PARAGRAPH – AN EXAMPLE

A number of behaviors change when bidirectional text is included in a single paragraph. These include text
selection, the behavior of cursor movement (e.g. ← and →) and editing keys (e.g. ←Backspace and
Delete), as well as how a particular application reacts during the transition process itself.

Although the differences in these behaviors may be relatively obvious when the cursor is within a block of
text having the same directionality, they can be mystifying at the transition points. The following line will
illustrate the transition between left-to-right and right-to-left scripts that appear in bidirectional paragraphs:

This is English text and שפת עכרית is Hebrew text.

The highlighted text contains sixteen characters in sixteen character cells, stored in memory and on disk as
twenty-four bytes. Examining just this segment can illustrate how many issues involving bidirectional text
are handled, although many applications leave something to be desired in their implementations.

A summary of these sixteen character cells is shown below with their entry and disk storage order
indicated in the top row and the display order in the row below:

Character Entry and Disk Storage Order: 1 2 3 4 13 12 11 10 9 8 7 6 5 14 15 16

Character Display Order: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actual Character Display: a n d ת י ר כ ע ת פ ש i s

EXPLORING_CTL PAGE 27 OF 36

E

xa
m

p
le

s
in

 t
he

 H
eb

re
w

 L
an

gu
ag

e

The Space character is one of several symbols that are shared across multiple scripts, and so might seem to
be an easy character to handle properly in bidirectional text such as this example. Using some applications,
however, suggests that this apparently not the case.

Intelligent handling of cursor movement and various selection and editing actions, for instance, requires the
computer to know whether each space is logically part of a left-to-right segment or right-to-left segment.
To show in detail how this occurs, we’ll examine how applications should react to each key stroke as a user
enters this short sample.

Assuming that the user is typing in a paragraph having a primary text direction of left-to-right and is using
an Input Method for Hebrew, the text sample may be entered using any of the following key sequences:

… with the keyboard switching done after each space is entered, the keystrokes might be similar to:

a n d space #1 keyboard switch a p , space #2 g f r h , space #3 keyboard switch i s

… with the keyboard switching initiated before each space is entered, the sequence would be:

a n d keyboard switch space #1 a p , space #2 g f r h , keyboard switch space #3 i s

Or, if the text is entered on a character by character basis, using either single character insertion utilities or
direct Unicode character techniques,61 the actual Hebrew characters could also be entered directly:

a n d space #1 space #2 ת פ ש space #3 ת י ר כ ע i s

The keyboard switch symbol indicates whatever action the user takes to change from the Latin to a Hebrew62
keyboard layout. Although shown here as a key press, this may involve no keystrokes at all if, for instance,
a mouse was used; conversely, this keyboard switching may involve multiple keystrokes.

In the illustration to the right, the state of the logical
displayed character cells is shown below the key
strokes for each step. The ↱_ and _↰ symbols mimic
the cursors used by many applications to indicate how
the next typed character will be treated – i.e. as part
of either an LRTB (↱_) or RLTB (_↰) sequence.
Because of their role in predicting behavior of cursor
movement and editing keys, consistent behavior of these cursors is important for usability.63

Step 1 shows the key strokes used for entry of the first word, which may or may not include the space
character. In either case, the initial Latin “a” sets the default paragraph direction to left-to-right (LRTB) if
it wasn’t already set that way. If the space was included (as in 1b), it is considered Latin, since there was
nothing to change the default.

The user changes the paragraph direction from its default LTR layout to RTL by either selecting a new
keyboard layout (2a), or by entering a Hebrew character (2b). Selection of a new keyboard layout is a
change to another writing system and, by implication, a different language. It should therefore always insert
a space between the two sections; if the user didn’t explicitly enter a space (as in example 1b) one will be
added. The user should, of course, be able to override this behavior.

61 See “Character Entry Methods” on page 31 for more information.
62 Although Hebrew is used in this example, the same issues are relevant regardless of the non-default paragraph script in use.
63 In paragraphs containing bidirectional scripts, most applications indicate the direction of the current text flow by using such

modified cursors – usually with a flag or arrow at the top to show where the next character typed will be placed.

EXPLORING_CTL PAGE 28 OF 36

1a. a n d or 1b. a n d space #1

a n d ↱_ a n d ↱_

2a. keyboard switch 2b. ⇒ Hebrew activated

a n d _↰ a n d _↰ ש

E

xa
m

p
le

s
in

 t
he

 H
eb

re
w

 L
an

gu
ag

e

In either case, the result will be that shown in step 2a or, if the user caused the script change by entering
the Hebrew ש character, the result will be as shown in 2b.

Once the new script (Hebrew in this example) becomes active, the cursor will be placed at the entry to the
fifth character cell regardless. The only difference is that, in 2a, it is ready to receive the first Hebrew
character, while in 2b, it is ready to receive a new character (which doesn’t necessarily need to be Hebrew
of course). In either case, the cursor shows the text direction is leftwards, as expected from an RTL script.

Steps 3a and 3b show the entry of the remaining
letters of the Hebrew word שפת, which should leave
the cursor in the same static position, and awaiting
what is assumed to be another Hebrew character.

When the second space is entered, the application
should still consider it to be laid out as if it were
right-to-left Hebrew text since nothing was done to
cause a return to the paragraph’s default LTR layout.
The expected and only reasonable behavior is shown
in Step 4a to the right.

One of the more annoying user interface errors that
appears in some applications purporting to support
bidirectional text entry is illustrated as 4.x on the
right. This is almost certainly the result of considering
any symbol from the Latin Unicode block to indicate
a return to the default left-to-right layout.

Step 5 illustrates the state of the cursor after the entry
of ע, the first letter in the second Hebrew word. Once the ע character has been entered, the aberrant cursor
from step 4x resumes its correct behavior after confusing the user with its psychotic hopping around.

The second Hebrew word is shown completed in step 6; the cursor remains in the same location, with the
system prepared to continue with entry of addition characters from the Hebrew script. As in step 4, the
entry of the following space should be handled as shown in step 7, but the same interface errors seen in
step 4x appear in applications that assume Latin code points are always equivalent to Latin characters.

Returning the paragraph to its default left-to-right
direction should result in the display shown in step 8.
The transition from the non-default layout (in this
case, the RTL Hebrew) back to the default (the LTR
English) can be accomplished either explicitly, by switching the active keyboard or implicitly, by entering
an alphabetical character from the default paragraph script – in this case English/Latin.

Any transition from a non-default layout to the default layout (regardless of the direction of either Script)
must, like its opposite counterpart above, insure that at least one (but only one) space separates different
scripts. When going from the non-default to the default, however, it is more often the case that spaces need
to be removed or relocated.

Note that the next potential cell (the fifth cell) in step 7 as well as the space in the sixth cell no longer
appear in step 8, having been rearranged so that the potential cell was removed and the space following the
Hebrew text was relocated to the fourteenth cell. The fifteenth cell then becomes the next potential cell.

EXPLORING_CTL PAGE 29 OF 36

3a. a p , (also 3b.) 3c. p , ⇒ Hebrew active

a n d _↰ ת פ ש

4a. space #2 – correct user interface behavior.

a n d _↰ ת פ ש

4x. space #2 – illustrating a common user interface error!

a n d ת פ ש ↱_

5. g

a n d _↰ ע ת פ ש

6. f r h ,

a n d _↰ ת י ר כ ע ת פ ש

7. Space #3

a n d _↰ ת י ר כ ע ת פ ש

8. keyboard switch ⇒ English activated

a n d ת י ר כ ע ת פ ש ↱_

E

xa
m

p
le

s
in

 t
he

 H
eb

re
w

 L
an

gu
ag

e

The remaining characters from our short sample of
bidirectional text are shown sequentially in steps 9
and 10 to the right. In most applications that have
even minimal support for bidirectional text and use
alternate cursors as usability aids, these cursors
appear everywhere within a bidirectional paragraph,
but aren’t used otherwise.

Be aware that some sources refer to what I call “shared characters” as “neutral characters” and consider
alphabetic to be inherently left-to-right or right-to-left.64

This completes the CTL Examples in Practice section. The remainder is a brief overview of methods used
to enter characters that don’t appear on a keyboard or are cumbersome to enter from the keyboard
currently being used or emulated.

64 See an alternative description of Hebrew right-to-left text layout at http://dotancohen.com/howto/rtl_right_to_left.html that
uses this terminology. It also discusses the various Unicode non-printing symbols that can be used to explicitly set text
direction (U+200E and U+200F) as well as other related characters, all of which I believe should only be used for backwards
compatibility with older applications.

EXPLORING_CTL PAGE 30 OF 36

9. i

a n d ת י ר כ ע ת פ ש i ↱_

10. s

a n d ת י ר כ ע ת פ ש i s ↱_

Character Entry Methods
There are many techniques for entering non-Latin characters on a Latin keyboard, and a discussion of
these is beyond the scope of this paper, but generally speaking, they fall into the following categories:

• Utilizing a character insertion map provided by either an operating system, an Input Method, or by
the application in use. The one from LibreOffice Writer below is typical.

If there is only an
occasional need to enter
a non-standard character
for the language in use,
Windows and most
flavors of Linux, for
instance, have operating
system level character
map utilities, as do
many office applications
such as Microsoft Word
and Excel, LibreOffice
Writer, and so forth.
The best of these permit
directly choosing a font
as well as a Unicode Block to make locating a particular character easier. Then, if that particular
block isn’t present, different fonts can be selected until the desired character is found.

In Examples for Experimentation (No knowledge of Thai needed) on page 21, the character
combination บิบ was shown as part of the first example. The dialog box shown in Figure 17 can be
used to enter this combination by selecting the Thai script and then clicking the cells outlined in
top to bottom order, followed by the Insert button. Most character insertion maps operate almost
identically.

• Directly entering the Unicode Hexadecimal value for the desired character.

This is typically accomplished with some key sequence indicating that the next characters are
intended as hexadecimal Unicode values. In Ubuntu and several other Linux flavors, for instance,
the key sequence Ctrl +Shift + u can be typed, resulting in the display of an underlined u when the
keys are released. If the hexadecimal sequence e 2 a is typed followed by either the Space or
Enter key, the Unicode character ส (a Thai character representing an “S” sound) should be displayed;
neither a space or carriage return should be added as the result of using the Space or Enter keys in
this process. Unicode hexadecimal values are given in all the examples in this paper, and others can
be found from the references provided as footnotes in each script example section.

• Directly entering the Unicode Decimal value for the desired character.

In Windows, this is usually accomplished by holding the Alt key and entering the decimal value –
note that this must be done with the numeric keypad – for a character. Holding the Alt key while
entering 65 on the numeric keypad will enter the Latin character “A” and holding the Alt key while
entering 233 on the numeric keypad will enter the accented e character é. For Unicode values

EXPLORING_CTL PAGE 31 OF 36

Figure 18 – “Insert > Special Character...” Dialog Box in LibreOffice Writer

above 255, there may be additional steps required to activate this capability but these are well
documented by Microsoft. Unicode decimal values are given in all the examples in this paper, and
others can be found from various references provided on-line.

• Activating some form of Input Method and selecting the particular script selected.

For entry of anything beyond a few characters, this is the most efficient method available, and any
operating system offers at least one form of Input Method. In Linux, for instance, iBus seems to be
the most common input method currently in use. For each of the examples in this document, the
Latin keys are listed that will result in the desired output when an appropriate Input Method is
active. With iBus installed, and the “Hindi Bolnagri” keyboard65 selected, pressing the Shift + b
keys will type the Devanagari character भ.

• Using an on-screen keyboard for a particular script and clicking on the desired character. There are
two types commonly available. The first is merely a display that shows key mappings. A second
more popular type permits a user to click on its keys as if it were a second keyboard.

In Linux, the on-screen
Onboard keyboard66 is laid out
to resemble a keyboard, and can
be a useful adjunct for those
who have selected an Input
Method, but aren’t very familiar
with the keyboard layout.
Onboard follows whatever Input
Method alphabet is currently active and, like other similarly sophisticated on-screen keyboards67,
can interpret long clicks (holding down the mouse button) on certain keys will display a variety of
optional characters that are related to that key; long-clicking the a key, for instance, will display all
the various permissible combinations of “a” with various diacritics, such as á, à, â, ä, ǎ, ă, ā, ã, å, ą,
and æ. Some maps are provided by Desktop Managers rather than their underlying operating
systems. Like many such utilities, the Onboard keyboard can be extensively configured.

65 What this means is that keyboard input is treated as is it were coming from a Bolnagri keyboard layout, one of several key
arrangements that can be used to type the Devanagari characters used in the Hindi language. See the Examples for
Experimentation (No knowledge of Hindi needed) section on page 23.

66 This illustration shows the Onboard utility with the Model-M Theme running on Ubuntu 14.04. The optional language
selector has not been activated, so its behavior is to reflect whatever Input Method keyboard mapping is active.

67 Better supported on mobile devices using Operating Systems like Android than on some more mature desktop systems.

EXPLORING_CTL PAGE 32 OF 36

Figure 19 – “Onboard” on-screen keyboard – typical of many available

UTF-8 (ISO-10646) Code Point Representations
Unicode provides individual code points, or values, to represent up to 1,114,112 unique symbols used to
write all of the world’s present and past languages. Not all of these have yet been assigned of course, but
for any language likely to be used in today’s computer applications, this is quite sufficient.

The number 1,114,112 can be represented by the binary sequence 100010000000000000000, a series of
twenty-one bits. Because computers generally store numbers in bytes – sequences of eight bits – this series
of bits can be represented as bytes by adding three leading zero bits to give twenty-four bits, or an even
three bytes as follows: 00010001 00000000 00000000. In hexadecimal notation that would be 0x110000.

If all of our data storage and transmission were simply converted from the one-byte-per-character many of
the early adopters of computer technology used to three-bytes-per-character representations, text in all the
world’s languages could be reliably exchanged, right?

A little thought will show that data reliability easily disappears in most circumstances. If transmissions are
interrupted, which bytes in the sequence are the first of the three used for each symbol? It might appear
that, since we’ve arbitrarily added some leading zeroes, we could perhaps use those positions to indicate the
leading byte – perhaps by making that byte begin with a 1 rather than a 0. We won’t go into detail here, but
some further thought will indicate that there is no guarantee at all that some of the second and third bytes
might not also legitimately begin with a 1. Byte streams could easily be completely misinterpreted!

And then there is the issue of file size. Since the dawn of the computer age, most data files were produced
by countries who concerned themselves with only Latin symbols and their own character sets, for which
one-byte-per-character was often sufficient. A conversion to three-byte representations would result
therefore in a significant portion of the world’s data files immediately tripling in size; coupled with the
higher error rates and resulting repeat transmissions due to the drop in reliable identification of the
characters simply wouldn’t do, even if supporting the Unicode set was becoming more of a necessity.

Covering the rocky path to a reasonable solution is beyond the scope of this document but, in brief, a
number of attempts were made to settle on some ways to “transform” the Unicode bit sequences into
patterns that could be reliably distinguished; these eventually became Unicode Transformation Formats, the
three most prominent of which were:

• UTF-32: a fixed width format in which each symbol is stored as a four byte (32 bit) unit; UTF-32
is essentially the natural twenty-two bit sequence described above extended to cover
standard storage sizes. Thus, all the issues discussed earlier are relevant. This format is
also known as UCS-4, although UTF-32 is actually a subset of UCS-4.68

• UTF-16: a variable length format where each symbol is stored as either one or two double-byte
(16 bit) units, and is therefore either 16 or 32 bits wide; although derived from the earlier
UCS-2, it is not the same. Many programming language libraries continue to use UTF-
16 for internal storage, although that is slowly changing. And, then, finally came …

• UTF-8: a variable length format where each symbol is stored as anywhere from one to four bytes
(8 to 32 bits); although this might initially seem unwieldy from programming or data
transmission standpoints, it is becoming recognized as the most sensible compromise
between efficiency and size.

Essentially, the reduction from -32 to -8 represented an improvement in granularity. The remainder of this
section will be devoted solely to examples of how UTF-8 layouts correspond to Unicode point values.

68 The acronym UCS means Universal Character Set, and refers to the initial attempts to represent all the Unicode code points.

EXPLORING_CTL PAGE 33 OF 36

The “8” in the UTF-8 designation does not indicate that each character consists of eight bits (one byte), but
rather that each character consists of exact multiples of eight bits, i.e. complete bytes. A UTF-8 character,
as mentioned earlier, may consist of one to four bytes.

A single byte UTF-8 code point (character or symbol identifier) representation always begins with a binary
zero. The corollary is that any byte beginning with a zero bit represents a single Unicode symbol. These
single byte characters are direct descendants of what used to be termed “lower ASCII,” and several of the
non-alphabetic characters in this range are shared among many of the world’s scripts.

The first byte of each multi-byte UTF-8 code point representation begins with one, two or three one bits in
sequence followed by a zero. The number of one bits indicates the total number of bytes that form the
character – thus a byte beginning with three one characters followed by a zero indicates the beginning of a
three byte sequence, and that two more bytes will follow to complete the representation of the code point.

Any byte beginning with a one-zero sequence is a continuation byte, and only has meaning when
considered with an initial byte, i.e. a byte beginning with two or more one bits.

The table below illustrates the construction and range of Unicode values that can be represented by the
one, two, three, and four byte Unicode transformation layouts:

Minimum Value Maximum Value

Single Byte UTF-8 Representations (7 content bits): Decimal values from 32 through 127 (96 code points)
Unicode Binary: o010.0000
Unicode Hexadecimal: 0x20
Unicode Decimal: 32
UTF-8 Binary: 0010.0000
UTF-8 Hexadecimal: 0x20
UTF-8 Decimal: 32

Unicode Binary: o111.1111
Unicode Hexadecimal: 0x7f
Unicode Decimal: 127
UTF-8 Binary: 0111.1111
UTF-8 Hexadecimal: 0x7f
UTF-8 Decimal: 127

Two Byte UTF-8 Representations (11 content bits): Decimal values from 128 through 2,047 (1,920 code points)
Unicode Binary: oooo.o000 1000.0000
Unicode Hexadecimal: 0x0080
Unicode Decimal: 128
UTF-8 Binary: 1100.0010 1000.0000
UTF-8 Hexadecimal: 0xc280
UTF-8 Decimal: 49,792

Unicode Binary: oooo.o111.1111.1111
Unicode Hexadecimal: 0x07ff
Unicode Decimal: 2,047
UTF-8 Binary: 1101.1111 1011.1111
UTF-8 Hexadecimal: 0xdfbf
UTF-8 Decimal: 57,279

Three Byte UTF-8 Representations (16 content bits): Decimal values from 2,048 through 65,535 (63,488 code points)
Unicode Binary: 0000.1000 0000.0000
Unicode Hexadecimal: 0x0800
Unicode Decimal: 2,048
UTF-8 Binary: 1110.0000 1010.0000 1000.0000
UTF-8 Hexadecimal: 0xe0a080
UTF-8 Decimal: 14,721,152

Unicode Binary: 1111.1111 1111.1111
Unicode Hexadecimal: 0xffff
Unicode Decimal: 65,535
UTF-8 Binary: 1110.1111 1011.1111 1011.1111
UTF-8 Hexadecimal: 0xefbfbf
UTF-8 Decimal: 15,712,191

Four Byte UTF-8 Representations (21 content bits): Decimal values from 65,536 through 1,114,112 (1,048,577 code points)
Unicode Binary: ooo0.0001 0000.0000 0000.0000
Unicode Hexadecimal: 0x010000
Unicode Decimal: 65,536
UTF-8 Bin: 1111.0000 1001.0000 1000.0000 1000.0000
UTF-8 Hexadecimal: 0xf0000000
UTF-8 Decimal: 4,026,531,840

Unicode Binary: ooo1.0001 0000.0000 0000.0000
Unicode Hexadecimal: 0x110000
Unicode Decimal: 1,114,112
UTF-8 Bin: 1111.0100 1001.0000 1000.0000 1000.0000
UTF-8 Hexadecimal: 0xf4908080
UTF-8 Decimal: 4,103,110,784

Values below 32 in the single byte representations remain reserved – as they have always been – for control
codes such as STX and ETX, the line feed and carriage return, although the code to ring the teletype’s bell
(0X07) to signify an incoming message hasn’t been used for many generations.69 The number of possible

69 Sort of a precursor to AOL’s famous “You’ve got mail” message. The bell and clatter of an old Kleinschmidt teletype
machine engendered a greater sense of connection with the world than anything Facebook or Twitter provide!

EXPLORING_CTL PAGE 34 OF 36

code points listed for each section does not imply or suggest that all such positions (e.g. 0X7F) are valid.

In order to clarify the Unicode transformations and illustrate one drawback of the UTF-8 format, the
following charts will provide specific examples of UTF-8 representations for one, two, three, and four byte
formats using several scripts, two of which have already been introduced in this document.

The mandatory bit values for UTF-8 encoding are highlighted like this: 0 – the remaining bits form what
is known as the “payload” for the byte, i.e. the bits available for storing the actual Unicode values.

One byte UTF-8 Representation: used for Unicode code points 32 (the space) through 126 (~) as well as
the standard control characters mentioned earlier. This range is usually referred to as “Basic Latin,” but as
discussed earlier in this paper, only values from 0X41 to 0X60 (decimal 65-90: A-Z), and 0X61 to 0X80 (decimal
97-122: a-z) should be considered as Latin Characters, since the others are shared by many scripts.

When pressing the A and a keys, the UTF-8 transformation is rather straightforward.
Decimal Hex Character

65 0x41 A 0 1 0 0 0 0 0 1

Character Bit Sequence:

Decimal Value of each Bit:

-

-

1

64

2

32

3

16

4

8

5

4

6

2

7

1

A = *1000001 - Note that bit 2 (32 weight) is OFF

a = *1100001 - Note that bit 2 (32 weight) is ON

97 0x61 a 0 1 1 0 0 0 0 1

In UTF-8 transformations, the leading 0 indicates this is a one byte character, and the final seven bits are
the binary value of the character. Note that the 32-value bit (bit 2) value determines the case difference
between capital and small Latin letters.

Two byte UTF-8 Representation: used for Unicode code points 0x0080 to 0X07FF (decimal 128-2047), and is
illustrated here with the Unicode Basic Greek script block 0X0370-03FF, specifically the letters that result
from using a Greek keyboard mapping with a Latin keyboard and typing the same A and a keys as before.
Decimal Hex Character

913 0x0391 Α 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 This is the Greek “Alpha,” not the Latin “A”

Character Bit Sequence: - - - 1 2 3 4 5 - - 6 7 8 9 10 11 Α = *****011-10010001 (Capital Α)
α = *****011-10110001 (small α)

945 0x03b1 α 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 This is the Greek “alpha,” not the Latin “a”

In a UTF-8 layout, two consecutive leading 1 bits followed by a 0 indicates the character is two bytes long.
Thus, the two-byte Unicode hexadecimal value U+0391 is transformed to the two byte UTF-8 0XCE91 value.

Basic Greek, it should be noted, also uses capital and small letters and, like the Latin, these are identified
by bit 2 of the payload. The sixth through eleventh content bits are carried in the single continuation byte.

As noted in the table on the previous page, two byte UTF-8 representations can contain Unicode code
point values from 128 through 2,047. Thus, scripts such as Hebrew and Arabic,70 which are assigned code
values from 1,424 to 1,535 (U+0590-05FF) and 1,536 to 1,791 (U+0600-06FF) respectively, can each be
represented in two UTF-8 bytes and, thus are no longer than the two bytes they would occupy in a straight
binary representation of their code point values.

Characters in Devanagari and Thai scripts71 on the other hand, with assigned code values from 2,304 to

70 Examples of which are shown on pages 26 and 24 respectively of this document.
71 Examples of which are shown on pages 23 and 21 respectively of this document.

EXPLORING_CTL PAGE 35 OF 36

2,431 (U+0900-097F) and 3,584 to 3,711 (U+0E00-0E7F) respectively, each of which requires only two bytes
in a raw binary representation, require three bytes each in their UTF-8 transformations.

This illustrates the major compromise of the UTF-8 transformation format. Scripts residing at the range
boundaries approach a size72 that is double what it was without the transformation.

As a matter of interest, the N’Ko script used to write the Maninka, Bambara, and Dyula languages and
variants used in Guinea, Côte d'Ivoire and Mali, with an assigned Unicode block that ranges from 1,984 to
2,047 (U+07C0-07FF), contains the highest value characters in two byte UTF-8 transformations.

Three byte UTF-8 Representation: The lowest values requiring three byte representations in UTF-8
belong to Samaritan, a right-to-left script used in ancient Hebrew and Aramaic and defined in the Unicode
block (U+0800-083F).73

The three byte UTF-8 representation example illustrated here uses Thai script, which is located in the
Unicode Block U+0E00-0E7F, and uses the letters that result from using a Thai TIS-820 keyboard mapping
on a Latin keyboard, and typing the same A and a keys as before.

Decimal Hex Character e 0 - b 8 - a 4 Becomes 0e-24

3620 0x0e24 ฤ 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0

Character Bit Sequence: - - - - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3615 0x0e1f ฟ 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1

e 0 - b 8 - 9 f Becomes 0e-1f

Three consecutive leading 1 bits followed by a 0 indicates the character is three bytes long. There will
therefore need to be two continuation bytes, each of which must begin with 10. In this case, the two-byte
Unicode hexadecimal value U+0E24 is transformed to the three byte UTF-8 0XE0B8A4 value.

Four byte UTF-8 Representation: For an example of a four byte UTF-8 representation, the table below
uses symbols from the Unicode Musical Symbols Block U+1D100-1D1FF. In this case, the equivalent decimal
values for that block range from 119,040 to 119,295, each requiring seventeen bits (three bytes if rounded)
to represent in raw binary, but four bytes when transformed into UTF-8, another example of the increasing
in size resulting from transformations near range boundaries.
Decimal Hex Character

119070 0x1d11e � 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0

Character Bit Sequence: - - - - - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

119136 0x1d160 � 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0

Four consecutive leading 1 bits followed by a 0 indicates the character is four bytes long. There will
therefore need to be three continuation bytes, each of which must begin with 10. As with the other
examples, the seventeen content bits are placed in the UTF-8 structure, transforming the three byte U+1D11E
to the four byte 0XF09D849E transformation.

72 These are generally not actually doubled, because of the single byte shared characters (e.g. the space) used by these scripts.
73 A form of this script is still in use by a very small group of people in the modern day Palestinian West Bank.

EXPLORING_CTL PAGE 36 OF 36

