11.04.2015 LibreOffice Project's Check

LibreOffice Project's Check

VUl.VUo.£4V1D ALUIEY NAIPUV

Typos

Code probably written on purpose but still looking suspicious

Copy-Paste

Brave use of the realloc() function

Logical errors

Skeleton in the closet

Safety rules

Miscellaneous

Microoptimizations
Passing objects by reference
Using the prefix increment
Checking for an empty string
Miscellaneous

The number of false positives
Conclusion

We invite you to read a new article about how we analyzed another well-known open-source project.
This time it is the LibreOffice office suite that | have examined. The project is developed by more
than 480 programmers. We have found that it is pretty high-quality and that it is regularly checked by
the Coverity static analyzer. But, like in any other large project, we still managed to find previously
undetected bugs and defects and in this article we are going to discuss them. Just for a change, this
time we will be accompanied by cows instead of unicorns.

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20borde... 1/32

http://www.viva64.com/en/b/0308/#ID0EIYKM
http://www.viva64.com/en/b/0308/#ID0ENFHM
http://www.viva64.com/en/b/0308/#ID0EK6HM
http://www.viva64.com/en/b/0308/#ID0EHCAE
http://www.viva64.com/en/b/0308/#ID0ESAGK
http://www.viva64.com/en/b/0308/#ID0ECRAI
http://www.viva64.com/en/b/0308/#ID0E1EGM
http://www.viva64.com/en/b/0308/#ID0EVFCK
http://www.viva64.com/en/b/0308/#ID0EGWAK
http://www.viva64.com/en/b/a/andrey-karpov
http://www.viva64.com/en/b/0308/#ID0E4TIM
http://www.viva64.com/en/b/0308/#ID0EE4BI
http://www.viva64.com/en/b/0308/#ID0EASFK
http://www.viva64.com/en/b/0308/#ID0EH2FM
http://www.viva64.com/en/b/0308/#ID0EYVIM
http://www.viva64.com/en/b/0308/#ID0EOZBM

11.04.2015 LibreOffice Project's Check

_ . LibreOffice
if (p[0] =="R" ||

p[0] I="r)

LibreOffice is a powerful office suite completely compatible with 32/64-bit systems. It has been
translated into more than 30 languages and supports most of the popular operating systems,
including GNU/Linux, Microsoft Windows, and Mac OS X.

LibreOffice is free and open-source. It includes code written in Java, Python, and C++. We analyzed
the part written in C++ (and a small part in C, C++/CLI). Version: 4.5.0.0.alpha0+ (Git revision:
368367).

Analysis was done with the static code analyzer PVS-Studio.

Let's have a look at the errors found in this project and see what can be done about them. I'd like to
notice right away that some of what | think to be bugs may actually be no bugs at all. As I'm not
familiar with the code, | could have easily mixed up a real defect and correct code. However, since
such code confused both me and the analyzer, it certainly means something isn't right there. This
code smells and should be refactored to reduce the probability of its being misunderstood in the
course of project development and maintenance.

Typos

No code can do without typos. Many of them are found and fixed at the testing stage of course, but
some manage to make it through and keep living inside programs for many years. They are usually
found in rarely used functions or have almost no effect on the program execution.

For example, | came across the following comparison function of which only one third is executed:

class SvgGradientEntry
{

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20borde... 2/32

https://en.wikipedia.org/wiki/C%2B%2B/CLI
http://www.libreoffice.org/
http://www.viva64.com/en/pvs-studio/

11.04.2015 LibreOffice Project's Check

bool operator==(const SvgGradientEntry& rCompare) const

{
return (getOffset() == rCompare.getOffset()
&& getColor() == getColor()
&& getOpacity() == getOpacity());
}
}

PVS-Studio's diagnostic message: V501 There are identical sub-expressions to the left and to the
right of the '==" operator: getColor() == getColor() svggradientprimitive2d.hxx 61

| guess this bug doesn't do much harm. Perhaps this '==" operator is not even used at all. But since
the analyzer has managed to find this bug, then it sure can find more serious things right after a new
code has been written. That's why static analysis is most valuable when used regularly, not
occasionally.

What could be done to avoid this error? | don't know. Perhaps if one trained oneself to be more
careful and accurate when aligning blocks of homogeneous code, this error would be more visible.
For example, we can write the function in the following way:

bool operator==(const SvgGradientEntry& rCompare) const

{
return getOffset() == rCompare.getOffset()
&& getColor() == getColor()
&& getOpacity() == getOpacity();
}

Now you can see it clear that "rCompare" is missing in the right column. But, to be honest, it doesn't
make it that prominent. So it may fail too. To err is human. That's why a static analyzer can be very
helpful.

And here is an example where a typo could have definitely been avoided. The programmer wrote a
poor code to exchange values between two variables.

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20borde... 3/32

http://www.viva64.com/en/d/0090/

11.04.2015 LibreOffice Project's Check

If anyone offers you
a free headswap, just

void TabBar::ImplGetColors(....)
{

aTempColor = rFaceTextColor;
rFaceTextColor = rSelectTextColor;
rSelectTextColor = rFaceTextColor;

PVS-Studio's diagnostic message: V587 An odd sequence of assignments of this kind: A=B; B = A;.
Check lines: 565, 566. tabbar.cxx 566

In the last line, 'aTempColor' should have been used instead of 'rFaceTextColor'.

The programmer who wrote this code for value exchange shouldn't have done it "manually". It would
have been much easier and safer to use the standard function std::swap():

swap(rFaceTextColor, rSelectTextColor);

Let's go on. I'm not sure there's any protection against the next error. It's a classical typo:

void SAL_CALL Theme: :disposing (void)
{

ChangelListeners alListeners;
maChangelListeners.swap(alListeners);

const lang::EventObject aEvent (static_cast<XWeak*>(this));

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20borde... 4/32

http://www.viva64.com/en/d/0190/

11.04.2015 LibreOffice Project's Check

for (Changelisteners::const_iterator
iContainer(maChangelListeners.begin()),
iContainerEnd(maChangelListeners.end());
iContainerEnd!=iContainerkEnd;
++iContainerkEnd)

PVS-Studio's diagnostic message: V501 There are identical sub-expressions to the left and to the
right of the ''=" operator: iContainerEnd != iContainerEnd theme.cxx 439

The loop won't be executed as the "iContainerEnd!=iContainerEnd" condition is always false. What
failed the programmer were the similar names of iterators. The code should actually look as follows:
"iContainer!=iContainerEnd". By the way, | suspect there's one more error here: The "iContainerEnd"
iterator is incremented, which is strange.

Another bad loop:

static void 1lcl FillSubRegionList(....)
{

for(IDocumentMarkAccess::const_iterator_t
ppMark = pMarkAccess->getBookmarksBegin(); <K<
ppMark != pMarkAccess->getBookmarksBegin(); <KLL=---~
++ppMark)

const ::sw::mark::IMark* pBkmk = ppMark->get();
if(pBkmk->IsExpanded())
rSubRegions.InsertEntry(pBkmk->GetName());

PVS-Studio's diagnostic message: V625 Consider inspecting the 'for' operator. Initial and final values
of the iterator are the same. uiregionsw.cxx 120

The loop won't execute. In the condition, the 'ppMark' iterator should be compared to 'pMarkAccess-
>getBookmarksEnd()'. | don't have any suggestions about how to protect oneself against an error
like this using coding conventions. It's just a typo.

By the way, it may happen sometimes that code contains an error but it doesn't affect the program's

correct execution in any way. Here is one of such from LibreOffice:

bool PolyPolygonEditor::DeletePoints(....)

{
bool bPolyPolyChanged = false;

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20borde... 5/32

11.04.2015 LibreOffice Project's Check
std::set< sal_ulIntl6 >::const_reverse_iterator
alter;(rAbsPoints.rbegin());
for(alter = rAbsPoints.rbegin();
alter != rAbsPoints.rend(); ++alter)

PVS-Studio's diagnostic message: V530 The return value of function 'rbegin' is required to be
utilized. polypolygoneditor.cxx 38

The error is in the line alter;(rAbsPoints.rbegin());

The programmer intended to initialize an iterator but wrote a semicolon by mistake. The iterator
remained uninitialized while the "(rAbsPoints.rbegin());" expression was left hanging about idle.

What saves it all is that the iterator is still luckily initialized to the necessary value inside the 'for'. So
there's no error in fact, but the excessive expression still should be removed. By the way this loop
was multiplied through the Copy-Paste technique, so the developers should also check lines 69 and
129 in the same file.

And finally a typo inside a class constructor:

XMLTransformerOOoEventMap Impl: :XMLTransformerOOoEventMap Impl(
XMLTransformerEventMapEntry *pInit,
XMLTransformerEventMapEntry *pInit2)

{
if(pInit)
AddMap(pInit);
if(pInit)
AddMap(pInit2);
}

PVS-Studio's diagnostic message: V581 The conditional expressions of the 'if operators situated
alongside each other are identical. Check lines: 77, 79. eventoootcontext.cxx 79

The second 'if' operator must check the 'plnit2' pointer.

Code probably written on purpose but still
looking suspicious

| found a few code fragments that seem to contain typos. But I'm not sure about that - perhaps it was
purposely written that way.

class VCL_DLLPUBLIC MouseSettings
{

long GetStartDragWidth() const;
long GetStartDragHeight() const;

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20borde... 6/32

http://www.viva64.com/en/d/0119/

11.04.2015 LibreOffice Project's Check

bool ImplHandleMouseEvent(....)
{

long nDragW
long nDragH

rMSettings.GetStartDragWidth();
rMSettings.GetStartDragWidth();

PVS-Studio's diagnostic message: V656 Variables 'nDragW', 'nDragH' are initialized through the call
to the same function. It's probably an error or un-optimized code. Consider inspecting the
'rMSettings.GetStartDragWidth()' expression. Check lines: 471, 472. winproc.cxx 472

It's not clear whether or not the variables nDragW and nDragH should be initialized to one and the
same value. If yes, then a comment about that is missing. Or, it would have been even better in the
following way:

long nDragh
long nDragH

rMSettings.GetStartDragWidth();
nDragh;

A similar issue:

void Edit::ImplDelete(....)
{

maSelection.Min() aSelection.Min();

maSelection.Max()

aSelection.Min();

V656 Variables 'maSelection.Min()", 'maSelection.Max()" are initialized through the call to the same
function. It's probably an error or un-optimized code. Consider inspecting the 'aSelection.Min()'
expression. Check lines: 756, 757. edit.cxx 757

Those working on the project would see right away if the code is OK or not. I'm not among them, so |
don't know exactly if there is an error here or not.

And the last case. A class contains three functions:

. GetVRP()
. GetVPN()
. GetVUV()

But in the following place, the GetVRP() function is used to initialize the 'aVPN' constant.

void ViewContactOfE3dScene: :createViewInformation3D(....)

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20borde... 7/32

http://www.viva64.com/en/d/0277/

11.04.2015 LibreOffice Project's Check

{

const basegfx::B3DPoint aVRP(rSceneCamera.GetVRP());
const basegfx::B3DVector aVPN(rSceneCamera.GetVRP()); <<<---
const basegfx::B3DVector aVUV(rSceneCamera.GetVUV());

PVS-Studio's diagnostic message: V656 Variables 'aVRP', 'aVPN' are initialized through the call to
the same function. It's probably an error or un-optimized code. Consider inspecting the
'rSceneCamera.GetVRP()' expression. Check lines: 177, 178. viewcontactofe3dscene.cxx 178

The analyzer generated one more V656 warning. I'm almost sure there's a genuine bug there. But |
won't cite that code as it is too lengthy. So | suggest that the developers take a look at the following:

» V656 Variables 'oNumOffset1', 'oNumOffset2' are initialized through the call to the same function.
It's probably an error or un-optimized code. Check lines: 68, 69. findattr.cxx 69

Copy-Paste

Never givelyourfcattleaccess to
' the farm photocopier. I%-.n?

I'm forced to admit that programming would be extremely tiresome and boring at times without Copy-
Paste. It's impossible to program without Ctrl-C and Ctrl-V, however strongly one may wish these
shortcuts to be banned. That's why | won't preach dropping the copy-paste technique. But | do ask
everyone: Please be careful and alert when copying and pasting code!

uno: :Sequence< 0OUString >
SwXTextTable: :getSupportedServiceNames(void)

{

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20borde... 8/32

11.04.2015 LibreOffice Project's Check

uno: :Sequence< OUString > aRet(4);
OUString* pArr = aRet.getArray();

pArr[0] = "com.sun.star.document.LinkTarget";
pArr[1] = "com.sun.star.text.TextTable";
pArr[2] = "com.sun.star.text.TextContent";
pArr[2] = "com.sun.star.text.TextSortable";
return aRet;

}

PVS-Studio's diagnostic message: V519 The 'pArr[2]' variable is assigned values twice successively.
Perhaps this is a mistake. Check lines: 3735, 3736. unotbl.cxx 3736

It's the classic last line effect. I'm almost sure the last line was derived from the one before it. The
programmer replaced "Content" with "Sortable" but forgot about the index '2'.

Another very similar case:

Sequence<OUString> FirebirdDriver: :getSupportedServiceNames_Static()

{
Sequence< OUString > aSNS(2);

aSNS[@] = "com.sun.star.sdbc.Driver";
aSNS[@] = "com.sun.star.sdbcx.Driver";
return asSNS;

}

PVS-Studio's diagnostic message: V519 The 'aSNS[0]' variable is assigned values twice
successively. Perhaps this is a mistake. Check lines: 137, 138. driver.cxx 138

The most terrible thing, however, is that errors can sometimes quickly multiply throughout the code
thanks to Copy-Paste. Here's an example. Unfortunately, the code I'm going to cite is somewhat
difficult to read. So be patient.

So, we have the following function:

static bool GetPropertyValue(
::com::sun::star::uno: :Any& rAny,
const ::com::sun::star::uno::Reference<
::com::sun::star::beans: :XPropertySet > &,
const OUString& rPropertyName,
bool bTestPropertyAvailability = false);

Notice that the last argument 'bTestPropertyAvailability' is optional.

| should also explain what 'sal_True' is:

#define sal True ((sal Bool)l)

Now the bug itself. Notice how the GetPropertyValue() function is called:

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20borde... 9/32

http://www.viva64.com/en/b/0260/
http://www.viva64.com/en/d/0108/

11.04.2015 LibreOffice Project's Check

sal_Int32 PPTWriterBase::GetLayoutOffset(....) const
{
ricom::sun::star::uno::Any aAny;
sal _Int32 nLayout = 20;
if (GetPropertyValue(
aAny, rXPropSet, OUString("Layout"™)), sal True)
aAny >>= nLayout;

DBG(printf("GetLayoutOffset %" SAL_PRIAINT32 "\n", nLayout));
return nLayout;

PVS-Studio's diagnostic message: V639 Consider inspecting the expression for 'GetPropertyValue'
function call. It is possible that one of the closing ') brackets was positioned incorrectly. pptx-
epptbase.cxx 442

If you look close, you'll see that one of the closing parentheses is in a wrong place. It results in the
GetPropertyValue() function receiving the default argument value (equal to 'false') instead of
'sal_True' as the last argument.

But it's just half the trouble. The 'if' operator's work was also spoiled. The condition looks as follows:

if (foo(), sal True)

The comma operator returns its right operand. As a result, the condition is always true.

The error in this code doesn't relate to Copy-Paste. It's just an ordinary typo - a parenthesis in a
wrong place. It happens sometimes.

The sad thing about it is that this error was multiplied through other program parts. So even if the
bug is fixed in one fragment, it may well remain unnoticed and unfixed in other fragments.

Thanks to Copy-Paste, this issue can be found in 9 more places:

* epptso.cxx 993

* epptso.cxx 3677
» pptx-text.cxx 518
* pptx-text.cxx 524
* pptx-text.cxx 546
* pptx-text.cxx 560
* pptx-text.cxx 566
o pptx-text.cxx 584
* pptx-text.cxx 590

To finish this section, here are 3 last non-critical warnings. Just one excessive check:
#define CHECK_N_TRANSLATE(name) \
else if (sServiceName == SERVICE_PERSISTENT_COMPONENT_##name) \

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 10/32

http://www.viva64.com/en/d/0257/
http://en.wikipedia.org/wiki/Comma_operator

11.04.2015 LibreOffice Project's Check

sToWriteServiceName = SERVICE_##name

void OElementExport::exportServiceNameAttribute()

{

CHECK_N_TRANSLATE(FORM); <K==~
CHECK_N_TRANSLATE(FORM); <K<~
CHECK_N_TRANSLATE(LISTBOX);
CHECK_N_TRANSLATE(COMBOBOX) ;
CHECK_N_TRANSLATE(RADIOBUTTON);
CHECK_N_TRANSLATE(GROUPBOX);
CHECK_N_TRANSLATE(FIXEDTEXT);
CHECK_N_TRANSLATE(COMMANDBUTTON);

PVS-Studio's diagnostic message: V517 The use of 'if (A) {...} else if (A) {...}' pattern was detected.
There is a probability of logical error presence. Check lines: 177, 178. elementexport.cxx 177

It's nothing serious but still a defect. Two other excessive checks can be found in the following
places:

» querydesignview.cxx 3484
» querydesignview.cxx 3486

Brave use of the realloc() function

The realloc() function is used so obviously unsafely that | don't even dare call it a bug. It must be a
conscious decision of the authors to use it that way: If memory fails to be allocated through
malloc()/realloc(), then the program had better crash right away - no use "floundering about". Even if
the program manages to make it through and keep working, it'll be no good. But it would be unfair to
ignore the analyzer's warnings for this code as if they were false positives. So let's see what our tool
didn't like in about it.

As an example, let's take the implementation of the add() function in the FastAttributeList class:

void FastAttributelList::add(sal_Int32 nToken,
const sal Char* pValue, size_t nValuelength)

maAttributeTokens.push_back(nToken);
sal Int32 nWritePosition = maAttributeValues.back();
maAttributeValues.push_back(maAttributeValues.back() +
nValueLength + 1);
if (maAttributeValues.back() > mnChunkLength)
{
mnChunkLength = maAttributeValues.back();
mpChunk = (sal_Char *) realloc(mpChunk, mnChunkLength);

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord...

11/32

http://www.viva64.com/en/d/0106/

11.04.2015 LibreOffice Project's Check
strncpy(mpChunk + nWritePosition, pValue, nValuelLength);

mpChunk[nWritePosition + nValuelength] = '\@';
}

PVS-Studio's diagnostic message: V701 realloc() possible leak: when realloc() fails in allocating
memory, original pointer 'mpChunk’ is lost. Consider assigning realloc() to a temporary pointer.
fastattribs.cxx 88

The main problem with this code is that the realloc() function's return result is not checked. Of
course, the situation when memory fails to be allocated is very rare. But suppose it has happened.
Then realloc() returns NULL and an alarm condition occurs as the strncpy() function starts copying
data god knows where:

mpChunk = (sal_Char *) realloc(mpChunk, mnChunkLength);

}
strncpy(mpChunk + nWritePosition, pValue, nValuelLength);

But it's really another thing that the analyzer didn't like. Suppose we have some error handler in the
program that will keep it executing. But from that moment, we will be dealing with memory leak.
NULL will be written into the mpChunk variable and memory freeing will become impossible. I'll
explain this bug pattern in more detail. Many people don't stop to think twice about how to use
realloc(), so they tend to do it in a wrong way.

Let's examine an artificial code sample:
char *p = (char *)malloc(10);

p = (char *)realloc(p, 10000);

If memory cannot be allocated, the 'p' variable will get "spoiled". Now there's no chance left to free
the memory pointed to by the pointer previously stored in 'p'.

The bug is clear and prominent in this form. But such code is still pretty frequent in practice. The
analyzer generates 8 more warnings of the same kind but we won't discuss them. LibreOffice
believes it can get memory anytime, anyway.

Logical errors

| came across a few funny errors in conditions. | guess there are different reasons behind them -
carelessness, typos, poor language knowledge.

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 12/32

http://www.viva64.com/en/d/0340/

11.04.2015 LibreOffice Project's Check

void ScPivotlLayoutTreelListData::PushDataFieldNames(....)

{
ééaéLabelData* pLabelData = mpParent->GetLabelData(nColumn);
if (pLabelData == NULL && pLabelData->maName.isEmpty())
continue;
} .

PVS-Studio's diagnostic message: V522 Dereferencing of the null pointer '‘pLabelData’ might take
place. Check the logical condition. pivotlayouttreelistdata.cxx 157

It's a logical error in the condition: If the pointer is null, let's dereference it. As far as | can get it, the
programmer should have used the || operator here.

A similar error:

void grabFocusFromLimitBox(OQueryController& _rController)

{
vcl: :Window* pWindow = VCLUnoHelper::GetWindow(xWindow);
if(pWindow || pWindow->HasChildPathFocus())
{
pWindow->GrabFocusToDocument();
}
}

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 13/32

http://www.viva64.com/en/d/0111/

11.04.2015 LibreOffice Project's Check

PVS-Studio's diagnostic message: V522 Dereferencing of the null pointer 'pWindow' might take
place. Check the logical condition. querycontroller.cxx 293

In this fragment, on the contrary, '&&' should have been written instead of '||'.

Now a bit more complex condition:

enum SbxDataType {
SbXEMPTY = 0,
SbxNULL = 1,

}s

void SbModule: :GetCodeCompleteDataFromParse(CodeCompleteDataCache& aCache)
{

if((pSymDef->GetType() != SbxEMPTY) ||
(pSymDef->GetType() != SbxNULL))

PVS-Studio's diagnostic message: V547 Expression is always true. Probably the '&&' operator should

be used here. sbxmod.cxx 1777

To make it simpler, I'll rewrite the expression for you:

if (type !'= @ || type != 1)

You see, it is always true.
Two similar bugs can be found in the following fragments:

» V547 Expression is always true. Probably the '&&' operator should be used here. sbxmod.cxx
1785

» V547 Expression is always false. Probably the '||' operator should be used here.
xmistylesexporthelper.cxx 223

| also saw two fragments with excessive conditions. | believe these are errors:

sal uIntl6 ScRange::ParseCols(....)
{

const sal Unicode* p = rStr.getStr();

case formula::FormulaGrammar::CONV_XL_R1C1:
if ((p[e] == 'C' || p[e] != 'c') &&
NULL !'= (p = lcl_rlcl_get_col(
p, rDetails, &aStart, &ignored)))

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord...

14/32

http://www.viva64.com/en/d/0137/

11.04.2015 LibreOffice Project's Check

PVS-Studio's diagnostic message: V590 Consider inspecting the 'p[0] =="'C' || p[0] !='c" expression.
The expression is excessive or contains a misprint. address.cxx 1593

The (p[0] =="C' || p[0] !="c") condition can be reduced to (p[0] !="'c"). I'm sure it's an error and the
condition should have really looked as follows: (p[0] == 'C' || p[0] =="C').

An identical bug can be found in the same file a bit further:

» V590 Consider inspecting the 'p[0] =='R" || p[0] !="r" expression. The expression is excessive or
contains a misprint. address.cxx 1652

| guess we can also call it a logical error when a pointer is first dereferenced and only then checked
for being null. This is a very common bug in every program. It usually occurs due to carelessness
while doing code refactoring.

Here's a typical example:

IMPL_LINK(....)
{

pWindow->GetSystemWindow();
pSysWin->GetMenuBar();

SystemWindow *pSysWin
MenuBar *pMBar
if (pSysWin && pMBar)
{

AddMenuBarIcon(pSysWin, true);

}

PVS-Studio's diagnostic message: V595 The 'pSysWin' pointer was utilized before it was verified
against nullptr. Check lines: 738, 739. updatecheckui.cxx 738

The 'pSysWin' pointer is dereferenced in the 'pSysWin->GetMenuBar()' expression and then is
checked for being null.

| suggest that LibreOffice's authors also review the following fragments: LibreOffice-V595.ixt.

And the last error, a more complicated one. If you feel tired, you may skip to the next section. In the
code below, we are dealing with a typical enumeration:

enum BRC_Sides

{
WW8_TOP = 0, WW8_LEFT = 1, WW8_BOT = 2,
WW8_RIGHT = 3, WW8_BETW = 4

}s

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 15/32

http://www.viva64.com/en/examples/v595/
http://www.viva64.com/external-pictures/txt/LibreOffice-V595.txt

11.04.2015 LibreOffice Project's Check

Notice that the named constants are not a power of two - they are just numbers. And there's 0
among them.

But the programmer is working with them as if they were a power of two - trying to select and check
single bits by mask:

void SwWW8ImplReader::Read Border(....)
{

if ((nBorder & WW8_ LEFT)==WW8 LEFT)
aBox.SetDistance(
(sal _ulIntl6)aInnerDist.Left(), BOX_LINE_LEFT);

if ((nBorder & WW8 TOP)==WW8_TOP)
aBox.SetDistance(
(sal_ulIntl6)alnnerDist.Top(), BOX_LINE_TOP);

if ((nBorder & WW8 RIGHT)==WW8 RIGHT)
aBox.SetDistance(
(sal_ulIntil6)aInnerDist.Right(), BOX_LINE_RIGHT);

if ((nBorder & WW8_BOT)==WW8_BOT)
aBox.SetDistance(
(sal_ulIntl6)aInnerDist.Bottom(), BOX_LINE_BOTTOM);

PVS-Studio's diagnostic message: V616 The 'WW8_TOP' named constant with the value of 0 is used
in the bitwise operation. ww8par6.cxx 4742

The programmer shouldn't have done that. For example, the ((nBorder & WW8_TOP)==WW8_TOP)
condition appears to be always true. To make it clear, I'll substitute the numbers: ((nBorder & 0)==0).

The check for WW8_LEFT doesn't work right either when the nBorder variable stores the value
WW8_RIGHT equal to 3. Let's substitute the numbers: ((3 & 1) == 1). It turns out that WW8_RIGHT
will be mixed up with WW8_LEFT.

Skeleton in the closet

Every now and then, the analyzer would detect abnormal fragments in the code. These are not
errors but programmer's clever tricks. It's no use touching them but they can be just interesting to
study. Here's one of such cases where the analyzer didn't like the argument of the free() function:

/* This operator is supposed to be unimplemented, but that now leads
* to compilation and/or linking errors with MSVC2008. (Don't know

* about MSVC2010.) As it can be left unimplemented just fine with

* gcc, presumably it is never called. So do implement it then to

* avoid the compilation and/or linking errors, but make it crash

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord...

16/32

http://www.viva64.com/en/d/0233/

11.04.2015 LibreOffice Project's Check
* intentionally if called.
*/
void SimpleReferenceObject::operator delete[](void * /* pPtr */)

{
free(NULL);

}

Safety rules

Who's laughing at
the cow In the hardhat

Among other things, the analyzer detected a few issues that make the program's code dangerous.
The nature of these dangers varies but | decided to group them all in one section.

void writeError(const char* errstr)

{
FILE* ferr = getErrorFile(1);

if (ferr != NULL)
{

fprintf(ferr, errstr);
fflush(ferr);

}

PVS-Studio's diagnostic message: V618 It's dangerous to call the 'fprintf' function in such a manner,
as the line being passed could contain format specification. The example of the safe code:
printf("%s", str); unoapploader.c 405

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 17/32

http://www.viva64.com/en/d/0235/

11.04.2015 LibreOffice Project's Check

If the 'errstr' string contains control characters, any kind of trouble may occur. The program may
crash, write rubbish into the file, and so on (details here).

The correct way of writing it would be as follows:

fprintf(ferr, "%s", errstr);

Here are two more fragments where the printf() function is used in a wrong way:

» climaker_app.cxx 261
« climaker_app.cxx 313

Now a dangerous use of dynamic_cast.

virtual ~LazyFieldmarkDeleter()
{

dynamic_cast<Fieldmark&>
(*m_pFieldmark.get()).ReleaseDoc(m_pDoc);

PVS-Studio's diagnostic message: V509 The 'dynamic_cast<T&>' operator should be located inside
the try..catch block, as it could potentially generate an exception. Raising exception inside the
destructor is illegal. docbm.cxx 846

When working with references, the dynamic_cast operator throws the std::bad_cast exception when
conversion is impossible.

If an exception occurs in the program, stack unwinding begins which causes the objects to be
destroyed by calling their destructors. If the destructor of an object being destroyed during stack
unwinding throws another exception and this exception leaves the destructor, the C++ library will
immediately trigger a program crash by calling the terminate() function. Therefore, destructors
should never spread exceptions and if an exception is thrown it should be processed inside the same
destructor.

Due to the same reason, it is dangerous to call the new operator inside destructors. When the
program is short of memory, this operator will generate the std::bad_alloc exception. A good coding
style is to wrap it in a try-catch block.

Here's an example of dangerous code:

WinMtfOutput: :~WinMtfOutput()

{
mpGDIMetaFile->AddAction(new MetaPopAction());

PVS-Studio's diagnostic messages: V509 The 'new' operator should be located inside the try..catch
block, as it could potentially generate an exception. Raising exception inside the destructor is illegal.

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord...

18/32

https://en.wikipedia.org/wiki/Dynamic_cast
http://www.viva64.com/en/d/0098/
http://www.viva64.com/en/b/0129/

11.04.2015 LibreOffice Project's Check

winmtf.cxx 852
Here's the list of all the other dangerous issues inside destructors:

» V509 The 'dynamic_cast<T&>' operator should be located inside the try..catch block, as it could
potentially generate an exception. Raising exception inside the destructor is illegal. ndtxt.cxx
4886

» V509 The 'new' operator should be located inside the try..catch block, as it could potentially
generate an exception. Raising exception inside the destructor is illegal. export.cxx 279

» V509 The 'new' operator should be located inside the try..catch block, as it could potentially
generate an exception. Raising exception inside the destructor is illegal. getfilenamewrapper.cxx
73

« V509 The 'new' operator should be located inside the try..catch block, as it could potentially
generate an exception. Raising exception inside the destructor is illegal. e3dsceneupdater.cxx 80

» V509 The 'new' operator should be located inside the try..catch block, as it could potentially
generate an exception. Raising exception inside the destructor is illegal. accmap.cxx 1683

» V509 The 'new' operator should be located inside the try..catch block, as it could potentially
generate an exception. Raising exception inside the destructor is illegal. frmtool.cxx 938

By the way, since we have started talking about the new operator, I'd like to speak about the
following code and the danger hidden in it:

extern "C" oslFileHandle

SAL_CALL osl_createFileHandleFromOSHandle(
HANDLE hFile,
sal uInt32 uFlags)

if (!IsValidHandle(hFile))
return 0; // EINVAL

FileHandle Impl * pImpl = new FileHandle Impl(hFile);
if (pImpl == 9)
{

// cleanup and fail

(void) ::CloseHandle(hFile);

return 0; // ENOMEM

PVS-Studio's diagnostic message: V668 There is no sense in testing the 'plmpl' pointer against null,
as the memory was allocated using the 'new' operator. The exception will be generated in the case
of memory allocation error. file.cxx 663

The 'new' operator throws an exception when the program is short of memory. So checking the
pointer returned by the operator won't make sense: It will always be not equal to 0. When there's not
enough memory, the CloseHandle() function won't be called:

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 19/32

http://www.viva64.com/en/d/0293/

11.04.2015 LibreOffice Project's Check

FileHandle Impl * pImpl = new FileHandle_ Impl(hFile);
if (pImpl == 9)
{

// cleanup and fail

(void) ::CloseHandle(hFile);

return 0; // ENOMEM

Keep in mind that | may be wrong as I'm not familiar with the LibreOffice project. Perhaps the
developers use some special library versions where the 'new' operator returns nullptr instead of
throwing an exception. If so, then please just ignore the V668 warnings. You can turn them off so
they don't bother you.

But if the new operator does throw an exception, please check the following 126
warnings: LibreOffice-V668.txt.

The next danger is found in the implementation of one of the DIIMain functions:

BOOL WINAPI D11Main(HINSTANCE hinstDLL,
DWORD fdwReason, LPVOID lpvReserved)

CreateThread(NULL, @, ParentMonitorThreadProc,
(LPVOID)dwParentProcessId, 0, &dwThreadId);

PVS-Studio's diagnostic message: V718 The 'CreateThread' function should not be called from
'‘DIIMain’ function. dllentry.c 308

A large number of functions can't be called inside DIIMain() as it may cause an application hang or
other errors. CreateThread() is among those prohibited functions.

The trouble with DIIMain is well described at MSDN: Dynamic-Link Library Best Practices.

This code may work well but it is dangerous and will fail you one day.

| also encountered an issue when the wecsncpy() function may cause a buffer overflow:

typedef struct {

WCHAR wszTitle[MAX_COLUMN_NAME_LEN];

WCHAR wszDescription[MAX_COLUMN_DESC_LEN];
} SHCOLUMNINFO, *LPSHCOLUMNINFO;

HRESULT STDMETHODCALLTYPE CColumnInfo::GetColumnInfo(
DWORD dwIndex, SHCOLUMNINFO *psci)

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 20/32

https://msdn.microsoft.com/en-us/library/dn633971.ASPX
http://www.viva64.com/external-pictures/txt/LibreOffice-V668.txt
http://www.viva64.com/en/d/0359/

11.04.2015 LibreOffice Project's Check

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord...

wcsnepy(psci->wszTitle,
ColumnInfoTable[dwIndex].wszTitle,
(sizeof(psci->wszTitle) - 1));
return S_OK;

PVS-Studio's diagnostic message: V512 A call of the 'wcsncpy' function will lead to overflow of the
buffer 'psci->wszTitle'. columninfo.cxx 129

The (sizeof(psci->wszTitle) - 1) expression is wrong: The programmer forgot to divide it by the size of
one character:

(sizeof(psci->wszTitle) / sizeof(psci->wszTitle[0]) - 1)

The last bug type we will discuss in this section is about malfunctioning memset() calls. For example:

static void __rtl _digest_updateMD2 (DigestContextMD2 *ctx)
{

sal_uInt32 state[48];

memset (state, 0, 48 * sizeof(sal ulnt32));
}

PVS-Studio's diagnostic message: V597 The compiler could delete the 'memset' function call, which
is used to flush 'state’ buffer. The RtlSecureZeroMemory() function should be used to erase the
private data. digest.cxx 337

| already wrote a lot about this bug pattern. So now I'll just briefly describe it, and you may check the
links below for details.

The compiler has the right to remove a call of the memset() function when zeroed memory is not
used in any way after that call. And this is exactly what happens in the code cited above. It will result
in retaining some of the private data in memory.

References:

1. V597. The compiler could delete the 'memset' function call, which is used to flush 'Foo' buffer.

2. Overwriting memory - why?

3. Zero and forget -- caveats of zeroing memory in C

Here's the list of other fragments where private data fail to be cleared: LibreOffice-V597.txt.

Miscellaneous

Guess: :Guess()

{
language_str = DEFAULT_LANGUAGE ;

21132

http://www.viva64.com/en/d/0208/
http://www.eliteraspberries.com/blog/2012/10/zero-and-forget--caveats-of-zeroing-memory-in-c.html
http://www.viva64.com/external-pictures/txt/LibreOffice-V597.txt
http://www.viva64.com/en/k/0041/
http://www.viva64.com/en/d/0208/
http://www.viva64.com/en/d/0101/

11.04.2015 LibreOffice Project's Check

country_str = DEFAULT_COUNTRY,
encoding_str = DEFAULT_ENCODING;

}
Guess: :Guess(const char * guess_str)
{
Guess();
}

PVS-Studio's diagnostic message: V603 The object was created but it is not being used. If you wish
to call constructor, 'this->Guess::Guess(....)' should be used. guess.cxx 56

The programmer who wrote this code is not very good at the C++ language. They intended to call
one constructor from another. But actually they created a temporary unnamed object. Because of
this error, some class fields will remain uninitialized. Details here.

Another poorly implemented constructor: camera3d.cxx 46

sal uInt32 readIdent(....)
{

size_t nItems = rStrings.size();
const sal_Char** pStrings = new const sal_Char*[nItems+1];

delete pStrings;
return nRet;

PVS-Studio's diagnostic message: V611 The memory was allocated using 'new T[]' operator but was
released using the 'delete’ operator. Consider inspecting this code. It's probably better to use 'delete
[pStrings;'. profile.hxx 103

The correct code: delete [] pStrings;.
There was another warning about incorrect memory freeing:

» V611 The memory was allocated using 'new T[]' operator but was released using the 'delete’
operator. Consider inspecting this code. It's probably better to use 'delete [] pStrings;'. profile.hxx
134

static const int kConventionShift = 16;
static const int kFlagMask = ~((~int(@)) << kConventionShift);

PVS-Studio's diagnostic message: V610 Undefined behavior. Check the shift operator '<<'. The left
operand '(~int (0))' is negative. grammar.hxx 56

There is also an issue with undefined behavior because of a negative number shift (details here).

sal Int32 GetMRest() const {return m_nRest;}

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 22/32

http://www.viva64.com/en/d/0215/
http://www.viva64.com/en/b/0127/
http://www.viva64.com/en/d/0226/
http://www.viva64.com/en/b/0142/

11.04.2015 LibreOffice Project's Check

OUString LwpBulletStyleMgr::RegisterBulletStyle(....)
{

if (pIndent->GetMRest() > ©.001)

PVS-Studio's diagnostic message: V674 The '0.001' literal of the 'double’ type is compared to a value
of the 'long' type. Consider inspecting the 'plndent->GetMRest() > 0.001' expression.
lwpbulletstylemgr.cxx 177

Something is not right here. It doesn't make sense to compare an integer number to 0.001.

An annoying mess with a return value's type:

BOOL SHGetSpecialFolderPath(
HWND hwndOwner,
Out LPTSTR lpszPath,
In int csidl,
In BOOL fCreate

)

#define FAILED(hr) (((HRESULT)(hr)) < 0)

OUString UpdateCheckConfig: :getDesktopDirectory()
{

if(! FAILED(SHGetSpecialFolderPathW(....)))

PVS-Studio's diagnostic message: V716 Suspicious type conversion: BOOL -> HRESULT.
updatecheckconfig.cxx 193

The programmer decided that SHGetSpecialFolderPath() would return the HRESULT type. But
actually it returns BOOL. To fix the code, we should remove the FAILED macro from the condition.

Another error of this kind: updatecheckconfig.cxx 222

And here, on the contrary, we are lacking the FAILED macro. One can't check an HRESULT status
like this:

bool Uniscribelayout::LayoutText(ImplLayoutArgs& rArgs)
{

HRESULT nRC = ScriptItemize(....);
if(!'nRC) // break loop when everything is correctly itemized
break;

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 23/32

http://www.viva64.com/en/d/0357/
http://www.viva64.com/en/d/0308/

11.04.2015 LibreOffice Project's Check

PVS-Studio's diagnostic message: V545 Such conditional expression of 'if' operator is incorrect for
the HRESULT type value 'nRC'. The SUCCEEDED or FAILED macro should be used instead.
winlayout.cxx 1115

In the following code, | guess, the comma should be replaced with a semicolon:

void Reader::ClearTemplate()

{
if(pTemplate)
{
if(@ == pTemplate->release())
delete pTemplate,
pTemplate = 0;
}
}

PVS-Studio's diagnostic message: V626 Consider checking for misprints. It's possible that',' should
be replaced by ';'. shellio.cxx 549

Some trifle:

void TabBar::ImplInit(WinBits nWinStyle)
{

false;
false;

mbMirrored
mbMirrored

PVS-Studio's diagnostic message: V519 The 'mbMirrored' variable is assigned values twice
successively. Perhaps this is a mistake. Check lines: 415, 416. tabbar.cxx 416

And another one: V519 The 'aParam.mpPreviewFontSet' variable is assigned values twice
successively. Perhaps this is a mistake. Check lines: 4561, 4562. output2.cxx 4562

An incorrect magic constant specifying the string length:

static bool CallRsc2(....)

{
if(!rsc_strnicmp(...., "-fp=", 4) ||
Irsc_strnicmp(...., "-fo=", 4) ||
Irsc_strnicmp(...., "-presponse", 9) || = <<<<----
Irsc_strnicmp(...., "-rc", 3) ||
lrsc_stricmp(...., "-+") ||

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 24/32

http://www.viva64.com/en/d/0243/
http://www.viva64.com/en/d/0134/

11.04.2015 LibreOffice Project's Check

Irsc_striecmp(...., "-br") ||
Irsc_stricmp(...., "-bz") ||
Irsc_striemp(...., "-r") ||
(- l= %0))

PVS-Studio's diagnostic message: V666 Consider inspecting third argument of the function
'rsc_strnicmp'. It is possible that the value does not correspond with the length of a string which was
passed with the second argument. start.cxx 179

The length of the "-presponse" string is 10 characters, not 9.

A strange 'break’ inside a loop:

OUString getExtensionFolder(....)
{

while (xResultSet->next())
{

title = Reference<sdbc: :XRow>(
xResultSet, UNO_QUERY_THROW)->getString(1l /* Title */) ;
break;

}

return title;

PVS-Studio's diagnostic message: V612 An unconditional 'break’ within a loop. dp_manager.cxx 100
Three other strange loops:

» V612 An unconditional 'break’ within a loop. svdfppt.cxx 3260
* V612 An unconditional 'break’ within a loop. svdfppt.cxx 3311
« V612 An unconditional 'break’ within a loop. personalization.cxx 454

Unlikely null pointer dereferencing:

BSTR PromptNew(long hWnd)
{

ADOConnection* piTmpConnection = NULL;
::ColInitialize(NULL);

hr = CoCreateInstance(
CLSID_DatalLinks,
NULL,
CLSCTX_INPROC_SERVER,
IID_IDataSourcelLocator,

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 25/32

http://www.viva64.com/en/d/0228/
http://www.viva64.com/en/d/0291/

11.04.2015 LibreOffice Project's Check
(void**)&d1Prompt
)
if(FAILED(hr))
{

piTmpConnection->Release();
d1lPrompt->Release();
return connstr;

PVS-Studio's diagnostic message: V522 Dereferencing of the null pointer 'piTmpConnection' might
take place. adodatalinks.cxx 84

If the CoCreatelnstance() function happens to return the error status, the 'piTmpConnection' pointer
which is equal to NULL will be dereferenced.

Microoptimizations

A static analyzer in no way can serve as a substitute for profiling tools. Only a profiler can suggest
what fragments of your program should be optimized.

Nevertheless, a static analyzer can point out those places than can easily and safely be improved. It
doesn't necessarily mean that the program will run faster but it definitely won't make it worse. | think
we should rather treat it as a way to improve the coding style.

Let's see what recommendations about microoptimizations PVS-Studio has to offer.

Passing objects by reference

If an object passed into a function doesn't change, it would be nicer to pass it by reference, not by
value. Of course, it doesn't concern each and every object. But when we are dealing with strings, for
example, there's no sense allocating memory and copying the string's contents to no purpose.

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 26/32

11.04.2015 LibreOffice Project's Check

Perhaps it would be
easier using mice?

\\sﬂ--*

For example:

string getexe(string exename, bool maybeempty) {
char* cmdbuf;
size t cmdlen;
_dupenv_s(&cmdbuf, &cmdlen, exename.c_str());
if(!cmdbuf) {
if (maybeempty) {
return string();
}
cout << "Error << exename <<
"Did you forget to source the environment?" << endl;
exit(1);
}
string command(cmdbuf);
free(cmdbuf);
return command;

not defined.

The 'exename' object is read-only. That's why the analyzer generates the following
message: V813Decreased performance. The 'exename' argument should probably be rendered as a
constant reference. wrapper.cxx 18

The function declaration should be changed in the following way:

string getexe(const string &exename, bool maybeempty)

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 27/32

http://www.viva64.com/en/d/0303

11.04.2015 LibreOffice Project's Check
Passing complex objects by a constant reference is usually more efficient and allows avoiding the
"slicing" problem. Those who are not quite familiar with the issue, please see "ltem 20. Prefer pass-
by-reference-to-const to pass-by-value" from the book:

Effective C++, Third Edition: 55 Specific Ways to Improve Your Programs and Designs, by Scott
Meyers. Copyright © 2005 by Pearson Education, Inc. ISBN: 0-321-33487-6.

Another related diagnostic is V801. The analyzer generated total 465 warnings where it suggested
that objects should be passed by reference: LibreOffice-V801-V813.txt.

Using the prefix increment

For iterators, the prefix increment operation is a bit faster. To learn more about it, see "ltem 6.
Distinguish between prefix and postfix forms of increment and decrement operators" from the book:

More Effective C++: 35 New Ways to Improve Your Programs and Designs, by Scott Meyers. ISBN 0-
201-63371-X

You may find this recommendation farfetched, for there's presumably no difference between 'A++'
and '++A' in practice. | have investigated this question and carried out some experiments and believe
that this recommendation should be followed (details here).

For example:

typename InterfaceMap::iterator find(const key &rKey) const

{

typename InterfaceMap::iterator iter = m_pMap->begin();
typename InterfaceMap::iterator end = m_pMap->end();

while(iter != end)
{
equalImpl equal;
if(equal(iter->first, rKey))
break;
iter++;
}

return iter;

PVS-Studio's diagnostic message: V803 Decreased performance. In case 'iter' is iterator it's more
effective to use prefix form of increment. Replace iterator++ with ++iterator. interfacecontainer.h 405

The "iter++" expression should be replaced with "++iter". | don't know if the developers find it worthy
to spend some time on it, but if they do, here's 257 more places where the postfix increment can be
replaced with the prefix one: LibreOffice-V803.txt.

Checking for an empty string

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 28/32

http://www.viva64.com/en/d/0135/
http://www.viva64.com/en/b/0093/
http://www.viva64.com/en/d/0165/
http://www.viva64.com/external-pictures/txt/LibreOffice-V801-V813.txt
http://www.viva64.com/external-pictures/txt/LibreOffice-V803.txt

11.04.2015 LibreOffice Project's Check

To find out if a string is empty, you don't need to calculate its length. Here's an example of inefficient
code:

BOOL GetMsiProp(....)
{

char* buff = reinterpret _cast<char*>(malloc(nbytes));

return (strlen(buff) > 0);

PVS-Studio's diagnostic message: V805 Decreased performance. It is inefficient to identify an empty
string by using 'strlen(str) > 0' construct. A more efficient way is to check: str[0] !="\0". sellang.cxx 49

What makes it inefficient is that the program has to sort through all the characters in the string until it
encounters the terminal null. But it is actually enough to check one byte only:

return buff[e] != '\@';

This code doesn't look neat, so we'd better create a special function:

inline bool IsEmptyStr(const char *s)

{
return s == nullptr || s[@] == "\0';

Now we've got an extra check of a pointer for null. | don't like it, so you may think of some other ways
to implement it. But still, even in this form, the function will run faster than strlen().

Other inefficient checks: LibreOffice-V805.txt.

Miscellaneous

There were a few other warnings that may be interesting: LibreOffice-V804_V811.txt.

The number of false positives

I mentioned 240 warnings that | found worthy. In total, the analyzer generated about 1500 general
warnings (GA) of the 1-st and 2-nd levels. Does it mean that the analyzer generates too many false
positives? No, it doesn't. Most warnings point out real issues and are quite relevant but | didn't find
them interesting to discuss in the article.

Every now and then, we get positive replies from our users, telling us, "The PVS-Studio analyzer
produces pretty few false positives, and that's very convenient." We, too, believe our tool doesn't
generate too many false positives. But how come? We only told you about 16% of the messages.
What's the rest? Aren't they false positives?

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 29/32

http://www.viva64.com/en/t/0088/
http://www.viva64.com/external-pictures/txt/LibreOffice-V804_V811.txt
http://www.viva64.com/en/d/0179/
http://www.viva64.com/en/general-analysis/
http://www.viva64.com/external-pictures/txt/LibreOffice-V805.txt

11.04.2015 LibreOffice Project's Check
Well, of course there is some amount of false positives among them. You just can't avoid them all
completely. In order to suppress them, we offer a number of mechanisms in our analyzer. But most
of the warnings, though not pointing to real errors, revealed code with a smell. I'll try to explain it by a
few examples.

The analyzer generated 206 V690 V690 warnings about a class containing a copy constructor but
missing an assignment operator. Here's one of these classes:

class RegistryTypeReader

{
public:

inline RegistryTypeReader(const RegistryTypeReader& toCopy);

}s

inline RegistryTypeReader::RegistryTypeReader(const RegistryTypeReader& toCopy)
: m_pApi(toCopy.m_pApi)
, m_hImpl(toCopy.m_hImpl)
{ m_pApi->acquire(m_hImpl); }

There's hardly any error here. It is most likely that the = operator is not used in all the 206 classes.
But what if it is?

The programmer has to make a choice.

If they believe the code is dangerous, then they should implement an assignment operator or forbid
it. If they don't think the code is dangerous, the V690 diagnostic may be disabled and the list of the
diagnostic messages will immediately become 206 warnings shorter.

Another example. Earlier in the article, | mentioned the following suspicious fragment:

if(pInit)

AddMap(pInit);
if(pInit)

AddMap(pInit2);

It was diagnosed by the V581 rule. But, to be honest, | just briefly scanned through the V581
warnings and could have missed a lot. You see, there are 70 more of them. And the analyzer is not
to blame. How does it know why the programmer would like to write code like this:

static bool 1lcl parseDate(....)
{

bool bSuccess = true;

if (bSuccess)

{

++nPos;

data:text/html;charset=utf-8,%3Cdiv%20class%3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 30/32

http://www.viva64.com/en/d/0326/
http://www.viva64.com/en/d/0326/
http://www.viva64.com/en/d/0021/

11.04.2015 LibreOffice Project's Check

}

if (bSuccess)

{

bSuccess =
readDateTimeComponent(string, nPos, nDay, 2, true);

'bSuccess' is checked twice. What if it is some other variable that should have been checked for the
second time?

Again, it's up to the programmer to decide what to do with these 70 warnings. If they like to have a
sequence of identical checks to reveal some logical blocks, then the analyzer is certainly wrong.
Then the V581 diagnostic should be turned off to get rid of 70 warnings at once.

If the programmer is not that confident, they will have to do something about that. For example,
refactor the code:

static bool 1lcl parseDate(....)
{

bool bSuccess = true;

if (bSuccess)
{
++nPos;
bSuccess =
readDateTimeComponent(string, nPos, nDay, 2, true);

So, the basic idea I'm trying to communicate to you is that there is no serious problem with false
positives. If you think some group of warnings is not relevant for your particular project, you can
simply disable them, thus making the list of the diagnostic messages you'll have to examine much
shorter. If, on the contrary, you think the code should be reviewed and fixed, then these are in no
way false messages but absolutely true and relevant ones.

Note. You can get started with the analyzer without having to review hundreds or thousands of
messages. Just use our new message marking mechanism. It is useful when you need to hide all the
present warnings to work only with those generated for freshly written code. You can return to bugs

in the old code at any moment when you have time for that.

Conclusion

Although the number of errors, defects, and slip-ups discussed in this article is, as usual, great, the

LibreOffice project's code is still very high-quality. And it does bear the evidence of being regularly

checked by Coverity, which indicates the authors' serious approach to the development. The number

of bugs found by PVS-Studio is pretty small for such a large project like LibreOffice.
data:text/html;charset=utf-8,%3Cdiv%20class % 3D %22item _title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 31/32

http://www.viva64.com/en/d/0345/

11.04.2015 LibreOffice Project's Check

What did | mean to say by this article? Well, nothing special, really. It's a bit of advertising for our
tool, and that's all. Use the PVS-Studio static analyzer regularly to find and fix piles of errors at the
earliest development stages.

Well that's
me detoxed!

I'm like the cow in the last picture - laid a pile of errors and ran away. And LibreOffice's authors will
now have to sort it all out. Sorry for that. It's just my job.

data:text/html;charset=utf-8,%3Cdiv%20class %3D %22item_title%22%20style%3D %22margin%3A%200px%3B%20padding%3A%200px%3B%20bord... 32/32

http://www.viva64.com/en/pvs-studio/

