Algebra Cheat Sheet

Basic Properties & Facts

Arithmetic Operations

abacabea () bab — cc a b a a a b a aaac cbcb

$$\frac{abacad}{abc} = b\frac{da}{dc}, 0$$

$$\frac{a}{b}$$

$$\frac{b}{c}$$

Exponent Properties

cddcccc

$$a\ddot{a}\ddot{a}\ddot{a}^{nm} = \frac{1}{a\ddot{a}^{mn}} \qquad \frac{1}{a\ddot{a}^{mn}}$$

$$(a\ddot{a}\ddot{b}\ddot{a}) = \pm \qquad \qquad 0 \quad 1, \quad 0$$

$$(ab)\ddot{b} = nn \qquad \qquad \boxed{aa}^{n} \qquad \frac{n}{n}$$

$$a\bar{a}^{nn} = \frac{11}{a\ddot{a}^{n}} \qquad \qquad =$$

$$ab\bar{b}^{nn} = \frac{n}{a\ddot{a}^{n}} \qquad \qquad \frac{n}{n}$$

$$a\ddot{a}\ddot{a}\ddot{a} \qquad \qquad \frac{n}{n} \qquad \qquad \frac{n}{n}$$

Properties of Radicals

$$\sqrt[n]{aab}ab \qquad \sqrt{\qquad} \sqrt{\qquad} \sqrt{\qquad}$$

$$\sqrt[n]{naa} = \sqrt{\qquad} \sqrt[n]{aa} \frac{n\sqrt{\qquad}}{\sqrt[n]{b}}$$

$$\sqrt[n]{aa} = \sqrt[n]{b} \text{ is odd}$$

$$\sqrt[n]{aa} = \sqrt[n]{b} \text{ is even}$$

Properties of Inequalities

If abachood $\frac{ab}{cc}$ If abachood and $\frac{ab}{cc}$ If abachood and $\frac{ab}{cc}$

Properties of Absolute Value

$$|a| = \begin{bmatrix} aa & \text{if } 0 \ge \\ & & \text{if } 0 \end{bmatrix}$$

$$|a|a \Rightarrow 0 = \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow | \qquad | \qquad | \qquad |$$

$$|ab|ab \Rightarrow |$$

Distance Formula

If P_{YY} (), and P_{YY} (), are two points the distance between them is

$$dP(P_{122}(y)) = \sqrt{(-)^{22} ()}$$

Complex Numbers

Logarithms and Log Properties

Definition

*yxx***b**og_b is equivalent to

Example

 $log 1253 = because 5125^3$

Special Logarithms Inlognatural log

loglogcommon log

where $e = 2.718281828 \oplus$

Logarithm Properties

 $\log 1 \log 10$

 $\log_b b \dot{x} b x = \log_b x$

 $\log \log (x/x) =$

logloghog=+

 $\log \log \log x = xy$

The domain of $\log_b x$ is x > 0

Factoring and Solving

Factoring Formulas

 $x \overrightarrow{a} x \overrightarrow{a} x \overrightarrow{a} x \overrightarrow{a} = ($)(

 x^{22} xaxa+ $\left(\right)^2$

 $x \frac{\partial^2 x}{\partial x} \frac{\partial^2 x}{\partial x} \qquad \qquad \left(\qquad \right)^2$

 $x^{2}bx^{2}abxux^{2}b \qquad ()(x^{2}x^{2}a^{2}x^{2}ux^{2}u \qquad ()^{3}$

 $x^{\frac{3223}{3}} \partial xa$ ()

 $x \frac{3322}{3} \frac{1}{3} \frac{1}{3}$

 $x \stackrel{3322}{ax} = x \stackrel{322}{ax} = x \stackrel$

 $x \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} + ($)(

If *n* is odd then, $xaxaxa(+)(-121 \otimes)$

 $x_a^{nn}+$

 $= (xaxa)(axa^{n+12231}$

Quadratic Formula

Solve axbx = 0, $a \neq 0$ $-bba\sqrt{\frac{2}{3}}$

2*a*

If bac 40 - Two real unequal solns.

If bac-40 - Repeated real solution.

If bac 40 - Two complex solutions.

Square Root Property

If
$$xp^2 = then xp = \pm \sqrt{ }$$

Absolute Value Equations/Inequalities

If *b* is a positive number

pbpbpb = or

| pbbpb <<

pbpbpb > or

Completing the Square

Solve $26 \div 90 =$

- (1) Divide by the coefficient of the x^2 x^2x-350
- (2) Move the constant to the other side. $x_x^2 \frac{2}{3}5$
- (3) Take half the coefficient of x, square it and add it to both sides

$$x^{2}x^{2}-355=1339^{2}29$$

(4) Factor the left side

(5) Use Square Root Property

$$x - \frac{32929}{242} \sqrt{\frac{1}{242}} \sqrt{\frac{1}{242}$$

(6) Solve for x

Functions and Graphs

Constant Function

yafxa or ()

Graph is a horizontal line passing through the point (0, a).

Line/Linear Function

ymxbfxmxb or ()

Graph is a line with point (0,b) and slope m.

Slope

Slope of the line containing the two points (xy_i) and (xy_i) is

$$m = \frac{yy_1^-}{xx_1^-} \quad \frac{\text{rise}}{\text{run}}$$

Slope – intercept form

The equation of the line with slope m and y-intercept (0,b) is

yını Point – Slope form

The equation of the line with slope m and passing through the point $(x_k \mid s)$

Parabola/Quadratic Function

yaxhhfxaxhh 22

()

The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex at (hk].

Parabola/Quadratic Function

yaxbxefxaxbxc ()

The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex

at
$$\frac{bb}{2aa}$$
, $f = 0$.

Parabola/Ouadratic Function

 $xaybye^{22}yaybyc$ ()

The graph is a parabola that opens right if a > 0 or left if a < 0 and has a vertex

at
$$g = bb$$
 _ $22a$, —

Circle

 $(xhykh)^{22} = ($

Graph is a circle with radius r and center $(h \not k)$

Ellipse

$$\frac{\left(xhyk\right)^{22}}{ak^2} + \frac{\left(\begin{array}{c} \\ \end{array}\right)}{1}$$

Graph is an ellipse with center (hk) with vertices a units right/left from the center and vertices b units up/down from the center.

Hyperbola

$$\frac{\left(xhyk\right)^{22}}{ak^2} - \stackrel{(}{=})$$

Graph is a hyperbola that opens left and right, has a center at (hk) vertices a units left/right of center and asymptotes that pass through center with slope $\pm \frac{b}{a}$.

Hyperbola

$$\frac{\left(ykxh\right)^{22}}{b\ddot{a}^{22}} - \frac{\left(\right)^{22}}{} \quad 1$$

Graph is a hyperbola that opens up and down, has a center at (hk,) vertices b units up/down from the center and asymptotes that pass through center with slope $\pm \frac{b}{a}$.

Common Algebraic Errors

Error	Reason/Correct/Justification/Example
$\frac{2}{0} \neq 0$ and $\frac{2}{0} \neq 2$	Division by zero is undefined!
0	-3° , $(-3)^{\circ}$ Watch parenthesis!
$(x\hat{x}^3)^3 \neq$	(xx)xx=
	$ \frac{1111}{-=\neq +=} 2 $ $ 2111 #$
	2111 A more complex version of the previous
$\frac{1}{xx^3+} \neq x\bar{x}^{23}$	error.
$\frac{\cancel{a} + bx}{\cancel{a}} \neq 1 bx$	$ \frac{abxabxbx}{aaaa} = += + - 1 1 $
Á	Beware of incorrect canceling!
-a(axa1)	-a(axa1) Make sure you distribute the "-"!
$\left(x \frac{\partial x}{\partial t}\right)^2$ 22	$(xava)^2 axava$)() 22 2
$\sqrt{x^{22}xa}$	52 53 4 3 434 2222 \(\sqrt{1}
\sqrt{x} dixta+ $\sqrt{-}$	See previous error.
$(xax \frac{\pi}{4})^n$ and $\sqrt[n]{xax \frac{\pi}{4}} + \sqrt{}$	More general versions of previous three errors.
	2(3)21212=+(22)
$2(22 + 2)^{2}$ ()	(2 2 484) ² + 2
	Square first then distribute!
$(232H \neq)^{22}$ ()	See the previous example. You can not factor out a constant if there is a power on the parethesis!
$\sqrt{-\frac{2222}{3}}$	$\sqrt{-x^{\frac{2222}{44444}}}$ () ¹ / ₂ Now see the previous error.
$\frac{aab}{c} \neq \frac{b}{c}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{a}{cb} \neq ac$	