Version Aware LibreOffice Documents

Meenu Pandey
Department of EECS
University Of Wisconsin-Milwaukee
Milwaukee, WI 53201-0784, USA
mpandey@uwm.edu

ABSTRACT

Version control systems provide a methodology for main-
taining changes to a document over its lifetime and pro-
vide better management and control of evolving document
collections, such as source code for large software systems.
However, no version control system supports similar func-
tionalities for office documents.

Version Aware XML documents integrate full versioning
functionality into an XML document type, using XML names-
paces to avoid document type errors. Version aware XML
documents contain a preamble with versions stored in re-
verse delta format, plus unique ID attributes attached to the
nodes of the documents. They support the full branching
and merging functionalities familiar to software engineers,
in contrast to the constrained versioning models typical of
Office applications.

LibreOffice is an open source office document suite which
is widely used for document creation. Each document is
represented in the Open Office Document Format, which
is a collection of XML files. The current project is an en-
deavor to show the practicality of the version aware XML
documents approach by modifying the LibreOffice document
suite to support version awareness. We are modifying Libre-
Office to accept and preserve both the preamble and the IDs
of the version aware framework. Initially, other functionality
will be provided by wrapper applications and independent
tools, but full integration into the LibreOffice user interface
is envisioned.

Categories and Subject Descriptors

1.7.1 [Document and Text Processing]: Document and
Text Editing—document management; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement —
version control

Keywords

user collaboration, XML, version aware

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

DocEng’13, September 10-13, 2013, Florence, Italy.

ACM 978-1-4503-1789-4/13/09.

http://dx.doi.org/10.1145/2494266.2494269

57

Ethan V. Munson
Department of EECS
University Of Wisconsin-Milwaukee
Milwaukee, W1 53201-0784, USA
munson@uwm.edu

1. INTRODUCTION

Version control systems provide a methodology for main-
taining changes to a document over its lifetime as a collab-
orative team develops it. Typical version control systems,
like Subversion [6], Mercurial [5] , and Git [1], provide the
functionality for version repository creation, storage and re-
trieval of versions from a repository and creation of a graph
of versions via branch and merge operations. These tools
often require access to a central repository or a shared file
system to store the versioned data. Experience has shown
that it is a useful service for a large technical user base.

However, for office documents, the user base is typically
non-technical. Also, while the documents often go through
many revisions, they are often standalone objects or are part
of small collections. Thus, the overhead of creating and
managing a repository is hard to justify.

One approach to track different revisions of a document
is to save them by different names that suggest the evolu-
tion of the document. In this approach, collaboration can be
achieved by manual branching and merging, but this can be
a cumbersome and confusing task. Branch and merge func-
tions for office documents can aid users by keeping track of
multiple revisions of a document within the document itself,
maintaining branch information for the document when mul-
tiple authors work on it simultaneously, and later by merging
those parallel changes into a unified version when needed.
The ability to track changes of a document is important for
many official (user manuals, regulatory documents, technical
design documents, etc.) as well as for personal documents.

Office document software does provide simple version con-
trol, in the form of current version/past-version (Microsoft
Office) or linear document histories (LibreOffice). While this
support for versions is helpful, it is insufficient for collabora-
tion in large teams because parallel editing is not supported.
This can force users to perform manual merges to integrate
changes from multiple sources. Some cloud storage systems
offer versioning and collaboration support for stored docu-
ments but they do not provide the systematic support for
collaboration that a version control system does.

We aim to show that the addition of branch and merge
functionality to LibreOffice [3] will facilitate collaboration
with less manual effort. The first step towards this goal is to
convert LibreOffice ODF files into version aware documents
and provide the basics of version control support.

In the rest of the paper we introduce version aware ap-
proach for xml documents and how it can be implemented
for LibreOffice documents. In subsequent sections, we ex-
plain the load and save process of LibreOffice document and



how necessary changes for version awareness can be made
persistent throughout the LibreOffice document lifecycle.

2. BACKGROUND AND RELATED WORK

Conventional office document programs already support
simple forms of version control. Microsoft Word has a “Track
Changes ” feature that can be viewed as a two version sys-
tem. When changes are being tracked, there is a notion of
the current version and of a single previous version. Dif-
ferences between these versions are tracked and a user can
decide whether or not to accept the changes. LibreOffice
also stores textual documents in a compressed archive that
holds a series of files that represent a linear document his-
tory. Each document is represented in the Open Office Doc-
ument Format, based on XML [9]. Users can choose different
versions if this is needed. Changes can be recorded and au-
thors can accept or reject the changes between versions but
it does not provide three-way merge functionality and does
not support simulteneous editing by multiple authors. Thus,
neither system supports true collaboration because neither
one provides any services for merging parallel edits of the
same base document. Whether existing LibreOffice version
control functions can be used for better change detection is
left for future work.

Conventional source code version systems support branch
and merge operations with tools like diff3 [2] which assumes
that the source material is raw text and that line breaks
represent frequent and meaningful delimiters within files.
In fact, modern office document systems often store all their
content in XML files with exactly two lines: one for the XML
declaration and the second for the rest of the content. In this
context, meaningful merging of XML content is challenging,
because it is difficult to be certain how to match XML ele-
ment content between two versions. Some systems use ap-
proximate signatures [4], while Thao and Munson showed
that using unique IDs allows for an efficient merging algo-
rithm [7]. Based on this work, Thao [8] proposed a new
Version Aware document framework using the following el-
ements:

1. aspecial namespace (called “molhado”) to separate the
versioning information from the application’s normal
content;

2. a revision history element in a preamble location that
holds the version history information in reverse delta
format.

3. XML signature elements to prevent users from altering
the version data without detection; and

4. a unique identifier attribute for every element of the
document content so that changes between different
versions can be identified easily.

In a version-aware document, the latest version contains
the complete document content, while previous versions can
be retrieved by applying a chain of deltas to the latest ver-
sion. Each sub-element of the revision history element stores
information about the edit operations performed in previous
versions. The main edit operations are: attribute value up-
date within any element, changes in node sequences, node
deletion, node addition, and node name update. This ver-
sioning framework also includes an efficient 3-way merge al-
gorithm that requires each XML node to have a unique ID.

58

Unique IDs are important for efficient matching of nodes be-
tween versions. If correctly maintained by an editing system,
they allow the versioning system to match nodes between
versions even when some nodes have undergone substantial
transformations. Unique IDs also help to identify conflicts
between two versions, which are currently expected to be
resolved manually by the authors.

As a version-aware document contains the entire docu-
ment history, users do not need to interact with any version
repository. Thus users will gain the ability to access past
versions, especially gaining the ability to recover contents
that were deleted in multiple revisions in the past. Also,
the system will provide support for authors to work simul-
taneously on the same sections of the document by creating
separate version branches and to later merge their changes.
Non-conflicting changes can be merged automatically while
conflicting changes will need manual effort.

A first application of this framework was made using the
Inkscape SVG editor, via addition of a wrapper application
that manages the maintenance of versioning information in
Inkscape saved files. This worked well because SVG edi-
tors are designed with the expectation that other applica-
tions might add namespace-protected content that should
be preserved. In contrast, our first attempts to use the
version-aware framework with LibreOffice failed because the
versioning information was tolerated by the application, but
not preserved during a load-edit-save interaction cycle. This
problem has forced us to make deeper changes to the imple-
mentation of the LibreOffice software so that it can support
the version aware preamble and element unique identifiers.

3. APPROACH AND IMPLEMENTATION

It will not be surprising to learn that a production quality
office document system uses a complex file representation.
A LibreOffice ODF document is a zip compressed archive
that contains four XML files: meta.xml, settings.xml, con-
tent.xml, styles.xml. The “meta.xml” and “settings.xml” files
do not affect the content of the document. The “styles.xml”
contains information about the styles used within the doc-
ument. The “content.xml” file stores the main content of
the document including text, pictures etc. Thus, if the con-
tent.xml and styles.xml files can accept the four changes
described above, then a LibreOffice document will be ver-
sion aware. Currently, our main focus is applying the four
modifications changes to the content file. We are leaving
the changes to the style file for future work. The problem,
of course, is that LibreOffice was not designed with version
awareness in mind. Furthermore, it did not begin its life as
an open source project, so documentation is limited.

In LibreOffice, the document is saved as a set of files on
disk but is represented by a rather different document model
in memory. During the document load operation, an import
filter converts the XML files into this document model. Sim-
ilarly during a save operation, an export filter converts the
document model into XML format. Every element and at-
tribute of the content file has a corresponding data structure
in the document model. So, any changes made to the con-
tent file that are not part of the LibreOffice document model
are not saved during the save operation.

Our approach is to write a wrapper application that will
read the content file and will add the “molhado” namespace,
the unique identifiers, the revision preamble and the au-
thentication signature for every version of the document,



@ <?xml version="1.0" encoding="UTF-8" standalone="no"?>

© [xmlns:molhado="http://www.cs.uwm.edu/molhado" ]

<office:document-content xmlns:office="urn:oasis:names:tc:opendocument:xmlns:office:1.0"
xmlns:chart="urn:oasis:names:tc:opendocument:xmlns:chart:1.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" molhado:id="0" office:version="1.2">

max-id="160">

<molhado:revision-history cur-rev-id="54836a0a-e9ef-11e2-ba57-1803732ba%aa" cur-user="meenu" id="revision-history"

</molhado:revision>

<molhado:revision id="5483b82b-e%9ef-11e2-ba57-1803732ba%aa" name="1"
<molhado:attr-del attr="xmlns:molhado" nodeid="0" value="http://www.cs.uwm.edu/molhado"/>

parents="">

@ <Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>

<Reference URI="#revision-history">
<Transforams>

</Transforms>

</Reference>
</SignedInfo>

</Signaturevalue>
<KeyInfo>
<KeyValue>
<RSAKeyValue>

<Exponent>AQAB</Exponent>
</RSAKeyValue>
</KeyValue>
</KeyInfo>
</Signature>

<CanonicalizationMethod Algorithm="http://www.w3.0org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>

<Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature"/>
<DigestMethod Algorithm==="http://www.w3.0rg/2000/09/xmldsig#shal"/>

<DigestValue>cqJ+PvU3WJI6SLYgLv6Xklol2Fx8=</DigestValue>

<SignatureValue>GejG1lBWgBZniMLAmMRgePH6 /xfRtnG2addGSQgphlC+gmvmyxxFh7yDHo+PnkoCClt8NfUUnbqugosgGTHePTIA==

<Modulus>1tgInCRrK7k20IX6ZnXoe6RZ9A2kIJooGb/zRYD18tb3I/AF1k00kS043aiQXz/MTmQtCb4 IJVOKS5/5uUWl0Hw==</Modulus>

</molhado:revision-history>

e <office:scripts molhado:id="1"/>
<office:font-face-decls molhado:id="2">
<style:font-face molhado: i
<style:font-face molhado: i
style:name="Liberation Serif"

svg: font-family="

</office:document-content>

3" style:name="Lohit Hindil" svg:font-family="'Lohit Hindi'"/>
style:font-family-generic="roman"
'Liberation Serif'"/>

style:font-pitch="variable"

Figure 1: Content.xml file after applying required changes for version awareness.
New elements of revision-history and signature are added. Rest of the elements

defined first.
assigned a unique ID.

as needed. Document size increases once all the needed
changes are applied to document by the wrapper applica-
tion. In addition, the core LibreOffice source code has had
to be modified to persist this information through a com-
plete load-edit-save cycle. This task is not straightforward
because of the particulars of the LibreOffice implementation,
which does not exploit inheritance as much as one might
hope, especially in the area of element attributes.

When LibreOffice writer loads an existing ODF file, an
xmlreader object reads all the XML files and instantiates ob-
jects for every element type. These classes are called Import
Context classes and have data members that correspond to
the attributes of the respective XML element. First, those
data members are assigned the corresponding attribute val-
ues. Second, based on the context of the XML element type,
the corresponding universal network object (UNO) services
are called such as - Paragraph, PageCount, TextCursor etc.
Each UNO service has properties which are set by the im-
port contexts created earlier. Then all the UNO service
objects are stored in memory as a pool of items, which de-
fines the document model. The document saving operation
is straightforward. It creates export context classes for all

59

molhado is
in xml are

Namespace

the items in the item pool and then saves them into XML
format.

To accommodate the proposed changes we have made the
following changes to the LibreOffice code base:

1. All namespaces are stored in a namespace map in Li-
breOffice. So the molhado namespace has been added
to that namespace map.

2. New elements like signature and revision history are
preserved during load and save by making new classes
for these elements that save their attributes over the
lifecycle of the document.

3. Every XML node needs a unique ID that should not
change over the lifetime of the document versions. The
unique IDs are essential for identifying nodes that have
undergone substantial transformations and can still be
matched with their original version. Preservation of
the unique IDs for every element requires changes to
be made at multiple entry points of the XML elements.
The main high level elements in the content.xml are
fonts, styles, text, table and number where the func-
tionality can be added to store the unique ids of those
elements and their children elements. As every XML



element has a corresponding UNO service, the addition
of the new ID attribute in each XML element should be
accompanied by the addition of a UNO service prop-
erty as well.

Document Model
1.Set services and
their properties
2. Create Objects in
memory

Load Cycle

1. Import Context Object
2. Save element attributes

A

Save Cycle

1. Export Context Objects
2. Create XML elements

¥

Read file from storage @Write File to Storage

Figure 2: LibreOffice document lifecycle.

As unique IDs should be accomodated for every XML ele-
ment type, we need to modify the implementation of Libre-
Office to support three key operations:

1. Load and save ID attribute in import context classes
during XML load operation.

2. Add the ID property to the corresponding UNO ser-
vices and save IDs of every node in memory.

3. Extract ID property and save it in XML format during
export operation.

Once the changes in content.xml are preserved by the Libre-
Office application, our wrapper applications will be able to
perform three-way XML merging in order combine changes
made in parallel by multiple authors.

4. RESULTS

LibreOffice is a long-lived and complex system and de-
termining how to modify it has been a challenging task.
We have successfully added our additional namespace and
the preamble containing the version history and signature
so that they persist through load-edit-save cycles. The key
challenge has been to determine the life-cycle of document
content elements and to find a good point at which to insert
our IDs. At the time of writing, we have been able to make
the IDs persist for paragraph elements and for text fields
used in forms. But our solution for paragraphs will be quite
cumbersome to reproduce for other related elements and we
are looking for a more general control point to support the
IDs.

The document size increases as additional information is
stored in content.xml. File size change for a LibreOffice
document with 150 nodes in content.xml is approximately
1.5KB for a first revision when namespace, revision history,
ID and signature information is added. It is expected to
increase with every revision as incremental revision history
will be added. Currently the exact file size change infor-
mation is not determined because LibreOffice strips off the
unique IDs for many xml elements. Thus, versioning frame-
work does not work correctly to calculate change history
between versions.

60

5. CONCLUSION

This application note describes the implementation of the
version aware framework for LibreOffice “writer” documents.
It also suggests modifications required for the LibreOffice
code base so that our changes can persist throughout the
document’s lifecycle. A version aware LibreOffice document
will contain a complete change history and will be able to
undergo three-way XML merging and conflict resolution so
that document collaboration and management will be possi-
ble without the use of a conventional version control repos-
itory.

This work shows that it is possible to provide many of
the sophisticated features of modern software version control
systems in a context designed for less sophisticated users.
Branching and merging tasks are already being performed by
office document authors, but without adequate automated
support. The version aware document approach integrates
easily with office document systems because it is designed to
work with the XML representation that those systems have
already accepted. Thus, full-blown branching and merging
can be accessible to non-technical users working on everyday
documents.

6. REFERENCES
il
2
3
4

Git - fast version control system. http://git-scm.com.
GNU diff3. http://www.gnu.org/software/diffutils/.
LIbreOffice. http://docs.libreoffice.org/.

T. Lindholm. A three-way merge for XML documents.
In Proceedings of the 4th ACM Symposium on
Document Engineering, pages 1-10. ACM Press, 2004.
Mercurial SCM. http://mercurial.selenic.com.
Subversion. http://subversion.tigris.org.

C. Thao and E. V. Munson. Using versioned tree data
structure, change detection and node identity for
three-way XML merging. In Proceedings of the 10th
ACM Symposium on Document engineering, DocEng
’10, pages 77-86, New York, NY, USA, 2010. ACM.
C. Thao and E. V. Munson. Version-aware XML
documents. In Proceedings of the 11th ACM Symposium
on Document engineering, DocEng ’11, pages 97-100,
New York, NY, USA, 2011. ACM.

Extensible Markup Language (XML).
http://www.w3.org/XML/.

RN





