












Linux Kernel Crash Book
Everything you need to know

Igor Ljubuncic aka Dedoimedo
www.dedoimedo.com





www.dedoimedo.com	all rights reserved

Contents

I  LKCD	23

1	Introduction	23
1.1	How does LKCD work?		23
1.1.1	Stage 1		23
1.1.2	Stage 2		24

2	LKCD Installation	25

3	LKCD local dump procedure	25
3.1	Required packages		25
3.2	Configuration file		25
3.2.1	Activate dump process (DUMP_ACTIVE)		25
3.2.2	Configure the dump device (DUMP_DEVICE)		25
3.2.3	Configure the dump directory (DUMPDIR)		26
3.2.4	Configure the dump level (DUMP_LEVEL)		27
3.2.5	Configure the dump flags (DUMP_FLAGS)		28
3.2.6	Configure the dump compression level (DUMP_COMPRESS)  . .	29
3.2.7	Additional settings		29
3.3	Enable core dump capturing		30
3.4	Configure LKCD dump utility to run on startup		30

4	LKCD netdump procedure	31

5	Configure LKCD netdump server	31
5.1	Required packages		31
5.2	Configuration file		31



2






www.dedoimedo.com	all rights reserved


5.2.1	Configure the dump flags (DUMP_FLAGS)		32
5.2.2	Configure the source port (SOURCE_PORT)		32
5.2.3	Make sure dump directory is writable for netdump user		32
5.3	Configure LKCD netdump server to run on startup		33
5.4	Start the server		33

6	Configure LKCD client for netdump	34
6.1	Configuration file		34
6.1.1	Configure the dump device (DUMP_DEV)		34
6.1.2	Configure the target host IP address (TARGET_HOST)		34
6.1.3	Configure target host MAC address (ETH_ADDRESS)		35
6.1.4	Configure target host port (TARGET_PORT)		35
6.1.5	Configure the source port (SOURCE_PORT)		35
6.2	Enable core dump capturing		36
6.3	Configure LKCD dump utility to run on startup		37
6.4	Start the lkcd-netdump utility		37

7	Test functionality	37

8	Problems	38
8.1	Unsuccessful netdump to different network segment		39

9	Conclusion	39

II  Kdump	41

10 Introduction	41
10.1 Restrictions		42
10.1.1	Kernel compilation		42



3






www.dedoimedo.com	all rights reserved


10.1.2	Hardware-specific configurations		42
10.2 How does Kdump work?		42
10.2.1	Terminology		42
10.2.2	Kexec		43
10.2.3	Kdump		43

11 Kdump installation	43
11.1 Standard (production) kernel		45
11.1.1	Under Processor type and features		45
11.1.2	Under Filesystems > Pseudo filesystems		47
11.1.3	Under Kernel hacking		47
11.1.4	Other settings		48
11.2 Crash (capture) kernel		49

12 Kdump packages & files	49
12.1 Kdump packages		49
12.2 Kdump files		50

13 Kdump configuration	51
13.1 Configuration file		51
13.1.1	Configure KDUMP_KERNELVER		51
13.1.2	Configure KDUMP_COMMANDLINE		52
13.1.3	Configure KDUMP_COMMANDLINE_APPEND		53
13.1.4	Configure KEXEC_OPTIONS		54
13.1.5	Configure KDUMP_RUNLEVEL		55
13.1.6	Configure KDUMP_IMMEDIATE_REBOOT		55
13.1.7	Configure KDUMP_TRANSFER		56
13.1.8	Configure KDUMP_SAVEDIR		56
13.1.9	Configure KDUMP_KEEP_OLD_DUMPS		57



4






www.dedoimedo.com	all rights reserved


13.1.10 Configure KDUMP_FREE_DISK_SIZE		58
13.1.11 Configure KDUMP_DUMPDEV		58
13.1.12 Configure KDUMP_VERBOSE		59
13.1.13 Configure KDUMP_DUMPLEVEL		60
13.1.14 Configure KDUMP_DUMPFORMAT		61
13.2 GRUB menu changes		62
13.3 Set Kdump to start on boot		63

14 Test configuration	64
14.1 Configurations		64
14.1.1	Kernel		64
14.1.2	GRUB menu		65
14.2 Load Kexec with relevant parameters		66
14.2.1	Possible errors		66

15 Simulate kernel crash	68

16 Kdump network dump functionality	69
16.1 Configuration file		69
16.1.1	Configure KDUMP_RUNLEVEL		69
16.1.2	Configure KDUMP_SAVEDIR		70
16.1.3	Kernel crash dump NFS example		71

17 Conclusion	72

III  Crash Collection	73







5






www.dedoimedo.com	all rights reserved


18 Crash setup	73
18.1 Prerequisites		73
18.2 Kdump working crash installation		73
18.3 Crash location		74
18.4 Memory cores		77

19 Invoke crash	77
19.1 Old (classic) invocation		78
19.2 New invocation		78
19.3 Important details to pay attention to		80
19.4 Portable use		81

20 Running crash	81
20.1 Crash commands		83
20.1.1	bt - backtrace		83
20.1.2	log - dump system message buffer		84
20.1.3	ps - display process status information		84
20.2 Other useful commands		85
20.3 Create crash analysis file		85
20.4 Crash running in unattended mode		86

21 Possible errors	87
21.1 No debugging data available		87
21.2 vmlinux and vmcore do not match (CRC does not match)		89
21.3 No guarantee		90

22 Conclusion	90

IV   Crash Analysis	91



6






www.dedoimedo.com	all rights reserved


23 Analyzing the crash report - First steps	91

24 Getting warmer	98
24.1 Fedora example		99
24.2 Another example, from the White Paper		100
24.3 Kernel Page Error		100

25 Getting hot	102
25.1 Backtrace		102
25.1.1	Call trace		104
25.1.2	Instruction pointer		105
25.1.3	Code Segment (CS) register		106
25.1.4	Privilege levels		106
25.1.5	Current Privilege Level (CPL)		106
25.1.6	Descriptor Privilege Level (DPL) &
Requested Privilege Level (RPL)		107
25.1.7	Fedora example, again		108
25.1.8	backtrace for all tasks		109
25.2 Dump system message buffer		110
25.3 Display process status information		111
25.4 Other useful information		113

26 Super geeky stuff	113
26.1 Kernel source		114
26.2 cscope		114
26.3 Disassemble the object		119
26.4 Trivial example		119
26.5 objdump		121
26.6 Moving on to kernel sources		123



7






www.dedoimedo.com	all rights reserved


26.6.1	What do we do now?		128
26.7 Intermediate example		129
26.7.1	Create problematic kernel module		129
26.7.2	Step 1: Kernel module		129
26.7.3	Step 2: Kernel panic		134
26.7.4	Step 3: Analysis		135
26.8 Difficult example		138
26.8.1	In-depth analysis		139
26.9 Alternative solution (debug kernel)		143

27 Next steps	144
27.1 kerneloops.org		145
27.2 Google for information		151
27.3 Crash analysis results		152
27.3.1	Single crash		153
27.3.2	Hardware inspection		153
27.3.3	Reinstallation & software changes		153
27.3.4	Submit to developer/vendor		153

28 Conclusion	154

V  Appendix	155

29 Kdump	155
29.1 Architecture dependencies		155
29.2 Install kernel-kdump package manually		155
29.3 Install kexec-tools package manually		155
29.3.1	Download the package		156
29.3.2	Extract the archive		156



8






www.dedoimedo.com	all rights reserved


29.3.3	Make & install the package		156
29.3.4	Important note		156
29.4 SUSE & YaST Kdump module		157
29.5 SUSE (and openSUSE) 11.X setup		160
29.5.1	32-bit architecture		161
29.5.2	64-bit architecture		164
29.5.3	Other changes		166

30 Crash	168
30.1 Enable debug repositories		168
30.1.1	Enable repositories in CentOS		169
30.2 lcrash utility (for LKCD)		172
30.2.1	Kerntypes		173
30.3 lcrash demonstration		174

31 Other tools	176
31.1 gdb-kdump		176
31.2 crosscrash		177

VI   References	179

32 LKCD references	179

33 Kdump references	179

34 Crash references	179

35 Dedoimedo web articles	181





9






www.dedoimedo.com	all rights reserved

List of Figures

1	LKCD stages		24
2	LKCD DUMPDIR directive change		27
3	LKCD netdump client source port configuration		36
4	LKCD netdump client successful configuration		37
5	Successful LKCD netdump procedure		38
6	LKCD netdump failure		39
7	Kernel compilation wizard		45
8	Kdump kernel version configuration		52
9	Kdump command line configuration		53
10	Kdump command line append configuration		54
11	Kdump options configurations		55
12	Kdump DUMPDEV configuration		59
13	Kdump DUMPLEVEL configuration		61
14	Console view of crash kernel dumping memory core		68
15	Contents of dumped memory core directory		69
16	Kdump SAVEDIR network configuration		71
17	Console view of network-based crash dump		71
18	Console view of network-based crash dump - continued		72
19	Installation of crash via software manager		74
20	openSUSE Kdump configurationvia YaST-Kdump module		75
21	CentOS Kdump configuration system-config-kdump utility		76
22	Generating crash dump files		77
23	Contents of a crash dump directory		77
24	New kdump invocation console output		79
25	Old crash invocation example on CentOS 5.4		79
26	New crash invocation example on CentOS 5.4		80



10






www.dedoimedo.com	all rights reserved


27	Crash debuginfo location on openSUSE 11.x		81
28	CRC match error		81
29	Crash working		82
30	Crash prompt		82
31	crash bt command example		83
32	crash log command example		84
33	crash ps command example		85
34	No debuginfo package on RedHat		87
35	No debuginfo package on openSUSE		88
36	Installing crash debug packages on CentOS 5.4		88
37	vmlinux and vmcore match problem on CentOS		89
38	CRC match error on openSUSE		89
39	No panic task found		90
40	Beginning crash analysis		92
41	Serious kernel problem example in Ubuntu		96
42	Kernel crash report in Fedora		97
43	Kernel crash report in Fedora, shown again		99
44	Backtrace of a crash dump		103
45	Example of a kernel crash with CPL 3		108
46	Fedora kernel crash example		109
47	Kernel crash log command output example		110
48	Kernel crash ps command output example		112
49	No panic task found on CentOS 5.4		112
50	bt command for wrong process		113
51	ps command output pointing at wrong process		113
52	Kernel source example on openSUSE		114
53	cscope installation via yum on CentOS		115
54	cscope loaded on CentOS 5.4		116



11






www.dedoimedo.com	all rights reserved


55	Find C symbol using cscope		117
56	cscope help menu		118
57	make cscope command example		118
58	cscope files		119
59	Compiling from sources with make		120
60	Kernel object is up to date		120
61	Object compiled with debug symbols		121
62	Disassembled object example		122
63	Memhog binary dumped with objdump		123
64	Failed kernel object compilation due to missing kernel config file		124
65	Editing Makefile		125
66	Makefile is missing		125
67	Successfully compiling kernel object		126
68	Kernel object is up to date		127
69	Disassembled kernel object		128
70	Basic kernel module		130
71	Basic example Makefile		131
72	Basic example make command output		132
73	modinfo example		133
74	lsmod example		133
75	Kernel module messages		134
76	Intermediate example crash summary		136
77	Intermediate example backtrace		137
78	Null pointer example crash report		139
79	Null pointer example crash log		140
80	Null pointer example disassembled object code		141
81	Null pointer example registers		142
82	Debug kernel installation		144



12






www.dedoimedo.com	all rights reserved


83	Debug kernel installation details		144
84	kernelops.org logo		145
85	kernelops.org example		146
86	kerneloops.org example - continued		147
87	kerneloops.org example code		148
88	Kernel crash report in Fedora 11		149
89	Kernel crash report in Fedora 12		150
90	Kernel crash report in Debian Lenny		151
91	Sample Google search		152
92	yast2-kdump package installation		157
93	Kdump YaST module		158
94	Kdump configuration via YaST module		159
95	Kdump configuration via YaST module - continued		160
96	Kdump startup configuration via YaST		161
97	boot.kdump chkconfig command		162
98	Runlevel configuration via YaST		163
99	Kdump GRUB syntax change		164
100	Failed memory reservation on a 64-bit machine		164
101	Kexec command line error		165
102	Wrong physical start value		165
103	Kdump working after reconfigured physical start value		166
104	debuginfo package missing		166
105	Available kernel debuginfo package in the repository		167
106	Kernel debuginfo package installation status		168
107	Enabling Debug repository in openSUSE 11.2		169
108	CentOS repository manager		170
109	Adding debug repository file		171
110	dwarfextract installation via YaST		173



13






www.dedoimedo.com	all rights reserved


111	lcrash example		175
112	gdb-kdump sample run		177
113	crosscrash installation via YaST		178







































14






www.dedoimedo.com	all rights reserved

List of Tables

1	LKCD dump levels		28
2	LKCD dump flags		28
3	Kdump required packages		49
4	Kdump files		50
5	Kdump dump retention		57
6	Kdump verbosity configuration		60
7	Naming and file location differences between SUSE and RedHat		80
8	Kernel page error code		101





























15






www.dedoimedo.com	all rights reserved

Foreword

Writing books is not a new experience for me.  I’ve been doing it since the age of 10. Most of these books gather proverbial dust on this or that hard disk, others are being pampered for limelight, others yet have been abandoned.  There’s no better place to announce the demise of one project as at the birth of another. As you may have guessed, my super-extensive mother-of-all Linux topics book is not going to be published any time soon, as simple system administration no longer excites me. The single Apache chapter remains a proof-of-concept poetic demonstration, an orphan of what might have been.
Instead, I have started casting my eye toward more advanced, more complex topics. Like Linux crash analysis. This is a subject that has lots of unanswered mail threads and plain text documents scattered all over the place, inaccessible to almost everyone, save the tiny percentage of super geeks. Whether this should be so or not makes no difference. There comes a need, there comes a man with an idea, and that man writes a book.
My personal and professional interest in the last three years has taken me down the path of Linux kernel secrets, all the way into assembly code, where magic happens. I felt the desire to learn what happens in the heart of the system. Like most technical topics, there was some information to be found online, but it was cryptic, ambiguous, partial, nerdy, or just not there at all.  Dedoimedo is a reflection of how things ought to be after all. I’m writing guides and tutorials and reviews the way I perceive the world - friendly and accessible toward normal human beings.  In a way, every article is an attempt to make things a little clearer, a little more understandable. Step by step, nothing omitted, you know the mantra.
Linux kernel crash is no exception. If you’re familiar with my website, you know this book is just a compilation of seven in-depth tutorials already posted and available freely for everyone’s use.  But there’s a difference between some HTML code, scattered around, and a beautiful stylish book written in LATEX.  Not much difference, I admit, but still worth this fancy foreword.
This book is a product of several factors.  First, my ego demands recognition, so I’m making the best effort of appearing smart in the posh circles.  Nothing like a book to make you look wise and whatnot. Second, the book really makes sense, when you take the entire crash series into consideration. Starting with crash tools via collection all the way to analysis, plus some extras and general tips.  It’s an entire world, really, and it belongs inside a single, comprehensive volume. Third, half a dozen Dedoimedo readers contacted me by mail, asking that I compile my crash material into one document. I did hint at a possible PDF given popular demand, so here we go.



16






www.dedoimedo.com	all rights reserved


Linux Kernel Crash Book is 180 pages, 120 lovely screenshots and tons of excellent information. You won’t easily find better content on this subject, I guarantee you that. You get this book for free, no strings attached. There’s some copyright and disclaimer, mainly designed to protect my intellectual rights and hard work, but nothing draconian. Be fair and enjoy the knowledge shared with love and passion.  If you happen to really like this book, think about donating a few bucks.  An officially published book would probably cost between 20 and 40 dollars.
Now, this is no humble man’s marketing plot. I surely do not expect to get miraculously rich this way. If you take my Golf GTI donation scheme as an example, it’s a long way before my pockets swell with booty.  However, like any egocentric human being, I love praise and recognition for my work. If you cannot or do not wish to donate money, then spread the word and lavish me with compliments. That will do, too.
I am also considering getting the book printed, whether through self-publishing or by insinuating my charm into an editor’s heart. So if you’re looking for talented fresh new blood to spatter the walls of glory, I’m your man. If you are a publisher and like my style and knowledge, don’t be shy, email me.
My readers, worry not! Even if this book goes pro, the online tutorials will always remain there, for free.  The emphasis on always is within the Planck limits of time and space, excluding an occasional mega-meteor strike or a cosmic gamma ray burst event.
I guess that’s all. This book is waiting for you to read it. Enjoy!

Igor Ljubuncic aka Dedoimedo
February 2011
















17






www.dedoimedo.com	all rights reserved

About

Dedoimedo (www.dedoimedo.com) is a website specializing in step-by-step tutorials in-tended for human beings. Everything posted on my website is written in plain, down-to-Earth English, with plenty of screenshot examples and no steps ever skipped. You won’t easily find tutorials simpler or friendlier than mine.
Dedoimedo lurks under the name of Igor Ljubuncic, a former physicist, currently living the dream and working as a Linux Systems Expert, hacking the living daylight out of the Linux kernel.  Few people have the privilege to work in what is essentially their hobby and passion and truly love it, so I’m most grateful for the beauty, freedom and infinite possibilities of the open-source world.  I also hold a bunch of certifications of all kinds, but you can read more about those on my website.
Have fun!




























18






www.dedoimedo.com	all rights reserved

Copyright

Linux Kernel Crash Book is available under following conditions:
The book is free for personal and education purposes. Business organizations, companies and commercial websites can also use the book without additional charges, however they may not bundle it with their products or services.  Said bodies cannot sell or lease the book in return for money or other goods. Modifications are not permitted without an explicit approval from the author. All uses must be accompanied with credits and a link to www.dedoimedo.com.
You may also mirror and hotlink to this book. You must credit me for any such use.
In all eventualities, Dedoimedo retains all rights, explicit and implicit, to the original material. The copyright section may change at any time, without prior notice. For any questions, please contact me by email.




























19






www.dedoimedo.com	all rights reserved

Disclaimer
I am not very fond of disclaimers, but they are a necessary part of our world. So here we go:
I must emphasize the purpose of this book is educational. It is not an official document and should not be treated as such.  Furthermore, I cannot take any responsibility for errors, inaccuracies or damages resulting from the use of this book and its contents.
All of the material in this book has been carefully worded and prepared.  However, if for some reason you may feel this book infringes on copyright or intellectual property of another work, please contact me with a detailed explanation pointing to the troublesome parts and I will try to sort the problem in the best way possible.
This book has also been posted as a series of articles on my website.  For any news, changes or updates, you should always refer first to www.dedoimedo.com.



























20






www.dedoimedo.com	all rights reserved

Expectations

OK, so you got this book downloaded to your machine. What now? Are you going to use it daily?  Is it going to make you any smarter?  Will you be more proficient using Linux after reading this book? Will you become a hacker? Or perhaps a kernel expert?
Linux kernel crash analysis is not an everyday topic. It is very likely a niche topic, which will interest only system administrators and professionals dabbling in the kernel.  This condition may stop you from reading the book, as you may not be either the person maintaining server boxes nor the code developer trying to debug his drivers.
However, you may also consider this book as a very extensive learning lesson in what goes behind the curtains of a typical Linux system. While you may not find immediate use to the contents presented in this book, the general knowledge and problem solving methods and tools you find here should serve you universally. Come the day, come the opportunity, you will find this book of value.
I have written the book in a simple, linear, step-by-step manner, trying to make it accessible even to less knowledgeable people. I am fully aware of the paradox in mixing words inexperienced users with kernel crash analysis, but it does not have to be so. Reading this book will provide you with the confidence and understanding of what makes your Linux box tick. However, it cannot replace hands-on experience and intuition gained from actual work with Linux systems.
Therefore, you may gains tons of knowledge, but you will not become a hacker, an expert or a posh consultant just by reading the contents of this book. In fact, this book may very well frustrate you. As simple as I tried to make it be, it’s still super-uber-ultra geeky. You could end spending hours rereading paragraphs, trying to figure out what’s going on, deciphering the crash analysis reports, and trying to replicate my examples.  It is important that you do not get discouraged. Even if glory does not await you at the last page, I am convinced that by mastering this book you will gain valuable knowledge. For some of you, it will be an eye-opener and maybe a very useful business tool. For others, it will be a missing piece of the puzzle called Linux. Others yet might end waiting years for the reward to appear.
To wrap this philosophical speech, Linux Kernel Crash Book is a highly technical piece of education with immense practical applications. It is probably the most comprehensive guide on the subject you will currently find available on the market, free, paid, hobbyist, professional, or otherwise.  It’s ideally suited for administrators and IT experts.  It can also make home users happy, if they are willing to take the leap of faith.
Have fun.



21






www.dedoimedo.com	all rights reserved

Errata

Here be fixes to errors, spelling mistakes and other issues found in the book.








































22






www.dedoimedo.com	all rights reserved

Part I
LKCD

1	Introduction

LKCD stands for Linux Kernel Crash Dump. This tool allows the Linux system to write the contents of its memory when a crash occurs, so that they can be later analyzed for the root cause of the crash.
Ideally, kernels never crash. In reality, the crashes sometimes occur, for whatever reason. It is in the best interest of people using the plagued machines to be able to recover from the problem as quickly as possible while collecting as much data available.  The most relevant piece of information for system administrators is the memory dump, taken at the moment of the kernel crash.
Note: This book part refers to a setup on SUSE1 9.X systems.

1.1 	How does LKCD work?
You won’t notice LKCD in your daily work. Only when a kernel crash occurs will LKCD kick into action. The kernel crash may result from a kernel panic or an oops or it may be user-triggered. Whatever the case, this is when LKCD begins working, provided it has been configured correctly. LKCD works in two stages:

1.1.1	Stage 1
This is the stage when the kernel crashes. Or more correctly, a crash is requested, either due to a panic, an oops or a user-triggered dump.  When this happens, LKCD kicks into action, provided it has been enabled during the boot sequence.  LKCD copies the contents of the memory to a temporary storage device, called the dump device, which is usually a swap partition, but it may also be a dedicated crash dump collection partition. After this stage is completed, the system is rebooted.

1 LKCD is an older utility and may not work well with modern kernels.





23






www.dedoimedo.com	all rights reserved


1.1.2	Stage 2
Once the system boots back online, LKCD is initiated. On different systems, this takes a different startup script.  For instance, on a RedHat machine, LKCD is run by the /etc/rc.sysinit script.
Next, LKCD runs two commands.  The first command is lkcd config, which we will review more intimately later.  This commands prepares the system for the next crash. The second command is lkcd save, which copies the crash dump data from its temporary storage on the dump device to the permanent storage directory, called dump directory.
Along with the dump core, an analysis file and a map file are created and copied; we’ll talk about these separately when we review the crash analysis.  A completion of this two-stage cycle signifies a successful LKCD crash dump.
Figure 1: LKCD stages




























24





www.dedoimedo.com	all rights reserved

2	LKCD Installation

The LKCD installation requires kernel compilation. This is a lengthy and complex pro-cedure that takes quite a bit of time.  It is impossible to explain how LKCD can be installed without showing the entire kernel compilation in detail. The kernel compilation is a delicate, complex process that merits separate attention; it will be presented in a dedicated tutorial on www.dedoimedo.com.  Therefore, we will assume that we have a working system compiled with LKCD.

3	LKCD local dump procedure

3.1	Required packages
The host must have the lkcdutils package installed.

3.2	Configuration file
The LKCD configuration is located under /etc/sysconfig/dump.  Back this up before making any changes! We will have to make several adjustments to this file before we can use LKCD.

3.2.1 	Activate dump process (DUMP_ACTIVE)

To be able to use LKCD when crashes occur, you must activate it.


DUMP_ACTIVE="1"


3.2.2 	Configure the dump device (DUMP_DEVICE)
You should be very careful when configuring this directive.  If you choose the wrong device, its contents will be overwritten when a crash is saved to it, causing data loss.




25






www.dedoimedo.com	all rights reserved


Therefore, you must make sure that the DUMPDEV is linked to the correct dump device. In most cases, this will be a swap partition, although you can use any block device whose contents you can afford to overwrite. Accidentally, this section partially explains why the somewhat nebulous and historic requirement for a swap partition to be 1.5x the size of RAM.
What you need to do is define a DUMPDEV device and then link it to a physical block device; for example, /dev/sdb1. Let’s use the LKCD default, which calls the DUMPDEV directive to be set to /dev/vmdump.


DUMPDEV="/dev/vmdump"



Now, please check that /dev/vmdump points to the right physical device. Example:


ls -l /dev/vmdump
lrwxrwxrwx 1 root root 5 Nov 6 21:53 /dev/vmdump ->/dev/sda5


/dev/sda5 should be your swap partition or a disposable crash partition. If the symbolic link does not exist, LKCD will create one the first time it is run and will link /dev/vmdump to the first swap partition found in the /etc/fstab configuration file. Therefore, if you do not want to use the first swap partition, you will have to manually create a symbolic link for the device configured under the DUMPDEV directive.

3.2.3 	Configure the dump directory (DUMPDIR)
This is where the memory images saved previously to the dump device will be copied and kept for later analysis.  You should make sure the directory resides on a partition with enough free space to contain the memory image, especially if you’re saving all of it. This means 2GB RAM = 2GB space or more.
In our example, we will use /tmp/dump. The default is set to /var/log/dump.




26






www.dedoimedo.com	all rights reserved


DUMPDIR="/tmp/dump"



Figure 2: LKCD DUMPDIR directive change
















3.2.4 	Configure the dump level (DUMP_LEVEL)

This directive defines what part of the memory you wish to save.  Bear in mind your space restrictions. However, the more you save, the better when it comes to analyzing the crash root cause.














27





www.dedoimedo.com	all rights reserved


Table 1: LKCD dump levels

	Value
	Action

	DUMP_NONE (0)
	Do nothing, just return if called

	DUMP_HEADER (1)
	Dump the dump header and first 128K bytes out

	DUMP_KERN (2)
	Everything in DUMP_HEADER and kernel pages only

	DUMP_USED (4)
	Everything except kernel free pages

	DUMP_ALL (8)
	All memory



3.2.5	Configure the dump flags (DUMP_FLAGS)

The flags define what type of dump is going to be saved.  For now, you need to know that there are two basic dump device types: local and network.
Table 2: LKCD dump flags

	Value
	Action

	0x80000000
	Local block device

	0x40000000
	Network device



Later, we will also use the network option. For now, we need local.


DUMP_FLAGS="0x80000000"







28






www.dedoimedo.com	all rights reserved


3.2.6	Configure the dump compression level (DUMP_COMPRESS)

You can keep the dumps uncompressed or use RLE or GZIP to compress them. It’s up to you.


DUMP_COMPRESS="2"


I would call the settings above the "must-have" set. You must make sure these directives are configured properly for the LKCD to function. Pay attention to the devices you intend to use for saving the crash dumps.

3.2.7 	Additional settings
There are several other directives listed in the configuration file. These other directives are all set to the the configuration defaults.  You can find a brief explanation on each below. If you find the section inadequate, please email me and I’ll elaborate.
These include:

• DUMP_SAVE="1" - Save the memory image to disk.
• PANIC_TIMEOUT="5" - The timeout (in seconds) before a reboot after panic occurs.
• BOUNDS_LIMIT ="10" - A limit on the number of dumps kept .
• KEXEC_IMAGE="/boot/vmlinuz" - Defines what kernel image to use after re-booting the system; usually, this will be the same kernel used in normal production.
• KEXEC_CMDLINE="root console=tty0" - Defines what parameters the kernel should use when booting after the crash; usually, you won’t have to tamper with this setting.







29






www.dedoimedo.com	all rights reserved

3.3	Enable core dump capturing
The first step we need to do is enable the core dump capturing. In other words, we need to sort of source the configuration file so the LKCD utility can use the values set in it. This is done by running the lkcd config command, followed by lkcd query command, which allows you to see the configuration settings.


lkcd config
lkcd query



The output is as follows:


Configured dump device: 	0xffffffff
Configured dump flags:  KL_DUMP_FLAGS_DISKDUMP
Configured dump level:  KL_DUMP_LEVEL_HEADER| KL_DUMP_LEVEL_KERN Configured dump compression method:  KL_DUMP_COMPRESS_GZIP


3.4 	Configure LKCD dump utility to run on startup
To work properly, the LKCD must run on boot.  On RedHat and SUSE machines, you can use the chkconfig utility to achieve this:


chkconfig boot.lkcd on


After the reboot, your machine is ready for crash dumping.  We can begin testing the functionality. However, please note that disk-based dumping may not always succeed in all panic situations.  For instance, dumping on hung systems is a best-effort attempt. Furthermore, LKCD does not seem to like the md RAID devices, presenting another problem into the equation. Therefore, to overcome the potentially troublesome situations



30






www.dedoimedo.com	all rights reserved


where you may end up with failed crash collections to local disks, you may want to consider using the network dumping option. Therefore, before we demonstrate the LKCD functionality, we’ll study the netdump option first.

4 	LKCD netdump procedure

Netdump procedure is different from the local dump in having two machines involved in the process. One is the host itself that will suffer kernel crashes and whose memory image we want to collect and analyze. This is the client machine. The only difference from a host configured for local dump is that this machine will use another machine for storage of the crash dump.
The storage machine is the netdump server. Like any server, this host will run a service and listen on a port to incoming network traffic, particular to the LKCD netdump. When crashes are sent, they will be saved to the local block device on the server. Other terms used to describe the relationship between the netdump server and the client is that of source and target, if you will:  the client is a source, the machine that generates the information; the server is the target, the destination where the information is sent. We will begin with the server configuration.

5	Configure LKCD netdump server

5.1	Required packages
The server must have the following two packages installed:  lkcdutils and lkcdutils-netdump-server.

5.2	Configuration file
The configuration file is the same one, located under /etc/sysconfig/dump. Again, back this file up before making any changes.  Next, we will review the changes you need to make in the file for the netdump to work. Most of the directives will remain unchanged, so we’ll take a look only at those specific to netdump procedure, on the server side.





31






www.dedoimedo.com	all rights reserved


5.2.1	Configure the dump flags (DUMP_FLAGS)
This directive defines what kind of dump is going to be saved to the dump directory. Earlier, we used the local block device flag. Now, we need to change it. The appropriate flag for network dump is 0x40000000.


DUMP_FLAGS="0x40000000"


5.2.2 	Configure the source port (SOURCE_PORT)
This is a new directive we have not seen or used before. This directive defines on which port the server should listen for incoming connections from hosts trying to send LKCD dumps. The default port is 6688. When configured, this directive effectively turns a host into a server - provided the relevant service is running, of course.


SOURCE_PORT="6688"


5.2.3 	Make sure dump directory is writable for netdump user

This directive is extremely important. It defines the ability of the netdump service to write to the partitions / directories on the server. The netdump server run as the netdump user.  We need to make sure this user can write to the desired destination (dump) directory. In our case:


install -o netdump -g dump -m 777 -d /tmp/dump



You may also want to ls the destination directory and check the owner:group. It should be netdump:dump. Example:




32






www.dedoimedo.com	all rights reserved


ls -ld dump
drwxrwxrwx 3 netdump dump 96 2009-02-20 13:35 dump


You may also try getting away with manually chowning and chmoding the destination to see what happens.

5.3 	Configure LKCD netdump server to run on startup
We need to configure the netdump service to run on startup. Using chkconfig to demon-strate:


chkconfig netdump-server on



5.4	Start the server
Now, we need to start the server and check that it’s running properly. This includes both checking the status and the network connections to see that the server is indeed listening on port 6688.

/etc/init.d/netdump-server start /etc/init.d/netdump-server status


Likewise:


netstat -tulpen | grep 6688
udp 0 0 0.0.0.0:6688 0.0.0.0:* 479 37910 >> >> 22791/netdump-server




33






www.dedoimedo.com	all rights reserved


Everything seems to be in order. This concludes the server-side configurations.

6 	Configure LKCD client for netdump

Client is the machine (which can also be a server of some kind) that we want to collect kernel crashes for. When kernel crashes for whatever reason on this machine, we want it to send its core to the netdump server. Again, we need to edit the /etc/sysconfig/dump configuration file. Once again, most of the directives are identical to previous configura-tions. In fact, by changing just a few directives, a host configured to save local dumps can be converted for netdump.

6.1	Configuration file

6.1.1	Configure the dump device (DUMP_DEV)
Earlier, we have configured our clients to dump their core to the /dev/vmdump device. However, network dump requires an active network interface. There are other consider-ations in place as well, but we will review them later.


DUMP_DEV="eth0"


6.1.2 	Configure the target host IP address (TARGET_HOST)
The target host is the netdump server, as mentioned before. In our case, it’s the server machine we configured above. To configure this directive - and the one after - we need to go back to our server and collect some information, the output from the ifconfig command, listing the IP address and the MAC address. For example:


inet addr:192.168.1.3
HWaddr 00:12:1b:40:c7:63





34






www.dedoimedo.com	all rights reserved


Therefore, our target host directive is set to:


TARGET_HOST="192.168.1.3"


Alternatively, it is also possible to use hostnames, but this requires the use of hosts file, DNS, NIS or other name resolution mechanisms properly set and working.

6.1.3 	Configure target host MAC address (ETH_ADDRESS)
If this directive is not set, the LKCD will send a broadcast to the entire neighborhood2, possibly inducing a traffic load.  In our case, we need to set this directive to the MAC address of our server:


ETH_ADDRESS="00:12:1b:40:c7:63


6.1.4 	Configure target host port (TARGET_PORT)
We need to set this option to what we configured earlier for our server. This means port 6688.


TARGET_PORT="6688"


6.1.5 	Configure the source port (SOURCE_PORT)

Lastly, we need to configure the port the client will use to send dumps over network. Again, the default port is 6688.

2 Please note that the netdump functionality is limited to the same subnet that the server runs on. In our case, this means /24 subnet. We’ll see an example for this shortly.



35






www.dedoimedo.com	all rights reserved


SOURCE_PORT="6688"



Figure 3: LKCD netdump client source port configuration










6.2 	Enable core dump capturing

Perform the same steps we did during the local dump configuration: run the lkcd config and lkcd query commands and check the setup.


lkcd config
lkcd query



The output is as follows:


Configured dump device: 	0xffffffff
Configured dump flags:  KL_DUMP_FLAGS_NETDUMP
Configured dump level:  KL_DUMP_LEVEL_HEADER| KL_DUMP_LEVEL_KERN Configured dump compression method:  KL_DUMP_COMPRESS_GZIP





36






www.dedoimedo.com	all rights reserved

6.3	Configure LKCD dump utility to run on startup
Once again, the usual procedure:


chkconfig netdump-server on


6.4 	Start the lkcd-netdump utility

Start the utility by running the /etc/init.d/lkcd-netdump script.


/etc/init.d/lkcd-netdump start


Watch the console for successful configuration message. If you see an image similar to the one below, it means you have successfully configured the client and can proceed to test the functionality.
Figure 4: LKCD netdump client successful configuration








7	Test functionality

To test the functionality, we will force a panic on our kernel.  This is something you should be careful about doing, especially on your production systems.  Make sure you



37





www.dedoimedo.com	all rights reserved


backup all critical data before experimenting. To be able to create panic, you will have to enable the System Request (SysRq) functionality on the desired clients, if it has not already been set:


echo 1 > /proc/sys/kernel/sysrq



And then force the panic:


echo c > /proc/sysrq-trigger


Watch the console.  The system should reboot after a while, indicating a successful recovery from the panic.  Furthermore, you need to check the dump directory on the netdump server for the newly created core, indicating a successful network dump. Indeed, checking the destination directory, we can see the memory core was successfully saved. And now we can proceed to analyze it.

Figure 5: Successful LKCD netdump procedure




8	Problems

You may encounter a few issues working with LKCD. Most notably, you may see config-uration and dump errors when trying to use the netdump functionality.  Let’s review a typical case.







38





www.dedoimedo.com	all rights reserved

8.1	Unsuccessful netdump to different network segment
As mentioned before, the netdump functionality is limited to the same subnet.  Trying to send the dump to a machine on a different subnet results in an error. This issue has no solution. Your best bet is to use a dedicated netdump server on the same 256-host subnet.
Figure 6: LKCD netdump failure












9	Conclusion

LKCD is a very useful application, although it has its limitations. On one hand, it provides with the critical ability to perform in-depth forensics on crashed systems post-mortem. The netdump functionality is particularly useful in allowing system administrators to save memory images after kernel crashes without relying on the internal hard disk space or the hard disk configuration. This can be particularly useful for machines with very large RAM, when dumping the entire contents of the memory to local partitions might be problematic. Furthermore, the netdump functionality allows LKCD to be used on hosts configured with RAID, since LKCD is unable to work with md partitions, overcoming the problem.
However, the limitation to use within the same network segment severely limits the ability to mass-deploy the netdump in large environments. It would be extremely useful



39





www.dedoimedo.com	all rights reserved

if a workaround or patch were available so that centralized netdump servers can be used without relying on specific network topography.
Lastly, LKCD is a somewhat old utility and might not work well on the modern kernels. In general, it is fairly safe to say it has been replaced by the more flexible Kdump, which we will review in the next Part.





































40






www.dedoimedo.com	all rights reserved

Part II
Kdump

10	Introduction

Linux kernel is a rather robust entity. It is stable and fault-tolerable and usually does not suffer irrecoverable errors that crash the entire system and require a reboot to restore to normal production.  Nevertheless, these kinds of problems do occur from time to time.  They are known as kernel crashes and are of utmost interest and importance to administrators in charge of these systems. Being able to detect the crashes, collect them and analyze them provides the system expert with a powerful tool in finding the root cause to crashes and possibly solving critical bugs.
In the previous part (I), we have learned how to setup, configure and use Linux Kernel Crash Dump (LKCD) utility. However, LKCD, being an older project, exhibited several major limitations in its functionality: LKCD was unable to save memory dumps to local RAID (md) devices and its network capability was restricted to sending memory cores to dedicated LKCD netdump servers only on the same subnet, provided the cores were under 4GB in size.  Memory cores exceeding the 32-bit size barrier were corrupt upon transfer and thus unavailable for analysis. The same-subnet also proved impractical for large-scale operations with thousands of machines.
Kdump is a much more flexible tool, with extended network-aware capabilities. It aims to replace LKCD, while providing better scalability.  Indeed, Kdump supports network dumping to a range of devices, including local disks, but also NFS areas, CIFS shares or FTP and SSH servers.  This makes if far more attractive for deployment in large environments, without restricting operations to a single server per subnet.
In this part of the book, we will learn how to setup and configure Kdump for memory core dumping to local disks and network shares. We will begin with a short overview of basic Kdump functionality and terminology. Next, we will review the kernel compilation parameters required to use Kdump. After that, we will go through the configuration file and study each directive separately, step by step.  We will also edit the GRUB menu as a part of the Kdump setup.  Lastly, we will demonstrate the Kdump functionality, including manually triggering kernel crashes and dumping memory cores to local and network devices.  In the Appendix section (V), you will also be able to learn about changes and new functionality added in later versions of Kdump, plus specific setups for openSUSE and CentOS.



41






www.dedoimedo.com	all rights reserved

Note: This book part refers to a setup on SUSE3  10.3 systems. The Appendix section contains additional information about SUSE 11.X and RedHat4 5.X systems.

10.1	Restrictions
On one hand, this book will examine the Kdump utility in great detail. On the other, a number of Kdump-related topics will be only briefly discussed. It is important that you know what to expect.

10.1.1	Kernel compilation
I will not explain the Kernel compilation in this book, although I will explain the pa-rameters required for proper Kdump functionality. The kernel compilation is a delicate, complex process that merits separate attention; it will be presented in a dedicated tutorial on www.dedoimedo.com.

10.1.2 	Hardware-specific configurations
Kdump can also run on the Itanium (ia64) and Power PC (ppc64) architectures. However, due to relative scarcity of these platforms in both the home and business use, I will focus on the i386 (and x86-64) platforms. The platform-specific configurations for Itanium and PPC machines can be found in the official Kdump documentation (see References (33)).
Now, let us begin.

10.2	How does Kdump work?

10.2.1	Terminology

To make things easier to understand, here’s a brief lexicon of important terms we will use in this book:




3 SUSE refers to both openSUSE and SUSE Linux Enterprise Server (SLES)
4 RedHat refers to both CentOS and RedHat Enterprise Linux (RHEL)



42






www.dedoimedo.com	all rights reserved


• Standard (production) kernel - kernel we normally work with
• Crash (capture) kernel - kernel specially used for collecting crash dumps5 Kdump has two main components - Kdump and Kexec.

10.2.2	Kexec
Kexec is a fastboot mechanism that allows booting a Linux kernel from the context of an already running kernel without going through BIOS. BIOS can be very time consuming, especially on big servers with numerous peripherals.  This can save a lot of time for developers who end up booting a machine numerous times.

10.2.3	Kdump
Kdump is a new kernel crash dumping mechanism and is very reliable. The crash dump is captured from the context of a freshly booted kernel and not from the context of the crashed kernel.  Kdump uses Kexec to boot into a second kernel whenever the system crashes.  This second kernel, often called a crash or a capture kernel, boots with very little memory and captures the dump image.
The first kernel reserves a section of memory that the second kernel uses to boot. Kexec enables booting the capture kernel without going through BIOS hence the contents of the first kernel’s memory are preserved, which is essentially the kernel crash dump.

11	Kdump installation

There are quite a few requirements that must be met in order for Kdump to work.







5 I will sometimes use only partial names when referring to these two kernels. In general, if I do not specifically use the words crash or capture to describe the kernel, this means we’re talking about the production kernel.



43






www.dedoimedo.com	all rights reserved

• The production kernel must be compiled with a certain set of parameters required for kernel crash dumping.
• The production kernel must have the kernel-kdump package installed.  The kernel-kdump package contains the crash kernel that is started when the standard kernel crashes, providing an environment in which the standard kernel state during the crash can be captured. The version of the kernel-dump package has to be identical to the standard kernel.

If the operating system comes with a kernel already compiled to run and use Kdump, you will have saved quite a bit of time.  If you do not have a kernel built to support the Kdump functionality, you will have to do quite a bit of work, including a lengthy compilation and configuration procedure of both the standard, production kernel and the crash (capture) kernel.
In this book, we will not go into details on kernel compilation. The compilation is a generic procedure that does not directly relate to Kdump and demands dedicated attention. We will talk about kernel compilation in a separate tutorial on www.dedoimedo.com. Here, we will take the compilation for granted and focus on the configuration.
Nevertheless, although we won’t compile, we will have to go through the list of kernel parameters that have to be configured so that your system can support the Kexec/Kdump functionality and collect crash dumps. These parameters need to be configured prior to kernel compilation.
The simplest way to configure kernel parameters is to invoke a kernel configuration wizard such as menuconfig or xconfig.
The kernel configuration wizard can be text (menuconfig ) or GUI driven (xconfig ).  In both cases, the wizard contains a list of categories, divided into subcategories, which contain different tunable parameters.  Just to give you an impression of what kernel compilation configuration looks like, for those of you who have never seen one:












44






www.dedoimedo.com	all rights reserved


Figure 7: Kernel compilation wizard














What you see above is the screenshot of a typical kernel configuration menu, ran inside the terminal. The wizard uses the text interface and is invoked by typing make menuconfig. Notice the category names; we will refer to them soon.
We will now go through the list of kernel parameters that need to be defined to enable Kdump/Kexec to function properly. For the sake of simplicity, this book part focuses on the x86 (x86_64) architecture. For some details about other platforms and exceptions, please refer to the Appendix (V) and the official documentation.

11.1 	Standard (production) kernel
The standard kernel can be a vanilla kernel downloaded from The linux Kernel Archives or one of your favorite distributions. Whichever you choose, you will have to configure the kernel with the following parameters:

11.1.1 	Under Processor type and features
Enable Kexec system call:  This parameter tells the system to use Kexec to skip BIOS and boot (new) kernels. It is critical for the functionality of Kdump.


CONFIG_KEXEC=y




45






www.dedoimedo.com	all rights reserved

Enable kernel crash dumps:  Crash dumps need to be enabled. Without this option, Kdump will be useless.


CONFIG_CRASH_DUMP=y


Optional: Enable high memory support (for 32-bit systems):  You need to con-figure this parameter in order to support memory allocations beyond the 32-bit (4GB) barrier. This may not be applicable if your system has less than 4GB RAM or if you’re using a 64-bit system.


CONFIG_HIGHMEM4G=y


Optional:  Disable Symmetric Multi-Processing (SMP) support:  Kdump can only work with a single processor.  If you have only a single processor or you run your machine with SMP support disabled, you can safely set this parameter to (n).


CONFIG_SMP=y


On the other hand, if your kernel must use SMP for whatever reason, you will want to set this directive to (y).  However, you will have to remember this during the Kdump configuration. We will have to set Kdump to use only a single CPU. It is very important that you remember this!
To recap, you can either disable SMP during the compilation - OR - enable SMP but instruct Kdump to use a single CPU. This instruction is done by changing the Kdump configuration file. It is NOT a part of the kernel compilation configuration.
The configuration file change requires that one of the options be configured in a particular manner. Specifically, the directive below needs to be set in the Kdump configuration file under /etc/sysconfig/kdump AFTER the kernel has been compiled and installed.



46






www.dedoimedo.com	all rights reserved


KDUMP_COMMANDLINE_APPEND=”maxcpus=1 ”


11.1.2 	Under Filesystems > Pseudo filesystems

Enable sysfs file system support:  Modern kernel support (2.6 and above) this setting by default, but it does not hurt to check.


CONFIG_SYSFS=y


Enable /proc/vmcore support:  This configuration allows Kdump to save the memory dump to /proc/vmcore. We will talk more about this later. Although in your setup you may not use the /proc/vmcore as the dump device, for greatest compatibility, it is recommended you set this parameter to (y).


CONFIG_PROC_VMCORE=y


11.1.3 	Under Kernel hacking
Configure the kernel with debug info:  This parameter means the kernel will be built with debug symbols.  While this will increase the size of the kernel image, having the symbols available is very useful for in-depth analysis of kernel crashes, as it allows you to trace the problems not only to problematic function calls causing the crashes, but also the specific lines in relevant sources.  We will talk about this in great detail when we setup the crash, lcrash and gdb debugging utilities in the next part (III).


CONFIG_DEBUG_INFO=y






47






www.dedoimedo.com	all rights reserved


11.1.4	Other settings
Configure the start section for reserved RAM for the crash kernel6:  This is a very important setting to pay attention to.  To work properly, the crash kernel uses a piece of memory specially reserved to it.  The start section for this memory allocation needs to be defined. For instance, if you intend to start the crash kernel RAM at 16MB7, then the value needs to be set to the following (in hexadecimal):


CONFIG_PHYSICAL_START=0x1000000


Configure kdump kernel so it can be identified:  Setting this suffix allows kdump to select the right kernel for boot, since there may be several kernels under /boot on your system.  In general, the rule of thumb calls for the crash kernel to be named the same as your production kernel, save for the -kdump suffix. You can check this by running the uname -r command in terminal, to see the kernel version you run and then check the files listed in the /boot directory.


CONFIG_LOCALVERSION=”-kdump”


Please note that the above table is neither a holy bible nor rocket science. As always, it is quite possible that my observations are limited and apply only to a very specific, private setup.  Therefore, please exercise discretion when using the above table for reference, taking into consideration the fact that you may not experience the same success as myself. That said, I have thoroughly tested the setup and it works flawlessly.
Now, your next step is to compile the kernel.  I cannot dedicate the resource to cover the kernel compilation procedure at this point.  However, if you’re using Kdump as a part of your production environment - rather than household hobby - there are pretty fair chances you will have dedicated support from vendors, which should provide you with
6 This parameter need special attention on openSUSE 11 and higher. Please refer to Appendix (V) for more details.
7 You may use other values that suit your operational needs. Make sure the allocation does not conflict with reserved memory used by the kernel or kernel modules.



48






www.dedoimedo.com	all rights reserved

the kernel already compiled for Kdump. I apologize for this evasion, but I must forgo the kernel compilation for another time.
Modern distributions, especially those forked off enterprise solutions, are configured to use Kdump. openSUSE 11.1 is a good example; you will only have to install the missing RPMs and edit the configuration file to get it to work. We will discuss openSUSE 11.1 some more later in the book.

11.2 	Crash (capture) kernel
This kernel needs to be compiled with the same parameters as above, save one exception. Kdump does not support compressed kernel images as crash (capture) kernels8. There-fore, you should not compress this image. This means that while your production kernels will most likely be named vmlinuz, the Kdump crash kernels need to be uncompressed, hence named vmlinux, or rather vmlinux-kdump.

12	Kdump packages & files

12.1	Kdump packages
This is the list of required packages that must be installed on the system for Kdump to work. Please note that your kernel must be compiled properly for these packages to work as expected.  It is very likely that you will succeed in installing them anyhow, however this is no guarantee that they will work.
Table 3: Kdump required packages

	Package name
	Package info

	kdump
	Kdump package

	kexec-tools
	Kexec package

	kernel-debuginfo9
	Crash analysis package (optional)


8 This has changed in the more recent versions of Kdump. Please refer to the Appendix (V) for more details.



49






www.dedoimedo.com	all rights reserved

The best way to obtain these packages is from your software repositories. This guarantees you will be using the most compatible version of Kdump and Kexec.  For example, on Debian-based systems, you can use the apt-get install command to fetch the necessary packages:


apt-get install <package name>


Likewise, please note that the production kernel also must have the kernel-kdump package installed. This package contains the crash kernel that is started when the standard kernel crashes, providing an environment in which the standard kernel state during the crash can be captured. The version of this package has to be identical to the production kernel. For details about how to obtain the kernel-kdump and kexec-tools packages not via the software repositories, please refer to the Appendix (V).

12.2	Kdump files
Here’s the list of the most important Kdump-related files: Table 4: Kdump files

	Path
	Info

	/etc/init.d/kdump10
	Kdump service

	/etc/sysconfig/kdump11
	Kdump configuration file

	/usr/share/doc/packages/kdump
	Kdump documentation



The Kdump installation also includes the GDB Kdump wrapper script (gdb-kdump), which is used to simplify the use of GDB on Kdump images. The use of GDB, as well as
9 The kernel-debuginfo package needs to match your kernel version - default, smp, etc.
11 The startup script has changed on the recent versions of SUSE systems.
11 The configuration file on RedHat-based systems is located under /boot/kdump.conf.



50






www.dedoimedo.com	all rights reserved

other crash analysis utilities requires the presence of the kernel-debuginfo package. On SUSE systems, the Kdump installation also includes the YaST module (yast2-kdump).

13 	Kdump configuration

In the last section, we went through the kernel configuration parameters that need to be set for Kexec/Kdump to work properly. Now, assuming you have a functioning kernel that boots to the login screen and has been compiled with the relevant parameters, whether by a vendor or yourself, we will see what extra steps we need to take to make Kdump actually work and collect crash dumps.
We will configure Kdump twice: once for local dump and once for network dump, similarly to what we did with LKCD. This is a very important step, because LKCD is limited to network dumping only within the specific subnet of the crash machine. Kdump offers a much greater, more flexible network functionality, including FTP, SSH, NFS and CIFS support.

13.1	Configuration file
The configuration file for Kdump is /etc/sysconfig/kdump. We will start with the basic, local dump functionality.  Later, we will also demonstrate a crash dump over network. You should save a backup before making any changes!

13.1.1 	Configure KDUMP_KERNELVER

This setting refers to the CONFIG_LOCALVERSION kernel configuration parameter that we reviewed earlier. We specified the suffix -kdump, which tells our system to use kernels with -kdump suffix as crash kernels. Like the short description paragraph specifies, if no value is used, the most recently installed Kdump kernel will be used. By default, crash kernels are identified by the -kdump suffix.
In general, this setting is meaningful only if non-standard suffices are used for Kdump kernels. Most users will not need touch this setting and can leave it at the default value, unless they have very specific needs that require certain kernel versions.






51






www.dedoimedo.com	all rights reserved


KDUMP_KERNELVER=””



Figure 8: Kdump kernel version configuration


















13.1.2 	Configure KDUMP_COMMANDLINE
This settings tells Kdump the set of parameters it needs to boot the crash kernel with. In most cases, you will use the same set as your production kernel, so you won’t have to change it. To see the current set, you can issue the cat command against /proc/cmdline. When no string is specified, this is the set of parameters that will be used as the default. We will use this setting when we test Kdump (or rather, Kexec) and simulate a crash kernel boot.


KDUMP_COMMANDLINE=””






52






www.dedoimedo.com	all rights reserved


Figure 9: Kdump command line configuration


















13.1.3 	Configure KDUMP_COMMANDLINE_APPEND

This is a very important directive. It is extremely crucial if you use or have to use an SMP kernel. We have seen earlier during, the configuration of kernel compilation parameters, that Kdump cannot use more than a single core for the crash kernel.  Therefore, this parameter is a MUST if you’re using SMP. If the kernel has been configured with SMP disabled, you can ignore this setting.


KDUMP_COMMANDLINE_APPEND=”MAXCPUS=1 ”












53






www.dedoimedo.com	all rights reserved


Figure 10: Kdump command line append configuration
















13.1.4 	Configure KEXEC_OPTIONS
As we’ve mentioned earlier, Kexec is the mechanism that boots the crash kernel from the context of the production kernel. To work properly, Kexec requires a set of arguments. The basic set used is defined by the /proc/cmdline. Additional arguments can be specified using this directive. In most cases, the string can be left empty. However, if you receive strange errors when starting Kdump, it is likely that Kdump on your particular kernel version cannot parse the arguments properly.  To make Kdump interpret the additional parameters literally, you may need to add the string -args-linux.
You should try both settings and see which one works for you. If you’re interested, you can Google for “-args-linux” and see a range of mailing list threads and bug entries revolving around this subject. Nothing decisive, so trial is your best choice here. We’ll discuss this some more later on.


KDUMP_OPTIONS=”--args-linux ”








54






www.dedoimedo.com	all rights reserved


Figure 11: Kdump options configurations

















13.1.5 	Configure KDUMP_RUNLEVEL
This is another important directive.  If defines the runlevel into which the crash kernel should boot.  If you want Kdump to save crash dumps only to a local device, you can set the runlevel to 1. If you want Kdump to save dumps to a network storage area, like NFS, CIFS or FTP, you need the network functionality, which means the runlevel should be set to 3. You can also use 2, 5 and s. If you opt for runlevel 5 (not recommended), make sure the crash kernel has enough memory to boot into the graphical environment. The default 64MB is most likely insufficient.


KDUMP_RUNLEVEL=”1”


13.1.6 	Configure KDUMP_IMMEDIATE_REBOOT
This directive tells Kdump whether to reboot out of the crash kernel once the dump is complete.  This directive is ignored if the KDUMP_DUMPDEV parameter (see below) is not empty.  In other words, if a dump device is used, the crash kernel will not be



55






www.dedoimedo.com	all rights reserved


rebooted until the transfer and possibly additional post-processing of the dump image to the destination directory are completed. You will most likely want to retain the default value.


KDUMP_IMMEDIATE_REBOOT=”yes”


13.1.7 	Configure KDUMP_TRANSFER

This setting tells Kdump what to do with the dumped memory core.  For instance, you may want to post-process it instantly.  KDUMP_TRANSFER requires the use of a non-empty KDUMP_DUMPDEV directive.  Available choices are /proc/vmcore and /dev/oldmem.  This is similar to what we’ve seen with LKCD utility.  Normally, either /proc/vmcore or /dev/oldmem will point out to a non-used swap partition.
For now, we will use only the default setting, which is just to copy the saved core image to KDUMP_SAVEDIR. We will talk about the DUMPDEV and SAVEDIR directives shortly. However, we will study the more advanced transfer options only when we discuss crash analysis utilities.


KDUMP_TRANSFER=””


13.1.8 	Configure KDUMP_SAVEDIR

This is a very important directive.  It tells us where the memory core will be saved. Currently, we are talking about local dump, so for now, our destination will point to a directory on the local filesystem. Later on, we will see a network example. By default, the setting points to /var/log/dump.


KDUMP_SAVEDIR=”file:///var/log/dump”






56






www.dedoimedo.com	all rights reserved


We will change this to:


KDUMP_SAVEDIR=”file:///tmp/dump”


Please pay attention to the syntax. You can also use the absolute directory paths inside the quotation marks without prefix, but this use is discouraged. You should specify what kind of protocol is used, with file:// for local directories, nfs:// for NFS storage and so on.  Furthermore, you should make sure the destination is writable and that is has sufficient space to accommodate the memory cores. The KDUMP_SAVEDIR directive can be used in conjunction with KDUMP_DUMPDEV, which we will discuss a little later on.

13.1.9 	Configure KDUMP_KEEP_OLD_DUMPS
This settings defines how many dumps should be kept before rotating. If you’re short on space or are collecting numerous dumps, you may want to retain only a small number of dumps.  Alternatively, if you require a backtrace as long and thorough as possible, increase the number to accommodate your needs. The default value is 5:

KEEP_OLD_DUMPS=5


To keep an infinite number of old dumps, set the number to 0.  To delete all existing dumps before writing a new one, set the number to -2. Please note the somewhat strange values, as they are counterintuitive.
Table 5: Kdump dump retention

	Value
	Dumps kept

	0
	all (infinite number)

	-2
	none





57






www.dedoimedo.com	all rights reserved


13.1.10	Configure KDUMP_FREE_DISK_SIZE
This value defines the minimum free space that must remain on the target partition, where the memory core dump destination directory is located, after accounting for the memory core size.  If this value cannot be met, the memory core will not be saved, to prevent possible system failure. The default value is 64MB. Please note it has nothing to do with the memory allocation in GRUB. This is an unrelated, purely disk space setting.


KDUMP_FREE_DISK=”64GB”


13.1.11 	Configure KDUMP_DUMPDEV
This is a very important directive. We have mentioned it several times before. KDUMP_ DUMPDEV  does not have to be used, but you should carefully consider whether you might need it. Furthermore, please remember that this directive is closely associated with several other settings, so if you do use it, the functionality of Kdump will change.
First, let’s see when it might be prudent to use KDUMP_DUMPDEV : Using this directive can be useful if you might be facing filesystem corruption problems. In this case, when a crash occurs, it might not be possible to mount the root filesystem and write to the destination directory (KDUMP_SAVEDIR). Should that happen, the crash dump will fail. Using KDUMP_DUMPDEV allows you to write to a device or a partition in raw mode, without any consideration to underlying filesystem, circumventing any filesystem-related problems.
This also means that there will be no KDUMP_IMMEDIATE_REBOOT ; the directive will also be ignored, allowing you to use the console to try to fix system problems manually, like check the filesystem, because no partition will be mounted and used.  Kdump will examine the KDUMP_DUMPDEV directive and if it’s not empty, it will copy the contents from the dump device to the dump directory (KDUMP_SAVEDIR).
On the other hand, using KDUMP_DUMPDEV increases the risk of disk corruption in the recovery kernel environment. Furthermore, there will be no immediate reboot, which slows down the restoration to production. While such a solution is useful for small scale operations, it is impractical for large environments.  Moreover, take into account that the dump device will always be irrecoverably overwritten when the dump is collected, destroying data present on it. Secondly, you cannot use an active swap partition as the dump device.



58






www.dedoimedo.com	all rights reserved


KDUMP_DUMPDEV=””



Figure 12: Kdump DUMPDEV configuration

























13.1.12 	Configure KDUMP_VERBOSE

This is a rather simple, administrative directive. It tells how much information is output to the user, using bitmask values in a fashion similar to the chmod command. By default, the Kdump progress is written to the standard output (STDOUT) and the Kdump command line is written into the syslog. If we sum the values, we get command line (1) + STDOUT
(2) = 3. See below for all available values:



59





www.dedoimedo.com	all rights reserved


KDUMP_VERBOSE=3



Table 6: Kdump verbosity configuration

	Value
	Action

	1
	Kdump command line written to syslog

	2
	Kdump progress written to STDOUT

	4
	Kdump command line written to STDOUT

	8
	Kdump transfer script debugged



13.1.13	Configure KDUMP_DUMPLEVEL
This directive defines the level of data provided in the memory dump. Values range from
0 to 32. Level 0 means the entire contents of the memory will be dumped, with no detail omitted. Level 32 means the smallest image. The default value is 0.


KDUMP_DUMPLEVEL=”0”


You should refer to the configuration file for exact details about what each level offers and plan accordingly, based on your available storage and analysis requirements. You are welcome to try them all.  I recommend using 0, as it provides most information, even though it requires hefty space.








60






www.dedoimedo.com	all rights reserved


Figure 13: Kdump DUMPLEVEL configuration


























13.1.14 	Configure KDUMP_DUMPFORMAT
This setting defines the dump format.  The default selection is ELF, which allows you to open the dump with gdb and process it. You can also use compressed, but you can analyze the dump only with the crash utility. We will talk about these two tools in great detail in the next part.  The default and recommended choice is ELF, even though the dump file is larger.


KDUMP_DUMPLEVEL=”ELF”




61






www.dedoimedo.com	all rights reserved

13.2	GRUB menu changes
Because of the way it works, Kdump requires a change to the kernel entry in the GRUB menu. As you already know, Kdump works by booting from the context of the crashed kernel. In order for this feature to work, the crash kernel must have a section of mem-ory available, even when the production kernel crashes.  To this end, memory must be reserved.
In the kernel configurations earlier, we declared the offset point for our memory reserva-tion. Now, we need to declare how much RAM we want to give our crash kernel. The exact figure will depend on several factors, including the size of your RAM and possibly other restrictions. If you read various sources online, you will notice that two figures are mostly used: 64MB and 128MB. The first is the default configuration and should work. However, if it proves unreliable for whatever reason, you may want to try the second value.  Test-crashing the kernel a few times should give you a good indication whether your choice is sensible or not.
Now, let us edit the GRUB configuration file12.  First, make sure you backup the file before any changes.


cp /boot/grub/menu.lst /boot/grub/menu.lst-backup



Open the file for editing. Locate the production kernel entry and append the following:


crashkernel=XM@YM


YM is the offset point we declared during the kernel compilation - or has been configured for us by the vendor.  In our case, this is 16M. XM is the size of memory allocated to the crash kernel. Like I’ve mentioned earlier, the most typical configuration will be either 64M or 128MB. Therefore, the appended entry should look like:


12 If you’re using GRUB2, the editing of the configuration file must be done via scripts and not manually. Please refer to www.dedoimedo.com for a complete GRUB2 tutorial.



62






www.dedoimedo.com	all rights reserved


crashkernel=64M@16M


A complete stanza inside the menu.list file:


title Some Linux
root (hd0,1) kernel /boot/vmlinuz root=/dev/sda1
resume=/dev/sda5 splash=silent crashkernel=64M@16M


13.3 	Set Kdump to start on boot
We now need to enable Kdump on startup. This can be done using chkconfig or sysv-rc-conf  utilities on RedHat- or Debian-based distros, respectively.  For a more detailed tutorial about the usage of these tools, please take a look at this tutorial online.
For example, using the chkconfig utility13:


chkconfig dump on


Changes to the configuration file require that the Kdump service be restarted. However, the Kdump service cannot run unless the GRUB menu change has been affected and the system rebooted. You can easily check this by trying to start the Kdump service:


/etc/init.d/kdump start


If you have not allocated the memory or if you have used the wrong offset, you will get an error. Something like this:

13 The service name has changed in SUSE 11 and above; please refer to Appendix (V) for more details.



63






www.dedoimedo.com	all rights reserved


/etc/init.d/kdump start Loading kdump failed
Memory for crashkernel is not reserved
Please reserve memory  by passing "crashkernel=X@Y"
parameter to the kernel Then  try loading kdump kernel


If you receive this error, this means that the GRUB configuration file has not been edited properly.  You will have to make the right changes, reboot the system and try again. Once this is done properly, Kdump should start without any errors. We will mention this again when we test our setup. This concludes the configurations section. Now, let’s test it.

14	Test configuration

Before we start crashing our kernel for real, we need to check that our configuration really works. This means executing a “dry” run with Kexec. In other words, configure Kexec to load with desired parameters and boot the crash (capture) kernel. If you successfully pass this stage, this means your system is properly configured and you can test the Kdump functionality with a real kernel crash.
Again, if your system comes with the kernel already compiled to use Kdump, you will have saved a lot of time and effort.  Basically, the Kdump installation and the configuration test are completely unnecessary. You can proceed straight away to using Kdump.

14.1	Configurations

14.1.1	Kernel

First, let’s quickly check that our kernel has been compiled with relevant parameters14:


14 This configuration is relevant for SUSE-based systems. On RedHat-based systems, the kernel config-uration is located under /boot/config.




64






www.dedoimedo.com	all rights reserved


zcat /proc/config.gz


If everything is as expected, we can proceed on to the next step.  Please note that /proc/config.gz is not available for all distributions.

14.1.2	GRUB menu
Next, you need to make sure your production kernel is configured to allocate memory to the crash kernel. This means that the crashkernel=XM@YM string has to be appended to the relevant GRUB kernel entry and that you’re using the correct offset, as specified in the kernel parameters. As we’ve seen earlier, the memory allocation requires a reboot to take effect. Then, try to start the Kdump service:


/etc/init.d/kdump start



If you have not allocated the memory or used the wrong offset, you will get an error. Something like this:


/etc/init.d/kdump start Loading kdump failed
Memory for crashkernel is not reserved
Please reserve memory  by passing "crashkernel=X@Y"
parameter to the kernel Then  try loading kdump kernel


The error is quite descriptive and rather self-explanatory. You will have to edit the GRUB configuration file, reboot and try again.  Once you do it properly, Kdump should start without any errors.





65






www.dedoimedo.com	all rights reserved

14.2	Load Kexec with relevant parameters
Our first step is to load Kexec with desired parameters into the existing kernel. Usually, you will want Kdump to run with the same parameters your production kernel booted with. So, you will probably use the following configuration to test Kdump:


/usr/local/sbin/kexec -l /boot/vmlinuz-‘uname -r‘
--initrd=/boot/initrd-‘uname -r‘
--command-line=‘cat /proc/cmdline‘



Then, execute Kexec (it will load the above parameters):


/usr/local/sbin/kexec -e


Your crash kernel should start booting. As said before, it will skip BIOS, so you should see the boot sequence in your console immediately.  If this step completes successfully without errors, you are on the right path. I would gladly share a screenshot here, but it would look just like any other boot, so it’s useless. The next step would be to load the new kernel for use on panic. Reboot and then test:


/usr/local/sbin/kexec -p


14.2.1	Possible errors

At this stage, you may encounter a possible error. Something like this:







66






www.dedoimedo.com	all rights reserved


kexec_load failed:  Cannot assign requested address entry = 0x96550 flags = 1 nr_segments = 4
segment[0].buf = 0x528aa0 segment[0].bufsz = 2044 segment[0].mem = 0x93000 segment[0].memsz = 3000 segment[1].buf = 0x521880 segment[1].bufsz = 7100 segment[1].mem = 0x96000 segment[1].memsz = 9000
segment[2].buf = 0x2aaaaaf1f010 segment[2].bufsz = 169768 segment[2].mem = 0x100000 segment[2].memsz = 16a000 segment[3].buf = 0x2aaaab11e010 segment[3].bufsz = 2f5a36 segment[3].mem = 0xdf918000



If this happens, this means you have one of the three following problems:

1. You have not configured the production kernel properly and Kdump will not work. 	You will have to go through the installation process again, which includes compiling 	the kernel with relevant parameters.
2. The Kexec version you are using does not match the kernel-kdump package. Make 	sure the right packages are selected. You should check the installed versions of the 	two packages - kernel-kdump and kexec-tools. Refer to the official website for details.
3. You may be missing -args-linux in the configuration file, under KEXEC_OPTIONS.

Once you successfully solve this issue, you will be able to proceed with testing.  If the crash kernel boots without any issues, this means you’re good to go and can start using Kdump for real.




67






www.dedoimedo.com	all rights reserved

15	Simulate kernel crash

We can begin the real work here. Like with LKCD, we will simulate a crash and watch magic happen. To manually crash the kernel, you will have to enable the System Request (SysRq) functionality (A.K.A. magic keys), if it has not already been enabled on your system(s), and then trigger a kernel panic. Therefore, first, enable the SysRq:


echo 1 > /proc/sys/kernel/sysrq



Then, crash the kernel:


/echo c > /proc/sysrq-trigger


Now watch the console.  The crash kernel should boot up.  After a while, you should see Kdump in action.  Let’s see what happens in the console.  A small counter should appear, showing you the progress of the dump procedure.  This means you have most likely properly configured Kdump and it’s working as expected.  Wait until the dump completes.  The system should reboot into the production kernel when the dump is complete.
Figure 14: Console view of crash kernel dumping memory core





Indeed, checking the destination directory, you should see the vmcore file15.
15 On more modern versions of openSUSE, the contents of the directory include additional files. Please refer to Memory cores (18.4) in the Crash Collection part and Appendix (V) for more details.





68






www.dedoimedo.com	all rights reserved


Figure 15: Contents of dumped memory core directory





This concludes the local disk dump configuration. Now, we will see how Kdump handles network dump.

16 	Kdump network dump functionality

Being able to send kernel crash dumps to network storage makes Kdump attractive for deployment in large environments.  It also allows system administrators to evade local disk space limitations.  Compared to LKCD, Kdump is much more network-aware; it is not restricted to dumping on the same subnet and there is no need for a dedicated server. You can use NFS areas or CIFS shares as the archiving destination. Best of all, the changes only affect the client side. There is no server-side configuration.

16.1	Configuration file
To make Kdump send crash dumps to network storage, only two directives in the configu-ration file need to be changed for the entire procedure to work. The other settings remain identical to local disk functionality, including starting Kdump on boot, GRUB menu ad-dition, and Kexec testing. The configuration file is located under /etc/sysconfig/kdump. As always, before effecting a change, backup the configuration file.

16.1.1 	Configure KDUMP_RUNLEVEL
To use the network functionality, we need to configure Kdump to boot in runlevel 3. By default, runlevel 1 is used. Network functionality is achieved by changing the directive.


KDUMP_RUNLEVEL=3





69






www.dedoimedo.com	all rights reserved


16.1.2	Configure KDUMP_SAVEDIR
The second step is to configure the network storage destination. We can no longer use the local file. We need to use either an NFS area, a CIFS share or an SSH or an FTP server. In this book, we will configure an NFS area, because it seems the most sensible choice for sending crash dumps to.  The configuration of the other two is very similar, and just as simple. The one thing you will have to pay attention to is the notation. You need to use the correct syntax:


KDUMP_SAVEDIR=”nfs:///<server>:/<dir>


<server> refers to the NFS server, either by name or IP address.  If you’re using a name, you need to have some sort of a name resolution mechanism in your environment, like hosts file or DNS. <dir> is the exported NFS directory on the NFS server.  The directory has to be writable by the root user.  In our example, the directive takes the following form:


KDUMP_SAVEDIR=”nfs:///nfsserver02:/dumps




















70






www.dedoimedo.com	all rights reserved


Figure 16: Kdump SAVEDIR network configuration

















These are the two changes required to make Kdump send memory dumps to a NFS storage area in the case of a kernel crash. Now, we will test the functionality.

16.1.3 	Kernel crash dump NFS example

Like the last time, we will trigger a kernel crash using the Magic Keys and observe the progress in the console. You should a progress bar, showing the percentage of memory core dumped (copied) to the network area. After a while, the process will complete and the crash kernel will reboot. If you get to see output similar to the two screenshots below, this means you have most likely successfully configured Kdump network functionality.
Figure 17: Console view of network-based crash dump










71





www.dedoimedo.com	all rights reserved


Figure 18: Console view of network-based crash dump - continued









This concludes the long and thorough configuration and testing of Kdump. If you have successfully managed all the stages so far, this means your system is ready to be placed into production and collect memory cores when kernel panic situations occur. Analyzing the cores will provide you with valuable information that should hopefully help you find and resolve the root causes leading to system crashes.

17	Conclusion

Kdump is a powerful, flexible Kernel crash dumping utility.  The ability to execute a crash kernel in the context of the running production kernel is a very useful mechanism. Similarly, the ability to use the crash kernel in virtually all runlevels, including networking and the ability to send cores to network storage using a variety of protocols significantly extends our ability to control the environment.
Specifically, in comparison to the older LKCD utility, it offers improved functionality on all levels, including a more robust mechanism and better scalability. Kdump can use local RAID (md) devices if needed. Furthermore, it has improved network awareness and can work with a number of protocols, including NFS, CIFS, FTP, and SSH. The memory cores are no longer limited by the 32-bit barrier.
We will talk about the post-processing of the memory cores in the next part.










72





www.dedoimedo.com	all rights reserved

Part III
Crash Collection

In this part, you will learn how to use the crash utility to open the dumped memory cores, collected at the time of kernel crashes, and read the information contained therein. Please note that this part focuses mainly on being able to use and process the crash dumps. We will focus on the crash analysis more deeply later on.
Like the Kdump setup, this part of the book is mainly intended for power users and system administrators, but if you wish to enrich your Linux knowledge, you’re more than welcome to use the material. Some of the steps will require in-depth familiarity with the functionality of the Linux operating system, which will not be reviewed here.
We will also briefly mention the older lcrash utility, which you may want to run against memory cores collected using LKCD. However, since the two are somewhat obsolete, we will not focus too much on their use.  For more details about lcrash and gdb-kdump, please take a look at the Appendix (V).
Note:  This part of the book focuses on both SUSE 10.X and 11.X and RedHat 5.X systems.

18	Crash setup

18.1	Prerequisites
You must have Kdump setup properly and working.

18.2 	Kdump working crash installation
crash can be found in the repositories of all major distros. The installation is fairly simply and straightforward. You can use either yum, zypper or apt to obtain the package very easily.







73






www.dedoimedo.com	all rights reserved


Figure 19: Installation of crash via software manager





























18.3	Crash location
The default crash directory is /var/crash.  You can change the path to anything you want, provided there’s enough space on the target device. In general, you should choose



74





www.dedoimedo.com	all rights reserved

a disk or a partition that is equal or exceeds the size of your physical memory. You can change this path either using GUI tools or manually editing the Kdump configuration file:

• /etc/sysconfig/kdump on openSUSE.
• /etc/kdump.conf on CentOS (RedHat).

Figure 20: openSUSE Kdump configurationvia YaST-Kdump module


































75





www.dedoimedo.com	all rights reserved


Figure 21: CentOS Kdump configuration system-config-kdump utility










































76





www.dedoimedo.com	all rights reserved

18.4	Memory cores
Memory cores are called vmcore and you will find them in dated directories inside the crash directory.  On older versions of Kdump, the directories would only contain the vmcore file. Newer versions also copy the kernel and System map file into the directory, making the core processing easier.

Figure 22: Generating crash dump files








Figure 23: Contents of a crash dump directory







19	Invoke crash

The crash utility can be invoked in several ways. First, there is some difference between older and newer versions of Kdump16, in terms of what they can do and how they process the memory cores. Second, the crash utility can be run manually or unattended. Let’s first review the differences between the older and newer versions.
16 The older version refers to SUSE 10.X systems. The newer versions refers to SUSE 11.x and RedHat
5.X systems.





77






www.dedoimedo.com	all rights reserved

19.1	Old (classic) invocation
The old invocation is done like this:


crash <System map> <vmlinux> vmcore


<System map> is the absolute path to the System map file, which is normally located under /boot.  This file must match the version of the kernel used at the time of the crash.  The System map file is a symbol table used by the kernel.  A symbol table is a look-up between symbol names and their addresses in memory. A symbol name may be the name of a variable or the name of a function. The System.map is required when the address of a symbol name is needed. It is especially useful for debugging kernel panics and kernel oopses, which is what we need here.
For more details, you may want to read:

• System.map on Wikipedia
• The Linux Kernel HOWTO - Systemmap

<vmlinux> is the uncompressed version of the kernel that was running when the memory core was collected. vmcore is the memory core.
The System map and vmlinux files remain in the /boot directory and are not copied into the crash directory. However, they can be manually copied to other machines, allowing portable use of crash against memory cores collected on other systems and/or kernels.

19.2	New invocation
The newer versions of Kdump can work with compressed kernel images.  Furthermore, they copy the System map file and the kernel image into the crash directory, making the use of crash utility somewhat simpler.  Finally, there are two ways you can process the cores.






78






www.dedoimedo.com	all rights reserved


Figure 24: New kdump invocation console output








You can use the old way. Here’s an example on CentOS 5.4:


crash \
/boot/System.map-2.6.18-164.10.1.el5 \ /boot/vmlinuz-2.6.18-164.10.1.el5 \ vmcore


Figure 25: Old crash invocation example on CentOS 5.4




Notice the use of vmlinuz kernel image, as opposed to vmlinux previously required. Alter-natively, you can use only the debug information under /usr/lib/debug. The information is extracted during the installation of kernel-debuginfo packages matching the kernel that was running at the time of the kernel crash. The syntax for CentOS and openSUSE is somewhat different.

openSUSE:

crash \
/usr/lib/debug/boot/<kernel>.debug \ vmcore





79






www.dedoimedo.com	all rights reserved


CentOS (RedHat):

crash \
/usr/lib/debug/lib/modules/<kernel>/vmlinux \ vmcore


Figure 26: New crash invocation example on CentOS 5.4




For more information, please consider reading the following articles:
• Crashdump Debugging - openSUSE
• Kdump - openSUSE
I must emphasize that the topic of how gdb and crash find the debuginfo of binaries can be a little confusing, so you may also want to spend a week or three and read the long documentation on gdb:
• Debugging with GDB

19.3 	Important details to pay attention to
Now, since SUSE and RedHat use somewhat different syntax, things can be a little confusing. Therefore, please note the following table of comparison:
Table 7: Naming and file location differences between SUSE and RedHat

	
	SUSE
	RedHat

	System map
	System-map
	System.map

	Debug info
	/usr/lib/debug/boot/
	/usr/lib/debug/lib/modules/





80





www.dedoimedo.com	all rights reserved


Figure 27: Crash debuginfo location on openSUSE 11.x







19.4	Portable use
To process cores on other machines, you can either copy the System map and the ker-nel or just the debug information file.  Newer versions of Kdump and crash will work with compressed kernel images. The debug info must match the kernel version exactly, otherwise you will get a CRC match error:

Figure 28: CRC match error










20	Running crash

All right, now that we know the little nuances, let’s run crash.  Kdump is working and doing its magic in the background. We will not discuss Kdump-related issues here. Please refer to the previous book part (II) for more details.  If you get the crash prompt after invoking the crash command, either using the old or new syntax, then everything is ok.



81





www.dedoimedo.com	all rights reserved


Figure 29: Crash working
























Figure 30: Crash prompt

















82





www.dedoimedo.com	all rights reserved

20.1	Crash commands
Once crash is running and you’re staring at the crash prompt, it’s time to try some crash commands. In this part, we will not focus too much on the commands or understanding their output. For now, it’s a brief overview of what we need. crash commands are listed in superb detail in the White Paper. In fact, the document is pretty much everything you will need to work with crash. Here’s a handful of important and useful commands you will need:

20.1.1	bt - backtrace
Display a kernel stack backtrace. If no arguments are given, the stack trace of the current context will be displayed.
Figure 31: crash bt command example



























83





www.dedoimedo.com	all rights reserved


20.1.2	log - dump system message buffer
This command dumps the kernel log_buf contents in chronological order. Figure 32: crash log command example























20.1.3 	ps - display process status information
This command displays process status for selected, or all, processes in the system. If no arguments are entered, the process data is displayed for all processes.










84





www.dedoimedo.com	all rights reserved


Figure 33: crash ps command example






















And there are many other commands. The true study begins here. We will review the usage of these commands, as well as many others in the next part. There, we will examine several simulated, study cases, as well as real crashes on production systems.

20.2 	Other useful commands
You will also want to try help and h (command line history).

20.3 	Create crash analysis file
Processed command output can be sent to an external file. You merely need to use the redirection symbol (>) and specify a filename.  This contrasts the usage of the lcrash




85





www.dedoimedo.com	all rights reserved


utility, which specifically requires -w flag to write to files17.

20.4 	Crash running in unattended mode
Now that we know how to run crash commands and produce analysis files, why not do that entirely unattended?  This can be done by specifying command line input from a file. Commands can be sent to crash in two ways:


crash -i inputfile



Or using redirection:


crash < inputfile


In both cases, the crash inputfile is a text file with crash commands one per line. For the crash utility to exit, you will also need to include the exit command at the end. Something like:


bt
log ps
exit


Thus, the complete, unattended analysis takes the form of:


17 See Appendix (V) for more details.




86






www.dedoimedo.com	all rights reserved


crash <debuginfo> vmcore < inputfile > outputfile



Or perhaps:


crash <System map> <vmlinux> vmcore < inputfile > outputfile



So there we are! It’s all good. But, you may encounter problems ...

21	Possible errors

21.1	No debugging data available

After running crash, you may see this error:
Figure 34: No debuginfo package on RedHat




















87





www.dedoimedo.com	all rights reserved


Figure 35: No debuginfo package on openSUSE

















This means you’re probably missing the debuginfo packages.  You should start your package manager and double-check. If you remember, I’ve repeatedly stated that having the debuginfo packages installed is a prerequisite for using Kdump and crash correctly18.

Figure 36: Installing crash debug packages on CentOS 5.4















18 The procedure how to enable debug repositories is explained in the Appendix (V).





88






www.dedoimedo.com	all rights reserved

21.2	vmlinux and vmcore do not match (CRC does not match)
You may also get this error:
Figure 37: vmlinux and vmcore match problem on CentOS














On SUSE, it may look like this:
Figure 38: CRC match error on openSUSE














If you see the following messages: vmlinux and vmcore do not match! or CRC does not match, this means you have invoked crash against the wrong version of debuginfo, which does not match the vmcore file. Remember, you must use the exact same version!



89





www.dedoimedo.com	all rights reserved

21.3	No guarantee
There could be additional problems.  Your dump may be invalid or incomplete.  The header may be corrupt.  The dump file may be in an unknown format.  And even if the vmcore has been processed, the information therein may be partial or missing. For example, crash may not be able to find the task of the process causing the crash:

Figure 39: No panic task found








There’s no guarantee it will all work. System crashes are quite violent and things might not go as smoothly as you may desire, especially if the crashes are caused by hardware problems. For more details about possible errors, please consult the White Paper.

22	Conclusion

In this part, we have learned how to use the crash utility to open and process dumped memory cores. We focused on subtle differences in the setup on RedHat and SUSE, as well as different invocation methods and syntax used by these operating systems. Next, we learned about the crash functionality and the basic commands. Now we will perform the detailed analysis of collected cores.












90





www.dedoimedo.com	all rights reserved

Part IV
Crash Analysis

We have learned how to configure our systems for kernel crash dumping, using LKCD and Kdump, both locally and across the network.  We have learned how to setup the crash dumping mechanism on both CentOS and openSUSE, and we reviewed the subtle differences between the two operating systems.  Next, we mastered the basic usage of the crash utility, using it to open the dumped memory core and process the information contained therein. But we did not yet learn to interpret the output.
In this part, we will focus on just that; read the vmcore analysis, understand what the entries mean and perform a basic investigation19.  Then, we will slowly examine more complex problems. We will even write our own kernel module, make it faulty on purpose, and then use it to generate a crash. Afterwards, we will use the kernel crash report to find and solve the bug in our source code. Finally, we will derive an efficient methodology for handling kernel crash problems in the future
Note: Operating systems used to demonstrate the functionality are openSUSE 11.X and CentOS 5.X.

23 	Analyzing the crash report - First steps

Once you launch crash, you will get the initial report information printed to the console. This is where the analysis of the crash begins.
19 You MUST read the other parts in other to fully understand how crash works. Without mastering the basic concepts, including Kdump and crash functionality, you will not be able to follow this part of the book efficiently.












91






www.dedoimedo.com	all rights reserved


Figure 40: Beginning crash analysis










































92





www.dedoimedo.com	all rights reserved


crash 4.0-8.9.1.el5.centos
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K. Copyright (C) 2005 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc. This program is free software, covered by the GNU General Public License, and you are welcome to change it and/or distribute copies of it under certain conditions. Enter "help copying" to see the conditions.  This program has absolutely no warranty. Enter "help warranty" for details.

NOTE: stdin:  not a tty

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software,covered by the GNU General Public
License, and you are welcome to change it and/or distribute
copies of it under certain conditions. Type "show copying" to see the conditions. There is absolutely no warranty for GDB. Type "show warranty" for details.  This GDB was configured as "x86_64-unknown-linux-gnu"...

bt:  cannot transition from exception stack to current process stack:
exception stack pointer:  ffff810107132f20 	process stack pointer:  ffff81010712bef0
current_stack_base:  ffff8101b509c000








93






www.dedoimedo.com	all rights reserved


KERNEL: /usr/lib/debug/lib/modules/
2.6.18-164.10.1.el5.centos.plus/vmlinux DUMPFILE: vmcore
CPUS: 2
DATE: Tue Jan 19 20:21:19 2010 UPTIME: 00:00:00
LOAD AVERAGE: 0.00, 0.04, 0.07 	TASKS: 134
NODENAME: testhost2@localdomain RELEASE: 2.6.18-164.10.1.el5
VERSION: #1 SMP Thu Jan 7 19:54:26 EST 2010 MACHINE: x86_64 (3000 Mhz)
MEMORY: 7.5 GB
PANIC: "SysRq :  Trigger a crashdump" 	PID: 0
COMMAND: "swapper"
TASK: ffffffff80300ae0 (1 of 2)
[THREAD_INFO: ffffffff803f2000] CPU: 0
STATE: TASK_RUNNING (ACTIVE)


Let’s walk through the report. The first thing you see is some kind of an error:


bt:  cannot transition from exception stack
to current process stack:
exception stack pointer:  ffff810107132f20 	process stack pointer:  ffff81010712bef0
current_stack_base:  ffff8101b509c000


The technical explanation for this error is a little tricky.  Quoted from the crash util-ity mailing list thread about changes in the crash utility 4.0-8.11 release, we learn the following information:




94






www.dedoimedo.com	all rights reserved


If a kdump NMI issued to a non-crashing x86_64 cpu was received while running in schedule(), after having set the next task as "current" in the cpu’s runqueue, but prior to changing the kernel stack to that of the next task, then a backtrace would fail to make the transition from the NMI exception stack back to the process stack, with the error message "bt:  cannot transition from exception stack to current process stack".  This patch will report inconsistencies found between a task marked as the current task in a cpu’s runqueue, and the task found in the per-cpu x8664_pda "pcurrent" field (2.6.29 and earlier) or the per-cpu "current_task" variable (2.6.30 and later). If it can be safely determined that the runqueue setting (used by default) is premature, then the crash utility’s internal per-cpu active task will be changed to be the task indicated by the appropriate architecture specific value.
What does this mean?  It’s a warning that you should heed when analyzing the crash report. It will help us determine which task structure we need to look at to troubleshoot the crash reason. For now, ignore this error. It’s not important to understanding what the crash report contains. You may or may not see it.
Now, let’s examine the code below this error.
KERNEL: specifies the kernel running at the time of the crash. DUMPFILE: is the name of the dumped memory core. CPUS: is the number of CPUs on your machine. DATE: specifies the time of the crash.
TASKS: indicates the number of tasks in the memory at the time of the crash. Task is a set of program instructions loaded into memory.
NODENAME: is the name of the crashed host.
RELEASE: and VERSION: specify the kernel release and version. MACHINE: specifies the architecture of the CPU.
MEMORY: is the size of the physical memory on the crashed machine. And now come the interesting bits:
PANIC: specifies what kind of crash occurred on the machine. There are several types that you can see.
SysRq (System Request) refers to Magic Keys, which allow you to send instructions directly to the kernel.  They can be invoked using a keyboard sequence or by echoing letter commands to /proc/sysrq-trigger, provided the functionality is enabled. We have discussed this in the Kdump part.



95






www.dedoimedo.com	all rights reserved


Oops is a deviation from the expected, correct behavior of the kernel. Usually, the oops results in the offending process being killed.  The system may or may not resume its normal behavior.  Most likely, the system will enter an unpredictable, unstable state, which could lead to kernel panic if some of the buggy, killed resources are requested later on.
For example, in my Ubuntu Karmic and Fedora Constantine reviews, we’ve seen evidence of kernel crashes.  However, the system continued working.  These crashes were in fact oopses.
Figure 41: Serious kernel problem example in Ubuntu
































96





www.dedoimedo.com	all rights reserved


Figure 42: Kernel crash report in Fedora


























We will discuss the Fedora case later on.
Panic is a state where the system has encountered a fatal error and cannot recover. Panic can be caused by trying to access non-permitted addresses, forced loading or unloading of kernel modules, or hardware problems.
In our first, most benign example, the PANIC: string refers to the use of Magic Keys. We deliberately triggered a crash.


PANIC: "SysRq :  Trigger a crashdump"





97






www.dedoimedo.com	all rights reserved

PID: is the process ID of the ... process that caused the crash. COMMAND: is the name of the process, in this case swapper.


COMMAND: “swapper”


swapper, or PID 0 is the scheduler. It’s the process that delegates the CPU time between runnable processes and if there are no other processes in the runqueue, it takes control. You may want to refer to swapper as the idle task, so to speak.
There’s one swapper per CPU, which you will soon see when we start exploring the crash in greater depth.  But this is not really important.  We will encounter many processes with different names.
TASK: is the address in memory for the offending process. We will use this information later on. There’s a difference in the memory addressing for 32-bit and 64-bit architectures.
CPU: is the number of the CPU (relevant if more than one) where the offending process was running at the time of the crash.  CPU refers to CPU cores and not just physical CPUs. If you’re running your Linux with hyperthreading enabled, then you will also be counting separate threads as CPUs.  This is important to remember, because recurring crashes on just one specific CPU might indicate a CPU problem.
If you’re running your processes with affinity set to certain CPUs (taskset), then you might have more difficulty pinpointing CPU-related problems when analyzing the crash reports.
You can examine the number of your CPUs by running cat /proc/cpuinfo.
STATE: indicates the process state at the time of the crash. TASK_RUNNING refers to runnable processes, i.e.  processes that can continue their execution.  Again, we will talk more about this later on.

24	Getting warmer

We’ve seen one benign example so far.  Just an introduction.  We will take a look at several more examples, including real cases.  For now, we know little about the crash, except that the process that caused it. We will now examine several more examples and try to understand what we see there.



98






www.dedoimedo.com	all rights reserved

24.1	Fedora example
Let’s go back to Fedora case. Take a look at the screenshot below. While the information is arranged somewhat differently than what we’ve seen earlier, essentially, it’s the same thing.
Figure 43: Kernel crash report in Fedora, shown again


























But there’s a new piece of information:


Pid: 	0, comm:  swapper Not tainted.





99






www.dedoimedo.com	all rights reserved

Let’s focus on the Not tainted string for a moment. What does it mean? This means that the kernel is not running any module that has been forcefully loaded. In other words, we are probably facing a code bug somewhere rather than a violation of the kernel. You can examine your running kernel by executing:


cat /proc/sys/kernel/tainted



So far, we’ve learned another bit of information. We will talk about this later on.

24.2 	Another example, from the White Paper
Take a look at this example:


MEMORY: 128MB
PANIC: "Oops: 	0002" (check log for details)
PID: 1696
COMMAND: "insmod"


What do we have here?  A new piece of information.  Oops: 	0002.  What does this mean? This is the kernel page error code. We will now elaborate what it is and how it works.

24.3 	Kernel Page Error
The four digits are a decimal code of the Kernel Page Error. Reading O’Reilly’s Under-standing Linux Kernel, Chapter 9: Process Address Space, Page Fault Exception Handler, pages 376-382, we learn the following information:







100






www.dedoimedo.com	all rights reserved

• If the first bit is clear (0), the exception was caused by an access to a page that is not present; if the bit is set (1), this means invalid access right.
• If the second bit is clear (0), the exception was caused by read or execute access; if set (1), the exception was caused by a write access.
• If the third bit is clear (0), the exception was caused while the processor was in Kernel mode; otherwise, it occurred in User mode.
• The fourth bit tells us whether the fault was an Instruction Fetch. This is only valid for 64-bit architecture. Since our machine is 64-bit, the bit has meaning here.

Table 8: Kernel page error code

	
	Value

	Bit
	0
	1

	0
	No page found
	Invalid access20

	1
	Read or Execute
	Write

	2
	Kernel mode
	User mode

	3
	Not instruction fetch
	Instruction fetch



Therefore, to understand what happened, we need to translate the decimal code into binary and then examine the four bits, from right to left. In our case, decimal 2 is binary
10. Looking from right to left, bit 1 is zero, bit 2 is lit, bit 3 and 4 are zero. Notice the binary count, starting from zero. In other words:


0002 (dec) → 0010 (binary) → Not instruction fetch | Kernel mode | Write | Invalid access


20 Sometimes, invalid access is also referred to as protection fault.



101






www.dedoimedo.com	all rights reserved


This is quite interesting.  Seemingly incomprehensible information starts to feel very logical indeed. Therefore, we have a page not found during a write operation in Kernel mode; the fault was not an Instruction Fetch. Of course, it’s a little more complicated than that, but still we’re getting a very good idea of what’s going on. Well, it’s starting to get interesting, isn’t it? Looking at the offending process, insmod, this tells us quite a bit.  We tried to load a kernel module.  It tried to write to a page it could not find, meaning protection fault, which caused our system to crash.  This might be a badly written piece of code.
OK, so far, we’ve seen quite a bit of useful information.  We learned about the basic identifier fields in the crash report. We learned about the different types of Panics. We learned about identifying the offending process, deciding whether the kernel is tainted and what kind of problem occurred at the time of the crash. But we have just started our analysis. Let’s take this to a new level.

25	Getting hot

25.1	Backtrace
In the previous part, we learned about some basic commands. It’s time to put them to good use. The first command we want is bt - backtrace. We want to see the execution history of the offending process, i.e. backtrace.



















102






www.dedoimedo.com	all rights reserved


Figure 44: Backtrace of a crash dump










































103





www.dedoimedo.com	all rights reserved


PID: 0 TASK: ffffffff80300ae0 CPU: 0 COMMAND: "swapper"
#0 [ffffffff80440f20] crash_nmi_callback at ffffffff8007a68e #1 [ffffffff80440f40] do_nmi at ffffffff8006585a * #2 [ffffffff80440f50] nmi at ffffffff80064ebf * [exception RIP: default_idle+61]
RIP: ffffffff8006b301 RSP: ffffffff803f3f90 RFLAGS: 00000246 RAX: 0000000000000000 RBX: ffffffff8006b2d8
RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffffffff80302698
RBP: 0000000000090000 R8:  ffffffff803f2000
R9:	000000000000003e
R10:  ffff810107154038 R11:	0000000000000246
R12:	0000000000000000
R13:	0000000000000000 R14:	0000000000000000
R15:	0000000000000000
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
--- <exception stack> ---
#3 [ffffffff803f3f90] default_idle at ffffffff8006b301 * #4 [ffffffff803f3f90] cpu_idle at ffffffff8004943c


25.1.1	Call trace
The sequence of numbered lines, starting with the hash sign (#) is the call trace. It’s a list of kernel functions executed just prior to the crash. This gives us a good indication of what happened before the system went down.













104






www.dedoimedo.com	all rights reserved


#0 [ffffffff80440f20] crash_nmi_callback at ffffffff8007a68e #1 [ffffffff80440f40] do_nmi at ffffffff8006585a * #2 [ffffffff80440f50] nmi at ffffffff80064ebf * [exception RIP: default_idle+61]
RIP: ffffffff8006b301 RSP: ffffffff803f3f90 RFLAGS: 00000246 RAX: 0000000000000000 RBX: ffffffff8006b2d8
RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffffffff80302698
RBP: 0000000000090000 R8:  ffffffff803f2000
R9:	000000000000003e
R10:  ffff810107154038 R11:	0000000000000246
R12:	0000000000000000
R13:	0000000000000000 R14:	0000000000000000
R15:	0000000000000000
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
--- <exception stack> ---
#3 [ffffffff803f3f90] default_idle at ffffffff8006b301 * #4 [ffffffff803f3f90] cpu_idle at ffffffff8004943c


25.1.2	Instruction pointer
The first really interesting line is this one:


[exception RIP: default_idle+61]


We have exception RIP: default_idle+61. What does this mean? First, let’s discuss RIP. RIP is the instruction pointer21.  It points to a memory address, indicating the progress of program execution in memory. In our case, you can see the exact address in the line just below the bracketed exception line:


21 On 32-bit architecture, the instruction pointer is called EIP.



105






www.dedoimedo.com	all rights reserved


[exception RIP: default_idle+61]
RIP: ffffffff8006b301 RSP: ffffffff803f3f90 RFLAGS: 00000246


For now, the address itself is not important. The second part of information is far more useful to us. default_idle is the name of the kernel function in which the RIP lies. +61 is the offset, in decimal format, inside the said function where the exception occurred.

25.1.3 	Code Segment (CS) register
The code between the bracketed string down to — <exception stack> — is the dumping of registers. Most are not useful to us, except the CS (Code Segment) register.


CS: 0010


Again, we encounter a four-digit combination. In order to explain this concept, I need to deviate a little and talk about Privilege levels.

25.1.4	Privilege levels
Privilege level is the concept of protecting resources on a CPU. Different execution threads can have different privilege levels, which grant access to system resources, like memory regions, I/O ports, etc. There are four levels, ranging from 0 to 3. Level 0 is the most privileged, known as Kernel mode. Level 3 is the least privileged, known as User mode.
Most modern operating systems, including Linux, ignore the intermediate two levels, using only 0 and 3. The levels are also known as Rings. A notable exception of the use of levels was IBM OS/2 system.

25.1.5 	Current Privilege Level (CPL)
Code Segment (CS) register is the one that points to a segment where program instruc-tions are set. The two least significant bits of this register specify the Current Privilege Level (CPL) of the CPU. Two bits, meaning numbers between 0 and 3.



106






www.dedoimedo.com	all rights reserved


25.1.6 	Descriptor Privilege Level (DPL) &
Requested Privilege Level (RPL)
Descriptor Privilege Level (DPL) is the highest level of privilege that can access the resource and is defined.  This value is defined in the Segment Descriptor.  Requested Privilege Level (RPL) is defined in the Segment Selector, the last two bits. Mathemat-ically, CPL is not allowed to exceed MAX(RPL,DPL), and if it does, this will cause a general protection fault. Now, why is all this important, you ask?
Well, for instance, if you encounter a case where system crashed while the CPL was 3, then this could indicate faulty hardware, because the system should not crash because of a problem in the User mode.  Alternatively, there might be a problem with a buggy system call. Just some rough examples.
For more information, please consider referring to O’Reilly’s Understanding Linux Kernel, Chapter 2: Memory Addressing, Page 36-39. You will find useful information about Seg-ment Selectors, Segment Descriptors, Table Index, Global and Local Descriptor Tables, and of course, the Current Privilege Level (CPL). Now, back to our crash log:


CS: 0010


As we know, the two least significant bits specify the CPL. Two bits means four levels, however, levels 1 and 2 are ignored. This leaves us with 0 and 3, the Kernel mode and User mode, respectively. Translated into binary format, we have 00 and 11.
The format used to present the descriptor data can be confusing, but it’s very simple. If the right-most figure is even, then we’re in the Kernel mode; if the last figure is odd, then we’re in the User mode. Hence, we see that CPL is 0, the offending task leading to the crash was running in the Kernel mode.  This is important to know.  It may help us understand the nature of our problem. Just for reference, here’s an example where the crash occurred in User mode, collected on a SUSE machine:









107






www.dedoimedo.com	all rights reserved


Figure 45: Example of a kernel crash with CPL 3











But that’s just geeky talk. Back to our example, we have learned many useful, important details.  We know the exact memory address where the instruction pointer was at the time of the crash. We know the privilege level.
More importantly, we know the name of the kernel function and the offset where the RIP was pointing at the time of the crash. For all practical purposes, we just need to find the source file and examine the code. Of course, this may not be always possible, for various reasons, but we will do that, nevertheless, as an exercise.
So, we know that crash_nmi_callback() function was called by do_nmi(), do_nmi() was called by nmi(), nmi() was called by default_idle(), which caused the crash.  We can examine these functions and try to understand more deeply what they do.  We will do that soon. Now, let’s revisit our Fedora example one more time.

25.1.7 	Fedora example, again

Now that we understand what’s wrong, we can take a look at the Fedora example again and try to understand the problem. We have a crash in a non-tainted kernel, caused by the swapper process. The crash report points to native_apic_write_dummy function.











108





www.dedoimedo.com	all rights reserved


Figure 46: Fedora kernel crash example
























Then, there’s also a very long call trace. Quite a bit of useful information that should help us solve the problem. We will see how we can use the crash reports to help developers fix bugs and produce better, more stable software. Now, let’s focus some more on crash and the basic commands.

25.1.8 	backtrace for all tasks
By default, crash will display backtrace for the active task.  But you may also want to see the backtrace of all tasks. In this case, you will want to run foreach.


foreach bt




109






www.dedoimedo.com	all rights reserved

25.2	Dump system message buffer
log - dump system message buffer:  This command dumps the kernel log_buf con-tents in chronological order.

Figure 47: Kernel crash log command output example






















The kernel log bugger (log_buf) might contains useful clues preceding the crash, which might help us pinpoint the problem more easily and understand why our system went down.  The log command may not be really useful if you have intermittent hardware problems or purely software bugs, but it is definitely worth the try. Here’s our crash log, the last few lines:








110





www.dedoimedo.com	all rights reserved


ide:  failed opcode was: 	0xec
mtrr:  type mismatch for f8000000,400000 old:  uncachable new: write-combining
ISO 9660 Extensions:  Microsoft Joliet Level 3 ISO 9660 Extensions:  RRIP_1991A
SysRq :  Trigger a crashdump



And there’s the SysRq message. Useful to know. In real cases, there might be something far more interesting.

25.3 	Display process status information

ps - display process status information  This command displays process status for selected, or all, processes in the system. If no arguments are entered, the process data is displayed for all processes. Take a look at the example below. We have two swapper processes!  As I told you earlier, each CPU has its own scheduler.  The active task is marked with >.






















111






www.dedoimedo.com	all rights reserved


Figure 48: Kernel crash ps command output example






















The crash utility may load pointing to a task that did not cause the panic or may not be able to find the panic task.  There are no guarantees.  If you’re using virtual machines, including VMware or Xen, then things might get even more complicated.
Figure 49: No panic task found on CentOS 5.4













112





www.dedoimedo.com	all rights reserved


Figure 50: bt command for wrong process




In this case, the pointer in the ps output marks the "wrong" process: Figure 51: ps command output pointing at wrong process










Using backtrace for all processes (with foreach) and running the ps command, you should be able to locate the offending process and examine its task.

25.4 	Other useful information
A few more items you may need: bracketed items are kernel threads; for example, init and udevd are not.  Then, there’s memory usage information, VSZ and RSS, process state, and more.

26	Super geeky stuff
Note: This section is impossibly hard.  Too hard for most people.  Very few people are skilled enough to dabble in kernel code and really know what’s going on in there. Trying



113





www.dedoimedo.com	all rights reserved

to be brave and tackle the possible bugs hidden in crash cores is a noble attempt, but you should not take this lightly. I have to admit that although I can peruse crash reports and accompanying sources, I still have a huge deal to learn about the little things and bits. Don’t expect any miracles. There’s no silver-bullet solution to crash analysis!
Now, time to get ultra-serious. Let’s say you may even want to analyze the C code for the offending function.  Needless to say, you should have the C sources available and be able to read them. This is not something everyone should do, but it’s an interesting mental exercise. Source code. All right, you want examine the code. First, you will have to obtain the sources.

26.1	Kernel source
Some distributions make the sources readily available. For example, in openSUSE, you just have to download the kernel-source package. With CentOS, it is a little more difficult, but doable. You can also visit the Linux Kernel Archive and download the kernel matching your own, although some sources may be different from the ones used on your system, since some vendors make their own custom changes.
Once you have the sources, it’s time to examine them. Figure 52: Kernel source example on openSUSE









26.2	cscope
You could browse the sources using the standard tools like find and grep, but this can be rather tedious. Instead, why not let the system do all the hard work for you. A very neat utility for browsing C code is called cscope. The tool runs from the command line




114





www.dedoimedo.com	all rights reserved

and uses a vi-like interface. By default, it will search for sources in the current directory, but you can configure it any which way. cscope is available in the repositories:
Figure 53: cscope installation via yum on CentOS














Now, in the directory containing sources22, run cscope:


cscope -R


This will recursively search all sub-directories, index the sources and display the main interface. There are other uses as well; try the man page or -help flag.

22 By default, the sources are located under /usr/src/linux.













115






www.dedoimedo.com	all rights reserved


Figure 54: cscope loaded on CentOS 5.4






















Now, it’s time to put the tool to good use and search for desired functions. We will begin with Find this C symbol. Use the cursor keys to get down to this line, then type the desired function name and press Enter. The results will be displayed:















116





www.dedoimedo.com	all rights reserved


Figure 55: Find C symbol using cscope






















Depending on what happened, you may get many results or none.  It is quite possible that there is no source code containing the function seen in the crash report. If there are too many results, then you might want to search for the next function in the call trace by using the Find functions called by this function option. Use Tab to jump between the input and output section. If you have official vendor support, this is a good moment to turn the command over and let them drive.
If you stick with the investigation, looking for other functions listed in the call trace can help you narrow down the C file you require. But there’s no guarantee and this can be a long, tedious process. Furthermore, any time you need help, just press ? and you will get a basic usage guide:







117





www.dedoimedo.com	all rights reserved


Figure 56: cscope help menu






















In the kernel source directory, you can also create the cscope indexes, for faster searches in the future, by running make cscope.
Figure 57: make cscope command example














118





www.dedoimedo.com	all rights reserved


Figure 58: cscope files








26.3 	Disassemble the object
Assuming you have found the source, it’s time to disassemble the object compiled from this source. First, if you’re running a debug kernel, then all the objects have been compiled with the debug symbols.  You’re lucky.  You just need to dump the object and burrow into the intermixed assembly-C code. If not, you will have to recompile the source with debug symbols and then reverse-engineer it.
This is not a simple or a trivial task. First, if you use a compiler that is different than the one used to compile the original, your object will be different from the one in the crash report, rendering your efforts difficult if not impossible.

26.4	Trivial example
I call this example trivial because it has nothing to do with the kernel. It merely demon-strates how to compile objects and then disassemble them. Any source will do. In our case, we’ll use MPlayer, a popular open-source media player as our scapegoat. Download the MPlayer source code, run ./configure, make.  After the objects are created, delete one of them, then recompile it.
Run make <object name>, for instance:


make xvid_bvr.o







119






www.dedoimedo.com	all rights reserved


Figure 59: Compiling from sources with make










Please note that make has no meaning without a Makefile, which specifies what needs to be done. But we have a Makefile. It was created after we ran ./configure. Otherwise, all this would not really work.  Makefile is very important.  We will see a less trivial example soon. Now, if you do not remove the existing object, then you probably won’t be able to make it. make compares timestamps on sources and the object, so unless you change the sources, the recompile of the object will fail.
Figure 60: Kernel object is up to date










Now, here’s another simple example, and note the difference in the size of the created object, once with the debug symbols and once without:











120





www.dedoimedo.com	all rights reserved


Figure 61: Object compiled with debug symbols













If you don’t have a Makefile, you can invoke gcc manually using all sorts of flags. You will need kernel headers that match the architecture and the kernel version that was used to create the kernel where the crash occurred, otherwise your freshly compiled objects will be completely different from the ones you may wish to analyze, including functions and offsets.

26.5	objdump
A utility you want to use for disassembly is objdump. You will probably want to use the utility with -S flag, which means display source code intermixed with assembly instruc-tions.  You may also want -s flag, which will display contents of all sections, including empty ones. -S implies -d, which displays the assembler mnemonics for the machine instructions from objfile; this option only disassembles those sections which are expected to contain instructions. Alternatively, use -D for all sections.
Thus, the most inclusive objdump would be:


objdump -D -S <compiled object with debug symbols> > <output file>



It will look something like this:




121






www.dedoimedo.com	all rights reserved


Figure 62: Disassembled object example






















And an even better example, the memhog dump:



















122





www.dedoimedo.com	all rights reserved


Figure 63: Memhog binary dumped with objdump

















26.6 	Moving on to kernel sources

Warming up. Once you’re confident practicing with trivial code, time to move to kernel. Make sure you do not just delete any important file. For the sake of exercise, move or rename any existing kernel objects you may find lurking about. Then, recompile them. You will require the .config file used to compile the kernel.  It should be included with the sources. Alternatively, you can dump it. On openSUSE, under /proc/config.gz.


zcat /proc/config.gz > .config


On RedHat machines, you will find the configuration files also under /boot. Make sure you use the one that matches the crashed kernel and copy it over into the source directory. If needed, edit some of the options, like CONFIG_DEBUG_INFO. Without the .config file, you won’t be able to compile kernel sources:



123






www.dedoimedo.com	all rights reserved


Figure 64: Failed kernel object compilation due to missing kernel config file















You may also encounter an error where the Makefile is supposedly missing, but it’s there. In this case, you may be facing a relatively simply problem, with the wrong $ARCH environment variable set. For example, i585 versus i686 and x86-64 versus x86_64. Pay attention to the error and compare the architecture to the $ARCH variable. In the worst case, you may need to export it correctly. For example:


export ARCH=x86_64


As a long term solution, you could also create symbolic links under /usr/src/linux from the would-be bad architecture to the right one. This is not strictly related to the analysis of kernel crashes, but if and when you compile kernel sources, you may encounter this issue. Now, regarding the CONFIG_DEBUG_INFO variable; it should be set to 1 in your .config file. If you recall the Kdump part, this was a prerequisite we asked for, in order to be able to successfully troubleshoot kernel crashes. This tells the compiler to create objects with debug symbols.
Alternatively, export the variable in the shell, as CONFIG_DEBUG_INFO=1.

CONFIG_DEBUG_INFO=1




124






www.dedoimedo.com	all rights reserved


Then, take a look at the Makefile. You should see that if this variable is set, the object will be compiled with debug symbols (-g). This is what we need. After that, once again, we will use objdump.
Figure 65: Editing Makefile




















Now, Makefile might really be missing. In this case, you will get a whole bunch of errors related to the compilation process.
Figure 66: Makefile is missing









But with the Makefile in place, it should all work smoothly.



125





www.dedoimedo.com	all rights reserved


Figure 67: Successfully compiling kernel object



























And then, there’s the object up to date example again. If you do not remove an existing one, you won’t be able to compile a new one, especially if you need debug symbols for later disassembly.










126





www.dedoimedo.com	all rights reserved


Figure 68: Kernel object is up to date










Finally, the disassembled object:































127





www.dedoimedo.com	all rights reserved


Figure 69: Disassembled kernel object





























26.6.1 	What do we do now?
Well, you look for the function listed in the exception RIP and mark the starting address. Then add the offset to this number, translated to hexadecimal format. Then, go to the line specified. All that is left is to try to understand what really happened. You’ll have an assembly instruction listed and possibly some C code, telling us what might have gone wrong. It’s not easy. In fact, it’s very difficult. But it’s exciting and you may yet succeed, finding bugs in the operating system. What’s more fun than that?
Above, we learned about the compilation and disassembly procedures, without really



128





www.dedoimedo.com	all rights reserved

doing anything specific.  Now that we know how to go about compiling kernel objects and dissecting them into little bits, let’s do some real work.

26.7 	Intermediate example

We will now try something more serious. Grab a proof-of-concept code that crashes the kernel, compile it, examine the crash report, then look for the right sources, do the whole process we mentioned above, and try to read the alien intermixed assembly and C code.
Of course, we will be cheating, cause we will know what we’re looking for, but still, it’s a good exercise.  The most basic non-trivial example is to create a kernel module that causes panic. Before we panic our kernel, let’s do a brief overview of the kernel module programming basics.

26.7.1 	Create problematic kernel module
This exercise forces us to deviate from the crash analysis flow and take a brief look at the C programming language from the kernel perspective. We want to crash our kernel, so we need kernel code. While we’re going to use C, it’s a little different from everyday stuff. Kernel has its own rules.
We will have a sampling of kernel module programing. We’ll write our own module and Makefile, compile the module and then insert it into the kernel.  Since our module is going to be written badly, it will crash the kernel. Then, we will analyze the crash report. Using the information obtained in the report, we will try to figure out what’s wrong with our sources.

26.7.2 	Step 1: Kernel module

We first need to write some C code.  Let’s begin with hello.c.  Without getting too technical, here’s the most basic of modules, with the init and cleanup functions.  The module does not nothing special except print messages to the kernel logging facility.









129






www.dedoimedo.com	all rights reserved


Figure 70: Basic kernel module










































130





www.dedoimedo.com	all rights reserved




1	/∗
2	∗   hello .c	− The  simplest  kernel  module .
3	∗/
4
5	#i n c l u d e  < l i n u x / module . h>	/∗ Needed by  all  modules	∗/
6	#i n c l u d e  < l i n u x / k e r n e l . h>	/∗ Needed  for KERN_INFO ∗/
7
8	int  init_module(void)
9	{
10	printk (KERN_INFO " Hello world .\n") ;
11
12	/∗
13	∗ A non	0	return  means init_module  failed ;  module can’t be
loaded.
14	∗/
15	return	0;
16	}
17
18	void cleanup_module(void)
19	{
20	printk (KERN_INFO "Goodbye world .\n") ;
21	}

We need to compile this module, so we need a Makefile: Figure 71: Basic example Makefile
















131





www.dedoimedo.com	all rights reserved



1 	obj−m += hello . o 2
3	all :
4	make −C / l i b /modules/$( s h e l l  uname −r )/ build M=$(PWD)
modules 5
6	clean:
7	make −C / l i b /modules/$( s h e l l  uname −r )/ build M=$(PWD)  clean



Now, we need to make the module. In the directory containing your hello.c program and the Makefile, just run make. You will see something like this:

Figure 72: Basic example make command output












Our module has been compiled.  Let’s insert it into the kernel.  This is done using the insmod command. However, a second before we do that, we can examine our module and see what it does. Maybe the module advertises certain bits of information that we might find of value. Use the modinfo command for that.


/sbin/modinfo hello.ko






132






www.dedoimedo.com	all rights reserved


Figure 73: modinfo example










In this case, nothing special. Now, insert it:


/sbin/insmod hello.ko


If the module loads properly into the kernel, you will be able to see it with the lsmod command:


/sbin/lsmod | grep hello



Figure 74: lsmod example







Notice that the use count for our module is 0. This means that we can unload it from the kernel without causing a problem.  Normally, kernel modules are used for various



133





www.dedoimedo.com	all rights reserved

purposes, like communicating with system devices.  Finally, to remove the module, use the rmmod command:


/sbin/rmmod hello


If you take at a look at /var/log/messages, you will notice the Hello and Goodbye messages, belonging to the init_module and cleanup_module functions:
Figure 75: Kernel module messages







That was our most trivial example. No crash yet. But we have a mechanism of inserting code into the kernel. If the code is bad, we will have an oops or a panic.

26.7.3 	Step 2: Kernel panic
We’ll now create a new C program that uses the panic system call on initialization. Not very useful, but good enough for demonstrating the power of crash analysis. Here’s the code, we call it kill-kernel.c.














134





www.dedoimedo.com	all rights reserved




1	/∗
2	∗   kill−kernel.c	− The  simplest  kernel  module  to  crash  kernel .
3	∗/
4
5	#i n c l u d e  < l i n u x / module . h>	/∗ Needed by  all  modules	∗/
6	#i n c l u d e  < l i n u x / k e r n e l . h>	/∗ Needed  for KERN_INFO ∗/
7
8	int  init_module(void)
9	{
10	printk (KERN_INFO " Hello world .  Now we crash .\n") ;
11	panic ("Down we go ,  panic  called ! ") ;
12
13	return	0;
14	}
15
16	void cleanup_module(void)
17	{
18	printk (KERN_INFO "Goodbye world .\n") ;
19	}



When inserted, this module will write a message to /var/log/messages and then panic. Indeed, this is what happens. Once you execute the insmod command, the machine will freeze, reboot, dump the kernel memory and then reboot back into the production kernel.

26.7.4	Step 3: Analysis
Let’s take a look at the vmcore.














135






www.dedoimedo.com	all rights reserved


Figure 76: Intermediate example crash summary
























And the backtrace:

















136





www.dedoimedo.com	all rights reserved


Figure 77: Intermediate example backtrace
























What do we have here? First, the interesting bit, the PANIC string:


"Kernel panic - not syncing:  Down we go, panic called!"


That bit looks familiar. Indeed, this is our own message we used on panic. Very infor-mative, as we know what happened. We might use something like this if we encountered an error in the code, to let know the user what the problem is. Another interesting piece is the dumping of the CS register - CS: 0033. Seemingly, we crashed the kernel in user mode.  As I’ve mentioned before, this can happen if you have hardware problems or if there’s a problem with a system call. In our case, it’s the latter. Well, that was easy -and self-explanatory. So, let’s try a more difficult example.



137






www.dedoimedo.com	all rights reserved

For more information about writing kernel modules, including benevolent purposes, please consult the Linux Kernel Module Programming Guide.

26.8	Difficult example
Now another, a more difficult example. We panicked our kernel with ... panic. Now, let’s try some coding malpractice and create a NULL pointer testcase. We will now create a classic NULL pointer example, the most typical problem with programs. NULL pointers can lead to all kinds of unexpected behavior, including kernel crashes.  Our program, called null-pointer.c, now looks like this:




1 	/∗
2 	∗   null−pointer.c
kernel.
3 	∗/ 4





− A not so  simple  kernel  module to  crash

5 #i n c l u d e  < l i n u x / module . h> 6 #i n c l u d e  < l i n u x / k e r n e l . h> 7
8 	char ∗ p=NULL ; 9
10 	int  init_module(void)
11 	{

/∗ Needed by  all  modules ∗/ /∗ Needed  for KERN_INFO ∗/

12	printk (KERN_INFO "We  is  gonna KABOOM now!\n") ;
13
14	∗p = 1;
15	return	0;
16	}
17
18	void cleanup_module(void)
19	{
20	printk (KERN_INFO "Goodbye world .\n") ;
21	}



We declare a NULL pointer and then dereference it.  Not a healthy practice.  I guess programmers can explain this more eloquently than I, but you can’t have something pointing to nothing get a valid address of a sudden.  In kernel, this leads to panic.



138






www.dedoimedo.com	all rights reserved

Indeed, after making this module and trying to insert it, we get panic. Now, the sweet part.

26.8.1	In-depth analysis
Looking at the crash report, we see a goldmine of information: Figure 78: Null pointer example crash report























Let’s digest the stuff:


PANIC: "Oops: 	0002 [1] SMP " (check log for details)





139






www.dedoimedo.com	all rights reserved


We have an Oops on CPU 1.  0002 translates to 0010 in binary, meaning no page was found during a write operation in kernel mode.  Exactly what we’re trying to achieve. We’ve also referred to the log. More about that soon.


WARNING: panic task not found


There was no task, because we were just trying to load the module, so it died before it could run.  In this case, we will need to refer to the log for details.  This is done by running log in the crash utility, just as we’ve learned. The log provides us with what we need:
Figure 79: Null pointer example crash log





















The RIP says null_pointer:init_module+0x19/0x22.  We’re making progress here. We know there was a problem with NULL pointer in the init_module function.  Time



140





www.dedoimedo.com	all rights reserved


to disassemble the object and see what went wrong.  There’s more useful information, including the fact the kernel was Tainted by our module, the dumping of the CS register and more. We’ll use this later. First, let’s objdump our module.


objdump -d -S null-pointer.ko > /tmp/whatever



Looking at the file, we see the Rain Man code:

Figure 80: Null pointer example disassembled object code






















The first part, the cleanup is not really interesting.  We want the init_module.  The problematic line is even marked for us with a comment: # 27 <init_module+0x19>.





141





www.dedoimedo.com	all rights reserved


27:  c6 00 01 movb $0x1,(%rax)


What do we have here? We’re trying to load (assembly movb) value 1 ($0x1) into the RAX register (%rax).  Now, why does it cause such a fuss?  Let’s go back to our log and see the memory address of the RAX register:
Figure 81: Null pointer example registers




















RAX register is: 0000000000000000. In other words, zero. We’re trying to write to memory address 0. This causes the page fault, resulting in kernel panic. Problem solved!
Of course, in real life, nothing is going to be THAT easy, but it’s a start.  In real life, you will face tons of difficulties, including missing sources, wrong versions of GCC and all kinds of problems that will make crash analysis very, very difficult. Remember that!
In some cases, you will see a problem that is not immediately apparent from looking at the sources. This means you will need to work your way through the vmcore, carefully



142





www.dedoimedo.com	all rights reserved

tracing the execution.  In a nutshell, you will execute whatis command against the function listed in exception RIP to see what kind of object it is and what arguments it takes. Then, you will run bt -f command to show all stack data in a frame and focus on the last thing pushed on the stack. After that, you will use stack command to dump the complete contents of the data structure at the given address and work your way through the structure chain, trying to pinpoint the failing/buggy bit of code.
For more information, please take a look at the case study shown in the crash White Paper.  Again, it’s easier when you know what you’re looking for.  Any example you encounter online will be several orders of magnitude simpler than your real crashes, but it is really difficult demonstrating an all-inclusive, abstract case.  Still, I hope my two examples are thorough enough to get you started.

26.9 	Alternative solution (debug kernel)
If you have time and space, you may want to download and install a debug kernel for your kernel release.  Not for everyday use, of course, but it could come handy when you’re analyzing kernel crashes.  While it is big and bloated, it may offer additional, useful information that can’t be derived from standard kernels.  Plus, the objects with debug symbols might be there, so you won’t need to recompile them, just dump them and examine the code.





















143






www.dedoimedo.com	all rights reserved


Figure 82: Debug kernel installation
























Figure 83: Debug kernel installation details



27	Next steps

So the big question is, what do crash reports tell us? Well, using the available information, we can try to understand what is happening on our troubled systems.
First and foremost, we can compare different crashes and try to understand if there’s any common element.  Then, we can try to look for correlations between separate events, environment changes and system changes, trying to isolate possible culprits to our crashes.



144





www.dedoimedo.com	all rights reserved

Combined with submitting crash reports to vendors and developers, plus the ample use of Google and additional resources, like mailing lists and forums, we might be able to narrow down our search and greatly simply the resolution of problems. Kernel crash bug reporting
When your kernel crashes, you may want to take the initiative and submit the report to the vendor, so that they may examine it and possibly fix a bug. This is a very important thing. You will not only be helping yourself but possibly everyone using Linux anywhere. What more, kernel crashes are valuable. If there’s a bug somewhere, the developers will find it and fix it.

27.1	kerneloops.org
kerneloops homepage - http://www.kerneloops.org/ Figure 84: kernelops.org logo





kerneloops.org is a website dedicated to collecting and listing kernel crashes across the various kernel releases and crash reasons, allowing kernel developers to work on identifying most critical bugs and solving them, as well as providing system administrators, engineers and enthusiasts with a rich database of crucial information.
















145





www.dedoimedo.com	all rights reserved


Figure 85: kernelops.org example

















Remember the Fedora 12 kernel crash report? We had that native_apic_write_dummy? Well, let’s see what kerneloops.org has to say about it.





















146





www.dedoimedo.com	all rights reserved


Figure 86: kerneloops.org example - continued


















As you can see, quite a lot. Not only do you have all sorts of useful statistics, you can actually click on the exception link and go directly to source, to the problematic bit of code and see what gives. This is truly priceless information!




















147





www.dedoimedo.com	all rights reserved


Figure 87: kerneloops.org example code






























As we mentioned earlier, some modern Linux distributions have an automated mechanism for kernel crash submission, both anonymously and using a Bugzilla account.
For example, Fedora 12 uses the Automatic Bug Reporting Tool (ABRT), which collects crash data, runs a report and then sends it for analysis with the developers.  For more details, you may want to read the Wiki. Beforehand, Fedora 11 used kerneloops utility,



148





www.dedoimedo.com	all rights reserved

which sent reports to, yes, you guessed it right, kerneloops.org. Now, some screenshots; here’s an example of a live submission in Fedora 11:
Figure 88: Kernel crash report in Fedora 11


















And more recently in Fedora 12:



















149





www.dedoimedo.com	all rights reserved


Figure 89: Kernel crash report in Fedora 12


























And here’s Debian 5.03 Lenny:















150





www.dedoimedo.com	all rights reserved


Figure 90: Kernel crash report in Debian Lenny

















Hopefully, all these submissions help make next releases of Linux kernel and the specific distributions smarter, faster, safer, and more stable.

27.2 	Google for information
Sounds trivial, but it is not. If you’re having a kernel crash, there’s a fair chance some-one else saw it too.  While environments differ from one another, there still might be some commonality for them all. Then again, there might not. A site with 10 database machines and local logins will probably experience different kinds of problems than a 10,000-machine site with heavy use of autofs and NFS. Similarly, companies working with this or that hardware vendor are more likely to undergo platform-specific issues that can’t easily be find elsewhere.
The simplest way to search for data is to paste the exception RIP into the search box and look for mailing list threads and forum posts discussing same or similar items. Once again, using the Fedora case an an example:







151





www.dedoimedo.com	all rights reserved


Figure 91: Sample Google search















27.3 	Crash analysis results
And after you have exhausted all the available channels, it’s time to go through the information and data collected and try to reach a decision/resolution about the problem at hand.
We started with the situation where our kernel is experiencing instability and is crashing. To solve the problem, we setup a robust infrastructure that includes a mechanism for kernel crash collection and tools for the analysis of dumped memory cores.  We now understand what the seemingly cryptic reports mean.
The combination of all the lessons learned during our long journey allows us to reach a decision what should be done next. How do we treat our crashing machines? Are they in for a hardware inspection, reinstallation, something else? Maybe there’s a bug in the kernel internals? Whatever the reason, we have the tools to handle the problems quickly and efficiently. Finally, some last-minute tips, very generic, very generalized, about what to do next:







152





www.dedoimedo.com	all rights reserved


27.3.1	Single crash
A single crash may seem as too little information to work with. Don’t be discouraged. If you can, analyze the core yourself or send the core to your vendor support.  There’s a fair chance you will find something wrong, either with software at hand, the kernel or the hardware underneath.

27.3.2 	Hardware inspection
Speaking of hardware, kernel crashes can be caused by faulty hardware.  Such crashes usually seem sporadic and random in reason. If you encounter a host that is experiencing many crashes, all of which have different panic tasks, you may want to considering scheduling some downtime and running a hardware check on the host, including memtest, CPU stress, disk checks, and more. Beyond the scope of this book, I’m afraid.
The exact definition of what is considered many crashes, how critical the machine is, how much downtime you can afford, and what you intend to do with the situation at hand is individual and will vary from one admin to another.

27.3.3 	Reinstallation & software changes
Did the software setup change in any way that correlates with the kernel crashes? If so, do you know what the change is?  Can you reproduce the change and the subsequent crashes on other hosts? Sometimes, it can be very simple; sometimes, you may not be able to easily separate software from the kernel or the underlying hardware.
If you can, try to isolate the changes and see how the system responds with or without them. If there’s a software bug, then you might be just lucky enough and have to deal with a reproducible error.  Kernel crashes due to a certain bug in software should look pretty much the same. But there’s no guarantee you’ll have it that easy.
Now, if your system is a generic machine that does not keep any critical data on local disks, you may want to consider wiping the slate clean - start over, with a fresh installation that you know is stable. It’s worth a try.

27.3.4 	Submit to developer/vendor
Regardless of what you discovered or you think the problem is, you should send the kernel crash report to the relevant developer and/or vendor. Even if you’re absolutely sure you



153






www.dedoimedo.com	all rights reserved

know what the problem is and you’ve found the cure, you should still leave the official fix in the hands of people who do this kind of work for a living.
I have emphasized this several times throughout the book, because I truly believe this is important, valuable and effective.  You can easily contribute to the quality of Linux kernel code by submitting a few short text reports. It’s as simple and powerful as that.

28	Conclusion

We worked carefully and slowly through the kernel crash analysis series. In this last part, we have finally taken a deep, personal look at the crash internals and now have the right tools and the knowledge to understand what’s bothering our kernel. Using this new wealth of information, we can work on making our systems better, smarter and more stable.



























154






www.dedoimedo.com	all rights reserved

Part V
Appendix

29	Kdump

This section contains a few more details about Kdump.  Namely, it provides instruc-tions how to install kexec-tools and kernel-kdump packages manually, and how to use the friendly and simple YaST Kdump module to configure and setup Kdump in SUSE. Furthermore, it also covers changes introduced in openSUSE 11 and above.

29.1 	Architecture dependencies
The settings listed in this book are only valid for the i386 and x86_64 platforms. Itanium and PPC require some changes.  The best place to look for details is the official doc-umentation under /usr/share/doc/packages/kdump. Likewise, please check References
(33) further below.

29.2 	Install kernel-kdump package manually

The simplest way of installing the package is via the official distro repositories. However, if this package is missing, your kernel is probably not configured to use Kdump in the first place, so the chance of encountering this situation is slim. Still, if you did have to compile the kernel manually, then you will have to install this package after the kernel has been built and booted into.

29.3 	Install kexec-tools package manually
It is possible that you will have to manually download and install the kexec-tools package, especially if you do not have a vendor-ready kernel image.  The best way to install the package is via the official repositories. However, if the package is not available that way, then to obtain kexec-tools, you will have to do the following:





155






www.dedoimedo.com	all rights reserved


29.3.1	Download the package

You can look for the package either on the official site or download a version from kernel.org, whichever suits you best.

29.3.2 	Extract the archive

The kexec-tools package comes archives. You will first need to extract the package:


tar zxvf kexec-tools.tar.gz




29.3.3 	Make & install the package
To be able to compile your system will have to have the compilation tools installed, including make, gcc, kernel-source, and kernel-headers.  You can obtain these from the repositories relevant to your distribution.  For instance, on Debian-based distros, these tools are obtained very easily by installing build-essential package (sudo apt-get install build-essential ).


cd kexec-tools-<your-version> make
make install


29.3.4	Important note
Please make sure you download the right package that matches your Kdump version. Otherwise, when you try to run Kexec, you are likely to see strange errors, similar to Possible errors (14.2.1) we have seen earlier during the Kdump testing.






156






www.dedoimedo.com	all rights reserved

29.4	SUSE & YaST Kdump module
openSUSE (but also SLES) comes with a very handy YaST Kdump module (yast-kdump), which allows you to administer the Kdump configuration using YaST. On one hand, this makes the setup much easier. On the other, you will probably not understand the Kdump functionality as thoroughly as when using the command-line and working directly against the configuration file.
Nevertheless, I thought it would be useful to mention this. Indeed, you can see a number of screenshots taken on an openSUSE 11.1 machine, demonstrating the installation and the use of the yast-kdump package.
Figure 92: yast2-kdump package installation






























157





www.dedoimedo.com	all rights reserved

After the installation, you can find the module in the System sub-menu. It’s called Kernel Kdump.
Figure 93: Kdump YaST module





















After launching the application, you can start managing the configuration, just like we did before.  The main difference is getting used to the layout, as the options are now dispersed across a number of windows.  Personally, I find this approach more difficult to understand and manage. However, you should be aware of its existence and use it if needed.











158





www.dedoimedo.com	all rights reserved


Figure 94: Kdump configuration via YaST module










































159





www.dedoimedo.com	all rights reserved


Figure 95: Kdump configuration via YaST module - continued






















29.5 	SUSE (and openSUSE) 11.X setup
While the bulk of the book part above explains the Kdump setup in detail, some things have changed from SUSE 10.3 to the more recent 11.x versions. This section elaborates on the differences in the Kdump setup on openSUSE 11.x.  Kdump works pretty much without any problems. Still, you may encounter a few odd issues here and there. I would like to help you understand these potential problems and provide you with the right tools to overcome them.







160





www.dedoimedo.com	all rights reserved


29.5.1	32-bit architecture
On 32-bit openSUSE 11.2 (Gnome), which I used for the setup, the configuration of Kdump was pretty straightforward.  I downloaded and installed the required packages using YaST and then launched the YaST Kernel Kdump menu.
Figure 96: Kdump startup configuration via YaST




































161





www.dedoimedo.com	all rights reserved


Kdump service

Kdump service has changed. It is no longer called kdump, it’s called boot.kdump and is invoked during the boot. This means that you will have to adjust the usage of chkconfig for enabling/disabling Kdump. The new Kdump startup scripts make it more similar to LKCD.
Figure 97: boot.kdump chkconfig command








You can also use the System Services module in YaST:

























162





www.dedoimedo.com	all rights reserved


Figure 98: Runlevel configuration via YaST





























Memory allocation syntax

The memory allocation syntax has also changed. Although you can use the old crashk-ernel=XM@YM syntax just like before, you will notice the default written in the GRUB menu.lst configuration file is slightly different. The new syntax specifies a range rather just the starting point for the allocation. It’s nothing cardinal, but worth paying attention to.





163





www.dedoimedo.com	all rights reserved


Figure 99: Kdump GRUB syntax change




29.5.2 	64-bit architecture

Memory allocation
Similarly, installing and configuring Kdump on 64-bit openSUSE 11.2 takes as much effort as doing that on the 32-bit machine. However, when I tried to dump the memory, instead of booting into the crash kernel via the Kexec mechanism, the system simply got stuck. I realized the default allocating is incorrect. There are several ways you can ascertain this. First, when the system boots, you can hit Escape button to switch to verbose mode and then watch the console for Kdump error messages.

Figure 100: Failed memory reservation on a 64-bit machine











Alternatively, you can run Kexec and see if it throws any errors. Just execute:


kexec -p










164






www.dedoimedo.com	all rights reserved


Figure 101: Kexec command line error









We’ve seen this kind of message before, and it tells us that the memory has not been reserved properly.  Either you have used a bad offset or none at all.  The thing is, by default openSUSE, both 32-bit and 64-bit are configured to use the 16MB offset. You can check this value under /proc/config.gz, which contains the list of all parameters the kernel has been compiled with.
Unfortunately, while 16MB works for 32-bit systems, it is incorrect for the 64-bit architec-ture.  Furthermore, the CONFIG_PHYSICAL_START value set under /proc/config.gz is incorrect. On my 64-bit openSUSE, it shows:


CONFIG_PHYSICAL_START=0x200000



Figure 102: Wrong physical start value






If you translate this into decimal, it’s only 2MB, below the 16MB value, an impossible allocation, when it should really read 0x2000000 or 32MB. Indeed, changing it to 32MB solves the problem.  Of course, making the right choice from the start would be even better.





165





www.dedoimedo.com	all rights reserved


Figure 103: Kdump working after reconfigured physical start value




29.5.3	Other changes

Uncompressed kernel images

The new Kdump can worked with compressed kernels, so you will no longer require vm-linux under your /boot directory. Furthermore, the crash mechanism has also undergone some changes, allowing you to process memory cores in several different ways23.

debuginfo package missing

One more problem I’ve encountered is that there is no debuginfo package for the latest kernel available.  This means you will not be able to process your cores.  We have talked about this earlier in the Crash Collection part (III); for now, you should carefully inspect what your running kernel version is and what debug packages are available in the repositories.
Figure 104: debuginfo package missing









Available package in the repositories:

23 See Crash Collection (III).






166






www.dedoimedo.com	all rights reserved


Figure 105: Available kernel debuginfo package in the repository

























Now, I may be mistaken, but here’s what it looks like:
















167





www.dedoimedo.com	all rights reserved


Figure 106: Kernel debuginfo package installation status





















The running kernel is at version 31.8-0.1, but the debuginfo is only at version 31.5-0.1.1. For 64-bit systems, there’s kernel-desktop-debuginfo version 31.8-0.1.1, but not 31.8-0.1, which again, poses a problem, as the two do not match. I did not let zypper get in the way, so I did a manual check in the Update repository, looking for the RPM package that matches my running kernel and could not find it, in either 32-bit or 64-bit directories. I hope this gets sorted soon24.

30	Crash

30.1	Enable debug repositories
A necessary part of the crash analysis procedure is to have the right debug package installed, namely the debuginfo package for your running kernel. In commercial versions
24 No change at the time this book was written.



168






www.dedoimedo.com	all rights reserved


of SUSE and RedHat, debug repositories are enabled by default. However, in openSUSE, the repositories are available, but disabled, whereas in CentOS, they are missing entirely; you will have to add them manually.

Figure 107: Enabling Debug repository in openSUSE 11.2





























30.1.1 	Enable repositories in CentOS
Now, let’s take a look at CentOS package management, which uses Pirut front-end for the yum package manager.





169





www.dedoimedo.com	all rights reserved


Figure 108: CentOS repository manager























The default repository list does not have the Debug repository either included or enabled. We’ll need to add it manually, by hand. Go to CentOS Wiki Additional Resource page and copy the text from the code box into a text editor. Save the file as Centos-Debug.repo under /etc/yum.repos.d.













170





www.dedoimedo.com	all rights reserved


Figure 109: Adding debug repository file















#Debug Info
[debuginfo]
name=CentOS-$releasever - DebugInfo
baseurl=http://debuginfo.centos.org/$releasever/$basearch/ #baseurl=http://debuginfo.centos.org/$releasever/ gpgcheck=1
enabled=0
gpgkey=http://mirror.centos.org/centos/RPM-GPG-KEY-CentOS-$releasever
protect=1
priority=1



Please pay attention to the two baseurl lines. The official CentOS documentation lists the second, shorter string, currently commented in the image and the code section above, as the right URL for the repository. It does not work25. However, commenting it out and enabling the first line, which is commented out by default, solves the problem and you have the Debug repository enabled. The default version, which does not work:


25 This may change at any time.




171






www.dedoimedo.com	all rights reserved


#baseurl=http://debuginfo.centos.org/$releasever/$basearch/ baseurl=http://debuginfo.centos.org/$releasever/



This is how it ought to be:


baseurl=http://debuginfo.centos.org/$releasever/$basearch/ #baseurl=http://debuginfo.centos.org/$releasever/


Next, run yum (or Pirut)26, after the packages are indexed, you will have debuginfo available, including kernel-debuginfo packages that are mandatory for crash analysis. You can also manually download RPM files from the repository, but this is a tedious work and you may miss dependencies.

30.2 	lcrash utility (for LKCD)
lcrash is an older utility that you may want to use with memory cores collected us-ing LKCD. In general, you will need not use the tool manually, because the lkcd sav e command that is invoked after the memory core is dumped invokes in turn lcrash and processes the core. lcrash requires System map and Kerntypes files to process the cores:


lcrash <System map> <Kerntypes> <core>


<System map> is usually found under /boot. <Kerntypes> is usually found under /boot.  This file lists kernel structures and is required for the analysis of the cores. <core> is the name of LKCD saved core. LKCD cores are named dump.X, where X is a sequential number, from 0 to 9. The cores are rotated after 10 collected dumps.
26 You will need to toggle enabled=0 to enabled=1 in the file or run the Repository Manager and select the Debug repository before you can start searching and installing packages.



172






www.dedoimedo.com	all rights reserved


30.2.1	Kerntypes
If your running kernel does not have the Kerntypes file, you may be able to create one. You will need to make sure your kernel has been compiled with the -g option. You can verify this under /proc/config.gz, CONFIG_DEBUG_INFO=y. We did mention this as a prerequisite for crash dump collection.
Next, you will require the dwarfextract utility and run it against the kernel that matches the one used to collect the core and extract the kernel structures.  dwarfextract is a tool to postprocess debuginfo. The tools removes duplicate type information caused by linking different compilation units. Currently, the tool has only been used to work on the debuginfo of the kernel package. Further functionality has been requested in the future.

Figure 110: dwarfextract installation via YaST

























The usage is as follows:



173





www.dedoimedo.com	all rights reserved


dwarfextract vmlinux <Kerntypes>


You can name the file anything you want. Just make sure to use the correct name and path when you invoke the lcrash utility.

30.3 	lcrash demonstration
And that’s all. If your system is setup correctly, lcrash should load:
For more details, please consult the official documentation. You may also want to read the somewhat older howto on faqs.org.  Furthermore, there’s a very detailed guide in PDF format is available (direct link): lcrash HOWTO. And that’s all. If your system is setup correctly, lcrash should load:



























174






www.dedoimedo.com	all rights reserved


Figure 111: lcrash example










































175





www.dedoimedo.com	all rights reserved

31	Other tools

31.1	gdb-kdump
gdb-kdump is a helper script that you can use instead of crash, although you will experi-ence a limited subset of commands and functions. gdb-kdump can automatically search and processes the latest core, uncompress kernels, and run basic commands like bt, btpid and dmesg.  gdb-kdump is run against the vmcore file.  By default, it will look for the same kernel used in the vmcore under /boot. If it does not find it, it will complain, but you can solve the problem by either copying or symlinking the vmlinux file.


gdb-kdump vmcore



Here’s a sample output:

























176






www.dedoimedo.com	all rights reserved


Figure 112: gdb-kdump sample run




















gdb-kdump usage is beyond the scope of this book.  We will talk more about gdb in a dedicated tutorial on www.dedoimedo.com.

31.2	crosscrash
Another interesting tool you might be interested in is crosscrash. Like gdb-kdump, it’s meant to facilitate the reading and analysis of memory core files, without forcing the users to remember the subtle differences between kernel releases, tools and formats. crosscrash is still a new technology, so it may not work as expected.  However, you should know about it and test once in a while, to see if it suits your needs.








177





www.dedoimedo.com	all rights reserved


Figure 113: crosscrash installation via YaST










































178





www.dedoimedo.com	all rights reserved

Part VI
References

All of the references are listed as they appear in the book, in the chronological order. The links are also fully parsed so that you can use them if you print this book. This section also includes a number of links to Dedoimedo articles mentioned here.  For updates, as well as the complete listing of 500+ reviews, guides and tutorials, you should visit www.dedoimedo.com.

32	LKCD references

1. LKCD official site
http://lkcd.sourceforge.net/index.html
2. Kernel panic
http://en.wikipedia.org/wiki/Kernel_panic
3. Linux kernel oops
http://en.wikipedia.org/wiki/Linux_kernel_oops

33	Kdump references

1. Kdump official site
http://lse.sourceforge.net/kdump/
2. Kdump official documentation
http://www.mjmwired.net/kernel/Documentation/kdump/
3. Debugging Linux kernel using Kdump
http://www.linuxsymposium.org/2006/kdump_slides.pdf

34	Crash references

1. System.map on Wikipedia
http://en.wikipedia.org/wiki/System.map



179






www.dedoimedo.com	all rights reserved


2. The Linux Kernel HOWTO - Systemmap
http://www.faqs.org/docs/Linux-HOWTO/Kernel-HOWTO.html#systemmap
3. Crashdump Debugging - openSUSE
http://en.opensuse.org/Crashdump_Debugging
4. Kdump - openSUSE
http://en.opensuse.org/Kdump
5. Crash White Paper
http://people.redhat.com/anderson/crash_whitepaper/
6. Official LKCD documentation
http://lkcd.sourceforge.net/doc/index.html
7. Linux Crash HOWTO
http://www.faqs.org/docs/Linux-HOWTO/Linux-Crash-HOWTO.html
8. lcrash HOWTO
http://lkcd.sourceforge.net/doc/lcrash.pdf
9. Crash utility notes - Transition from exception stack
http://www.mail-archive.com/crash-utility@redhat.com/msg01699.html
10. O’Reilly’s Understanding Linux Kernel, Chapter 9:  Process Address Space, Page 	Fault Exception Handler, pages 376-382
11. O’Reilly’s Understanding Linux Kernel, Chapter 2: Memory Addressing, Page 36-39
12. Linux Kernel Archive
http://kernel.org/
13. cscope
http://cscope.sourceforge.net/
14. MPlayer source download
http://www.mplayerhq.hu/design7/dload.html
15. objdump man page
http://linux.die.net/man/1/objdump
16. Linux Kernel Module Programming Guide 	http://tldp.org/LDP/lkmpg/2.6/html/



180






www.dedoimedo.com	all rights reserved


17. Crash Whitepaper case study
http://people.redhat.com/anderson/crash_whitepaper/#EXAMPLES
18. Fedora ABRT wiki
https://fedorahosted.org/abrt/wiki
19. CentOS Debug repository
http://debuginfo.centos.org/repository

35 	Dedoimedo web articles

1. Collecting and analyzing Linux kernel crashes - LKCD 	http://www.dedoimedo.com/computers/lkcd.html
2. Collecting and analyzing Linux kernel crashes - Kdump 	http://www.dedoimedo.com/computers/kdump.html
3. How to enable debug repositories in CentOS Linux
http://www.dedoimedo.com/computers/centos-debug.html
4. Kdump on openSUSE 11.2
http://www.dedoimedo.com/computers/kdump-opensuse.html
5. Kdump on CentOS 5.4
http://www.dedoimedo.com/computers/kdump-centos.html
6. Collecting and analyzing Linux kernel crashes - crash 	http://www.dedoimedo.com/computers/crash.html
7. Analyzing Linux kernel crash dumps with crash - The one tutorial that has it all 	http://www.dedoimedo.com/computers/crash-analyze.html
8. openSUSE 11.2 KDE
http://www.dedoimedo.com/computers/opensuse-11sp2.html
9. openSUSE 11.2 Gnome
http://www.dedoimedo.com/computers/opensuse-11sp2-gnome.html
10. CentOS 5.3
http://www.dedoimedo.com/computers/centos.html



181






www.dedoimedo.com	all rights reserved


11. Ubuntu 9.10 Karmic Koala
http://www.dedoimedo.com/computers/ubuntu-9-10.html
12. Fedora 11 Leonidas
http://www.dedoimedo.com/computers/fedora-11.html
13. Fedora 12 Constantine
http://www.dedoimedo.com/computers/fedora-12.html
14. Debian 5.03 Lenny
http://www.dedoimedo.com/computers/debian.html
15. RedHat Linux Enterprise 6 Beta
http://www.dedoimedo.com/computers/rh6-beta.html
16. Linux system utilities
http://www.dedoimedo.com/computers/linux-system-utilities.html
17. GRUB bootloader - Full tutorial
http://www.dedoimedo.com/computers/grub.html
18. GRUB 2 bootloader - Full tutorial
http://www.dedoimedo.com/computers/grub-2.html





















182

image15.jpeg
Setting flag_elf64 to true
[ 28 7]




image16.jpeg
druxr-xr-x 2 root root 4096 2009-03-05 15:17 .
druxe-x-— 3 root root 4096 2009-03-05 15:17 ..
—ru- 1 root root 260005768 2009-03-05 15:18 umcore





image17.jpeg
L
Ho Edt View Search Tools Documents LHelp

O E, & &) 9 fa w
New Open " s | prmt.. | undo . pate Fd maplace
ke %]

## Type: string

## Default: "file:///var/log/dump"

#

# Which directory should the dumps be saved in by the default dumper?
# This can be:

#

# - alocal file, for example "file:///var/log/dump" (or, deprecated,
#  just "/var/log/dump")

# - aFTP server, for example "ftp://user :password@host/var/log/dump"”
# - aSSH server, for example "ssh://user@host/var/log/dump”

# please create a user that needs no password or set up public key
#  authorization for the root user of the system -- or you have to enter
#  the password on the serial console as the VGA console may not work!

# - alFS share, for example "nfs://server:/export:/var/log/dump”
# - aCIFS (SMB) share, for example

#  “cifs://user:passwordhost: /share/var/log/dump"

#

# For the exact URLs, see kdump-url_parser(8) manual page. Or use the
# YaST2 kdump module to configure this if you're unsure

#
|
KDUMP_SAVEDIR="nfs:///nfsserver02:/dumps"





image18.jpeg
Loading keynap i386/querty/us.nap.gz done

Loading compose table winkeys shiftctrl latinl.add done
Start Unicode node done
Loading console font latdu-16.psfu -n trivial G0:loadable done

|- ] 0 MB of 8128 MB (8.0%)




image19.jpeg
Start Unicode mode

done

Loading console font lat9u-16.psfu -n trivial GO:loadable done
[4RIHRERRRRERRRRARRURARRRRARRRRURRRNARRRY | 8128 MB of 8128 MB (100.02)
done

INIT: Switching to runlevel: 6
INIT: Sending processes the TERM signal
Master Resource Control: runlevel 3 has been reached




image20.jpeg
L Software Manager - YaST (as superuser] o x

(@ Software Manager
“This ool lets you instal. emove, and update applications. more

Aviable = Upgradss

Groups | Packages

g

3
Adrin'
36 Admin Tools: rash-dsbuginfo
& communicatan it s B
M Education crosscrash
9 Games e i v o g e
esseaebigis
€ GNOME Deskiop ‘Debug information for package crosscrash.
& Graphics
PR
Detaied e
crash Installed:

The core analysis suit is a selfcontained ool that can be used to investigate either ve | 4.1.023 (588)
systams, kemsl cors dumps crsated fom the netdump and diskdump packages from Red
Hat Linut, the meore kems! paich ofired by Mission Crtical Linux, or the LKCD kernal
patch.

Remove

Avai

V166G P o T P oo
i

Installed at: O1/152010 Reinsill
b File List

b Changelog

b Authors

b Dependencies

b Support

Help || Tools v || QCancs! Apply





image21.jpeg
Dump Target - YaST (as superuser) o x

Dump Target

The target for saving kdump images. more

| Start-Up Saving Target for Kdump Image
Dump Filtering Select Target:

Local Directory | v

Email Notification

Expert Settings Local Filesystem

Directory for Saving Dumps:

Biowse

Help





image22.jpeg
Kernel Dump Configuration o

nable kdump,

Total System Memory (MB): 7645
Current kdump Memory (MB): 128

New kdump Memory (MB): | 128
Usable Memory (M) 7517
Location file:/ivarfcrash

Edt Location
Default Action: [mouint ro0ifs and run /<bin/ni.
Core Collector: [makedumprie

Path

X cancel Dok





image23.jpeg
Nothing to delete in svar/crash.

Saving dunp
Generating README
Copying Systen.map
Copying kernel

Finished.
Finished.
Finished.
Finished.




image24.jpeg
admin@testhosh:~

1 root root 2 19:46 README. txt
1 root root 61-22 19:46 System.nap-2.6.31.8-0.1-desktop
1 root root 737740284 2616-61-22 19:46 wmcore

1 root r 5187339 2016-61-22 19:46 vl 1nux-" 881 §

ar/crash/2816-61-22-19:46




image25.jpeg
Nothing to delete in svar/crash.

Saving dunp
Generating README
Copying Systen.map
Copying kernel

Finished.
Finished.
Finished.
Finished.




image26.jpeg
o Edt View Jorminal Taps Hep
Fontetesthosta 2010-01-19-17:1114 crasn /boot/Systen.ap-2.6. 16-164. 10,1615 /boot/valinuz-2.6.18-164.10. 1,815 vacore





image27.jpeg
o Edt View Jorminal Taps Hep
Footetesthost2 2010-91-19-17: 111 crash /usr/L1b/debug/ ib/modules/2.6.18-164.10.1.215. cantos.plus/val nux vacore





image28.jpeg
few Terminal Help





image29.jpeg
Copyright (C) 2004, 2005, 2006 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co

Copyright (C) 2065, 2006 Fujitsu Limited

Copyright (C) 2086, 2007 VA Linux Systems Japan K.K.

Copyright (C) 2085 NEC Corporation

Copyright (C) 1999, 2062, 2007 Silicon Graphics, Inc

Copyright (C) 1999, 2008, 2001, 2002 Mission Critical Linux, Inc

This program is free software, covered by the GNU General Public License
and you are welcome to change it and/or distribute copies of 1t under
certain conditions. Enter "help copying” to see the conditions

This program has absolutely no warranty. Enter “help warranty” for details

crash: /usr/1ib/debug/boot /vmlinux-2.6.31.8-0. 1-desktop. debug
CRC value does not match

crash: /usr/1ib/debug/boot//vimlinux-2.6.31.8-6,1-desktop. debug: CRC does not match




image30.jpeg
Do £ot vew Tomnal T Hep
(FaoteEeschostz 2010-01-19- 171114 Crash /05r/110/0e0ug/ L10/M0Gu1a5/2.5.18-164.10.1.a15.contos. pLus/vmtinun vacore

Copyrignt (6 2062, 2003, 2004, 2005, 2006, 2
Copyrignt (C) 2004, 2005, 2006 BN Carporation
Copyrignt () 1999°2006  evtact-rackard Co

Capyrignt (C) 2005, 2006 Fujitsu Linitos

Copyrignt () 2006, 2067 VA Linux Systens Japan K.

Copyrignt () 2088 NEC corporation

Copyrignt () 1999, 2000, 2061, 2002 Mission Criticai Linux, Tnc

and you are weLcona to change L1 anajor S1stribute copies of At under
corain Coaicions Enter ety Copyin” o see e Conotions

Copyfignt 2004 ree sottaar .
GOB 15 free softuare, covered by the GNJ General Public License, and you are -
Pare S sy 1o oty o 08 Tpe o arany” for dtaits

KGRNEL: /usr/150/debu/ o monoe5/2.5. 18-164.10.1. 15, centos pLus/vntinux
HACHTIE 53664 (3000 )





image31.jpeg
MEMORY :

PANIC

PID:

COMMAND
TASK:
cPU
STATE

WARNING:

crash> |

7.5 GB

0
"swapper

TIFTT711803002€0 (1 of 2
0

TASK_RUNNING

panic task not found

SysRq : Trigger a crashdump”

[THREAD_INFO:

TEFFTTTT80372000]





image32.jpeg
Fle Edit View Terminal Tabs
"SysRq : Trigger
0
COMMAND: "swapper”
TASK: fTffrfrf80300ae0
cPU: B

admin@testhost2:/var/crash/2010-01-19-20:21

Help
a crashdump”

(1 0f 2) [THREAD_INFO: TTTTffff80372000

STATE: TASK_RUNNING (ACTIVE)

crash> bt

PID: 0 TASK: fTTfffff80300ae0 CPU: O  COMMAND: "swapper
#0 [TTTTTfT180440720] crash_nmi_callback at fffffffge07acse
#1 [TTFT1fT180440740] do_nmi at fTfff7B8006585a
#2 [TTTT1fT180440750] nni at TTTFTffTBO064eDT *

[exception RIP: default_idle+61

RIP: frfffff8006b301 RSP:
RAX: 0080000000000000 RBX:
RDX: 0080000008000000 RSI:
: fTfTffrf80312000 R9: 00000B000000B03E

RBP: 0080000008090000
R10: f77810107154038
R13: 0080000008000000
ORTG RAX: THTTTrrrrrrrrrrr

--- <exception stack> ---

#3 [TTfTTT1180313190] default :

FIFTTfTfBO373790 RFLAGS: 00000246
ffTTfTf8006b208 RCX: 00000B0000008000
0000000000000001 RDI: fTffffff80302698

0000000000000246  R12
0000000000000000 R15:
Cs: 8010 SS: 0018

0000080000008000
0000000000008000

idle at TIFFfrfr8006p301 *

#4 [FTFTTTTF80373700] cpu_idle at fffffff8004943c

crash>





image33.jpeg
Fo Ed View Tmnal s Hep
Linux version 2.6.18-164.10.1.615 (Rockou110G0UILder10. contos. org) (9EC Version 4.1.2 20080704 (Red Wat 4.1.2-45)) #1 SHP Thu
Command Uine: 7o root-LABEL=/ rhgb quiat. <rashkernel-128HE1ON
B105-provided physical AAN map:
105 0520 0000000000010000 - 0000000000097500 (usable)
BI0S_0520: 009DOGBOODDOTE00 - 000000000D020000 { resorved)
5105 c826: 850800m000c000 - 808960800RGCO00 (reserved)
5105-c820: 000000m000IC000 _ 0000000000100000 ( resered)
B0S_¢520: 000000R000100000 0000000011000 {usable)
BL0S_0820: 00900GRG=1e00B0 000000011000 (ACPI data)
BI0S-c520: 000DOGROSE"1a00 - 0090COR0T100000 (ACFE NVS)
B105-c820: 090000801700000 _ 0000000070090000 {usavle)
51050520 000DOOROYac0000 . 00000GD01ec10000 { resorved)
B105_c820: 800800A01ce03609 - 8089608812601000 (reserved)
5105-c820: 090000n0117<0000 _ 0000008100090000 ( reserved)
B105_¢520: 0090000100000000 - 0000000113000000 {usable)
o1 prosent
AcP1 RSOP (vo00 PTLTO ) @ sxcoscessonsorsces
AcP1: RSDT (vooL PTLTD 00000) @ Bx0000000ererasa
ACPI: FADT (1001 TNTEL 0x00014240) @ xOB0OBDOOETeer0s
ACPL: WADT (Vo1 PTLTD 0106040600 LTP 0x69800060) @ xeR00BOS0eTaerTa
ACPI: S0DT (001 PTLTD SSEFTSLS 0106040000  LTP 6x60006001) @ Dxoogoncooereraras
ACPL: DSOT (1001 PTLTD Custon ~ 6106040800 MSFT 0xG100000d) @ xB00GRO0GROGGB000
Vo Mk configuration founa
Faking 3 node 3t 0699360800980090 8600001 12000000
Sootnen. setup nade © 8093303000000 09000001 12003000
e zone: 2633 pages, LIFO batch:o
DHA32 Z0ne: 964648 pages, LIFD batcn:31
Mornal zone: 1010000 pages. LIF0 baten:31
ACPI: PH-Tiner 10 Port: 0x10%6
AP Local APIC sadress Oxfeconoon
ACPI: LAPIC (acpi 10102001 Lapic_1a[0400] enabied) i
ACPL: LAPIC (acpi 10102011 apic_1d(0x01) enabled)

e e et e el





image34.jpeg
Fo ot View
o1
5o
FR
n o7

w7
n 7
ns o
ns 7
won
o on
e

Tomina s o,

Frt16101071000c0
181010700700
18102 5cano0
181019069720
F1t1810119067100
118102983700
1181019005700
1181029005080
1181021919860
1181019070000
Fr181029700860
FrHB1017076730

ss0ssopssssssssssssnssssssssssssssssh

tswapper]
Cswapper
tasgration/o)
[raottsraa/ol

nigration/1
[hsorciraa]
fevents/0)
Leventa/1]
tinetper
[rtnreas)
[ratocka/o)
[rotocka/1)
tracpia)
{eaueve/o)
Lequever1)
tenuba)

[rserion)
[patiuan]
[patiuant
Thswapas]

[aio/0

Gaio/)
[rpsrousea)

[opt pot1 0]
[scsi on 0]
[staso)

tata/m

fata, auxt
Thstripad
[xjournata
reiten
Trapatna/o)
tinpatna/ 1)
[inpaun nanaiera)





image35.jpeg
GNU gdb 6.1

Copyright 2004 Free Software Foundation, Inc.

GOB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty” for details.

This GDB was configured as "xB6_64-unknown-linux-gnu”...(no debugging symbols found)

crash: /boot/vmlinuz-2.6.18-164.10.1.e15: no debugging data available

[rootetesthost2 2010-01-19-17:111# ||




image36.jpeg
crash 4.1
Copyrignt
Copyright
Copyright
Copyright
Copyright
Copyright
Copyright
Copyright

0
(©)
(©)
(©)
(©)
(©)
(©)
(©)
©)

2002, 2003, 2084, 2005, 2006, 2007, 2008, 2009 Red Hat, Inc
2004, 2005, 2006 IBM Corporation

1999-2086 Hewlett-Packard Co

2005, 2006 Fujitsu Limited

2006, 2007 VA Linux Systems Japan K.K.

2005 NEC Corporation

1999, 2002, 2087 Silicon Graphics, Inc

1999, 2000, 2081, 2002 Hission Critical Linux, Inc

This program is free software, covered by the GNU General Public License
and you are welcome to change i1t and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions

This program has absolutely no warranty. Enter “help warranty” for details

crash: vmlinux-2.6.31.8-6.1-desktop.gz: no debugging data available
crash: vmlinux-2.6.31.8-0.1-desktop. debug: debuginfo file not found

crash: either install the appropriate kernel debuginfo package, or
copy vmlinux-2.6.31.8-0.1-desktop.debug to this machine





image37.jpeg
Fle Edt View

Loaded plugins:

Terminal Taps Help
[root@testhost2 admin]# yum search kernel-debug

fastestairror

Loading mirror speeds from cached hostfile
* addons: anorien.csc.warwick.ac.uk

* base: anorien.csc.warwick.ac.uk

* extras: anorien.csc.warwick.ac.uk

* updates: anorien.csc.warwick.ac.uk

- Matched: kernel-debug ====

Kernel-debug.x86_64 : The Linux kernel compiled with extra debugging enabled.
kernel-debug-devel.x86 64 : Development package for building kernel modules to

: the kernel.

{rootetesthost2 adninis ||

match





image38.jpeg
GNU gab 6.1
Copyrignt 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change 1t and/or distribute copies of it under certain conditions.
Type "show copying” to see the conditions.

There 1s absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "xB6_64-unknown-Linux-gnu®

crash: /usr/1ib/debug/lib/modules/2.6.18-164.10. 1. e15debug/val inux and vacore do not match!

usage:
crash [-h [opt]1[-v][-s][-1 Tile][-d nua] [-5] [mapfile] [namelist] [dumpfile]

Enter “crasn -n for details.
{rootetesthostz 2010-01-19-17:111% ||




image39.jpeg
Copyright (C) 2004, 2005, 2006 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co

Copyright (C) 2065, 2006 Fujitsu Limited

Copyright (C) 2086, 2007 VA Linux Systems Japan K.K.

Copyright (C) 2085 NEC Corporation

Copyright (C) 1999, 2062, 2007 Silicon Graphics, Inc

Copyright (C) 1999, 2008, 2001, 2002 Mission Critical Linux, Inc

This program is free software, covered by the GNU General Public License
and you are welcome to change it and/or distribute copies of 1t under
certain conditions. Enter "help copying” to see the conditions

This program has absolutely no warranty. Enter “help warranty” for details

crash: /usr/1ib/debug/boot /vmlinux-2.6.31.8-0. 1-desktop. debug
CRC value does not match

crash: /usr/1ib/debug/boot//vimlinux-2.6.31.8-6,1-desktop. debug: CRC does not match




image40.jpeg
MEMORY: 7.5 GB
PANIC: "SysRq : Trigger a crashdump”
PID: 0
COMMAND: "swapper”
TASK: fTTfffff80300ae0 (1 of 2) [THREAD_INFO: TTffffff803r2000]
cPU: 0
STATE: TASK_RUNNING
WARNING: panic task not found





image41.jpeg
Fle Edit

admin@testhost2:/var/crash/2010-01-19-20:21 o

View Terminal Taps Help
exception stack pointer: fff810107132120
process stack pointer: ffff81010712bef0

current_stack_base: ffff8101b509c008

KERNEL: /usr/1ib/debug/1ib/modules/2.6.18-164.10.1.e15. centos .plus/vnlinux

vmcore
2

Tue Jan 19 20:21:19 2010
00:00:08

: 0.00, 0.04, 6.07

134

testhost 2k i e
2.6.18-164.10.1.el5

#1 SWP Thu Jan 7 19:54:26 EST 2010

MACHINE: x86_64 (3000 Mhz)
MEMORY: 7.5 GB

"SysRq : Trigger a crashdump"
o

"swapper”

TFFTTff803002e0 (1 of 2) [THREAD INFO: ffTfffff8o3r2000
o

STATE: TASK_RUNNING (ACTIVE)





image42.jpeg
Your system encountered a serious kernel
problem.

Your system might become unstable now and might need to
be restarted.

You can help the developers to fix the problem by reporting it.

Report Problem... Close





image43.jpeg
Report
send tem Value 3
archiecre iog6
release Fedora release 12 (Constantine)

ahere -
WARNING: a rch/Xa6 kernelapc/apicc:247 atve_apic_write_summy +0x32/0x3e0) (Mot ainted)
Hardware rame: 2373W43
Moduies inked n-
7 O, comm: Swopper Notanted 2.6 31.5-127.12 1685 #1
Gal Tace:
[<C0436493>] warn slowpath_commen+0x70/0x87
126041742617 ntive apic wite cummy +013210x3e
[<C043656> | worn saupath nl0X12/0515
[<c0a17426- 1 ot apic wie Gummy +0x32/013e
{<c0A0fazcs el it hermal OXE3 D165
@ kemeloops  [<cO4DeBCes] 7 mce Int4OxaB/0xb
{<c04016003 ] mce nteleature nt+0x10/0x50
<C030dkes> ] mee cpu festures 1016123
[<C0760681 ] moeckinit+0x245/0x285
[<cO73ca0e> ] denty cpu+0x3710x30e
<c0980265> deny. oo cous xcox23
[<C0990341%) check_ b DD
[<c0478033>1 7 deloyacet nts7/0xdc
[<c0989B035 ] art Kemel1DS1/0330
1<c0983070-1586_strt kernel+0x70/0x77
S endtrace a791967117:00725 1

Comment
Brief description how o reproduce this or what you did.





image44.jpeg
Report
send tem Value 3
archiecre iog6
release Fedora release 12 (Constantine)

ahere -
WARNING: a rch/Xa6 kernelapc/apicc:247 atve_apic_write_summy +0x32/0x3e0) (Mot ainted)
Hardware rame: 2373W43
Moduies inked n-
7 O, comm: Swopper Notanted 2.6 31.5-127.12 1685 #1
Gal Tace:
[<C0436493>] warn slowpath_commen+0x70/0x87
126041742617 ntive apic wite cummy +013210x3e
[<C043656> | worn saupath nl0X12/0515
[<c0a17426- 1 ot apic wie Gummy +0x32/013e
{<c0A0fazcs el it hermal OXE3 D165
@ kemeloops  [<cO4DeBCes] 7 mce Int4OxaB/0xb
{<c04016003 ] mce nteleature nt+0x10/0x50
<C030dkes> ] mee cpu festures 1016123
[<C0760681 ] moeckinit+0x245/0x285
[<cO73ca0e> ] denty cpu+0x3710x30e
<c0980265> deny. oo cous xcox23
[<C0990341%) check_ b DD
[<c0478033>1 7 deloyacet nts7/0xdc
[<c0989B035 ] art Kemel1DS1/0330
1<c0983070-1586_strt kernel+0x70/0x77
S endtrace a791967117:00725 1

Comment
Brief description how o reproduce this or what you did.





image45.jpeg
Fle Edit View Terminal Tabs
"SysRq : Trigger
0
COMMAND: "swapper”
TASK: fTffrfrf80300ae0
cPU: B

admin@testhost2:/var/crash/2010-01-19-20:21

Help
a crashdump”

(1 0f 2) [THREAD_INFO: TTTTffff80372000

STATE: TASK_RUNNING (ACTIVE)

crash> bt

PID: 0 TASK: fTTfffff80300ae0 CPU: O  COMMAND: "swapper
#0 [TTTTTfT180440720] crash_nmi_callback at fffffffge07acse
#1 [TTFT1fT180440740] do_nmi at fTfff7B8006585a
#2 [TTTT1fT180440750] nni at TTTFTffTBO064eDT *

[exception RIP: default_idle+61

RIP: frfffff8006b301 RSP:
RAX: 0080000000000000 RBX:
RDX: 0080000008000000 RSI:
: fTfTffrf80312000 R9: 00000B000000B03E

RBP: 0080000008090000
R10: f77810107154038
R13: 0080000008000000
ORTG RAX: THTTTrrrrrrrrrrr

--- <exception stack> ---

#3 [TTfTTT1180313190] default :

FIFTTfTfBO373790 RFLAGS: 00000246
ffTTfTf8006b208 RCX: 00000B0000008000
0000000000000001 RDI: fTffffff80302698

0000000000000246  R12
0000000000000000 R15:
Cs: 8010 SS: 0018

0000080000008000
0000000000008000

idle at TIFFfrfr8006p301 *

#4 [FTFTTTTF80373700] cpu_idle at fffffff8004943c

crash>





image46.jpeg
#5 [ffffgloldede5f10] vfs_write at ffffffff30186656

#6 [ffff8101dode5f40]
#7 [ffff8101dede5f80]

RIP
RAX
RDX
RBP
R10
R13

00002aaaab127450
©000000000000001
0000000000000002
©000000000000002
0000000000000000
00002aaaaab15000

RSP
RBX
RST

R8
R11
R14

ORIG_RAX: 0000000000000001

crash> [

00007FFffFFfd350
fFFFFFFF8010adba
00002aaaaab15000
00000000F fFFFFFF
0000000000000246
0000000000000002
CS: 0033 SS: 002b

sys_write at FFFFffff80186c1f
system_call at FfFfffff80l0adba

RFLAGS: 00010202

RCX
RDI

R9
R12
RIS

00000000005 becO1
©000000000000001
00002aaaab2bdaed
00002aaaab2ae7a®
©000000000000000




image47.jpeg
Report
send tem Value 3
archiecre iog6
release Fedora release 12 (Constantine)

ahere -
WARNING: a rch/Xa6 kernelapc/apicc:247 atve_apic_write_summy +0x32/0x3e0) (Mot ainted)
Hardware rame: 2373W43
Moduies inked n-
7 O, comm: Swopper Notanted 2.6 31.5-127.12 1685 #1
Gal Tace:
[<C0436493>] warn slowpath_commen+0x70/0x87
126041742617 ntive apic wite cummy +013210x3e
[<C043656> | worn saupath nl0X12/0515
[<c0a17426- 1 ot apic wie Gummy +0x32/013e
{<c0A0fazcs el it hermal OXE3 D165
@ kemeloops  [<cO4DeBCes] 7 mce Int4OxaB/0xb
{<c04016003 ] mce nteleature nt+0x10/0x50
<C030dkes> ] mee cpu festures 1016123
[<C0760681 ] moeckinit+0x245/0x285
[<cO73ca0e> ] denty cpu+0x3710x30e
<c0980265> deny. oo cous xcox23
[<C0990341%) check_ b DD
[<c0478033>1 7 deloyacet nts7/0xdc
[<c0989B035 ] art Kemel1DS1/0330
1<c0983070-1586_strt kernel+0x70/0x77
S endtrace a791967117:00725 1

Comment
Brief description how o reproduce this or what you did.





image48.jpeg
Fo Ed View Tmnal s Hep
Linux version 2.6.18-164.10.1.615 (Rockou110G0UILder10. contos. org) (9EC Version 4.1.2 20080704 (Red Wat 4.1.2-45)) #1 SHP Thu
Command Uine: 7o root-LABEL=/ rhgb quiat. <rashkernel-128HE1ON
B105-provided physical AAN map:
105 0520 0000000000010000 - 0000000000097500 (usable)
BI0S_0520: 009DOGBOODDOTE00 - 000000000D020000 { resorved)
5105 c826: 850800m000c000 - 808960800RGCO00 (reserved)
5105-c820: 000000m000IC000 _ 0000000000100000 ( resered)
B0S_¢520: 000000R000100000 0000000011000 {usable)
BL0S_0820: 00900GRG=1e00B0 000000011000 (ACPI data)
BI0S-c520: 000DOGROSE"1a00 - 0090COR0T100000 (ACFE NVS)
B105-c820: 090000801700000 _ 0000000070090000 {usavle)
51050520 000DOOROYac0000 . 00000GD01ec10000 { resorved)
B105_c820: 800800A01ce03609 - 8089608812601000 (reserved)
5105-c820: 090000n0117<0000 _ 0000008100090000 ( reserved)
B105_¢520: 0090000100000000 - 0000000113000000 {usable)
o1 prosent
AcP1 RSOP (vo00 PTLTO ) @ sxcoscessonsorsces
AcP1: RSDT (vooL PTLTD 00000) @ Bx0000000ererasa
ACPI: FADT (1001 TNTEL 0x00014240) @ xOB0OBDOOETeer0s
ACPL: WADT (Vo1 PTLTD 0106040600 LTP 0x69800060) @ xeR00BOS0eTaerTa
ACPI: S0DT (001 PTLTD SSEFTSLS 0106040000  LTP 6x60006001) @ Dxoogoncooereraras
ACPL: DSOT (1001 PTLTD Custon ~ 6106040800 MSFT 0xG100000d) @ xB00GRO0GROGGB000
Vo Mk configuration founa
Faking 3 node 3t 0699360800980090 8600001 12000000
Sootnen. setup nade © 8093303000000 09000001 12003000
e zone: 2633 pages, LIFO batch:o
DHA32 Z0ne: 964648 pages, LIFD batcn:31
Mornal zone: 1010000 pages. LIF0 baten:31
ACPI: PH-Tiner 10 Port: 0x10%6
AP Local APIC sadress Oxfeconoon
ACPI: LAPIC (acpi 10102001 Lapic_1a[0400] enabied) i
ACPL: LAPIC (acpi 10102011 apic_1d(0x01) enabled)

e e et e el





image49.jpeg
admin@testhost2:/var/crash/2010-01-19-20:21 o x

Hle Edit View Terminal Taps Help
PID  PPID CPU TASK ST SMEM  VSZ  RsS COMM
> 0 @ o frfffrff80300ae0 RU 0.0 o o [swapper]
o 1 1 ffff81010716b0c0 RU 0.0 o 0 [swapper]
i @ 1 ffff8le1070eb7a0 IN 0.0 10348 708 init
2 1 @ ffff8101076eb040 IN 0.0 o @ [migration/o]
3 1 @ ffff8101076ed7e0 IN 0.0 o 0 [Ksoftirqd/o]
4 1 1 ffff8101076edos0 IN 0.0 o o [migration/1]
5 1 1 ffff81010716b820 IN 0.0 o 0 [Kksoftirgd/1]
6 1 @ fffr8l0lfcdd8se IN 0.0 o 0 [events/o]
7 1 1 ffff8l01fcddlee IN 0.0 o 0 [events/1]
8 1 1 ffff8l0lfcde7ad IN 0.0 o 0 [Kknelper]
73 1 @ ffff8101fdbeedo IN 0.0 o 0 [Kkthread]
78 73 0 Tfff8101f9e27860 IN 0.0 o 0 [Kblockd/0]
79 73 1 T7fff8l0lf9e27160 IN 0.0 o 0 [Kblockd/1]
8 73 0 Tffff8lolfeze7ad IN 0.0 o 0 [Kacpid]
135 73 0 Tffff8l01fod5c820 IN 0.0 o 0 [cqueue/o]
137 73 1 ffff8101f9d650ce IN 0.9 o 0 [cqueue/1]
140 73 0 Tfff8l01fod67860 IN 0.0 o 0 [Khubd]
142 73 1 ffff8101f9d67168 IN 0.9 o o [kseriod]
214 73 @ ffff81019d697a0 IN 0.0 o 0 [pdflush]
215 73 @ ffrf810119d69840 IN 0.0 o 0 [pdflush]
216 73 @ ffff8l019dec7ed IN 0.0 o 0 [Kkswapde] ol
217 73 @ ffff810179d6co80 IN 6.0 0 0 _[ai0/0] /
ENTER: b K i





image50.jpeg
PANIC
PID:
COMMAND
TASK:
cPU: B
STATE: TASK_RUNNING
WARNING: panic task not found

SysRq : Trigger a crashdump”

swapper
TFFFTTf7803002€0 (1 of 2) [THREAD INFO: ffTfffff80372000

crash> |





image51.jpeg
admin@testhost2:/var/crash/2010-01-19-17:11

Hle Edit View Terminal Taps Help
crasn> bt

PID: 0 TASK: fTTfffff803002e0 CPU: O  COMMAND:
#0 [TTTTTfT180373eb8] schedule at TfTffTTfB006266
#1 [TTETTTT180373190] cpu_idle at TfTffff8004945d
crash> ||

swapper”





image52.jpeg
o Eo View Jeminal Tobs Hop

o 0 6 rrrrrrrrasnesso 0.0 6 6 (swapper]
-0 1 1 trreloleriesece Ry 00 o o [wapper)
10 1 termowomra I 0.0 18 6% init
31 o rrrrolowomess N o0 0 0 [migration/o
31 0 o I o6 0 0 [krtiras/e
i1 1 remoweem I 06 0 0 (mgrationl]
51 1 sl N o6 0 0 [aortiras)
&1 o rrrmloecamse N 08 0 0 [events/o)
71 1 rrrmloirocantse I o6 0 0 [events/1)
81 1 fremoiocaa I 00 0 0 [kelper]
731 o frerloitoaoedd I 60 0 0 [ktnresal
7 73 o rrrraliedearae N 60 0 0 [Wlocka/e)
78 73 1 resleedenee o6 8 0 [lcki)
B 73 1 fremloioaees 00 0 0 [kacpial
T 75 b MMM In BB 0 0§ & D




image53.jpeg
File Edit View Terminal Help
testhostl: /usr/src/linux # s

mailnap READIE
coPYING Kbuild MAINTAINERS ~READHE.SUSE
cReDITS Hakefile REPORTING-BUGS

testhostl: /usr/src/Linux #




image54.jpeg
admin@testhost2:/home/admin

Hle Edit View Terminal Taps Help

[root@testhost2 admin]# yum search cscope

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

* addons: anorien.csc.warwick.ac.uk

* base: anorien.csc.warwick.ac.uk

* contrib: anorien.csc.warwick.ac.uk

* extras: anorien.csc.warwick.ac.uk
updates: anorien.csc.warwick.ac.uk

Matched: cscope
: C source code tree search and browse tool
Debug information for package cscope

cscope. xB6_64
cscope-debuginfo. xB6_64
[root@testhost2 admin]# [





image55.jpeg
admin@testhost2:~/linux-2.6.18.6/kernel o x

Hle Edit View Terminal Taps Help
Cscope version 15.5 Press the 7 key for help

Find this C symbol:
Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string

Find this egrep pattern:

Find this file:

Find files #including this file:

Find all function definition
Find all symbol assignments:





image56.jpeg
File

admin@testhost2:

Edit View Terminal Tabs Help

C symbol: default_idle

F
F
F
F
F

File Function Line
process.c <global> 72 void (*idle)(void ) = default_idle
process.c <global> 120 EXPORT_SYMBOL (default_idle)
process.c <global> 90 void (*idle)(void ) = default_idle
process.c <global> 64 void (*idle)(void ) = default_idle
kern_util.h  <global> 67 extern void default_idle(void )
process.c <global> 45 void (*idle)(void ) = default_idle
system.h <global> 72 void default_idle(void )

32 more lines - press the space bar to display more *

ind this C symbol:

ind this global definition:

ind functions called by this function:

ind functions calling this function:

ind this text string:

Change this text string

F
F
F
F
F

ind
1nd
1nd
1nd
1nd

this egrep pattern:
this file:

files #including this file:
all function definition:
all symbol assignments:





image57.jpeg
admin@testhost:

~/linux-2.6.18.6/kernel

Hle Edit View Terminal Taps Help

Press the RETURN key repeatedly to move to the desired input field, type the

pattern to search for, and then press the RETURN key. For the first 4 and
last 2 input fields, the pattern can be a regcomp(3) regular expression
If the search is successful, you can use these single-character commands:

0-9a-2A-Z
space bar
~v

“E

I
At any time you

TAB
RETURN
N
P

Edit

the file containing the displayed line.

Display next set of matching lines.
Display next set of matching lines.
Display next set of matching lines.
Display previous set of matching Llines.

Edit

all lines.

Write the list of lines being displayed to a file.
Append the list of lines being displayed to a file.

Read

lines from a file.

Filter all lines through a shell command.

Pipe

can use these single-character command:

Swap
Hove
Hove
Hove

all lines to a shell command.

positions between input and output areas.
to the next input field.

to the next input field.

to the previous input field.

Type any character to continue:





image58.jpeg




image59.jpeg
admin@testhosti:/usrsrcllinux

File Edit Help

1s -1 cscope*
root root 449295 2010-61-29 23:04 cscope.files
root root 193941518 2010-61-29 23:06 cscope.out

root root 25378624 2010-61-29 23:06 cscope.out.in
root root 141358764 2010-61-29 23:06 cscope.out.po





image60.jpeg
~IDownloadimplayer-checkout-2010-01-28

File Edi View Terminal Help
adnin@testhostl:~/Donnload/mplayer-checkout-2010-01-28> make xvid_vbr.o B
cc -Wundef -Wdisabled-optimization -Wno-pointer-sign -Wdeclaration-after-statement -
Std=gnuss -Wall -Wno-switch -Wpointer-arith -Wredundant-decls -04 -march=native -mtu
ne=native -pipe -ffast-math -fomit-frame-pointer -D_LARGEFILE_SOURCE -D_FILE_OFFSET_

BITS=64 -D_LARGEFILEG4_SOURCE -Ilibdvdreadd -I. -D_REENTRANT  -c -0 xvid_vbr.o xv
1d_vbr.c
acmin@testhostli~/Download/mplayer-checkout-2010-61-28>





image61.jpeg
ownloadimplayer-checkout-2010-01-28

File  Edit arminal _Help
make kernel/notifier.o
CHK TncTude /1 1nux /version.h
CHK nclude/inux/utsrelease. h
SYMLINK include/asm -> arch/xg6/include/asm
CALL  scripts/checksyscalls.sh
make[1]: “kernel/notifier.o' is up to date





image62.jpeg
File Edit

[acmintesthostl
acmin@testhostl

Terminal _Help

=y
2

-rwxr-xr-x 1 admin

acmintesthostl
acmingtesthostl
acmingtesthostl
acmingtesthostl
acmintesthostl

.
o
o
o
2

-rwxr-xr-x 1 admin

acmin@testhostl
acmingtesthostl

.
o

gcc memhog. ¢ -0 memhog
1s -1d memhog
users 16297 2010-61-29 23:22 memhog

m memhog
gec -g memhog.c -0 memhog

1s -1d memhog
users 12125 2010-61-29 23:22 memhog





image63.jpeg
testhost:...~/Downloadimplayer-checkout-20i0-01-28

Fil Terminal Help
60060176 <vbr_init_fixedquant>
170 8b 744 24 64 x4 (%esp) , %eax
174 8b 90 ac 08 00 00 mov  Oxac (%eax),%edx
17a 85 @ test  Sedx, %edx
17¢ 7e 22 jle 130 <vbr_init_fixedquant+0x3o:
17e 83 fa 1f cmp  $OxLT, %edx
181 7e 62 jle  18d <vbr_init_fixedquant+oxld:
183 €780 ac 60 00 00 1T movl  §6X1T,Oxac (%eax
182 60 60 60
184 €780 Co 00 00 00 00 movl  §6X0,EXCO(%eax
194 90 60 60
197 31 co xor  %eax,%eax
199 a ret
193 8d b6 60 08 00 00 lea  0x0(%esi), %es
120 €780 ac 69 00 00 61  movl  §6x1,Exac(%eax
127 60 60 60
1aa €780 Co 00 00 00 00 movl  §6X0,EXCO(%eax
1b1 90 60 60
1ba 31 co xor  %eax,%eax
106 a ret
167 89 16 mov  %esi,%esi
1b9 8d bc 27 69 00 00 00 lea  OXO(%edi,%eiz,1),%ed





image64.jpeg
File Edit Terminal

Help
05045455 <__libc_start_maingplt>

2048458 1 25 08 a0 04 08
504845¢ 68 10 08 60 00
2048463 €9 co Tf ff 1

08048468 <fTlushaplt>
2048468 125 0c a0 04 08
s04846e 68 18 08 00 00
8048473 €9 bo T f 1

08048478 <printfaplt>
2048478 125 10 a0 04 08
204847¢ 68 20 08 60 00
2048483 €9 a0 Tf f 1

08048488 <atoi@plt>
2048458 125 14 20 04 08
s04843¢ 68 28 08 60 00
5048493 €9 90 Tf ff 1

imp
push
mp

imp
push
mp

imp
push
mp

imp
push
mp

*0x8042008
$ox10
8048428 <_init+0x30>

*+0x804300C
sox18
8048428 <_init+0x30>

*+0x8042016
$0x20
8048428 <_init+0x30>

*+0x8043014
$0x28
8048428 <_init+0x30>





image65.jpeg
esthosti:... ~Download/mplayer-checkout-2010-01-28

File Edit Terminal _Help

testhostl: /usr/src/Linux # make kernel/notifier.o

scripts/kconfig/cont -s arch/xse/Keontig

[++* You have not yet configured your kernel
(missing kernel config file ".config!

Please run some configurator (e.g. make oldconfig" or
«++ "make menuconfig® or make xconfig
make[2]: *** [silentoldconfig] Error
make[1]: *** [silentoldconfig] Error
make: **+ No rule to make target “include/config/auto.conf’, needed by “include/
config/kernel release’. Stop
testhostl: /usr/src/Linux #





image66.jpeg
Fil Terminal Help
545 else
546 KBUILD_CFLAGS  += -fomit-frame-pointer
547 endit

545 1fdef CONFLG_UNWIND_INFO

556 KBULLD_CFLAGS  += -fasynchronous-unwind-tables
1 LDFLAGS_vmlinux += --eh-frame-hdr

552 endit

554 ifdef CONFIG_DEBUG_INFO

555 KBULLD_CFLAGS  += -g

556 KBULLD_AFLAGS  += -gdwarf-2
7 endit

559 1fdef CONFIG_FUNCTION_TRACER
560 KBULLD_CFLAGS  += -pg
561 endit

563 # We trigger additional mismatches with less inlining
564 1fdef CONFIG_DEBUG_SECTION_WISMATCH

558,0-1 34%





image67.jpeg
kernel/notitier
kernel/notifier
kernel/notifier
kernel/notifier

ownloadimplayer-checkout-2010-01-28

1 make kernel/motifier.o
cc ¢ -0 kernel/notifier.o kernel/notitier.c

ci1:26: error
€:2:27: error
c:3:261 error
€:4:28: error

Linux/kdebug.h: No such file or directory
Linux/kprobes.h: No such file or directory
Linux/module.h: No such file or directory
linux/notifier.h: No such file or directory




image68.jpeg
File Edit

testhostl:
CHK
UPD
CHK
UPD
SYMLINK
cc
GEN
cc
GEN
CcALL
HosTCC
SHIPPED
SHIPPED
SHIPPED
HosTCC
SHIPPED
HosTCC
HOSTLD
cc
HosTCC
HKELF
HosTCC
HosTCC
HosTCC
HOSTLD
HosTCC
HosTCC
HosTCC
HosTCC
c

testhostl:

esthosti:... ~Download/mplayer-checkout-2010-01-28

Terminal _Help
Jusr/src/linux # make kernel/notifier.o
nclude/Linux/version.h
include/Linux/version.h
nclude/Linux/utsrelease. h
nclude/Linux/utsrelease. h
include/asm -> arch/x86/include/asn
kernel/bounds. s
nclude/Linux/bounds. h
arch/x6/kernel /asm-of fsets. s
nclude/asm/asm-offsets. h
scripts/checksyscalls. sh
scripts/genksyns/genksyms. o
scripts/genksyms/Lex.c
scripts/genksyns/parse. h
scripts/genksyns/keywords. ¢
scripts/genksyns/lex.o
scripts/genksyns/parse. ¢
scripts/genksyns/parse. o
scripts/genksyns/genksyms
scripts/mod/empty. o
scripts/mod/mk_elfconf ig
scripts/mod/elfcontig. h
scripts/mod/file2alias.o
scripts/mod/modpost. o
scripts/mod/sunversion. o
scripts/mod/modpost
scripts/sel inux/mdp/map
scripts/kallsyns
scripts/conmakehash
scripts/bin2c
kernel/notifier.o
Jusr/src/linux #





image69.jpeg
ownloadimplayer-checkout-2010-01-28

File  Edit arminal _Help
make kernel/notifier.o
CHK TncTude /1 1nux /version.h
CHK nclude/inux/utsrelease. h
SYMLINK include/asm -> arch/xg6/include/asm
CALL  scripts/checksyscalls.sh
make[1]: “kernel/notifier.o' is up to date





image70.jpeg
esthost:...~[Download/mplayer-checkout-2010-01-28

Terminal Help
[kernel/notitier.o Tile format el132-1386

Disassembly of section .text

00000000 <raw_notifier_chain_register>

- Currently always returns zero

~/

int raw_notifier_chain_register(struct raw_notifier_head *nh,
Struct notifier_block *n)

(

e 55 push  %ebp
1 83 es mov  %esp,%ebp
353 push  %ebx
4 83 ecos Sub  §0x4,%esp
7. 6580 ed 14 00 60 00  mov  %gs:ex14,%ecx
e 89 4d 8 mov  %ecx,-0x8(%ebp)
1 3l cs Xor  %ecx,%ecx

return notifier_chain_register (&nh->head, n);

13: &b o8 mov  (%eax),%ecx

w

static int notifier_chain_register(struct notifier block **nl
struct notifier_block *n)

while ((*nl) != NULL) {

15: 85 9 test  %ecx,%ecx

17: 7423 je 3c <raw_notifier_chain_register+ox3c>
if (n->priority > (*nl)->priority)

19 8b 53 08 mov  OxB(%edx), %ebx





image71.jpeg
admin@testhost2:/home/admin/compilation o x

Hle Edit View Terminal Taps Help

/x
* hello.c - The simplest kernel module.

=

#include <linux/module.h> /% Needed by all modules */
#include <linux/kernel.h> /% Needed for KERN_INFO */

int init_module(void)

{
printk(KERN_INFO "Hello world.\n");
” .
* A non @ return means init module failed; module can't be loaded. i
*
return 0;

¥

void cleanup_module(void)

{
printk(KERN_INFO "Goodbye world.\n");

¥





image72.jpeg
admin@testhost2:/home/admin/compilation

FHle Edit View Terminal Taps Help
obj-m += hello.o

alt:
make -C /Llib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean




image73.jpeg
admin@testhost2:/home/admin/compilation

Fle Edit View Terminal Taps Help
[rootGtesthost2 compilationl# make
make -C /lib/modules/2.6.18-164.10.1.e15/build M=/home/admin/compilation modules|
make[1]: Entering directory '/usr/src/kernels/2.6.18-164.10.1.e15-x86_64

CC (M /home/admin/compilation/hello.o

Building modules, stage 2

HODPOST

cc /home/adnin/conpilation/hello.mod.o

LD [M] /home/admin/compilation/hello.ko
make[1]: Leaving directory '/usr/src/kernels/2.6.18-164.10.1.e15-x86_64
[rootGtesthost2 compilation]#





image74.jpeg
Fle Edit View
[root@testhost2
filename
srcversion:
depends:
vermagic:
[root@testhost2
[root@testhost2

admin@testhost2:/home/admin/compilation

Terminal Tabs Help
compilation]# /sbin/modinfo hello.ko
hello.ko

67A7C9765BA14A0A1CBBECF

2.6.18-164.10.1.e15 SMP mod_unload gcc-4.1
compilation]#
compilation]#




image75.jpeg
Fle Edit View
[root@testhost2
hello

[root@testhost2
[root@testhost2

admin@testhost2:/home/admin/compilation

Terminal Tabs Help

compilation]# /sbin/lsmod | grep hello
34432 ©

compilation]#

compilation]#




image76.jpeg
admin@testhost2:/home/admin

Hle Edit View Terminal Taps Help
Mar 25 17:28:31 testhost2 kernel: Hello world.
Mar 25 17:28:39 testhost2 kernel: Goodbye world.





image77.jpeg
admin@testhost2:/var/crash/20L/

Hle Edit View Terminal Taps Help
Type "show copying” to see the conditions.

There is absolutely no warranty for GDB.

This GDB was configured as "x86_64-unknown-Llinux-gnu"

KERNEL :

MACHINE:
HEMORY:

crash>

/usr/lib/debug/1ib/modules/2.6.18-164.10.1.e15. centos . plus/vmlinux,

vmcore
2

Thu Mar 11 18:41:08 2010
00:00:02

: 0.01, 0.02, 0.00

161
testhost2
2.6.18-164.10.1.€l5

#1 SMP Thu Jan 7 19:54:26 EST 2010

x86.64 (3000 Mhz)

7.5 GB

"Kernel panic - not syncing: Down we go, panic called!"
19546

"insmod”

TTT18101777a17e0 [THREAD_INFO: f7f810164038000

o

: TASK_RUNNING (PANIC)

Type "show warranty" for details.





image78.jpeg
admin@testhost2:/var/crash/20L/

Hle Edit View Terminal Taps Help
VERSION: #1 SHP Thu Jan 7 19:54:26 EST 2010
MACHINE: x86_64 (3000 Hhz)
MEMORY: 7.5 GB
PANIC: "Kernel panic - not syncing: Down we go, panic called!®

PID: 19546
COMMAND: " insmo
TASK: f1f78101777a17e0 [THREAD_INFO: Tf7f810164d38000
cPU: B

STATE: TASK_RUNNING (PANIC)

crash> bt

PID: 19546 TASK: Tfff8101f77al7e0 CPU: 0  COMMAND: "insmod"

#0 [T177810164039e50] panic at TfTffff8009103e

#1 [17781016439740] init_module at TfTffrf8gdge0e

#2 [T17781016439750] sys_init_module at ffffffff8e0a6les

#3 [177810164030780] tracesys at TfTfffff8005d28d (via system_call
RIP: 00000030912d408a RSP: 00007fTf8f32cd8 RFLAGS: 00000206
RAX: TTFFTFTTfrreerda

RDX: 0080000008CI5030 000000000001ed58 RDI: 00000B000BCI5050
RBP: 008000000801ed58 0000000000020010  RO: 00B00BO00000B003
R10: FEFFFIFTrfrereer 0000000000000206 R12: 000O7fTT8F339h

RI3: 0008000000000003
ORIG RAX: 00000000080000af CS: 0033 S5: 002b
crash> |

TIFTTfrf8005028d RCX: TITFFFrfrffrfres

: 0000000008CI5050 R15: 00BO0B0000020000





image79.jpeg
admin@testhost2:/var/crash/20L/

Hle Edit View Terminal Taps Help

process stack pointer

£7178101dda79c78

current stack base: Tfff8101f8a02000

KERNEL :
DUMPFILE:

CPU:
DATE

UPTIM

LOAD AVERAG

TASKS:

NODENAM
RELEAS!
VERSIO
MACHIN

MEMORY:
PANIC:
PID:

WARNING:

crash> I

/usr/lib/debug/1ib/modules/2.6.18-164.10.1.e15. centos . plus/vmlinux,

ncore
2

Thu Mar 25 18:39:14 2010
00:00:00

.72, 0.41, 0.16

136
testhost2
2.6.18-164.10.1.e15

#1 SMP Thu Jan 7 19:54:26 EST 2010

x86.64 (3000 Mhz)

7.5 GB

"0ops: 0002 [1] SMP " (check log for details

o

"swapper"

TFFFTFf78030020 (1 of 2) [THREAD INFO: ffTfffff80372000
o

TASK_RUNNING

panic task not found





image80.jpeg
admin@testhost2:/var/crash/2010-03-25-18:30
Hle Edit View Terminal Taps Help
2673, comm: insmod Tainted: P 2.6.18-164.10.1.el5 #1

: 0018:7rff810105787748 EFLAGS: 00010286
: 0000000000000BO0 REX: 7fTT783490480 RCX: TTTTfTfr80309C28
1 TTf717180309c28 RSI: 0000000000000000 RDI: TfTTfff80309C20
0000000004903 ROB: TTTTf7(80309C28 RO9: 3535353535353535
0000000000000000 R11: TfT81016707920 R12: 00BEG0BEG01ed7e
00000000049050 R14: 0000000000020000 R1S: 00BEB08BE0020000
0000207214563210(0000) GS: fTTTTf17803c1000(000) knlGS:0000000000000000
010 DS: 0000 ES: 0008 CRO: 000EG00BEE05003D
CR2: 600000000000O000 CR3: 000000010C403000 CRA: 00BOG00DEB00D620
Process insmod (pid: 2673, threadinfo Tfff8101d578e000, task Tfff8101dr5re7an
Stack: 0000000000e4950 7TTT7800a61e5 0000DAO00DA20000 0OBAEOODE0EII0SO
6000000000000003 0000711939398 0000B00BOB01ed7e 11T TTB0050280
000000000000206 TTTTTTITT{fITT1f 0GDABOODABOODE03 OEBOODEB00020010
call Trace:
[<FTTTTTT800a61e5>] Sys_init module+0xaf/Ox172
[<FTTTTTT80050280>] tracesys+0xd5/0xed

Code: c6 00 01 31 <6 5a c3 90 99 3c 36 3e 47 6F 6f 64 62 79 65 20
RIP [<ffffffff88498027>] :null pointer:init module+6x19/0x22
RSP <ffff8101d578 48>

crash> I

0010: [<fFfTTf1f88490027>] [<TTfffff88490027>] :null_pointer:init module+0x19/0x22





image81.jpeg
Hle Edit View Terminal Taps Help

Disassembly of section .text:

0000000000000000 <Cleanup_module>:
¥

void cleanup_module(void)
{

printk (KERN_INFO "Goodbye world.\n");
48 7 C7 00 00 60 00  mOv  SOX0,%rdi
31 co xor  Seax,%eax

000000000000000e <init_module>:

e: 4883 ec 08 sub  $0x8,%rsp
12: 48 7 C7 00 00 00 00  mov  Sx8,%rdl

19: 31 ce xor  %eax,%eax

1b: 3 00 00 60 00 callg 20 <init_module+x12>
20: 48 8b 05 00 00 60 00  mov  O(%rip),%rax

27:  c6 60 01 movb  $0x1, (%rax)

2a: 31 co xor  %eax,%eax

2c: sa pop  %rdx

2: 3 retq

admin@testhost2:/home/admin/compilation

€9 00 08 00 00 jmpg e <init_module>

# 27 <init_module+0x19>





image82.jpeg
admin@testhost2:/var/crash/2010-03-25-18:30
Hle Edit View Terminal Taps Help
2673, comm: insmod Tainted: P 2.6.18-164.10.1.el5 #1

: 0018:7rff810105787748 EFLAGS: 00010286
: 0000000000000BO0 REX: 7fTT783490480 RCX: TTTTfTfr80309C28
1 TTf717180309c28 RSI: 0000000000000000 RDI: TfTTfff80309C20
0000000004903 ROB: TTTTf7(80309C28 RO9: 3535353535353535
0000000000000000 R11: TfT81016707920 R12: 00BEG0BEG01ed7e
00000000049050 R14: 0000000000020000 R1S: 00BEB08BE0020000
0000207214563210(0000) GS: fTTTTf17803c1000(000) knlGS:0000000000000000
010 DS: 0000 ES: 0008 CRO: 000EG00BEE05003D
CR2: 600000000000O000 CR3: 000000010C403000 CRA: 00BOG00DEB00D620
Process insmod (pid: 2673, threadinfo Tfff8101d578e000, task Tfff8101dr5re7an
Stack: 0000000000e4950 7TTT7800a61e5 0000DAO00DA20000 0OBAEOODE0EII0SO
6000000000000003 0000711939398 0000B00BOB01ed7e 11T TTB0050280
000000000000206 TTTTTTITT{fITT1f 0GDABOODABOODE03 OEBOODEB00020010
call Trace:
[<FTTTTTT800a61e5>] Sys_init module+0xaf/Ox172
[<FTTTTTT80050280>] tracesys+0xd5/0xed

Code: c6 00 01 31 <6 5a c3 90 99 3c 36 3e 47 6F 6f 64 62 79 65 20
RIP [<ffffffff88498027>] :null pointer:init module+6x19/0x22
RSP <ffff8101d578 48>

crash> I

0010: [<fFfTTf1f88490027>] [<TTfffff88490027>] :null_pointer:init module+0x19/0x22





image83.jpeg
7 Sotware Manager

=[]

S

i

| Prespating

[ camer
| oo seney
7 cames

| o€ Deshiop B e e snn
=joprmane P s
= |

P ——r—

|5 Ao
» Dependencien
[b sumpo

[T )





image84.jpeg
kemel.debug
s kel has several debug faciltes enabled that hurt perormance. Orly use this kemel when investigatng problems.
Sourca Timestamp: 2009-12-15 23.55:40 40100 GIT Revision: 422b19b53s3s8234 387011347 1726348cB3334 GIT Branch: apenSUSE-11.2




image85.jpeg
8, KERNELOOPS.ORG




image86.jpeg
About kerneloops.org

Kamacop ry 3 ettt e ol 1 devaprs o o bl b colctg ol s, W 1 s e o

+ Whih crash signature

ot most urgerty)

Vou can daniosd o T pege. ¢ ” "

6.341c

- , — . i e S
es | 2 -
49572 e - 6436
1003 4 n 2497
— O s
7697 & 655
[ 57
2564
el b e 5
s B =





image87.jpeg
History for
ite_dummy/

1291780 (3 times) 21302565 (3 tmes)

i i 3anisieh e

I

&
EESRI  cir,  natveiveta_ iy e vt
= = Process  3x swapper 9x swapper
26 20x - -
Sestra i Wi satemene VLo satenent
B e o Rt aed) ot ariad)
S T Pl e
e s
263113985 14x intel iait_thecaal dntel_tase,_thersal
Zestro  ix Ee— e




image88.jpeg
5 VARI_OM_ONCE ((cpu_hes_spic éc 'disable_spic)):
s retuin 67
)
256 /%
257 % right acer this call spic>urite/read doesn' do anything
59 * note that there is mo restore operation it vorks one vay
259 2/
250 vold apic_isable(votd)
«
apic->read = nacive_spic_read_dummy:
apic-urite = navive_epic_vrite_dmay:

45 void native_apic_vait_icr_idle(void)
267 (

shile (apic_read(APIC_ICR) ¢ APIC_ICR_BUSY)
cpu_relax();

20 )

u32 native_sste_spic_vait icr_idle(void)
73 (
1 u32 send_scavus;

ine tinesue;

cacouc = 0
a0
send_status = apic_read (APTC_ICR) « APIC_ICR BUST;
i€ (Tsend_starus)
break:
udelay(100) ;
) shile (cizeouce+ < 1000) ;

recurn send_scacus:




image89.jpeg
4%

Your system had a kernel failure

There s diagnostic information available for this
failure. Do you want to submit this information
to the www.kemeloops.org website for use by
the Linux kernel developers?

Aways| [Yes| [No| [Never| | show Details





image90.jpeg
Report
send tem Value 3
archiecre iog6
release Fedora release 12 (Constantine)

ahere -
WARNING: a rch/Xa6 kernelapc/apicc:247 atve_apic_write_summy +0x32/0x3e0) (Mot ainted)
Hardware rame: 2373W43
Moduies inked n-
7 O, comm: Swopper Notanted 2.6 31.5-127.12 1685 #1
Gal Tace:
[<C0436493>] warn slowpath_commen+0x70/0x87
126041742617 ntive apic wite cummy +013210x3e
[<C043656> | worn saupath nl0X12/0515
[<c0a17426- 1 ot apic wie Gummy +0x32/013e
{<c0A0fazcs el it hermal OXE3 D165
@ kemeloops  [<cO4DeBCes] 7 mce Int4OxaB/0xb
{<c04016003 ] mce nteleature nt+0x10/0x50
<C030dkes> ] mee cpu festures 1016123
[<C0760681 ] moeckinit+0x245/0x285
[<cO73ca0e> ] denty cpu+0x3710x30e
<c0980265> deny. oo cous xcox23
[<C0990341%) check_ b DD
[<c0478033>1 7 deloyacet nts7/0xdc
[<c0989B035 ] art Kemel1DS1/0330
1<c0983070-1586_strt kernel+0x70/0x77
S endtrace a791967117:00725 1

Comment
Brief description how o reproduce this or what you did.





image91.jpeg
Your system had a kernel failure
There is diagnostic information available for this
failure. Do you want to submit this information to

the www kerneloops.org website for use by the
Linux kernel developers?

Always | [ves | [No| [Never




image92.jpeg
[ o — ) PO

Seach @ et © pages fom th Uk

Wb St ptions sl 110 of 2004250 o natve._apl wlt_dummy 016 sscorc)

nucKemel Archive Re_coic_ native.apl. ummy worn
T4 20 (00071 €201 255 e pic. wit dommy 020136
i api e dummy i (5 v 354 A1

Ko Sy peminshem A0S TGSt it

s

< eiel Archive.Re_epic native_spic_write_dummy waring
VARG a1 s omaiapc/spc ¢ 245 naveaplc it dummy 015201300 |
Hardarspame’ | odos Inked | 0, comm. Svggar N Tt -

i s syl LIRS

145211 New mco-Wering o boot - native_aplc_write_dum
5000 e gl el o b 571151 Sy e Wania
ot iy Prodcs. £ Vers 2 el
T o Gt TS s

145211 mce Waring of boot native_aplc_wrte_dum
2V S . s 051103 024118 ik e s AP b, e
et ap it duminy( s compiins

T coiacy oG eSS - Cctst





image93.jpeg
Fle View Package Comguion Dependences Extas Help

Fiter Seareh

1 Deserpton
CIRPA ey

0] RPw Roguies”

= oo | owesireas
et Corurnon fktump

conturaton oump

[suppotaviy unkaown

] Case sensits





image94.jpeg
7 YaST Control Center @ amazon2 <2>

File Edit Help

L ttwonk sonics

T o Agpamer

4D securty and Users

=1
£ partitionar
=

B system Backup.

| System sonics ey

=2 protic Manager

@ systemRestoration

Configure the boot loader





image95.jpeg
oump Targel
EmalNotteaton
Epensetngs

= Kdump Start-Up

Enabiemisable Kump.

(& Enati ko
@ Disable Kaump

]

Kaump Mormory-

o System e . 3072

Usablemory e
K

Y





image96.jpeg
St
oums Frsing

Emai Nottcaton
Epensetnss

= Dump Target

[

Savng Targettor aump Image.
‘solctTanget

{Local Oiectary [+ ﬁ

[

LocalFlssystm

ety

[rarerasn





image97.jpeg
| ump Fitering

Durmp Target
Email Notification
| Expert Settings

Help

Kdump Start-Up - YaST (as superuser)
a Kdump Start-Up

Enable or disable kdump. more

Enable/Disable Kdump
Enable Kdump

© Disable Kdump

Kdump Memory
Total System Memary [MB]: 768
Usable Memory [MB]: 704
Kdump Memory [MB]

Q@cancel| || $I0K





image98.jpeg
rminal_Help





image99.jpeg
L
Q System Services (Runlevel): Details

YaST (as superuser)

Assign system senices to runlevels by selecting the list entry of the respective senice then checking or... more

Simple Mode  © Expert Mods
et default runlevel after bosting to:

5: Full multiussr with nstwork and display managsr

Senice Ruming |8 [0 1 2 3 5 6 S | Description il
boot. dmraid No start dmraid

boot fuse Yes 8 Start and stop fuse. I
boot ipconig No 8 1un ip confguration hooks

kdump boot configuration

boot Idconfig No 8 un Idconfig if nesded

boot loadmodules  No 8 load modules required to be load
boot locals No 8 check and mount local flesyste{
boot localnst No B setup hostname and yp e

— >
This scipt loads the kdump kemsl on startup
Senvice will be started in following runlevels;
@B [ i 2 3 5 [ s

Stat/Stop/Refresh v

Help

Set/Reset v

QCancel|| 490K





image100.jpeg
splash=silent quiet showopts crashkernel=128M-:64M@L6M vga=0x332
2.6.31.8-0.1-desktop




image101.jpeg
Enabling syn flood protection doe.
Disabling IP foruarding done.
Disabling IPu6 foruarding done.
Disabling IP6 privacy done.

done.
Loading kdunp

Then try loading kdunp kernel
Henory for crashkernel is not reserved
Please reserve nemory by passing “crashkernel

@¢" paraneter to the kernel

failed
Finish udev device configuration: dore.
Hounting sccurityfs on /sys kernel/securi done.

Loading AppArnor profiles _




image102.jpeg
File Edit Terminal _Help

testhostl: /home/admin # kexec -p
Memory for crashkernel is not reserved
Please reserve memory by passing "crashkernel=X@Y" parameter to the kernel
Then try loading kdump kernel
the home/admin





image103.jpeg
admin@testhosh:~

File Edt_View Terminal _Hel

testhostl:/ # zcat /proc/config.gz | grep -1 "physical_start B
ONFIG_PHYSICAL_START=0x260000
hostl





image104.jpeg
00001-partl /root
Nothing to delete In svar/crash
Saving dunp InannnnnRE RN R R





image105.jpeg
Nothing to delete in shome/crash.

Saving dunp Finished.
Generating README Finished.
Copying Systen.map Finished.
Copying kernel Finished.

INFO: Cannot find debug information: Unable to find debuginfo file
[ 27.5545981 Restarting system.




image106.jpeg
(as superuser]

[ Software Manager

a st = Lgades

G | Pt iy
I (2 11721220 s

i i o [r————
@ Commncaten R oot e

€ oo [ —

@ 0eDusi L R p—
B Ltz

B vaneds

@ titor:

bernel deskiop dobugini o
i packop provds dbu o or pckag krohdeskio, Db oo i bl b dolging splatios i e s (26318011 (s

ki o o b s Fackse | m——

Licene:GPL 2 oty Avaiae

Siasoi1 6 w8 26315011 .

b Fie i |

Rointat

rop_) (100 ~ I (@goce] 55




image107.jpeg
Fil: Edit View Terminal Help
testhostl: /home/admin # uname -
2.6.31.8-0.1-desktop

testhost1: /home/admin #

testhostl: /home/admin # rpm -qa | grep debuginfo
[kernel-desk top-debuginfo-2.6.31.5-6.1.1. 1586
crash-debuginfo-4.1.0-2.3.1586
crosscrash-debuginfo-4.0.7.4-3.3. 1586

kernel -desk top-devel-debuginfo-2.6.31.5-6.1.1. 1586
kdump-debuginfo-6.8.1-2.3. 1586

kernel-desk top-base-debuginfo-2.6.31.5-0.1.1. 1586
testhostl: /home/admin #

testhostl: /home/admin # zypper install kernel-desktop-debuginfo
Loading repository data

Reading installed packages

"kernel-desktop-debuginfo' 1s already installed

Resolving package dependencies

Nothing to do
testhostl: /home/admin #





image108.jpeg
L Configured Software Repositories - YaST (as superuser) o x
=, Configured Software Repositories

" Inthis dialog, manage configured software repositaries and services. more

View
Al repositories |~
Priorty | Enabled  Autorefresh | Name Senice  URL
B v Updates for oper hitp /idownload opensuse.org/update/t
9 (Defaul) v openSUSE 11.20 cdll
39 Defaut) + . hitpJ/download opensuss. rg/debus
El ¢ openSUSE-11 2Non: itp /download opensuse.org/distibuti
@ Defat) v v openSUSEN120ss Hitp /1downlaad opensuse. org/ditibuti
9 (Defaut) v openSUSE 2Source fitp /download opensuse.org/sourced
I — >
(5 opensuse-12.Debug
URL hitp//dowload. opensuse rg/debug/distibution/11 Jrepaloss!
Category: YasT |
Fropetties
Enabled Briory
Automatically Rafresh | Keep Dawnloadsd Packages
4 Add || [Edi | | E0elete GPG Keys. .| Reffesh v

Help @gancel| [ Dok |





image109.jpeg
Repository Manager

Repositories

- Addons

Cent0s-5 - Base 7

cs-media Erea
Cent0S-5 - Media

centosplus
Cent0S-5 - Plus

contrib
Cent0s-5 - Contrib
I+

X close





image110.jpeg
admin@testhost2:/etc/yum.repos.d

Fle Edt View Terminal Tabs Help

#0ebug Info

[debuginfo]

name=Cent05-Sreleasever - DebugInfo
baseurl=http://debuginfo.centos.org/sreleasever/sbasearch/
#baseurl=http://debuginfo. centos.org/sreleasever/

gpgcheck=1

enabled=1

gpgkey=nttp://mirror. centos.org/centos/RPH-GPG-KEY-Cent0s-Sreleasever
protect

priority=1





image111.jpeg
[ Software Manager

O =

3¢ Aanin oo

© Conmincaton B e it

= o B S e

€ ONOME Deskey B s

2 ones P —

G vor b - P -
e p—

@ e

¥ Oice bdwart-do

28 ctrr Deshops. B e

el | i)

vaterisa

Siwz20ka
bdabon
b Dependencier

b Suppan

rop_) (100 ~ I

st Al

| naiabe:

012822 g,

st

(@goce] 55




image112.jpeg
Loading type info (Kerntypes) ... Done.

Loading kernel symbol information ... Done
Initialize virtop address translator... Done.
Initialize dump specific data ... Done

Version of map,dump and type:
harvey Thu_Mar__6_20_38_33_UTC_2008
Loading ksyns from dump Dane.

[DUMP INFORMATION

architecture: x86_64

byte order: litile
pointer size: 64
bytes per word: 8

kernel release: “geiiis
memory size: 9261023232 (8G 640M OK OByte)

nun phys pages: 2260992

number of cpus: 2

>> bt

STACK TRACE FOR TASK: 0x10014bc5610(bash)

sysra_handle_crashdunp+140 [OXFFFTTfffa00escic)
__handle_sysrq_nolocks147 [OXFfffffff80273ea3]
handle_sysrqs56 [Oxffffffffa0273fa8]
write_sysrq_triggers53 [Oxffffffffa0lcados]
vfs_writes234 [OXFFFFFFTfB018dfed]
sys_writes157 [Oxffffffffgo1e23d]
system_call+124 [Oxffffffff801106c4]





image113.jpeg
dslialsel Linux #gdb-kduap vecore
Using /boot /umLimux 2. 8. 50 o AR e a5 vmlimu

o gab 6.6

Copyraght (C) 2006 Free Softuare Foundation, Inc

@B is free software, covered by the Gl General Public License, and you are
welcone to change it and/or distribute copies of it under certain conditions
Type “show copying® to see the conditions

There 15 absolutely no warranty for GOB. Type show varranty” for details
This GOB was configured as “xB6_64-suse linux’

Using host Libthread_db Library ~/1ib64/\ibthread_db.so.1"

warning: shared ibrary nandler failed to enable breakpoint
%0 do_syslog (type=cvalue optiaized out>, buf=0x2b37e20d6010 <Address 0x2b97e2ad6010 out of bounds:,
Teneevalue optimized out>) at kernel/printk.c:259
259 cond_resched():
(gab) bt
%0 do_syslog (typescvalue optinized out>, buf=0x2b37e2ad6010 <Address 0x2697e2ad6010 out of bounds,
Lei=cvalue optinized out=) at kernel/printk.c:259
#1 OxTFFFFFfaDICO100 in kmsg_read (file=cvalue optimized outs,
buf=0x2b37e23d6010 <Address Gx2b3762ad6010 Gut of bounds>, Count=262143, ppos=oxdeso)
at fs/proc/knsq.c: 38
92 OxTTFFFFITA0IB6Td0 in ufs_read (filesOxfFifal02177dag60,
buf=0x2b37e2006010 <Address Ox2b37e2ad6010 out Of bounds>, Count=60, pos=OxffffA10215059f50)
at fs/read_urite.c:264
#3 OxITIFITITa0IB6b00 in sys_read (fd=<value optimized out>,
buf=0x2b97e2a6010 <Address 0x2bS7e2ad6010 out of bounds>, CoUNt=262143) at fs/read_write.c:351
o4 OXPTErIefaoioadba in system. catl ()
#5 0x000000000000246 in 77 (
% 0x0000555555650560 1n 77
#7 0x00002b97e2bbac00 in 77
% 0x0000000000040000 1n 77
#9 0:0000000000000000 in 77
Y |

)
0
0
0
0




image114.jpeg
L ‘Software Manager - YaST (as superuser)

) Software Manager
This ool ot yau nstal, remave, and updat appcations. mote

st = = s A

35 Admin Tools

@ Communicaton

R Egucaton

=] Games.

€ ooV Deskep |
Do

crosscrash-dsbuginio

crosscrash nstal
The cors analysis e i 2 selkcontanad ool hal can be used (0 ivestigste | 407433 (699
ithr e ystoms, kel coredumps crsatedfom the etdump and diskdump
packages rom Red Hat Lino. the mrs kemel gatch ofired by Misson Crcal
Linu. or the LKCD kel patch. Trs packag cordains a cross-archtectre

capable version ofcash whch is not malus ya (hat's wh the crash package s | AVoe
Shipped inaddiion), Wih his varsion you can apen dumps o anothr 407433 @ |,
archisctus. Pisass rsad README SUSE before you use 1 cpansise1 20m

Bemove

o install
Liconse: GPL 2 oly. GPLA2 o ter LGPL 2.1 orlatar LAl

Size: 50 1B
Installed a: 1152010
b Fi
b Changelog

b Auhors

b Dependencies
b Support

List

v | |Tods v || Ogsrea || 2op





image2.jpeg
Stage 1: Stage 2:

(panic, oops, user trigger)

{

Memory image saved to
dump device

O

System rebooted





image3.jpeg
red) - gedit

[
Fle Edt View Search Tools Documents Lielp

BEE . & & 9 )

New Open  Save | Print.. Undo Redo = Cut Copy Paste  Find Replace

[ dump-server 3 \

# DUMPDIR is the location where crash dumps are saved. In that

# directory, a file called 'bounds' will be created, which is

# the current index of the last crash dump saved. The 'bounds'

# file will be updated with an incremented once a new crash dump or
# crash report is saved.

#

DUMPDIR="/tmp/dump"




image4.jpeg
[4 dump-server (~/Shared) - gedit

Ele Edit View Search Tools Documents Help

Ow & a9 Cooa RN

New Open  Save  Print.. | Undo Redo | Cut Copy Paste = Find Replace

) dump-server x}

# SOURCE_PORT is the port used on dumping machine to send dump data over
# the network. Default is 6688.

SOURCE_PORT=6688




image5.jpeg
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:

netdump: local IP :
dunp_netdev: source IP 2
dunp_netdev: target IP %
dunp_netdev: target MAC % 2

Network device ethD successfully configured for




image6.jpeg
drux— 2 netdump root 72 2009-02-25 16:00 .
druxcuxrux 3 netdump dunp 96 2009-02-25 15:57 ..
—ru- 1 netdump root 645693440 2009-02-25 16:00 umcore





image7.jpeg
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:

SysRq : Starting crash dump

Reconf iguring memory bank informatiom....
This nay take a while....

done waiting: O cpus not responding

Dumping to network device netdump on CPU 7 ...
network dump failed due to handshake failure
dump_dev_urite failed terr -1

dump urite header failed terr -1

dump update header failed ! error -1
NETDUMP END!

Dump Incomplete or failed!




image8.jpeg
35 Tnciudes, M oxcludes, > modularizes foturcs.  Fress GecESe> to exit, <T> for Melp, > for
Search, Logond: (o1 bulT-in (1 xciuded O modale < > nodule capable

1 e
(ol bl loadable mmiuie soport
“= mable the block Taver
Rocesor-tpe and Featares
o mavrent options >
Secutable file formats / Daulations
= Wuorking sapport
Trmare Drivers





image9.jpeg
L
He Edt View Search Toos Documents Lo

O &, & & 9 n m
New open " Save | prnt.. | Unde fede | (it Copy pesie  Fnd Replace
L kdump % |

## Type: string

## Default: “kdump”

## ServiceRestart: kelump.

#

# Kernel Version string for the -kdump kernel, such as 2.6.16-5-kdump
# If no version is specified, then the init script will try to find a

# kdunp kernel with the same version number as the running kernel.

# The init script will use a kernel named:

# /boot/vmlinux-SKDUNP_KERNELVER

# Using "kdump” will default to the most recently installed kdump kernel.
#

KDUMP_KERNELVER="




image10.jpeg
L
Ho Edt View Search Tools Documents Lelp

0., 8 & 5¢
Swe | pri.. | Undo e

string

## ServiceRestart: kdunp

#

# The kdump commandline is the command line that needs to be passed off to
# the kdump kernel. This will likely match the contents of the grub kernel
# line. For example
#  KDUMP_COMMANDLIN
# If a comand Line is not specified, the default will be taken from
# /proc/cndline

#

KDUMP_COMMANDLINE





image11.jpeg
L
Ho Edt View Search Tools Documents Lelp

LE, & 5| 9 -
New open " save | prt.. | ndo reds | it copy paste

iy X

## Type string

## Default:

# ServiceRestart: kdump
#

# Set this variable if you only want to _append_ values to the default

# command line string. The string gets also appended if KDUNP_COMMANDLINE
# is set.

#

KDUNP_COMHANDL INE_APPEND="naxcpus=1 "




image12.jpeg
L
Ho Edt View Search Toos Documents Lelp

OE & s 9 -

New Open 7 Swe | prit.. | Undo fede (i Copy rate  Fd maplace
e x|

## Typ string

## Default:

## ServiceRestar
#

# Additional arguments passed to kexec. For example, to generate
# ELF32 dump on x86-64 to allow i386 systems to read dump, set
"--€lf32-core-headers” here.

kdump.

#
#
# Keep this empty in most cases.
#

KEXEC_OPTIONS="--args-linux




image13.jpeg
Flo Edt Viw Seach Tools Documents Hlp

oW, & &) 9 n RN
New open " e Pt Undo © " Fnd Faplace
ke %

## Type: string

## Default i

#
#
# Specifies the dump device that is used for saving the dump with the kdump
# kernel. The dump device normally is a disk partition. You don't need to

# specify a dump device here. Then the dump is written to KDUHP_SAVEDIR when

# booting from the kdump kernel.

# I KOUNP_DUNPDEV points to a device file, the dump is written to that device
# when running the kdump kernel. The advantage over writing the dump to

# disk immediately is that you don't have to mount the root file system (which
# may be corrupted!) just to write the dump. So if the root file system is

# corrupted, you have the chance to fix the file system manually and reboot the
# system without loosing the dump information. On the first normal boot which
# is able to successfully mount the root file system, the dump is saved to

# KDUMP_SAVEDIR as usual.

#

# Inportant: The KOUMP_DUNPDEV is overwritten by kdump, so don't use it for

# saving any data. Also don't use the currently used swap partition.

#

KDUMP_DUMPDEV=




image1.jpeg




image14.jpeg
L
Ho Edt View Search Tools Documents Lelp

LE & s 9 B

New Open " Sawe Pt | Undo fdo | Cui Copy pase  Find Repla

Shares) - gedit

[Bame x|

## Type: integer
# Default: 0
#

# Determines the dump level. If KDUNP_DUNPLEVEL != 0, then makedumpfile
# is used to strip pages that may not be necessary for analysing. O means
#no stripping, and 31 is the maximun dump level, i.e. O produces the

# largest dump files and 31 the smallest.

#
# The following table from makedumpfile(8) shows what each dump level
# means

# dump | zero | cache|cache | user | free
# level | page | page [private| data | page
# e <
* o] | | | |
* 1] x | | | |
* 2] L x i | I
# 3| x | x| | |
* 4] X b x |
* SpPx Lx o pxo |
* 61 x o1 x I |
# 7P x [ x 1x ] |
* 8] I | X
* ol x | | Lx o
# 10 | 1 x x|




