CHAPTERA4

Designing OOP
Solutions: A Case Study

Designing solutions for an application is not an easy endeavor. Becoming an accomplished
designer takes time and a conscious effort, which explains why many developers avoid it like the
plague. You can study all the theories and know all the buzzwords, but the only way to truly
develop your modeling skills is to roll up your sleeves, get your hands dirty, and start modeling. In

this chapter, you will go through the process of modeling an office - supply ordering system.
Although this is not a terribly complex application, it will serve to help solidify the modeling
concepts covered in the previous chapters. By analyzing the case st udy, you will also gain a better

understanding of how a model is developed and how the pieces fit together.
After reading this chapter, you should be familiar with the following:
How to model an OOP solution using UML.
Some common OOP design pitfalls to avoid.

Developing an OOP Solution

In the case - study scenario, your company currently has no standard way for departments to order

office supplies. Each department separately implements its own ordering process. As a result, it is

next to impossible to trac k company - wide spending on supplies, which impacts the ability to

forecast budgeting and identify abuses. Another problem with the current system is that it does

not allow for a single contact person who could negotiate better deals with the various vendor s.
As a result, you have been asked to help develop a company - wide office - supply

ordering (OSO) application. To model this system you will complete the following steps:

Create an SRS.
Develop the use cases.
Diagram the use cases.
Model the classes.

Model the user interface design.

Creating the System Requirement Specification
After interviewing the various clients of the proposed system, you develop the SRS. Remember
from Chapter 2 that the SRS scopes the system requirements, defines the system boundaries, and
identifies the users of the system.
You have identified the following system users:

55

CHAPTERYDESIGNING OOP SOLUTIONS: A CASE

56

Purchaser. Initiates a request for supplies.

Department manager. Tracks and approves supply requests from department
purchasers.

Supply vendor processing application. Receives order files generated by the
system.

Purchase manager. Updates the supply catalog, tracks supply requests, and
checks in delivered items.

You have identified the following system requirements.

Users must log in to the system by supplying a userna me and password.

Purchasers will view a list of supplies that are available to be ordered.

Purchasers will be able to filter the list of supplies by category.

Purchasers can request multiple supplies in a single purchase request.

A department manager can request general supplies for the department.

Department managers must approve or deny supply requests for their
department at the end of each week.

If department managers deny a request, they must supply a short explanation
outlining the reason for the den ial.

Department managers must track spending within their departments and ensure
there are sufficient funds for approved supply requests.

A purchase manager maintains the supply catalog and ensures it is accurate and
current.

A purchase manager checks in t he supplies when they are received and
organizes the supplies for distribution.

Supply requests that have been requested but not approved are marked with a
status of pending.

Supply requests that have been approved are marked with a status of approved
and an order is generated.

Once an order is generated, a file containing the order details is placed in an
order queue. Once the order has been placed in the queue, it is marked with a
status of placed.
A separate supply vendor processing application will retr ieve the order files
from the queue, parse the documents, and distribute the line items to the
appropriate vendor queues. Periodically, the supply vendor processing
application will retrieve the orders from a vendor queue and send them to
the vendor.

When all the items of an order are checked in, the order is marked with a
status of fulfilled and the purchaser is informed that the order is ready for
pick up.

Developing the Use Cases

After generating the SRS and getting the appropriate system users to sign off on it, the next task

is to develop the use cases, which will define how the system will function from the users’
perspective. The first step in developing the use cases is to def ine the actors. Remember from
Chapter 2 that the actors represent the external entities (human or other systems) that will

CHAPTERYADESIGNING OOP SOLUTIONS: A CASE

interact with the system. From the SRS, you can identify the following actors that will interact
with the system:

Purchaser
Departmen t manager
Purchase manager

Supply vendor processing application
Now that you have identified the actors, the next step is to identify the various use cases
with which the actors will be involved. By examining the requirement statements made in the
SRS,you EA£0dT EEOUT EPdUI EdUAxT OUGdUBEJE ABEBr d« OxdEYAOONEpPdUI Ed
Ul EdGPBUEOdCPd@UOONPT Ol d £#d UGEx OAOEd AOEd OABBUOXE" di OET E £L
Table 4 - 1 identifies the use cases for the OSO application.

Table 4 - 1. Use Cases for the OSO Application

Name Actor(s) Description

Login Purchaser, Department Users see a login screen. They then enter their
manager, Purchase username and password. They either click Log
manager In or Cancel. After login, they see a screen

containing product information.

View Supply Catalog Purchaser, Department Users see a catalog table that contains a list of
manager, Purchase supplies. The table contains information such
manager as the supply name, category, description, and

cost. Users can filter supplies by category.

(continueq)

57

CHAPTERYDESIGNING OOP SOLUTIONS: A CASE

Table 4 - 1. (continued)

Name

Actor(s)

Description

Purchase Request

Department Purchase

Request

Request Review

Track Spending

Maintain Catalog

Iltem Check In

Order Placement

Purchaser, Department
manager

Department manager

Department manager

Department manager

Purchase manager

Purchase manager

Supply vendor
processing application

Purchasers select items in the table and click a
button to add them to their cart. A separate
table shows the items in their cart, the number
of each item requested and the cost, as well as
the total cost of the request.

Department managers select items in the table
and click a button to add them to their cart. A
separate tab le shows the items in their cart,
the number of each item requested and the
cost, as well as the total cost of the request.

Department managers see a screen that lists all
pending supply requests for members of their
department. They review the requests and
mark them as approved or denied. If they deny
the request, they enter a brief explanation.

Department managers see a screen that lists
the monthly spending of department members
as well as the running total of the department.

The purchase manager has the ability to update
product information, add products, or mark
products as discontinued. The administrator
can also update category information, add
categories, and mark categories as
discontinued.

The purchase manager sees a screen for
entering the order number. The purchase
manager then sees the line items listed for the
order. The items that have been received are
marked. When all the items for an order are
received, it is marked as fulfilled.

The supply vendor processing application
checks the queue for outgoing order files. Files
are retrieved, parsed, and sent to the
appropriate vendor queue.

Diagramming the Use Cases

Now that you have identified the various use cases and actors, you are ready to construct a

diagram of the use cases. Figure 4

which was introduced in Chapter 2.

58

- 1 shows a preliminary use case model developed with UMLet,

CHAPTERYADESIGNING OOP SOLUTIONS: A CASE

0S0 Use Case
\ Maintain |~
Catalog
View Supply
Purchaser Catalog Purchase
Manager
Purchase
T Request
\ Order Placement —
Review
Request
Department Supply Vendor
Manager Application
Track
Spending

Figure 4 - 1. Preliminary OSO use case diagram

After you have diagrammed the use cases, you now look for any relationships that may exist
between the use cases. Two relationships that may exist are the includes relationship an d the
extends relationship. Remember from the discussions in Chapter 2 that when a use case includes
another use case, the use case being included needs to run as a precondition. For example, the

Login use case of the OSO application needs to be included i n the View Supply Catalog use case.

The reason you make Login a separate use case is that the Login use case can be reused by one
or more other use cases. In the OSO application, the Login use case will also be included with the
Track Spending use case. Fi gure 4 - 2 depicts this includes relationship.

v Note In some modeling tools, the includes relationship may be indicated in the use case diagram
by the uses keyword.

59

60

CHAPTERYDESIGNING OOP SOLUTIONS: A CASE

0OSO Use Case

7’ AN

«includes» «includes»
H N

Track View Supply
Spending Catalog

Figure 4 - 2. Including the Login use case

The extends relationship exists between two use cases when, depending on a condition, a
use case will extend the behavior of the initial use case. In the OSO application, when a
manager is making a purchase request, she can indicate that she will be requesting a purchase
for the department. In this case, the Department Purchase Request use case becomes an

extension of the Purchase Request use case. Figure 4 - 3 diagrams
this extension.

Diirnhaca

Department
Purchase Request

Figufe 4 «@xteXaaging the Purchase Request use case

After analyzing the s ystem requirements and use cases, you can
make the system development more manageable by breaking up the application and developing
it in phases. For example, you can develop the Purchase Request portion of the application
first. Next, you can develop Requ est Review portion, and then the Item Check In portion. The
rest of this chapter focuses on the Purchase Request portion of the application. Employees and

department managers will use this part of the application to make purchase requests. Figure 4
4 shows the use case diagram for this phase.

Purchaser

Department
Manager

As

/

0S0 Use Case

<<includes>>

View Supply
Catalog

A

<<includes>>

Purchase
Request

1
<<extends>>

Department
Purchase Reques

Figure 4-4. Purchase Request use case diagram

Developing the Class Model

Developing the class model involves several tasks. You begin by identifying the classes, and then
you add attributes, associations, and behaviors.

Identifying the Classes

identified the various use cases, you can start identifying the classes the system
needs to include to carry out the functionality described in the use cases. To identify the classes,

you drill down into each use case and define a series of steps needed to carry it out. It is also
helpful to identify the noun phrases in the use case descriptions. The noun phrases are often good

indicators of the classes that will be needed.
For example, the following steps describe the View Supply Catalog use case:

After you have

CHAPTERYADESIGNING OGPLUTIONS: A CASE S™

User has logged in and been assigned a user status level.
(This is the precondition.)

Users are presented with a catalog table that contains a list of
supplies. The table contains information such as the supply name,

61

CHAPTERYDESIGNING OOP SOLUTIONS: A CASE

category, description, and cost.

Users can filter supplies by category.

Users are given the choice of logging out or making a purchase request.
(This is the postcondition.)

From this description, you can identify a class that will be responsible for retrieving product
information from the database and filtering the products being displayed. The name of this class
will be the ProductCatalog class.

Examining the noun phrases in the use case descriptions dealing with making purchase
requests reveals the candidate classes for the OSO application, as lis ted in Table 4 - 2.

Table 4 - 2. Candidate Classes Used to Make Purchase Requests

Use Case Candidate Classes

Login User, username, password, success, failure

View Supply Catalog User, catalog table, supplies, information, supply
name, category, description, cost

Purchase Request Purchaser, items, cart, number, item requested,
cost, total cost

Department Purchase Request Department manager, items, cart, number, item
requested, cost, total cost, department purchase
request

Now that you have identified the candidate classes, you need to eliminate the classes that
indicate redundancy. For example, a reference to items and line items would represent the same
abstraction. You can also eliminate classes that represent attributes rather than objects.
Username, pa ssword, and cost are examples of noun phrases that represent attributes. Some
classes are vague or generalizations of other classes. User is actually a generalization of
purchaser and manager. Classes may also actually refer to the same object abstraction but
indicate a different state of the object. For example, the supply request and order represent the
same abstraction before and after approval. You should also filter out classes that represent
implementation constructs such as list and table. For exampl e, a cart is really a collection of

order items for a particular order.
Using these elimination criteria, you can whittle down the class list to the following candidate

classes:

62

Employee
DepartmentManager
“ Order

Orderltem

ProductCatalog

CHAPTERYADESIGNING OGPLUTIONS: A CASE S™

Product
You can also include classes that represent the actors that will interact with the system.
These are special classes called actor classes and are included in the class diagram to model the
interface between the system and the actor. For example, you could designate a Purchaser(Ul)
actor class that represents the GUI that a Purchaser (Employee or DepartmentManager) would
interact with to make a purchase request. Because these classes are not actually part of the
system, the internal implementations of these classes are encapsulated, and they are treated as
black boxes to the system.

You can now start formulating the class diagram for the Purchase Request portion of

the OSO application. Figure 4 - 5 shows the preliminary class diagram for the OSO
application.

Purchaser (Ul Employee ProductCatalo Product

DepartmentManag Order Orderltem

Figure 4 - 5. Preliminary OSO class diagram

Adding Attributes to the Classes

The next stage in the development of the class model is to identify the level of abstraction the
classes must implement. You determine what state information is relevant to the OSO application.

This required state information will be implemented through the attributes of the class. Analyzing

the system requirements for the Employee class reveals the need for a login name, password,
and department. You also need an identifier such as an employee ID to uniquely identify various
employees. An interview with managers revealed the need to include the first and last names of

the employee so that they can track spend ing by name. Table 4 - 3 summarizes the attributes that
will be included in the OSO classes.

63

CHAPTERYDESIGNING OOP SOLUTIONS: A CASE

Table 4 - 3. OSO Class Attributes

Class Attribute Type
Employee EmployeelD Integer
LoginName String
Password String
Department String
FirstName String
LastName String
DepartmentManager EmployeelD Integer
LoginName String
Password String
Department String
FirstName String
LastName String
Order OrderNumber Long
OrderDate Date
Status String
Orderltem ProductNumber String
Quantity Short
UnitPrice Decimal
Product ProductNumber String
ProductName String
Description String
UnitPrice Decimal
Category String
VendorCode String
ProductCatalog None

64

CHAPTERYADESIGNING OGPLUTIONS: A CASE S™

Figure 4 - 6 shows the OSO class diagram with the class attributes. | have left out the
attributes for the DepartmentManager class. The DepartmentManager class will probably inherit
the attributes listed for the Employee class.

Purchaser (UIl) Order

OrderNo:Long
OrderDate:Date

Employee P
Employeeld:intege Status:String
r
LoginName:String
Password:String Orderltem
E_eptﬂtme”gts_t””g ProductNo:Strin
Irstivame.-tring Quantity:Intege!
LastNamelLString HD A

ProductCatalog UnitPrice:Real

Product

ProductNo:String
ProductName:Stri
ng
Description:String
UnitPrice:Decimal
Category:String
VendorGode:Strin
g

DepartmentManager

Figure 4 - 6. The Purchase Request component class diagram with attributes added

Identifying Class Associatis

The next stage in the development process is to model the class associations that will exist
in the OSO application. If you study the use cases and SRS, you can gain an understanding of
what types of associations you need to incorporate into the class structural design.

v Note You may find that you need to further refine the SRS to expose the class associations.

For example, an employee will be associated with an order. By examining the
multiplicity of the association, you discover that an employee can have multiple orders, but
an order can be associated with only one employee. Figure 4 - 7 models this association.

65

CHAPTERYDESIGNING OOP SOLUTIONS: A CASE

makes an b
1 0.n Order

Figure 4 - 7. Depicting the association between the Employee class and the Order class

Employee

As you start to identify the clas s attributes, you will notice that the Employee class and
the DepartmentManager class have many of the same attributes. This makes sense, because
a manager is also an employee. For the purpose of this application, a manager represents an
employee with spec ialized behavior. This specialization is represented by an inheritance
relationship, as shown in Figure 4 - 8.

66

CHAPTERYADESIGNING OGPLUTIONS: A CASE S™

Employee

7

«inherits»

DepartmentManager

Figure 4 - 8. The DeparimentManager class inheriting from the Employee class
The following statements sum up the associations in the OSO class structure:

An Order is a collection of Orderltem objects.
“ An Employee can have multiple Order objects.

An Order is associated with one Employee.

The ProductCatalog is associated with multiple Product objects.
A Product is associated with the ~ ProductCatalog.

An Orderltem is associated with one Product.

A Product may be associated with multiple Orderltem objects.

A DepartmentManager is an Employee with specialized behavior.

Figure 4 - 9 shows these various assockig;tions (excluding the class attribu > tes for clarity).
makes an contains
3 Employee i o Order 1 = Orderitem
1 ﬁk 1
Purchaser (Ul) «inherits»
| I ProductCatalog ::ontaln1s : Product ——*: ::‘omalns

1| DepartmentManager

Figure 4 - 9. The Purchase Request component class diagram with associations added

Modeling the Class Behaviors

Now that you have sketched out the preliminary structure of the classes, you are ready to
model how these classes will interact and collaborate. The first step in this process is to drill
down into the use case descriptions and create a more detailed scenario of how the use case
will be carried out. The following scenario describes one possible sequence for carrying out th
Login use case.

1. The user is presented with a login dialog box.
2. The user enters a login name and a password.
3. The user submits the information.

67

CHAPTERYDESIGNING OOP SOLUTIONS: A CASE

4. The name and password are checked and verified.

5. The user is presented with a supply request screen.

Although this scenario depicts the most common processing involved with the Login use case,
you may need other scenarios to describe anticipated alternate outcomes. The following scenario
describes an alternate processing of the Login use case:

1. The useris presente d with a login dialog box.
The user enters a login name and a password.

The user submits the information.

The user is informed of the incorrect login information.

2
3
4. The name and password are checked but cannot be verified.
5
6. The user is presented with a login dialog box again.

7

The user either tries again or cancels the login request.
At this point, it may help to create a visual representation of the scenarios outlined for the use
case. Remember from Chapter 3 that activity diagrams are often used to visualize use case
processing. Figure 4 - 10 shows an activity diagram constructed for the Login use case scenarios.

Verification
[Try Again]

[user not verified] .~ Display Login
~{__Error Message

[user verified] [Cancel Login]

9)<

Figure 4 - 10. An activity diagram depicting the Login use case scenarios

After analyzing the process involved in the use case scenarios, you can now turn your
attention to assigning the necessary behaviors to the classes of the system. To help identify the
class behaviors and interactions that need to occur, you construct a sequence diagram, as
discussed in Chapter 3.

68

CHAPTERYADESIGNING OGPLUTIONS: A CASE S™

Figure 4 - 11 shows a sequence diag ram for the Login use case scenarios. The Purchaser (Ul)
class calls the Login method that has been assigned to the Employee class. The message returns

information that will indicate whether the login has been verified.
Purchaser(Ul) Employee

LoginLogin Response

Figure 4 - 11. A sequence diagram depicting the Login use case scenarios

Next, let's analyze the View Supply Catalog use case. The following scenario describes the use
case:

1. User logged in and has been verified.

2. User views a catalog table that contains product information, including the supply name,
category, description, and price.

3. User chooses to filter the table by category, selects a category, and refreshes the table.

From this scenario, you can see that you need a method of the ProductCata log class that
will return a listing of product categories. The Purchaser class will invoke this method. Another
method the ProductCatalog class needs is one that will return a product list filtered by category.
The sequence diagram in Figure 4 - 12 shows th e interaction that occurs between the Purchaser

(S])) class and the ProductCatalog class.
Purchaserfl) ProductCatalog
—t— I
ListCategories e
g D
55 CategoryList
"~ R
ListProducts -
D
ListProduct
N

Figure 4 - 12. A sequence diagram depicting the View Supply Catalog sceﬁaﬂ'o

69

CHAPTERYDESIGNING OOP SOLUTIONS: A CASE

70

CHAPTERYADESIGNING OGPLUTIONS: A CASE S™

The following scenario was developed for the Purchase Request use case:
1. A purchaser has logged in and has been verified as an employee.

2. The purchaser selects items from the product catalog and adds them to the
order request (shopping cart), indicating the number of each item
requested.

3. After completing the
the order.

item selections for the order, the purchaser submits

4. Order request information is updated, and an order ID is generated and
returned to the purchaser.

From the scenario, you can identify an Addltem method of the Order class that needs to be
created. This method will accept a product ID and a quantity, and then return the subtotal of the
order. The Order class will need to call a method of the Orderltem class, which will create an

instance of an order item. You also need a SubmitOrder method of th e Order class that will
submit the request and the return order ID of the generated order. Figure 4 - 13 shows the
associated sequence diagram for this scenario.
Purchaser(Ul) Order Orderitem
: I |
——t— I |
CreateOrder — '
> :
|
< 1
N |
1 I
I |
Additen N CreatoOrderttem
P SubTotal p=
N~
B I
SubmitOrder — :
> :
I
- OrderiD :
< L |
0 m I I
I
I

Figure 4I - 13. Asequernce diagram dep/bilhg the Purchase Request scenario

Some other scenarios that need to be included are deleting an item from the shopping cart,
changing the quantity of an item in the cart, and canceling the order process. You will also need
to include similar scenarios and create si
use case. After analyzing the scenarios and interactions that need to take place, you can
develop a class diagram for the Purchase Request portion of the application, as shown in Figure

4-14.

milar methods for the Department Purchase Request

71

CHAPTERYADESIGNING OOP SO Employee makes Order Orderltem

72

Employeeld:Integer OrderNo:Long ProductNo:String
LoginName:String OrderDateiDate Quantity:Integer
Password:String 1o, Status:String) UnitPrice:Real

1 Department:String Additemo contains
Purchaser (Ul) FirstName:String R ltemO < 1.n
LastName:String SStr)nn?i\tlgrg?rQ h
LoginQ
) . i -4 contains
«inherits»_| ProductCatalc caoritarl]ns Product
h ProductNo:String
DepartmentManaget ProductName:String
Category:String
ApprovePurchase(Description:String

UnitPrice:Real
VendorCode:String

Figure 4 - 14. Purchase Request class diagram

Developing the User Interface Model Design

At this point in the application design process, you don't want to commit to a particular GUI
implementation (in other words, a technology - specific one). It is helpful, however, to model
some of the common elements and functionality required of a GUI for the application. This will
help you create a prototype user interface that you can use to verify the business logic design
that has been developed. The users will be able to interact with the prototype and provide
feedback and verification of the logical design.

The first prototype screen that you need to implement is the one for logging in. You can
construct an activity diagram to help define the activities the user needs to perform when
logging in to the system, as shown in Figure 4 - 15.

CHAPTERYADESIGNING OGPLUTIONS: A CASE S™

~(Enter
~_ User Name)

/
Present Enter
Error Message Password
y

Submit Cancel

[not verified] "\ [verified] >®

Figure 4 - 15. An activity diagram depicting user login activities

Analyzing the activity diagram reveals that you can implement the login screen as a fairly
generic interface. This screen should allow the user to enter a username and password. It
should include a way to indicate that the user is logging in as either an employee or a
manager. The final requirement is to include a way for the user to abort the login process.
Figure 4 - 16 shows a prototype of the login screen.

050 Login [_][O][X]

MNarme: MName QK
Password: | ssssxsssxx Conce)
M Manager

Figure 4 - 16. Login screen prototype

The next screen you need to consider is the product catalog screen. Figure 4 - 17 depicts
the activity diagram for viewing and filtering the products.

73

CHAPTERYDESIGNING OOP SOLUTIONS: A CASE

\

/
Select
Category
Y
View
Products
/
Cancel
Order

Figure 4 - 17. An activity diagram depicting activities for viewing proalcts

The activity diagram reveals that the screen needs to show a table or list of products and
product information. Users must be able to filter the products by category, which can be
initiated by selecting a category from a category list. Users also need to be able to initiate an
order request or exit the ap plication. Figure 4 - 18 shows a prototype screen that can be used to
view the products.

74

~ ONS:ACASE S

QOS50 Product Catalog

LIO]X]

Category: Categary 1 \ 4
[D !Pnduc'l' Description Price |
M Praduct 1 Description 1 Price 1
[} Product 2 Description 2 | Price 2

Add Cancel

Figure 4 - 18. View products screen prototype

The final screen that needs to be prototyped for this part of the application is the shopping

cart interface. This will fa

needs to allow the user to submit the order or abort an order request. Figure 4
prototype of the order request screen.

Oreder Details Q@
— e I.‘,,,,A, AT
(] i Product Price Quantity Subtotal
[:] Praduct 1 Price 1 1 Subtotal 1
M Product 2 Price 2 2 ' Subtotal 2
E] Product 3 Price 3 1 | Subtotal 3
Add Remove Submit Cancel

Figure 4 - 19. Order request screen prototype

cilitate the adding and removing items from an order request. It also

- 19 shows a

That completes the preliminary design for this phase of the OSO application. You applied
what you learned in Chapters 2 and 3 to model the design. Next, let's review some common
mistakes to avoid during this process.

75

CAVBHHRG" SoiiéCuthirmdi OOP Design Pitfalls

When you start to model your own OOP designs, you want to be sure to follow good
practice. The following are some of the common traps that you should avoid:

Confusing moadeling with documenting. The main value in modeling is not the
diagrams produced, but rath er the process you go through to produce the
diagrams.

Not involving the users in the process: It is worth emphasizing that users are the
consumers of your product. They are the ones who define the business
processes and functional requirements of the system.

Trying to model the whole solution at one timer. When developing complex
systems, break up the system design and development into manageable
components. Plan to produce the software in phases. This will provide for
faster modeling, developing, testing, and release cycles.

Striving o create a perfect model: No model will be perfect from the sta rt.
Successful modelers understand that the modeling process is iterative,

and models are continuously updated and revised throughout the
application development cycle.

Thinking there is only one true modeling methodology. Just as there are many
different equally viable OOP languages, there are many equally valid
modeling methodologies for developing software. Choose the one that works
best for you and the project at hand.

Reinventing the wheel: Look for patterns and reusability. If you analyze many
of the business processes that applications attempt to solve, a consistent set
of modeling patterns emerge. Create a repository where you can leverage
these existing patterns from project to project and from programmer to
programmer.

Letting the data model drive the business logic model: 1t is generally a bad idea to
develop the data model (database structure) first and then build the business
logic design on top of it. The solution designer should first ask what business
problem needs to be solved, and then build a data model to solve the
problem.

Confusing the problem domain model with the implementation model: You should
develop two distinct but complementary models when designing applications.

A domain model design describes the scope of the project and the processing
involved in implementing the business solutions. This includes what objects

will be involved, their properties and behaviors, and how they interact and
relate to each other. The domain model should be implementation - agnostic.
You should be able to use the same domain model as a basis for several
different architecturally specific implementations. In other words, you should
be able to take the same domain model and implement it using a Visual Basic
rich - client, two - tier architecture or a C# (or Java, for that matter) n - tier
distributed web application.

Summary

Now that you have analyzed the domain model of an OOP application, you are ready to transform
the design into an actual implementation. The next part of this book will introduce you to the C#
language. You will look at the .NET Framework and see how C# applications are bui It on top of
the framework. You will be introduced to working in the Visual Studio IDE and become familiar

with the syntax of the C# language. The next section will also demonstrate the process of
implementing OOP constructs such as class structures, objec t instantiation, inheritance, and
polymorphism in C#. You will revisit the case study introduced in this chapter in Chapter 14, at

which time you will look at transforming the application design into actual implementation code.

76

CHAPTERS

Introducinghe .NET
Framework and Visual Studio

Business application programming has evolved from a two - tier, tightly coupled model into a
multitiered, loosely coupled model, often involving data transfer over the Internet or a corporate
intranet. In an effortto allow programmers to be more productive and deal with the complexities
of this type of model, Microsoft developed the .NET Framework. To effectively program in C#,
you need to understand this underlying framework upon which it is built.

After reading this chapter, you should be familiar with the following:

The .NET Framework.

The features of the Common Language Runtime (CLR).
How the just - in- time (JIT) compiler works.

The .NET Framework base class library.

Namespaces and assemblies.

The features of the Visual Studio integrated development environment.

Introducing the .NET Framework

The .NET Framework is a collection of fundamental classes designed to provide the common
services needed to run applications. Let's look at the goals of the .NET Framework and then
review its components.

Goals of the .NET Framework

Microsoft designed the .NET Framework with certain goals in mind. The following sections
examine these goals and how the .NET Framework achieves them.

Support of Industry Standards

Microsoft wanted the .NET Framework to be based on industry standards and practices. As a
result, the framework relies heavily on industry standards such as the Extensible Markup
Language (XML) and
Simple Object Access Protocol (SOAP). Microsoft has also submitted a Common Language
Infrastructure (CLI) Working Document to the European Computer Manufacturers Association
(ECMA), which oversees many of the common standards in the computer industry.

The CLI is a set of specifications needed to create compilers that conform to t he .NET
Framework. Third - party vendors can use these specifications to create .NET - compliant language
compilers; for example, Interactive Software Engineering (ISE) has created a .NET compiler for

77

78

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

Eifle. Third - party vendors can also create a CLR that will allow .NET - compliant languages to run
on different platforms. One example, Mono is an open source, cross platform implementation of the
CLR that gives C# applications the ability to run on the Linux platform.

Extensibility

To create a highly productive environment in which to program, Microsoft realized the .NET
Framework had to be extensible. As a result, Microsoft has exposed the framework class hierarchy
to developers. Through inheritance and interfaces, you can easily access and extend the
functional ity of these classes. For example, you could create a button control class that not only
inherits its base functionality from the button class exposed by the .NET Framework, but also
extends the base functionality in a unique way required by your applicati on.

Microsoft has also made it much easier to work with the underlying operating system. By
repackaging and implementing the Windows operating system application programming interface
(API) functions in a class - based hierarchy, Microsoft has made it more i ntuitive and easier for OOP
programmers to work with the functionality exposed by the underlying operating system.

Unified Programming Models

Another important goal Microsoft incorporated into the .NET Framework was cross - language
independence and integrat ion. To achieve this goal, all languages that support the Common
Language Specification (CLS) compile into the same intermediate language, support the same set of
basic data types, and expose the same set of code - accessibility methods. As a result, notonl y can
classes developed in the different CLS - compliant languages communicate seamlessly with one
another, but you can also implement OOP constructs across languages. For example, you could
develop a class written in C# that inherits from a class written us ing Visual Basic (VB). Microsoft
has developed several languages that support the .NET Framework. Along with C#, the languages

are VB, managed G+, JScript, and F#. In addition to these languages, many third - party vendors
have developed versions of other p opular languages designed to run under the .NET Framework,
such as Pascal and Python.

Easier Deployment

Microsoft needed a way to simplify application deployment. Before the development of the .NET
Framework, when components were deployed, component inform ation had to be recorded in the
system registry. Many of these components, especially system components, were used by several
different client applications. When a client application made a call to the component, the registry

was searched to determine the metadata needed to work with the component. If a newer version of
the component was deployed, it replaced the registry information of the old component. Often, the

new components were incompatible with the old version and caused existing clients to fail. Y ou
have probably experienced this problem after installing a service pack that ended up causing more
problems than it fixed!

The .NET Framework combats this problem by storing the metadata for working with the
component in a manifest, which is packaged in the assembly containing the component code. An
assembly is a package containing the code, resources, and metadata needed to run an
application. By default, an assembly is marked as private and placed in the same directory as the
client assembly. This ensur es that the component assembly is not inadvertently replaced or
modified and also allows for a simpler deployment because there is no need to work with the
registry. If a component needs to be shared, its assembly is deployed to a special directory
referre d to as the Global Assembly Cache (GAC). The manifest of the assembly contains
versioning information, so newer versions of the component can be deployed side by side with
the older versions in the GAC. By default, client assemblies continue to request and use the
versions of the components they were intended to use. Older client assemblies will no longer fail
when newer versions of the component are installed.

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU.

Improved Memory Management

A common problem of programs developed for the Windows platform has been memory
management. Often, these programs have caused memory leaks. A memory leak occurs when a
program allocates memory from the operating system but fails to release the memory after it is
finished working with the memory. This problem is compounded when the program is intended to
run for a long time, such as a service that runs in the background. To combat this problem, the

.NET Framework uses nondeterministic finalization. Instead of relying on the applications to

deallocate the unused memory, the f ramework uses a garbage collection object. The garbage
collector periodically scans for unused memory blocks and returns them to the operating system.

Improved Security Model

Implementing security in today's highly distributed, Internet - based applications is an extremely
important issue. In the past, security has focused on the user of the application. Security
identities were checked when users logged in to an application, and their identities were passed
along as the application made calls to remote serve rs and databases. This type of security model
has proven to be inefficient and complicated to implement for today's enterprise - level, loosely
coupled systems. In an effort to make security easier to implement and more robust, the .NET
Framework uses the co ncept of code identity and code access.

When an assembly is created, it is given a unique identity. When a server assembly is
created, you can grant access permissions and rights. When a client assembly calls a server
assembly, the runtime will check the p ermissions and rights of the client, and then grant or deny
access to the server code accordingly. Because each assembly has an identity, you can also
restrict access to the assembly through the operating system. If a user downloads a component
from the We b, for example, you can restrict the component's ability to read and write files on the
user's system.

Components of the .NET Framework

Now that you have seen some of the major goals of the .NET Framework, let's take a look at the
components it comprises.

Common Language Runtime

The fundamental component of the .NET Framework is the CLR. The CLR manages the code
being executed and provides for a layer of abstraction between the code and the operating
system. Built into the CLR are mechanisms for the following:

- Loading code into memory and preparing it for execution.
Converting the code from the intermediate language to native code.
Managing code execution.

Managing code and user - level security.

Automating deallocation and release of memory.

Debugging and tracing code execution.

Providing structured exception handling.

Framework Base Class Library

Built on top of the CLR is the .NET Framework base class library. Included in this class

library are reference types and value types that encapsulate access to the system
functionality. 7jpes are data structures. A reference type is a complex type . for exam ple,
classes and interfaces. A value type is simple type . for example, integer or Boolean.
Programmers use these base classes and interfaces as the foundation on which they build
applications, components, and controls. The base class library includes types that

79

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

encapsulate data structures, perform basic input/output operations, invoke security
management, manage network communication, and perform many other functions.

Data Classes

Built on top of the base classes are classes that support data management. This set of classes is
commonly referred to as ADO.NET. Using the ADO.NET object model, programmers can access

and manage data stored in a variety of data storage structures through managed providers.

Microsoft has written and tuned the ADO.NET classes and object model to work efficiently in a
loosely coupled, disconnected, multitiered environment. ADO.NET not only exposes the data from

the database, but also exposes the metadata associated with the data. Data is exposed as a sort

of mini - relational databas e.

This means that you can get the data and work with it while disconnected from the data source,

and later synchronize the data with the data source.

Microsoft has provided support for several data providers. Data stored in Microsoft SQL
Server can be acc essed through the native SQL data provider. OLEDB and Open Database
Connectivity (ODBC) managed providers are two generic providers for systems currently
exposed through the OLEDB or ODBC standard APIs. Because these managed data providers do
not interface directly with the database engine but rather talk to the unmanaged provider, which
then talks to the database engine, using nonnative data providers is less efficient and robust than
using a native provider. Because of the extensibility of the .NET Framew ork and Microsoft's
commitment to open - based standards, many data storage vendors now supply native data
providers for their systems.

Built on top of the ADO.NET provider model is the ADO.NET Entity Framework. The Entity
Framework bridges the gap betweent he relation data structure of the database and the object
oriented structure of the programming language. It provides an Object/Relational Mapping (ORM)
framework
that eliminates the need for programmers to write most of the plumbing code for data access. The
framework provides services such as change tracking, identity resolution, and query translation.
Programmers retrieve data using Language Integrated Query (LINQ) and manipulate data as
strongly typed objects. Chapter 10 takes a detailed look at ADO.NET and data access.

Windows Applications

Prior to the .NET Framework, developing Windows GUIs was dramatically different depending
on whether you were developing using C++ or Visual Basic. Although developing GUIs in VB was
easy and could be accomplished very quickly, VB developers were isolated and not fully exposed
to the underlying features of the Windows API. On the other hand, although exposed to the full
features of the Windows API, developing GUIs in C++ was very tedious and time consuming. With
the .NET Framework Microsoft has incorporated a set of base classes exposing advanced Windows
GUI functionality equally among the .NET - compliant languages. This has allowed Windows GUI
development to become consistent across the various .NET - enabled programmi ng languages,
combining the ease of development with the full features of the API.

Along with Windows forms and controls, .NET Framework includes a set of classes collectively
referred to as the Windows Presentation Foundation (WPF). WPF integrates a rende ring engine
that is built to take advantage of modern graphics hardware. It also includes application
development features such as controls, data binding, layout, graphics, and animation. With the WPF
set of classes, programmers can create applications tha t provide an extremely rich user
experience. You will look more closely at building WPF based applications in Chapter 11.

Web Applications

The .NET Framework exposes a base set of classes that can be used on a web server to create
user interfaces and servi ces exposed to web - enabled clients. These classes are collectively
referred to as ASP.NET. Using ASP.NET, you can develop one user interface that can dynamically
respond to the type of client device making the request. At runtime, the .NET Framework takes
care of discovering the type of client making the request (browser type and version) and exposing

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU.

an appropriate interface. The GUIs for web applications running on a Windows client have become

more robust because the .NET Framework exposes much of the API functionality that previously
had been exposed only to traditional Windows Forms - based C++ and VB applications. Another
improvement in web application development using the .NET Framework is that server - side code
can be written in any .NET - compliant langu age. Prior to .NET, server - side code had to be written
in a scripting language such as VBScript or JScript.

In order to provide users with web - based applications that rival the feature - rich Windows -
based GUI applications, Microsoft has developed Silverligh t. Silverlight includes a subset of the
WPF technology, which greatly extends the elements in the browser for creating Ul. Silverlight
includes support for graphics, animation, media, advanced data integration, and multithreading.

Chapter 12 covers develop ing web applications with Silverlight.

Application Services

Included in the .NET Framework are base class and interface support for exposing services
that can be consumed by other applications. Previous to the .NET Framework, applications
developed in C++ and VB used COM technology. Because COM was based on binary standards,
application - to- application communication through firewalls and across the Internet was not easy to
implement. The proprietary
nature of the COM also limited the types of clients that co uld effectively use and
interact with applications exposing services through COM.

Microsoft has addressed these limitations by exposing services through Internet standards.
Included in the .NET Framework is a set of classes collectively referred to as the Windows
Communication Foundation (WCF). Using WCF, you can send data as messages from one
application to another. The message transport and content can be easily changed depending on
the consumer and environment. For example, if the service is exposed over the Web, a text -
based message over HTTP can be used. On the other hand, if the client is on the same
corporate network, a binary message over TCP can be used. Chapter 13 covers exposing and
consuming application services using WCF.

Working with the .NET Framework

To work with the .NET Framework, you should understand how it is structured and how
managed code is compiled and executed. .NET applications are organized and packaged into
assemblies. All code executed by the .NET runtime must be contained in an assembly.

Understanding Assemblies and Manifests

The assembly contains the code, resources, and a manifest (metadata about the assembly)
needed to run the application. Assemblies can be organized into a single file where all this
information is incorporate d into a single dynamic link library (DLL) file or executable (EXE) file,
or multiple files where the information is incorporated into separate DLL files, graphics files,
and a manifest file. One of the main functions of an assembly is to form a boundary f or types,
references, and security. Another important function of the assembly is to form a unit for
deployment.

One of the most crucial portions of an assembly is the manifest; in fact, every assembly
must contain a manifest. The purpose of the manifest i s to describe the assembly. It contains
such things as the identity of the assembly, a description of the classes and other data types the
assembly exposes to clients, any other assemblies this assembly needs to reference, and
security details needed to ru n the assembly.

By default, when an assembly is created, it is marked as private. A copy of the assembly
must be placed in the same directory or a bin subdirectory of any client assembly that uses it. If
the assembly must be shared among multiple client assemblies, it is placed in the GAC, a special
Windows folder. To convert a private assembly into a shared assembly, you must run a utility
program to create encryption keys, and you must sign the assembly with the keys. After signing
the assembly, you must use another util ity to add the shared assembly into the GAC. By
mandating such stringent requirements for creating and exposing shared assemblies, Microsoft
is trying to ensure that naming collisions and malicious tampering of shared assemblies will not

81

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

occur.

Referencind\ssemblies and Namespaces

To make the .NET Framework more manageable, Microsoft has given it a hierarchical structure.
This hierarchical structure is organized into what are referred to as namespaces. By organizing
the framework into namespaces, the chanc es of naming collisions are greatly reduced.
Organizing related functionality of the framework into namespaces also greatly enhances its
usability for developers. For example, if you want to build a window's GUI, it is a pretty good

bet the functionality y ou need exists in the System.Windows namespace.

All of the .NET Framework classes reside in the System namespace. The System
namespace is further subdivided by functionality. The functionality required to work with a
database is contained in
the System.Dat a namespace. Some namespaces run several levels deep; for example, the
functionality used to connect to a SQL Server database is contained in the System.Data.SqlClient
namespace.

An assembly may be organized into a single namespace or multiple namespaces. Several
assemblies may also be organized into the same namespace.

To gain access to the classes in the .NET Framework, you need to reference the assembly that
contains the namespace in your code. Then you can access classes in the assembly by providing
their fully qualified names. For example, if you want to add a text box to a form, you create an
instance of the System.Windows.Controls.TextBox class, like so:

private System.Windows.Controls.TextBox newTextBox;

Fortunately, in C#, you can use the using statement at the top of the code file so that you do
not need to continually reference the fully qualified name in the code:

using System.Windows.Controls; private TextBox newTextBox;

Compiling and Executing Managed Code

When .NET code is compiled, itis ¢ onverted into a .NET portable executable (PE) file. The
compiler translates the source code into Microsoft intermediate language (MSIL) format. MSIL is
CPU- independent code, which means it needs to be further converted into native code before
executing.

Along with the MSIL code, the PE file includes the metadata information contained within the
manifest. The incorporation of the metadata in the PE file makes the code self - describing. There is
no need for additional type library or Interface Definition Lang uage (IDL) files.

Because the source code for the various .NET - compliant languages is compiled into the same
MSIL and metadata format based on a common type system, the .NET platform supports language
integration. This is a step beyond Microsoft's COM comp onents, where, for example, client code
written in VB could instantiate and use the methods of a component written in C+ With .NET
language integration, you could write a .NET class in VB that inherits from a class written in C# and
then overrides some o f its methods.

Before the MSIL code in the PE file is executed, a .NET Framework just - in- time (JIT) compiler
converts it into CPU - specific native code. To improve efficiency, the JIT compiler does not convert
all the MSIL code into native code at the same time. MSIL code is converted on anas - needed basis.
When a method is executed, the compiler checks to see if the code has already been converted and
placed in cache. If it has, the compiled version is used; otherwise, the MSIL code is converted and
stored in the cache for future calls.

Because JIT compilers are written to target different CPUs and operating systems, developers
are freed from needing to rewrite their applications to target various platforms. It is conceivable
that the programs you write for a Windows server platform will also run on a UNIX server. All that
is needed is a JIT compiler for the UNIX architecture.

Using the Visual Studio Integrated Development Environment

You can write C# code using a simple text editor and compile it with a command - line compiler. You

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU.

will find, however, that programming enterprise - level applications using a text editor can be
frustrating and inefficient. Most programmers who code for a liv ing find an integrated development
environment (IDE) invaluable in terms of ease of use and increased productivity. Microsoft has
developed an exceptional

IDE in Visual Studio (VS). Integrated into VS are many features that make programming for the

.NET Fr amework more intuitive, easier, and more productive. Some of Visual Studio's useful
features are:

Editor features such as automatic syntax checking, auto completion, and
color highlighting.

One IDE for all .NET languages.

Extensive debugging support, inclu ding the ability to set breakpoints, step
through code, and view and modify variables.

Integrated help documentation.

Drag- and- drop GUI development.

XML and HTML editing.

Automated deployment tools that integrate with Windows Installer.
The ability to view and manage servers from within the IDE.

A fully customizable and extensible interface.

The following activities will introduce you to some of the many features available in the
VS IDE. As you work through these steps, don't worry about the coding details. Just concentrate
on getting used to working within the VS IDE. You'll learn more about the code in upcoming
chapters.

v Note If you do not have Visual Studio 2010 installed, refer to Appendix C for installation
instruction.

ACTIVITY-5. TOURING VISUATUDIO

In this activity, you will become familiar with the following:

Customizing the IDE.

Creating a .NET project and setting project properties.

Using the various editor windows in the VS IDE.

Using the auto syntax check and auto completion features of t he VS IDE.
Compiling assemblies with the VS IDE.

Customizing the IDE

To customize the IDE, follow these steps:

1. +AUOEi d», dCPd@ENEEUT Ol d, UExUdeduxOl x£0@decd21 ExO@OE
Studio 2010.

83

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

84

v Note If this is the first time you have launched VS, you will be asked to choose a default
development setting. Choose the Visual C# Development Settings.

Recent files 10

10 itemsshown in

0 Automatically

0 Enable rich

fy] Use hardware

Visual Studio is
capabilities.

[4] Showstatus
[yl Close button

Restore File

OK | [Cancel

Figure

v

v

You will be presented with the Start Page. The Start Page contains
several panes, including one that has links to useful documentation
posted on the MSDN (Microsoft Develop er Network) web site.
Clicking one of these links will launch a browser window hosted
inside VS, which will open the documentation on the MSDN site.
Take some time to investigate the information and the various links
exposed to you on the Start Page.

Microsoft has taken considerable effort to make VS a customizable
design environment. You can customize just about every aspect of
the layout, from the various windows and menus down to the color
codingusedinthe EQOEEJdEET UOxrd, ENEEUd: OON@dEY d” O
Options dialog box, shown in Figure 5 - 1, that allows you to
customize many aspects of the IDE.

d Environment items shown in Window menu

General
Add-in/Macros Security recently used listsVisual experience
Auto Recover adjust visual experience based on client performance

client visual experience
Documents

graphics acceleration if available
Extension Manager
currently using hardware-accelerated rendering. The visual settings autc i hange based on system

Find and Replace

Fonts and Colors

Import and Export Settings

International Settings
Keyboard affects activetool window only s Auto Hide button affects active tool window only

Startup Associations

Task List

Web Browser

Projects and Solutions

Source Control

> Text Editor 5- 1. VS Qptions dialog box

> Debugging

EO OAOAI Oi ATAA 4iiid

4. Click Projects and
Solutions in the category list on the left
side of the dialog box. You are presented
with options to change the default location
of projects and what happens when you
build and run a project.
Select the Always Show Solution the Show Output Window When
Buil d Starts option.

Investigate some of the other customizable options available. Close
the Options dialog box when you are finished by clicking the OK
button.

CHAPTERINTRODUCING THE .NET FRAMEWORK AND VISU.

Creating a New Project
To create a new project, follow these steps:

1. On the Start Page, click the Create Project link, which launches the New Project
dialog box. (You can also choose File £v3 EUd £v d uxOT EEUd UOd OOEOGd Ui T @«
box.)

2. The New Project dialog box allows you to create various projects using built -in
templates. Th ere are templates for creating Windows projects, Web projects,
WCF projects, as well as many others, depending on what options you chose
when installing VS.

3. Inthe Installed Templates pane, expand the Visual C# node and select the
Windows node, as shown in Figure 5 - 2. Observe the various C# project
templates. There are templates for creating various types of Windows
applications, includi ng Windows Forms - based applications, class libraries, and
console applications.

NETFramevorkd__~ | SortoDeaut

| Installed Templates T
» _c#l| Windows Forms Application Visual C# y
4 Visual ¢ = Ay
Windows # Wi
Web ‘ .C ’ WPF Application Visual C&
Cloud H
Reporting !c” Conscle Application Visual C=
Silverlight E N
Test & c#t| Class Library Visual C=
WCF B
Workflow ‘wbﬁ} WPF Browser Application Visual C#
Other Languages
Other Project Types = ch| Empty Project Visual C2
Database I
Online Templates _cﬁ Windows Service Visual C= _
Name: WindowsFormsApplicationl
Location: c\users\dan\documents\visual studio 2010'\Projects v | Brc
Solution name: WindowsFormsApplicationl [V Cre

Figure 5 - 2. VS NeWPrO/éEz‘d/}a/agbox

4. Click the Windows Application template. Change the name of the
application to DemoChapter5 an d click the OK button.

85

86

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

When the project opens, you will be presented with a form designer for a default form
(named Forml) that has been added to the project. To the right of this window, you should
see the Solution Explorer.

Investigating the Solution Explorer and Class View

The Solution Explorer displays the projects and files that are part of the current solution, as

shown in Figure 5 - 3. By default, when you create a project, a solution is created with the same
name as the project. The solution contains some global information, project - linking information,
and customization settings, such as a task list and debugging information. A solution may contain
more th an one related project.

Solution Explorer *ifx
eulddl ¢

o - Solution |)ter5' [1 project]
'NemnChaf
1 DemoChapter5

[> |*] Properties Referencesj Forml.cs
<jy Program.cs

Figure 5 - 3. Solution Explorer

Under the solution node is the project node. The project node organizes the various files
and settings related to a project. The project file organizes this information in an XML
document, which contains references to the class files that are part of the project, any
external references needed by the pro ject, and compilation options that have been set.
Under the Project node is a Properties node, References node, a class file for the Form1
class, and a Program class file.
To practice using the Solution Explorer and some VS features and views, follow these steps:

1. Inthe Solution Explorer window, right - click the Properties node
and select Open. This launches the Project Properties window.
Along the left side of the window are several tabs you can use to
explore and set various application settings.

2. Select the Application tab, as shown in Figure 5 - 4. Notice that, by

default, the assembly name and default namespace are set to the
name of the project.

Application

Build

Build Events

Debug

Resources

Services

Settings

Reference

Paths Signing

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU.

Configuration: N/A Platform: N/A

Assembly name: Default namespace:
[UUGQ GG DemoChapter5
Target framework: Output type:

" Windows Application

JEIN

Startup object:

(Not set) Assembly Information...

Resources
Specify how application resources will be managed:

Figure 5 - 4. Project

Properties Window 3
Explore some of the other tabs in the Project Properties window.
Close the window when you are finished by clicking on the x in
the tab of the window.

4. In the Solution Explorer window, expand the References node.
Under the node are the external assemblies referenced by the
application. Notice that several references have been included by
default. The default references depend on the type of pr oject. For
example, since this is a Windows Application project, a reference
to the System.Windows.Forms namespace is included by default.

5. The Forml class file under the Solution Explorer's project node
has a .cs extension to indicate it is written in C# ¢ ode. By default,
the name of the file has been set to the same name as the form.
Double - click the file in the Solution Explorer window. The form is
shown in Design View. Click the View Code button in the toolbar at
the top of the Solution Explorer, and the code editor for the Form1
class will open.

B

View window. The top part of the Class View window organizes

the project files in terms of the namespace hierarchy. Expanding
the DemoChap5 root node reveals three sub nodes: a References
node, the DemoChap5 namespace node, and DemoChap5
properties node. A namespace node is designated by the {} symbol
to the left of the node name.

7. Listed under the DemoChap5 namespace node are the classes
that belong to the namespace. Expanding the Form1 node reveals
a Base Types folder. Expanding Base Types shows the classes
and interfaces inherited and implemented by the Forml class, as
shown in Figure 5 - 5. You can further expand the nodes to show

"NEGDBd»T EUd U

87

88

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

the classes and interfaces inherited and implemented by the
Form base class.

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU.

Class View s A X
fil Adv I
< Search> 1J A

J .jjJJ DemoChapterS
[> Project References J &
DemoChapter5 ' Forml
J)] Base Types.
: ContainerCcmtrol
IContainerControl
ScrollableControl t> »
Control |> ~1Component
-0 |Disposable
ve-
ActivateQ
{ ActivateMdi Chil d[Syst emdd®i ndows. Fcirnns. For m)
Own ed Form (System ,Wind ows. Form s. Form]
AdjustFormScrollbars(bciol)
ApplvAutcScalincifl
* CenterToParentQ

* CenterToScreenQ
yCin-2 n
i

Class View

Solution Explorer HffTeam Explorer

Figure 5 - 5. Expanded nodes in the Class View

8. The bottom section of the Class View window is a listing of the
class's methods, properties, and events. Select the Form node in
the top section of the Class View window. Notice the considerable
number of methods, properties, and events listed in the bottom
section o f the window.
9. Right-ENT EPdUI EdOEOO" | £O0ydOxO1 EEUdOOEEd £OEdQOENEEUd! EE
Name the class DemoClassl and click the Add button. If the class
code is not visible in the code editor, double - click the DemoClassl
node in the Class View window to display it. Wrap the class
definition code in a namespace declaration as follows:

89

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

namespace DemoChapter5 {

namespace

MyDemoNamespace {

class

DemoClassl {

10.

11.

From the Build menu, chose Build Solution. Notice the updated
hierarchy in the Class View. DemoClass1 now belongs to the
MyDemoNamespace, which belongs to the DemoChapter5
namespace. The fully qualified name of DemoClassl is now
DemoChapter5.MyDemoNamespace.DemoClass1.

Add the following code to the DemoClass1 definition. As you add
the cod e, notice the auto selection drop - down list provided (see
Figure 5 - 6). Pressing the Tab key will select the current item on
the list.

class DemoClassl:
System.Collections.CaselnsensitiveComparer {

System,Collections

ArrayLi:t
CaselnsensitiveComparer

N) aselnsensitiveHash | odeProvider
CollectionBase

{} Concurrent

Dictionar/Ba:e

{} Generic

Ha:htable

ICollection

Figure 5 - 6. Code selection drop - down list

12. From the Build menu, chose Build Solution. Notice the updated

hierarchy in the Class View. Expand the Base Types node under
the DemoClass1 node, and you will see the base
CaselnsensitiveComparer class node. Select this node and you
will see the methods and properties of the
CaselnsensitiveComparer class in the lower section of the Class
View window.

13. Right- click the Compare method of the CaselnsensitiveComparer
class node and choose Browse Definition. The Object Browser

90

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU.

window is opened as a tab in the main window and information
about the Compare method i s displayed. Notice it takes two object
arguments, compares them, and returns an integer value based on
the result (see Figure 5 - 7).

A{} System.Collections L Caseln5ensitiveComparer(System.Globalization.Culturelnfo)
> ArrayList V CaselnsensitiveComparerO

> BitArray —V/ Compare(object, object)
>~ CaselnsensitiveCompan Default

> CaselnsensitiveHashCoc _ Defaultinvariant

>N CollectionBase

> A Comparer J | public int Compareiobiect. object? 0-
> A DictionaryBase Memberof Svstem.Collections.CaselnsensitiveComparer
> Dictionary Entry
0/ Hashtable >Z '1cBliAction Summary:
Performs acase -insensitive comparison of two objects of thesame type and
> NiComparer returns a value indicating whether one is less than, equal to, or greater than the
> *Q [Dictionary Other.
> y'' f WictionaryEnumerator Parameters:
> |Enumerable a\ The first object to compare. b\ The second object to compare.
> IEnumerator
> y' f iEqualityComparer
> |HashCodeProvider iList Returns:
t> IStructuralComparable A signed integer that indicates the relative values of aandb,as shown inthe following 8
> IStructuralEquatable table.Value Meaning Less than zero aislessthan b, with casing ignored. Zero aequals b,
> 6 tQueue with casing ignored. Greater than zero a is greater than b, with casing ignored.
> A ReadOnlyCollectionBasi
*1 - 1l 3 n

Figure 5 - 7. Object Browser

14. The Object Browser enables you to explore the object hierarchies
and to view information about items and methods within the
hierarchy. Take some time to explore the Object Browser. When
you are finished, close the Object Browser and close the Class
View window.

Exploring the Toolbox and Properties Window

To explore the VS Toolbox and Propertie s window, follow these steps:
1. Inthe Solution Explorer window, double - click the Forml.cs node. This brings up
the Forml design tab in the main editing window. Locate the Toolbox tab to the

91

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

left of the main editing window. Hover the cursor over the tab, and
window should expand, as shown in Figure 5

- 8. In the upper - right corner of the

Toolbox, you should see the Auto Hide icon, which looks like a thumbtack. Click

the icon to turn off the auto hide feature.

Toolbox f X

[>All Windows Forms

0 Common Controls

[>Containers

[>Menus Si Toolbars

t Data

[>Components

o Printing

[;Dtalogs

[>WPF Interoperability

[>Reporting

0Visual Basic PowerPacks

t>General

Figure 5 - 8. VS Toolbox

2. Under the All Windows Forms node of

the Toolbox are controls that you can

drag and drop onto your form to build the GUI. There are also other nodes that
contain nongraphical components that help make some common programming
tasks easier to create and manage. For example, the Data node contai
controls for accessing and managing data stores. Scroll down the Toolbox
window and observe the various controls exposed by the designer.

3. Under the All Windows Forms node, select the Label control. Move the cursor

over the form; it should change to a cr

osshairs pointer. Draw a label on the

form by clicking, dragging, and then releasing the mouse. In a similar fashion,
draw a TextBox control and a Button control on the form. Figure 5 - 9 shows

how the form should look.

92

the Toolbox

ns

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU.

f .
"j* Forml

labell

1 1=1|El | -¢cw

button
1

Figure 5 - 9. Sample form layout

4.

Turn the auto hide feature of the Toolbox back on by clicking the Auto Hide

(thumbtack) icon in the upper - right corner of the Toolbox window.

Locate the Properties tab to the right of the main editing window, or select View

£v duxO0OExUT E@ddwul OEOUdUOdOOEOdUTI EduxO0OExUT E@dUT OE
displays the properties of the currently selected object in the Design View. You

can also edit many of the object's properties through this window.

In the Forml design window, click Labell. The Labell control should be selected

in the drop - down list at the top of the Properties window (see Figure 5 - 10).

+OEAUEdUI EdtEYUdOxOOExUPd £AOEdET £01 EdTaddUOd” 2 QOUE x
quotes).

93

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

94

1 labell Form s. Label
System.Windows
w4] in
v d2 £YI] OUO, 0,0
[> MinimumSize 0,0
Modifiers Private
[> Padding 0,0,0,0
RightToLeft No
[> Size 35,13
Tablndex 0
Tag X
Text labell
T-1H
1 Text
1 The text associated with the control.

Figure 5 - 10. VS Properties window

v Note You may need to resize the label on the form to see all the text.

7. Setthe PasswordChar property of TextBoxl to *. Change the
Text property of Buttonl to OK. (Click the control on the form or
use the drop - down list at the top of the Properties window to see
the control's properties.)

8. Save the project by choosing File £V Save All.

Building and Executing the Assembly
To build and execute the assembly, follow these steps:

1. Inthe Solution Explorer, click Forml. At the top of the Solution
Explorer, click the View Designer toolbar button.

2. In the form designer double click the Buttonl control. The code
editor for Forml will be displayed in the main editing window.
method that handles the button click event is added to the code
editor.

3. Add the following code to the method. This code will display the
password entered in TextBoxl on the title bar of the form.

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU.

private void buttonl_Click(object sender, EventArgs e)

this.Text = "Your password is " + textBox1.Text;
4, ,ENEEUd 8UT NEd ¢d 8UT NEd , ONUUT 6Ord t 1 Ed ~UUOUUd UT OE
progress of compiling the assembly (see Figure 5 - 11). Once the
assembly has been compiled, it is ready for execution. (If you can't
locate the Output window, select View

ny
Output ‘ $ M-
Show output from: Julld

...... Build started: Project: DemoChapterS,
Configuration: Debug xS6
DemoChapterS - > C:\ Users\ Dark Documents\ Visual Studio 2919 \ Projects
\ DemoChapter8 DemoChapter5 bin \ Debud DenioChapter5 . d 3 ¢=========Build: 1
succeeded or up -to - date., 9 failed, O skipped =====

Figure 5 - 11. Progress of build displayed in the Output window

5. ENEEUdOECUIi ded, UAXxUdOECUI 1 T0Irdrii @dxU0@dUi Ed£20
mode. Once the form loads, enter a password and click the OK
button. You should see the message containing the password in the
form's title bar. Close the form by clicking the x in the upper right
corner.

6. , ENEEUd«T NEded, £UEd! NNp d £O0E dNAE dEcOdd?EWITUXd » , dCPd BENEE

ACTIVITY-8. USING THE DEBUGGING FEATURE]

In this activity, you will become familiar with the following:
Setting breakpoints and stepping through the code.
Using the various debugging windows in the VS IDE.

Locating and fixing build errors using the Error List window.

Stepping Through Code
To step through your code, follow these steps:

1. ,U&ExUd», rd, ENEEUd«T NEded3 EUdedpuxOl EEUT

95

96

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

2. Under the C# Windows templates, select the Console Application.
Rename the project Activity5_2.

3. Youwill see a Program class file open in the code editor. The
class file has a Main method that gets executed first when the
application runs. Add the following code to the program class.
This code contains a method that loads a list of numbers and
displays the contents of the list in the console window.

class Program {
static List<int> numList = new List<int>();
static void Main(string[] args)

LoadList(10);
foreach (int i in numList)

System.Console.WriteLine(i);
}Console.ReadLine();
static void LoadList(int iMax)
for (inti=1;i<=10;)
numList.Add(i);

To seta 4. breakpoint, place the cursor on the declaration line of the Main
method, right -ENT EPpd ZOEJdE|I OOBEdSExEADOOT OUdEY dROPExUdExEAPOOT OUr
appear in the left margin to indicate that a breakpoint has been set (see Figure 5 -
12).
1
static List<int:> numList = new List<int & Vv (Jl static void
@ Main(string[] args)
LoadList(10);
foreach (int i in numList)

Figure 5 - 12. Setting a breakpoint in the code edlitor

5. , ENEEUd ©ECUI d £V ihg. Prdgrath exedatprwill pause

at the breakpoint. A yellow arrow indicates the next line of code
that will be executed.

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU.

6. SelectView>v d1 OONC/Ex gd £OEJENT EPdUI EdOECUI dUOONGCAExr dI !
to the toolbar name indicates it is visible.) To step through the code
one line at a time, select the Step Into button on the Debug toolbar
(see Figure 513). (You can also press the F11 key.) Continue
stepping through the code until you get to the LoadList.

» %= (3 %= | Hx %

I
Il

-
—

‘ Step Into (F11) '

Figure 5 - 13. Using the Debug toolbar

7. Step through the code until the for loop has looped a couple of times.
At this point, you are probably satisfied that this code is working and
you want to step out of this method. On the Debug toolbar, click the
Step Out button. You should return to the Main method.

8. Continue stepping through the code until the for - each loop has
looped a couple of times. At this point, you may want to return to
runtime mode. To d o this, click the Continue button on the Debug
toolbar. When the Console window appears, hit the enter key to
close the window.

9. Start the application in debug mode again. Step through the code
until you get to the method call LoadList(10);.

10. On the Debug toolbar, choose the Step Over button. This will execute
the method and reenter break mode after execution returns to the
calling code. After stepping over the method, continue stepping
through the code for several lines, and then choose the Stop button
on the Debug toolbar. Click the red dot in the left margin to remove
the breakpoint.

Setting Conditional Breakpoints
To set conditional breakpoints, follow these steps:
1. Inthe Program.cs file locate the LoadList method. Set a breakpoint
on the following line of code:

numList.Add(i);

2. " OEOdUI EdgsxEADPOOT OUBdUT OEOUdCPAdMENEEUT Ol dOECUI d £V
Breakpoints. You should see the breakpoint you just set listed in the
Breakpoints window (see Figure 5 - 14).

97

98

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU

Breakpoints

New- x| PSI1”*olm’ " ONUOOZ~™ nK v
i Labels Condition Hit Count
Name
..0" iProgram.c:, line 24 character [no condition] break always

17!

J _* Breakpoint;

Figure 5 - 14. Breakpoints window

3. Right- click the breakpoint in the Breakpoints window and select
Condition. You will see the Breakpoint Condition dialog box. Enter i
== 3 as the condition expression and click the OK button (see
Figure 5 - I5).

Breakpoint Condition ? _lgg

When the breakpoint location is reached, the expression is evaluated and the breakpoint
is hit only if the expression is true or has changed.

[V] Condition:
i==3

Q Is true '
) Has changed

0K J [Cancel 1

Figure 5 - 15. Breakpoint Condition dialog box

4. ENEEUdOECUIdEY d, UExUr dwi EOdUI Bttt Ox Od £OOE £x @p d ENT

button. Program execution will pause, and you will see a yellow
arrow indicating the next line that will be executed.

B

displayed at the bottom of the screen (see Figure 5 - 16). The value
of i is displayed in the Locals window. Verify that it is 3. Step

through the code using the Debug toolbar and watch the value of i
change in the Locals window. Click the Stop Debugging button in

the Debug toolbar.

Locals
Name

Value

CHAPTERYINTRODUCING THE .NET FRAMEWORK AND VISU.

TA

Type

3 iMax | 10 int

"d

5

int

Figure 5 - 16. Locals window

6. Locate the Output window at the bottom of your screen and click the
Breakpoints tab. Right - click the breakpoint in the Breakpoints window
and select Condition. Clear the current condition by clearing the
Condition check box, and then click the OK button.

7. Right- click the breakpoint in the Breakpoints window and select Hit
Count. Set the breakpoint to break when the hit count equals 4, and then
click OK.

8. ,ENEEUJOECGUI d£v d, UEx Ur d paws® and thelydllBwy EEUUT 6O0d UT NKNd
arrow indicates the next line of code that will execute.

9. Right- click the numList statement and select Add Watch. A Watch
window will be displayed with numList in it. Notice that numList is a
System.Collections.Generics.List type. Click the plus sign next to
numList. Verify that the list contains three items (see Figure 5 - 17). Step
through the code and watch the array fill with items. Click the Stop
button in the Debug toolbar.

Watch 1 - é
Name Value Type
f 8 numList Count = 3 Sy stem.® . 1l ections.Generi ..Li st<

0] 1 int

b 2 int

T a1 3 int

Locals
Figure 5 - 17. The Watch window

Locating and Fixing Build Errors

To locate and fix build errors, follow these steps:
In the Program class,
comment it out by placing a two slashes in front of it, as shown

1.

here:

locate the following line of code and

99

CHAPTREEEIE TREEHRS AT W PREANRNFY
2. Notice the red squiggly lines under the numList in the code. This
indicates a build error that must ~ be fixed before the application
can run. Hovering over the line reveals more information about
the error.

3. Select Build £V Build Solution. The Error List window will appear
at the bottom of the screen, indicating a build error (see Figure
5-18).
Error List * 0 X
@ 2Erors | _§\ 0 Warnings | (i) 0 Messages
Description File i Line Column Project ’
@ 1 Thename 'numlist’' does not exist in the Program.cs 14 31 Activity5_2
current context
@ 2 Thename 'numlist’ does not exist in the Program.cs 24 17 Activity5_2

current context

R UCAEY B Output W Breakpoints
Figure 5 - 18. Locating build errors with the Error List window

4. Double - click the line containing the build error in the Error List
window. The corresponding code will become visible in the code

editor.
5. Uncomment the line you commented in step 1 by deleting the
oNAEDI Edrd , ENEEUd §UT NEd £v d §U1T NEd , ONRUUT 6Ord t i1 @d |
window is displayed at the bottom of the screen, indicating that
there were no build errors.
6. Save the project and exit VS.
Summary
This chapter introduced you to the fundamentals of the .NE T Framework. You reviewed some of

the underlying goals of the .NET Framework. You also looked at how the .NET Framework is
structured and how code is compiled and executed by the CLR. These concepts are relevant and
consistent across all .NET - compliant pro gramming languages. In addition, you explored some of
the features of the Visual Studio integrated development environment.

The next chapter is the first in a series that looks at how the OOP concepts . such as class
structure, inheritance, and polymorphism . are implemented in C# code.

100

CHAPTER &6

Creating Classes

In the previous chapter, you looked at how the .NET Framework was developed and how
programs execute under the framework. That chapter introduced you to the Visual Studio IDE,

and you gained some familiarity with working in it. You are now ready to start coding! This

chapter is the first of a series that will introduce you to how classes are created and used in C#.

It covers the basics of creating and using classes. You will creat e classes, add attributes and
methods, and instantiate object instances of the classes in client code.

After reading this chapter, you should be familiar with the following:
How objects used in OOP depend on class definition files.
The important role encapsulation plays in OOP.

How to define the properties and methods of a class.

The purpose of class constructors.

How to use instances of classes in client code.

The process of overloading class constructors and methods.

How to create and test class defi nition files with Visual Studio.

Introducing Objects and Classes

In OOP, you use objects in your programs to encapsulate the data associated with the entities
with which the program is working. For example, a human resources application needs to work
with employees. Employees have attributes associated with them that need to be tracked. You
may be interested in such things as the employee names, addresses, departments, and so on.
Although you track the same attributes for all employees, each employee has un ique values for
these attributes. In the human resources application, an Employee object obtains and modifies
the attributes associated with an employee. In OOP, the attributes of an object are referred to as
properties.

Along with the properties of the employees, the human resource application also needs an
established set of behaviors exposed by the Employee object. For example, one employee
behavior of interest to the human resources department is the ability to request time off. In OOP,
objects expose behaviors through methods. The Employee object contains a RequestTimeOff
method that encapsulates the implementation code.

The properties and methods of the objects used in OOP are defined through classes. A
class is a blueprint that defines the attributes and behaviors of the objects that are created
as instances of the class. If you have completed the proper analysis and design of the
application, you should be able to

101

refer to the UML design documentation to determine which cla sses need to be constructed and

cHAPYHR§dNiIORAItRS And methods these classes will contain. The UML class diagram contains the

102

initial information you need to construct the classes of the system.

To demonstrate the construction of a class using C#, you will lo ok at the code for a simple
Employee class. The Employee class will have properties and methods that encapsulate and
work with employee data as part of a fictitious human resources application.

Defining Classes

Let's walk through the source code needed to create a class definition. The first line of code
defines the code block as a class definition using the keyword Class followed by the name of
the class. The body of the class definition is enclosed by an open and closing curly bracket.
The code block is s tructured like this:

class Employee {

Creating Class Properties

After defining the starting and ending point of the class code block, the next step is to define the
instance variables (often referred to as fields) contained in the class. These variables hold the
data that an instance of your class will manipulate. The Private keyword ensures that these
instance variables can be manipulated only by the code inside the class. Here are the instance
variable definitions:

private int _emplD; private

string _lo ginName; private

string _password; private

string _department;

private string _name;

When a user of the class (client code) needs to query or set the value of these instance

variables, public properties are exposed to them. Inside the property block of cod e are a Get
block and a Set block. The Get block returns the value of the private instance variable to the user
of the class. This code provides a readable property. The Set block provides a write - enabled

property; it passes a value sent in by the client ¢ ode to the corresponding private instance
variable. Here is an example of a property block:

public string Name {
get { return _name; } set {
_hame = value; }

}

There may be times when you want to restrict access to a property so that client code can
read the property value but not change it. By eliminating the Set block inside the Property
block, you create a read -only property. The following code shows how to make the
EmployeelD property read - only:
public int EmployeelD {

get { return _emplD; }

v Note The private and public keywords affect the scope of the code. For more information

about scoping, see Appendix A.

Newcomers to OOP often ask why it's necessary to go through so much work to get and
set properties. Couldn't you just create public instance varia bles that the user could read and
write to directly? The answer lies in one of the fundamental tenets of OOP: data encapsulation.
Data encapsulation means that the client code does not have direct access to the data. When
working with the data, the client code must use clearly defined properties and methods
accessed through an instance of the class. The following are some of the benefits of
encapsulating the data in this way:

Preventing unauthorized access to the data. CHAPTERYSCREATING CLAS!
Ensuring data integrity through error checking.
Creating read - only or write - only properties.

Isolating users of the class from changes in the implementation code.
For example, you could check to make sure the password is at least six characters long via
the following code:
public string Passwo rd {
get { return _password; } set {
i{f (value.Length >= 6)

_password = value;
else

throw new Exception("Password must be at least 6 characters");

Creating Class Methods

Class methods define the behaviors of the class. For example, the following defines a method
for the Employee class that verifies employee logins:
public void Login(string loginName, string password)

if (loginName == "Jones" & password == "mj")

_emplD =1,
Department = "HR";
Name = "Mary Jones";

else if (loginName == "Smith" & password == "js")

_emplD = 2;
Department = "IS";
Name = "Jerry Smith";

else

{
}

When client code calls the Login method of the class, the login name and password are
passed into the method (these are called input parameters). The parameters are checked. If
they match a current employee, the instance of the class is populated with attributes of the
employee. If the login name and password do not match a current employee, an exception is
passed back to the client code.

throw new Exception("Login incorrect.");

}

v Note Exception handling is an important part of application processing. For more
information about exceptions, see Appendix B.

In the previous method, a value is not returned to the client code. This is indicated by the
void keyword. S ometimes the method returns a value back to the client calling code (called an
output parameter). The following AddEmployee method is another method of the Employee
class. It's called when an employee needs to be added to the database, and it returns the n ewly
assigned employee ID to the client. The method also populates the object instance of the

103

charERRRIONEs-Rl@ss Aith the attributes of the newly added employee.
public int AddEmployee(string loginName, string password, string department, string name)

{
//Data normally saved to database.
_emplID = 3;
LoginName = loginName;
Password = password;
Department = department;
Name = name;
return
) EmployeelD;

ACTIVITY-b. CREATING THE EMPLOYEE CLASS

In this activity, you will become familiar with the following:
Creating a C# class definition file using Visual Studio.

Creating and using an instance of the class from client code.
v Note If you have not already done so, download the starter files from the source code area of
the Apress web site (www.apress.co m).

Defining the Employee Class
To create the Employee class, follow these steps:

1. Start Visual Studio. Select File > Open > Project.

2. Navigate to the Activity6_1Starter folder, click the Act6_1. sin file,
and click Open. When the project opens, it will contain a login form.
You will use this form later to test the Employee class you create.

3. ENEEUd pxOf EEUd £v d ! EEd " NAZ@r d ®0d Ui Ed ! EEd 3 EUd ®U
rename the class file to Employee.cs, and then click Open. Visual
Studio adds the Employee.cs file to the project and adds the

following class definition code to the file:
class Employee

}

4. Enter the following code between the opening and closing brackets
to add the private instance variables to the class body in the
definition fil e:

private int _emplD; private
string _loginName; private
string _password; private
int _securityLevel;

5. Next, add the following public properties to access the private
instance variables defined in step 4:

public int EmployeelD {
get { return _emplD; }

public string LoginName {
get { return _loginName; }
set { _loginName = value; }

10«

http://www.apress.com/

}

public string Password { CHAPTERYSCREATING CLAS!
get { return _password; } set
{ _password = value; }

public int SecurityLevel {
get { return _securityLevel; }

6. After the properties, add the following Login method to the class definition:
public void Login(string loginName, string password)

LoginName = loginName;

Password = password;

//Data nomally retrieved from database.

//Hard coded for demo only.

if (loginName == "Smith" & password =="] s")

_emplD =1,

_securityLevel = 2;
| :
else if (loginName == "Jones" & password == "mj")

_emplD = 2;
_securityLevel = 4;

else

throw new Exception("Login incorrect.");

7. Select Build £ v Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

Testing the Employee Class
To test the Employee class, follow these steps:

1. Open frmLogin in the code editor and locate the btnLogin cli ck event code.

v Tip Double - clicking the Login button in the form designer will also bring up the event code in the
code editor.

2. Inthe body of the btnLogin click event, declare and instantiate a variable of
type Employee called oEmployee:

Employee oEmployee = new Employee();

3. Next, call the Login method of the oEmployee object, passing in the values
of the login name and the password from the text boxes on the form:

oEmployee.Login(txtName.Text,txtPassword. Text);

4. After calling the Login method, show a message box stating the user's
security level, which is retrieved by reading the SecurityLevel property
of the oEmployee object:

MessageBox.Show("Your security level is " + oEmployee.SecurityLevel);

5. Select Build £ v Build Solution. Make sure there are no build errors in the

105

Error List window. If there are, fix them, and then rebuild.

CHAPTERYSCREATING CLAS!

10¢

6. ,ENEEUdOECUI dEv d, UExUdUOdxUOdUI EdOxOT EEUrdt E@UdUI EdN

login name of Smith and a password of js. You should get a message
indicating a security level of 2. Try entering your name and a password of
pass. You should get a message indicating the login failed.

7. After testing the login procedure, close the form; this will stop the debugger.

Using Constructors

In OOP, you use constructors to perform any processing that needs to occur when an object
instance of the class becomes instantiated. For example, you could initialize properties of the
object instance or establish a database connection. The class constructor method is hamed the
same as the class. W hen an object instance of a class is instantiated by client code, the
constructor method is executed. The following constructor is used in the Employee class to
initialize the properties of an object instance of the Employee class. An employee ID is passed

in to the constructor to retrieve the values from data storage, like so:

public Employee(int emplID)
{
/IRetrieval of data hardcoded for demo if (empID == 1)

_emplD =1;
LoginName = "Smith";
Password ="js";
Department = "IT",
Name = "Jerry Smith";

1e|se if (empID == 2)

_emplD = 2;
LoginName = "Jones";
Password = "mj";
Department = "HR";
Name = "Mary Jones";

else

throw new Exception("Invalid EmployeelD");

Overloading Methods

The ability to overload methods is a useful feature of OOP languages. You overload methods in a
class by defining multiple methods that have the same name but contain different signatures. A
method signature is a combination of the name of the method and its parameter type list. If you
change the parameter type li st, you create a different method signature. For example, the

parameter type lists can contain a different number of parameters or different parameter types.

The compiler will determine which method to execute by examining the parameter type list

passed in by the client.

v Note Changing how a parameter is passed (in other words, from byVal to byRef) does not

change the method signature. Altering the return type of the method also does not creatEH4APTERBCREATING CLAS:

unigue method signature. For a more detailed discussion of me thod signatures and passing
arguments, refer to Appendix A.

Suppose you want to provide two methods of the Employee class that will allow you to add
an employee to the database. The first method assigns a username and password to the
employee when the employee is added. The second method adds the employee information but
defers the assignment of username and password until later. You can easily accomplish this by
overloading the AddEmployee method of the Employee class, as the following code
demonstrate s:

public int AddEmployee(string loginName, string password, string department, string name)

{
//IData normally saved to database.
_emplD = 3;
LoginName = loginName;
Password = password;
Department = department;
Name = name; return

| EmployeelD;

public int AddEmployee(string department, string name)

//Data normally saved to database.

_emplD = 3;

Department = department;

Name = name; return
) EmployeelD;

Because the parameter type list of the first method (string, string) differs from the
parameter type lis t of the second method (string, string, string, string), the compiler can
determine which method to invoke. A common technique in OOP is to overload the constructor
of the class. For example, when an instance of the Employee class is created, one construct
could be used for new employees and another could be used for current employees by passing
in the employee ID when the class instance is instantiated by the client. The following code
shows the overloading of a class constructor:

public Employee()
{
_emplD = -1;

public Employee(int emplID)
{

/IRetrieval of data hard coded for demo
if (empID == 1)
{

_emplD =1,
LoginName = "Smith";
Password ="js";
Department = "IT";
Name = "Jerry Smith";

1e|se if (empID == 2)

_emplD = 2;
LoginName = "Jones";

or

107

Password = "mj";
CHAPTERSCREADNE&#ARENt = "HR",;
Name = "Mary Jones";

else

throw new Exception("Invalid EmployeelD");

10¢

ACTIVITY-B. CREATING CONSTRUCTORS AND OVERLOADING METHODS

CHAPTERYSCREATING CLAS! -))
In this activity, you will become familiar with the following:

Creating and overloading the class constructor method.
Using overloaded constructors of a class from client code.
Overloading a method of a class.

Using overloaded methods of a class from client code.

Creating and Overloading Class Constructors
To create and overload class constructors, follow these steps:

1. Start Visual Studio. Select File » Open " Project.

2. Navigate to the Activity6_2Starter folder, click the Act6_2 .sIn file, and then click Open.
When the project opens, it will contain a frmEmployeelnfo form that you will use to test
the Employee class. The project also includes the Employee. cs file, which contains the
Employee class definition code.

3. Open Employee. cs in the code editor and examine the code. The class contains several
properties pertaining to employees that need to be mai ntained.

4. After the property declaration code, add the following private method to the class. This
method simulates the generation of a new employee ID.

private int GetNextID()

/Isimulates the retrieval of next
/lavailable id from database return
100;

5. Create a default class constructor, and add code that calls the GetNextID method and
assigns the return value to the private instance variable _emplD:
public Employee()
{
_emplD = GetNextID();
6. Overload the default constructor method by adding a second constructor method that
takes an integer parameter of emplID, like so:
public Employee(int empID)

/IConstructor for existing employee
7. Add the following code to the overloaded constructor, which simulates extracting the
employee data from a database and as signs the data to the instance properties of the
class:

/ISimulates retrieval from database if (empID

_empID = emplD;
LoginName = "smith";
PassWord = "js";
S§SN = 123456789,
Department = "iS";

109

else if (emplID == 2)

CHAPTER)GCREA{I'ING CLAS!

11

_emplID = emplD;
LoginName = "jones";
PassWord = "mj";
SSN = 987654321,
Department = "HR";

else

throw new Exception("Invalid Employee ID");

Select Build £ v Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

Testing the Employee Class Constructors
To test the Employee class constructors, follow these steps:

1.

Open the EmployeelnfoForm in the form editor and double click the
New Employee button to bring up the click event code in the code
editor.

In the Click Eve nt method body, declare and instantiate a variable of
type Employee called oEmployee:

Employee oEmployee = new Employee();

Next, update the EmployeelD text box with the employee ID, disable
the EmployeelD text box, and clear the remaining textboxes:

Employee oEmployee = new Employee();
tXtEmpID.Text = oEmployee.EmpID.ToString();
txtEmpID.Enabled = false;

txtLoginName.Text = ";

txtPassword.Text = "";

IxXtSSN.Text =";

txtDepartment. Text = ",

CENEEUd8UI NEdedg Ul NEd, ONUUT OOCarrarginmieE d UxEd Ul ExEd £AxEd O
Error List window. If there are, fix them, and then rebuild.

Open the EmployeelnfoForm in the form editor and double click the Existing Employee

button to bring up the click event code in the code editor.

In the Click Event method body, declare and instantiate a variable of type Employee
called oEmployee. Retrieve the employee ID from the txtEmplID text box and pass it as
an argument in the constructor. The int.Parse method converts the text to an integer
data type:

Employee oEmployee = ne w Employee(int.Parse(txtEmplID.Text));

Next, disable the Employee ID textbox and fill in the remaining text boxes with the
values of the Employee object's properties:

tIXtEmpID.Enabled = false; txtLoginName.Text =
oEmployee.LoginName; txtPassword. Text =
oEmployee.PassWord; IXtSSN.Text =

OEmployee.SSN.ToString(); txtDepartment.Text =

oEmployee.Department;

,ENEEUdS8UT NEdedg8 Ul NEd, ONUUT O0Or d2 ZPEd@UxEdUI ExEd ExEdO
window. If there are, fix them, and then rebuild.

9. ENEEUd ©E C U itodubthe projgeEand st the code.

10. When the Employeelnfo form is displayed, click the New Employee button. Yo@$kRIGRIECREATING CLAS!
see that a new employee ID has been generated in the Employee ID textbox.

11. Click the Reset button to clear and enable the Employee ID te xt box.

12. Enter a value of 1 for the employee ID and click the Get Existing Employee button. The
information for the employee is displayed on the form.

13. After testing the constructors, close the form, which will stop the debugger.

Overloading a Class Method
To overload a class method, follow these steps:

1. Open the Employee.cs code in the code editor.
2. Add the following Update method to the Employee class. This method simulates the
updating of the employee security information to a database:

public string Update (string loginName, string password)
LoginName = loginName;

PassWord = password;
return "Security info updated.”;

3. Add a second Update method to simulate the updating of the employee human resources
data to a database:

public string Update(int ssNumber, string department)

111

SSN = ssNumber;
Department = department; return CHAPTERYSCREATING CLAS!
"HR info updated."”;
4. ,ENEEUdS8UT NEded§UT NEd, ONUUT OOrd2 APDEd gUxEd Ul ExEd £x Ed

List window. If there are, fix them, and then rebuild.

Testing the Overloaded Update Method
To test the overloaded Update method, follow these steps:

1. Open the Employeelnfo Form in the Form editor and double click the Update Sl
button. You are presented with the click event code in the Code Editor window.

2. In the Click Event method, declare and instantiate a variable of type Employee
called oEmployee. Retrieve the employee ID from the txtEmpID text box and pass
it as an argument in the constructor:

Employee oEmployee = new Employee(int.Parse(txtEmplID.Text));

3. Next, call the Update method, passing the values of the login name and password
from the text boxes. Show the method return message to the user in a message
box:

MessageBox.Show(oEmployee.Update(txtLoginName.Text, txtPassword.Text));

4. Update the login name and password text boxes with the property values of the
Employee object:

txtLoginName.Text = oEmployee.LoginName; txtPassword.Text = oEmployee.PassWord,;

5. Repeat this process to add similar code to the Update HR button Click Event
method to simulate updating the human resources information. Add the following
code to the Click Event method:

Employee oEmployee = new Employee(int.Parse(txtEmplID.Text));
MessageBox.Show(oEmployee.Update(int.Parse(txtSSN.Text), txtDepartment.Text));
txtSSN.Text = oEmployee.SSN.ToString(); txtDepartment. Text =
oEmployee.Department;

6. SENEEUd §UT NEdedgUT NEd, ONRUUT 6Or d2 APEd GUxEd Ul ExEd £xEd
List window. If there are, fix them, and then rebuild.

B

8. Enter a value of 1 for the employee ID and click the Get Existi ng Employee
button.

9. Change the values for the security information and click the Update button.

10. Change the values for the human resources information and click the Update
button.

11. You should see that the correct Update method is called in accordance
with the parameters passed in to it. After testing the Update method, close
the form.

Summary

This chapter gave you a firm foundation in creating and using classes in C# code. Now that you

are comfortable constructing and using classes, you are ready to look at implementing some of

the more advanced features of OOP. In th e next chapter, you will concentrate on how inheritance
and polymorphism are implemented in C# code. As an object - oriented programmer, it is
important for you to become familiar with these concepts and learn how to implement them in

112

your programs.

113

CHAPTER

CHAPTERYSCREATING CLAS!

11«

Creating Class Hierarchies

In the previous chapter, you learned how to create classes, add attributes and methods, and
instantiate object instances of the classes in client code. This chapter introduces the concepts of
inheritance and polymorphi sm.

Inheritance is one of the most powerful and fundamental features of any OOP language. Using
inheritance, you create base classes that encapsulate common functionality. Other classes can be

derived from these base classes. The derived classes inherit the properties an d methods of the
base classes and extend the functionality as needed.
A second fundamental OOP feature is polymorphism. Polymorphism lets a base class define

methods that must be implemented by any derived classes. The base class defines the message
signat ure that derived classes must adhere to, but the implementation code of the method is left
up to the derived class. The power of polymorphism lies in the fact that clients know they can
implement methods of classes of the base type in the same fashion. Eve n though the internal
processing of the method may be different, the client knows the inputs and outputs of the
methods will be the same.

After reading this chapter, you will learn the following:

How to create and use base classes.
How to create and use de rived classes.
How access modifiers control inheritance.
How to override base class methods.
How to implement interfaces.

How to implement polymorphism through inheritance and through interfaces.

Understanding Inheritance

One of the most powerful features of any OOP language is inheritance. Inheritance is the ability to
create a base class with properties and methods that can be used in classes derived from the base
class.

CreatianE Base and Derived Classes

CHAPTERY CREATING CLASS HIERAR(
The purpose of inheritance is to create a base class that encapsulates properties and methods
that can be used by derived classes of the same type. For example, you could create a base
class Account. A GetBalance method is defined in the Account class. You can then create two
separate classes: SavingsAccount and CheckingAccount. Because the SavingsAccount class and
the CheckingAccount class use the same logic to retrieve balance information, they inherit the
GetBalance method from the base class Account. This enables you to create on e common code
base that is easier to maintain and manage.
Derived classes are not limited to the properties and methods of the base class, however.
The derived classes may require additional methods and properties that are unique to their
needs. For exampl e, the business rules for withdrawing money from a checking account may
require that a minimum balance be maintained. A minimum balance, however, may not be
required for withdrawals from a savings account. In this scenario, the derived CheckingAccount
and SavingsAccount classes would each need their own unique definition for a Withdraw
method.
To create a derived class in C#, you enter the name of the class, followed by a colon (:) and
the name of the base class. The following code demonstrates how to creat e a CheckingAccount
class that derives from an Account base class:

class Account {

long _accountNumber; public long AccountNumber {

get { return _accountNumber; }
set { _accountNumber = value;

}
}
public double GetBalance()

/lcode to retrieve account balance from database
return (double)10000;

}

class CheckingAccount : Account {

double _minBalance; public double MinBalance {

get { return _minBalance; } set { _minBalance =
value; }

public void Withdraw(double amount)
/Icode to withdraw from account

The following code could be implemented by a client creating an object instance of
CheckingAccount. Notice that the client perceives no distinction between the call to the
GetBalance method and the call to the Withdraw method. In this case, the ¢ lient has no
knowledge of the Account class; instead, both methods appear to have been defined by
CheckingAccount.

CheckingAccount oCheckingAccount = new
CheckingAccount(); double balance;
oCheckingAccount.AccountNumber =

1000; balance =

oCheckingAccount.G etBalance();
oCheckingAccount.Withdraw(500);

Creating a Sealed Class

By default, any C# class can be inherited. When creating classes that can be inherited, you
must take care that they are not modified in such a way that derived classes no longer function
as intended. If you are not careful, you can create complex inherita nce chains that are hard to

115

manage and debug. For example, suppose you create a derived CheckingAccount class based
CHARTERITEC EATOEELARBSEIEAKRBther programmer can come along and create a derived class based

on the CheckingAccount and use it in ways you never intended. (This could easily occur in

large programming teams with poor communication and design.)

By using the sealed modifier, you can create classes that you know will not be derived from.

This type of class is often referred to as a sealed or final class. By making a class not inheritable,

you avoid the complexity and overhead associated with altering the code of base classes. The

following code demonstrates the use of the sealed modifier when constructing a class definition:

sealed class CheckingAccou nt: Account

Creating an Abstract Class

At this point in the example, a client can access the GetBalance method through an instance of

the derived CheckingAccount class or directly through an instance of the base Account class.

Sometimes, you may wantto h ave a base class that can't be instantiated by client code. Access

to the methods and properties of the class must be through a derived class. In this case, you

construct the base class using the abstract modifier. The following code shows the Account clas S
definition with the abstract modifier:

abstract class Account

This makes the Account class an abstract class. For clients to gain access to the GetBalance
method, they must instantiate an instance of the derived CheckingAccount class.

Using Access Modifers in Base Classes

When setting up class hierarchies using inheritance, you must manage how the properties and
methods of your classes are accessed. Two access modifiers you have looked at so far are
public and private. If a method or property of the base class is exposed as public, it is accessible
by both the derived class and any client of the derived class. If you expose the property or
method of the base class as private, it is not accessible directly by the derived class or the
client.
You may wantt o expose a property or method of the base class to a derived class, but not to
a client of the derived class. In this case, you use the protected access modifier. The following
code demonstrates the use of the protected access modifier:
protected double Ge tBalance()

/lcode to retrieve account balance from database return (double)10000;

}

By defining the GetBalance method as protected, it becomes accessible to the derived class
CheckingAccount, but not to the client code accessing an instance of the Checki ngAccount class.

ACTIVITY-Z. IMPLEMENTING INHERITANCE USING BASE AND DERIVED CLAS{

In this activity, you will become familiar with the following:

Creating a base class and derived classes that inherit its methods.
Using the protected access modifier to restrict use of base class methods.
Creating an abstract base class.

Creating a Base Class and Derived Classes
To create the Account class, follow these steps:

1. Start Visual Studio. Select File > Open > Project.
2. Navigate to the Activity7_1Starter folder, c lick the Activity7_1.sIn

116

file, and then click Open. When the project opens, it will contain a
. . CHAPTERY CREATING CLASS HIERAR!
teller form. You will use this form later to test the classes you

create.

3. In the Solution Explorer window, right click the Project node and
select Add >Class.

4. In the Add New Item dialog box, rename the class file as Account.cs
and click Open. The Account.cs file is added to the project, and the
Account class definition code is added to the file.

5. Add the following code to the class definition file to create the
private instance variable (private is the default modifier for instance

variables):
int _accountNumber;
6. Add the following GetBalance method to the class definition:

public double GetBalance(int accountNumber)

_accountNumber = accountNumber;
//Data normally retrieved from database. if (_accountNumber == 1)

return 1000;

}else if (_accountNumber == 2)
return 2000;

else

throw new Exception("Account number is incorrect");

}

7. After the Account class, add the following code to create the CheckingAccount and

SavingsAccount derived classes:
class CheckingAccount : Account {

class SavingsAccount : Account {

8. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

Testing theClasses

To test the classes, follow these steps:

1. Open the Teller form in the code editor and locate the btnGetBalance click event
code.

2. Inside the event procedure, prior to the Try block, declare and instantiate a
variable of type CheckingAccount called oC heckingAccount, a variable of type
SavingsAccount called oSavingsAccount, and a variable of type Account called
oAccount:

CheckingAccount oCheckingAccount = new CheckingAccount();
SavingsAccount oSavingsAccount = new SavingsAccount();
Account oAccount = ne w Account();
3. Depending on which radio button is selected, call the GetBalance method of
the appropriate object and pass the account number value from the Account
Number text box. Show the return value in the Balance text box. Place the

following code in the Try block prior to the Catch statement:
if (rdbChecking.Checked)
{

117

txtBalance.Text =
CHAPTERy CREATIRE BEGidngAeeount.GetBalance(int.Parse(txtAccountNumber. Text)). ToString();

else if (rdbSavings.Checked)

txtBalance.Text =
oSavingsAccount.GetBalance(int.Parse(txtAc countNumber.Text)).ToString();

}
else if (rdbGeneral.Checked)
{

txtBalance.Text =
oAccount.GetBalance(int.Parse(txtAccountNumber.Text)). ToString();

4. Select Build > Build Solution. Make sure there are no build errors in the Error
List window. If there are, fix them, and then rebuild.

5. Select Debug > Start to run the project. Enter an account number of 1 and
click the Get Balance button for the Checking Account type. Y ou should get a
balance of 1,000. Test the other account types. You should get the same
result, since all classes are using the same GetBalance function defined in the
base class.

6. After testing, close the form, which will stop the debugger.

Restricting Usef a Base Class Method to Its Derived Classes

At this point, the GetBalance method of the base class is public, which means that it can be
AEEEQQOEEdCPdEExT UEEdENAOQOE®d £AOEd Ul ET xdENT EOQU@r d+EU~ @d £NU
be accessed only b y the derived classes alone, and not by their clients. To protect the
GetBalance method in this way, follow these steps:

1. Locate the GetBalance method of the Account class.

2. Change the access modifier of the GetBalance method from public to protected.
3. Switch to the frmTeller code editor and locate the btnGetBalance click event code.
4.

Hover the cursor over the call to the GetBalance method of the
oCheckingAccount object. You will see a warning stating that it is a protected
function and is not accessible in thi s context.
5. Comment out the code between the Try and the Catch statements.
6. Switch to the Account.cs code editor.
7. Add the following code to create the following private instance variable to the
SavingsAccount class definition file:
double _dblIBalance;
8. Add the following Withdraw method to the SavingsAccount class. This function

calls the protected method of the Account base class:
public double Withdraw(int accountNumber, double amount)

_dblBalance = GetBalance(accountNumber); if
(_dbIBalance >= amount)

_dbIBalance - =amount;
return _dblBalance;

else

throw new Exception("Not enough funds.");

}

9. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

118

Testing the Protectd&hse Class Method

CHAPTERY CREATING CLASS HIERAR(

To test the Withdraw method, follow these steps:

1. Open the frmTeller form in the code editor and locate the btnWithdraw click event
code.

2. Inside the event procedure, prior to the Try block, declare and instantiate a
variable of type SavingsAccount called oSavingsAccount.

SavingsAccount oSavingsAccount = new SavingsAccount();

3. Call the Withdraw method of the oSavingsAccount. Pass the account number value
from the Account Number text box and the withdrawal amount from the Amount text
box. Show the return value in the Balance text box. Place the following code in the
Try block prior to the Catch statement:

txtBalance.Text = oSavingsAccount.Withdraw
(int.Parse(txtAccountNumber.Text),double.Parse(txtAmount. Text)). ToString();

4. Select Build > Build Solution. Make sure there are no build errors in the Error List

window. If there are, fix them and then rebuild.

5. Select Debug > Start to run the project.

6. Test the Withdraw method of the SavingsAccount class by entering an account
number of 1 and a withdrawal amount of 200. Click the Withdraw button. You
should get a resulting balance of 800.

7. Enter an account number of 1 and a withdrawal amount of 2000.

Click the Withdraw button. You should get an insufficient funds
message.

8. After testing the W ithdraw method, close the form, which will stop the

debugger. Restricting Use of All Members of a Base Class to its Derived Classes

Because the Account base class is public, it can be instantiated by clients of the derived

classes. You can alter this by making the Account base class an abstract class. An

ACOUx FEUdENAPPJdELAOJdGCEd AZEEECGQOEEd OONPdGCPdT UGdEE X1
accessed by their clients. To create and test the accessibility of the abstract class, follow

these steps: 1. Locat e the Account class definition in the Account.cs code.

2. Add the abstract keyword to the class definition code, like so:

UEEJdENAEDDE

abstract class Account

3. Select Build > Build Solution. You should receive a build error in the Error
List window. Find the line of code ca using the error.

Account oAccount = new Account();

4. Comment out the line of code, and select Build > Build Solution again. It
should now build without any errors.

5. Save and close the project.

Overriding the Methods of a Base Class

When a derived class inherits a method from a base class, it inherits the implementation of that
method . As the designer of the base class, you may want to let a derived class implement the
method in its own unique way. This is known as overriding the base class method.

By de fault, a derived class can't override the implementation code of its base class. To allow
a base class method to be overridden, you must include the keyword virtual in the method

119

definition. In the derived class, you define a method with the same method"&*PTERY (JiFAUNG SHPRARHIRS
it is overriding a base class method with the override keyword. The following code demonstrates
the creation of an overridable Deposit method in the Account base class:

public virtual void Deposit(double amount)

/IBase class implementation
}

To override the Deposit method in the derived CheckingAccount class, use the following code:

public override void Deposit(double amount)

/[Derived class implementation

One scenario to watch for is when a derived class inherits from the base class and a
second derived class inherits from the first derived class. When a method overrides a method
in the base class, it becomes overridable by default. To limit an overriding method from being
overridden further up the inheritance chain, you mu st include the sealed keyword in front of
the override keyword in the method definition of the derived class. The following code in the
CheckingAccount class prevents the overriding of the Deposit method if the CheckingAccount
class is derived from:
public sealed override void Deposit(double amount)

//Derived class implementation

When you indicate that a base class method is overridable, derived classes have the option
of overriding the method or using the implementation provided by the base class. In some
cases, you may want to use a base class method as a template for the derived classes. The
base class has no implementation code, but is used to define the method signatures used in the
derived classes. This type of class is referred to as an abstract base class. You define the class
and the methods with the abstract keyword. The f ollowing code is used to create an abstract
Account base class with an abstract Deposit method:

public abstract class Account {
public abstract void Deposit(double amount);

Note that because there is no implementation code defined in the base class for t he Deposit
method, the body of the method is omitted.

Calling a Derived Class Method from a Base Class

A situation may arise in which you are calling an overridable method in the base class
from another method of the base class, and the derived class overrides the method of the
base class. When a call is made to the base class method from an instance of the derived
class, the base class will call the overridden method of the derived class. The following

code shows an example of this situation. A Checki ngAccount base class contains an
overridable GetMinBalance method. The InterestBearingCheckingAccount class, inheriting

from the CheckingAccount class, overrides the GetMinBalance method.

class CheckingAccount {

private double _balance =

2000; public doubl e Balance {
get { return _balance; }

public virtual double GetMinBalance()

return 200;

120

} CHAPTERY CREATING CLASS HIERAR(
public virtual void Withdraw(double amount)

121

{

cHapTERy cREAIRIDIE ABinBalance =

122

GetMinBalance(); if (minBalance <
(Balance - amount))

_balance - = amount;
else

throw new Exception("Minimum balance error.");

}

class InterestBearingCheckingAccount : CheckingAccount {
public override double GetMinBalance()

return 1000;
}

A client instantiates an object instance of the InterestBearingCheckingAccount class and
calls the Withdraw method. In this case, the overridden GetMinimumBalance method of the
InterestBearingCheckingAccount class is executed, and a minimum balance of 1,000 is used.

InterestBearingCheckingAccount oAccount = hew
InterestBearingCheckingAccount(); oAccount.Withdraw(500);

When the call was made to the Withdraw method, you could have prefaced it with the this
qualifier:

double minBalance = this.GetMinBalance();

Because the this qualifier is the default qualifier if none is used, the code would execute
the same way as previously demonstrated. The most derived class implementation (that has
been instantiated) of the method is executed. In other words, if a client instantiates an instance
of the InterestBearingCheckingAccount class, as was demonstrated pr eviously, the base class's
call to GetMinimumBalance is made to the derived class's implementation. On the other hand, if
a client instantiates an instance of the CheckingAccount class, the base class's call to
GetMinimumBalance is made to its own implemen tation.

Calling a Base Class Method from a Derived Class

In some cases, you may want to develop a derived class method that still uses the
implementation code in the base class but also augments it with its own implementation code. In
this case, you create an overriding method in the derived class and call the code in the base
class using the base qualifier. The following code demonstrates the use of the base qualifier:

public override void Deposit(double amount)

base.Deposit(amount);
/IDerived class implementation.

Overloading Methods of a Base Class

Methods inherited by the derived class can be overloaded. The method signature of the
overloaded class must use the same name as the overloaded method, but the parameter lists
must differ. This is the sam e as when you overload methods of the same class. The following
code demonstrates the overloading of a derived method:

class
CheckingAccount {
) public void Withdraw(double amount)

{
}

CHAPTERY CREATING CLASS HIERAR(
class InterestBearingCheckingAccount :

CheckingAccount {
public void Withdraw(double amount, double minBalance)
{
}

}

Client code instantiating an instance of the InterestBearingCheckingAccount has access to
both Withdraw methods.

InterestBearingCheckingAccount oAccount = new InterestBearingCheckingAccount();
oAccount.Withd raw(500);
o0Account.Withdraw(500, 200);

Hiding Base Class Methods

If a method in a derived class has the same method signature as that of the base class method

but it is not marked with the override key word, it effectively hides the method of the base

class. Although this may be the intended behavior, sometimes it can occur inadvertently.
Although the code will still compile, the IDE will issue a warning asking if this is the intended
behavior. If you intend to hide a base class method, you should expli citly use the new keyword
in the definition of the method of the derived class. Using the new keyword will indicate to the

IDE this is the intended behavior and dismiss the warning. The following code demonstrates
hiding a base class method:

class
Checking Account {
public virtual void Withdraw(double amount)

{
}
}

class InterestBearingCheckingAccount :
CheckingAccount {
public new void Withdraw(double amount)

}
public void Withdraw(double amount, double minBalance)

{
}
}

ACTIVITY-Z. OVERRIDING BASEASS METHODS

In this activity, you will become familiar with the following:

Overriding methods of a base class.
Using the base qualifier in a derived classes.

Overriding Base Class Methods
To override the Account class, follow these steps:

1. StartVS. Select File > Open > Project.

2. Navigate to the Activity7_2Starter folder, click the Act7_2.sIn file, and then click
Open. When the project opens, it will contain a teller form. You will use this form
later to test the classes you will create. The project also contains a BankClasses.cs
file. This file contains code for the Account base class and the derived classes

123

CHAPTERY CREATING CLASS HIERAR(
SavingsAccount and CheckingAccount.

3. Examine the Withdraw method defined in the base class Account. This method
checks to see whether there are sufficient funds in the account a nd, if there are,
updates the balance. You will override this method in the CheckingAccount class to
ensure that a minimum balance is maintained.

4. Change the Withdraw method definition in the Account class to indicate it is
overridable, like so:

public virtual double Withdraw(double amount)

5. Add the following GetMinimumBalance method to the CheckingAccount class
definition:

public double GetMinimumBalance()

{
return 200;

6. Add the following overriding Withdraw method to the CheckingAccount class
definitio n. This method adds a check to see that the minimum balance is maintained

after a withdrawal.
public override double Withdraw(double amount)

{
if (Balance >= amount + GetMinimumBalance())

_balance - = amount;
return Balance;

else

throw new ApplicationException("Not enough funds.");

7. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them and then rebuild.

Testing the Overwritten Methods

To test the modified Withdraw methods you have created, follow these steps:

1. Open the frmTeller form in the code editor and locate the btnWithdraw click event

code.

2. Depending on which radio button is selected, call the Withdraw method of the
appropriate object and pass the value of the txtAmoun t text box. Add the following code

in the try block to show the return value in the txtBalance text box:
if (rdbChecking.Checked)

oCheckingAccount.AccountNumber = int.Parse(txtAccountNumber.Text);
txtBalance.Text =
oCheckingAccount.Withdraw(double.Parse(txtAmount.Text)).ToString();

}
else if (rdbSavings.Checked)
{

oSavingsAccount.AccountNumber = int.Parse(txtAccountNumber.Text);
txtBalance.Text =
oSavingsAccount.Withdraw(double.Parse(txtAmount.Text)). ToString();
}

3. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

4. Select Debug > Start to run the project.

124

Withdraw method. None of the

5. Enter an account number of 1, choose the Checking option button CHfd EEC B8 ¢6; CLASS HIERARC

Balance but ton.You should get a balance of 1000.

6. Enter a withdrawal amount of 200 and click the Withdraw button. You should get a

resulting balance of 800.

7. Enter a withdrawal amount of 700 and click the Withdraw button. You should get an
insufficient funds message because the resulting balance would be less than the

minimum balance of 200.

8. Enter an account number of 1, choose the Savings option button, and click the Get

Balance button. You should get a balance of 1000.

9. Enter a withdrawal amount of 600 and click the Withdraw button. You should

get a resulting balance of 400.

10. Enter a withdrawal amount of 400 and click the Withdraw button. You should

get a resulting balance of 0 because there is no minimum balance for the

savings account that uses the Account base class ~ @d %1 Ul Ex £EUd OEUI QEr

11. After testing, close the form, which will stop the debugger.

Using the Base Qualifier to Call a Base Class Method

1. Locate the Withdraw method of the Account class.

2. Change the implementation code so that it decrements the balance by the

amount passed to it.
public virtual double Withdraw(double amount)

{

_balance - = amount; return Balance;
}

3. Change the Withdraw method of the CheckingAccount class so that after it
checks for sufficient funds, it calls the Withdraw method of the Account

base class.
public override double Withdraw(double amount)

If (Balance >= amount + GetMinimumBalance())
return base.Withdraw(amount);
else
throw new ApplicationException("Not enough funds.");
|
4. Add a Withdraw method to the SavingsAccount class that is similar to the

Withdraw method of the CheckingAccount class but does not check for a

minimum balance.
public override double Withdraw(double amount)

{
if (Balance >= amount)

return base.Withdraw(amount);
}

else

throw new ApplicationException("Not enough funds.");

UdUi T @d 601 OUpd Ui Ed %l Ui ExAZUd OEUI OEd OEd Ul Ed " i1 EEDT Ol
EOEEdT Od Ui Ed CAGEd ENAD@" @d OE

125

{ OEdT1 Gd EYEEUUE

ENAZO” @d EOEEdT @

CHAPTERY CREATING CLASS HIERAR(

}
}

5. Select Build > Build Solution. Make sure there are no build errors in
the Error List window. If there are, fix them, and then rebuild.

Testing the Use of the Badedifier

To test the Withdraw method, follow these steps:

1. Select Debug > Start.

Enter an account number of 1, choose the Checking option button, and
click the Get Balance button. You should get a balance of 1000.

3. Enter a withdrawal amount of 600 and click the Withdraw button. You
should get a resulting balance of 400.

4. Enter a withdrawal amount of 300 and click the Withdraw button. You
should get an insufficient funds message because the resulting
balance would be less than the 200 minimum.

5. Enter an account number of 1, choose the Savings option button, and
click the Get Balance button. You should get a balance of 1000.

6. Enter a withdrawal amount of 600 and click the Withdraw button. You
should get a resulting balance of 400.

7. Enter a withdrawal amount of 300 and click the Withdraw button. You
should get a resulting balance of 100, because there is no minimum

Withdraw method.

8. After testing, close the form, which will stop the debugger.

Implemenhg Interfaces

As you saw earlier, you can create an abstract base class that does not contain any
implementation code but defines the method signatures that must be used by any class that
inherits from the base class. When you use an abstract class, class es that derive from it must
implement its inherited methods. You could use another technique to accomplish a similar
result. In this case, instead of defining an abstract class, you define an interface that defines the
method signatures.

Classes that implement an interface are contractually required to implement the interface
signature definition and can't alter it. This technique is useful to ensure that client code using
the classes know which methods are avail able, how they should be called, and the return values
to expect. The following

126

CHAPTERY CREATING CLASS HIERAR!
code shows how you declare an interface

definition: public interface IAccount {
string GetAccountinfo(int accountNumber);

A class implements the interface by using a semicolon followed by the name of the interface
after the class name. When a class implements an interface, it must provide implementation code
for all methods defined by the interface. The following code demonstrates how a
CheckingAccount implements the | Account interface:
public class CheckingAccount :

IAccount {
public string GetAccountinfo(int accountNumber)

return "Printing checking account info";

}

Because implementing an interface and inheriting from an abstract base class are similar,
you might ask why you should bother using an interface. One advantage of using interfaces is
that a class can implement multiple interfaces. The .NET Framework does not support
inheritance from more than one class. As a workaround to multiple inheritance, the abilit yto
implement multiple interfaces was included. Interfaces are also useful to enforce common
functionality across disparate types of classes.

Understanding Polymorphism

Polymorphism is the ability of derived classes inheriting from the same base class to respond to
the same method call in their own unique way. This simplifies client code because the client
code does not need to worry about which class type it is referencing, as long as the class types
implement the same method interfaces.

For example, supp ose you want all account classes in a banking application to contain a
GetAccountinfo method with the same interface definition but different implementations based
on account type. Client code could loop through a collection of account - type classes, and th e
compiler would determine at runtime which specific account - type implementation needs to be
executed. If you later added a new account type that implements the GetAccountinfo method,
you would not need to alter existing client code.

You can achieve polymo rphism either by using inheritance or by implementing interfaces.
The following code demonstrates the use of inheritance. First, you define the base and derived
classes.
public abstract class Account {

public abstract string GetAccountinfo();

public clas s CheckingAccount : Account {
public override string GetAccountinfo()

return "Printing checking account info";

public class SavingsAccount : Account {
public override string GetAccountinfo()

return "Printing savings account info";

}

You then create a list of type Account and add a CheckingAccount and a SavingsAccount.

List<Account> AccountList = new List<Account>();
CheckingAccount oCheckingAccount = new CheckingAccount();
SavingsAccount oSavingsAccount = new SavingsAccount();

127

CHAPTERY CREATING CLASS HIERAR(

AccountList.Add(oCheck ingAccount);
AccountList.Add(oSavingsAccount);

You then loop through the List and call the GetAccountinfo method of each Account. Each
Account type will implement its own implementation of the GetAccountinfo.

foreach (Account a in AccountList)

{

MessageBox .Show(a.GetAccountinfo());

You can also achieve a similar result by using interfaces. Instead of inheriting from the base
class Account, you define and implement an IAccount interface.

public interface IAccount {
string GetAccountinfo();

public class CheckingAccount : IAccount {
public string GetAccountinfo()
{

return "Printing checking account info";

}

public class SavingsAccount : IAccount {
public string GetAccountinfo()
{

return "Printing savings account info";

}

You then create a list of type 1Account and add a CheckingAccount and a SavingsAccount.

List<lAccount> AccountList = new List<IAccount>();
CheckingAccount oCheckingAccount = new CheckingAccount();
SavingsAccount oSavingsAccount = new SavingsAccount();
AccountList.Add(oCheckingAccount);
AccountList.Add(oSavingsAccount);
You then loop through the List and call the GetAccountinfo method of each Account. Each
Account type will implement its own implementation of the GetAccountinfo.
foreach (IAccount a in AccountList)

MessageBox.Show(a.GetA ccountinfo());

ACTIVITY-3. IMPLEMENTING POLYMORPHISM

In this activity, you will become familiar with the following:

Creating polymorphism through inheritance.
Creating polymorphism through interfaces.

Implementing Polymorphism Using Inheritance
To implement polymorphism using inheritance, follow these steps:

1. Start Visual Studio. Select File > New > Project.

2. Select the Console Application template under the C# templates. Name
the project Activity7_3.
3. The project includes a Program.cs file. This file contains a Main

128

CHAPTERY CREATING CLASS HIERAR(

method that launches a Windows Console application. Right click
the project node in the Solution Explorer Window and select Add
> class. Name the file Account.cs.
4. Inthe Account.cs file alte r the code to an abstract base Account class.
Include an accountNumber property and an abstract method

GetAccountinfo that takes no parameters and returns a string.
public abstract class Account {

private int _accountNumber; public int AccountNumber {

get { return _accountNumber; }
set { _accountNumber = value; }

public abstract string GetAccountinfo();

5. Add the following code to create two derived classes:
CheckingAccount and SavingsAccount. These classes will override
the GetAccountinfo method of the base class.

129

CHAPTERY CREATING CLASS HIERAR(

public class CheckingAccount : Account {
public override string GetAccountinfo()
{
return "Printing checking account info for account number "
+ AccountNumber.ToString();

}

}
public class SavingsAccount : Account {
public override string GetAccountinfo()

return "Printing savings account info for account number "
+ AccountNumber.ToString();

}
}
6. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.
Testing thd?olymorphic Inheritance Method
To test the polymorphic method, follow these steps: 1. Open the Program.cs file in the

code editor and locate the Main method.

2. Instantiate an instance of a list of Account types.
List<Account> AccountList = new List<Account> O;

3. Instantiate an instance of the CheckingAccount and SavingsAccount.

CheckingAccount oCheckingAccount = new CheckingAccount();
oCheckingAccount.AccountNumber = 100;

SavingsAccount oSavingsAccount = new SavingsAccount();
oSavingsAccount.AccountNumber = 200;

4. Add the oCheckingAccount and oSavingsAccount to the list using the Add method of
the list.
AccountList.Add(oCheckingAccount);
AccountList.Add(oSavingsAccount);
5. Loop through the list and call the GetAccountinfo method of each Account type in the

list a nd show the results in a console window.
foreach (Account a in AccountList)

Console.WriteLine(a.GetAccountinfo());

}
Console.ReadLine();
6. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.
7. Select Debug > Start to run the project. You should see a console window with the
return string for the GetAccountinfo method of each o bject in the list.

8. After testing the polymorphism, hit the enter key to close the console window, which
will stop the debugger.

Implementing Polymorphism Using an Interface

To implement polymorphism using an interface, follow these steps:
1. View the code for the Account.cs file in the code editor.

2. Comment out the code for the Account, CheckingAccount, and SavingsAccount
classes.

130

CHAPTERY CREATING CLASS HIERAR(

3. Define an interface |IAccount that contains the GetAccountinfo method.

public interface |Account {
string GetAccountinfo();

4. Add the following code to create two classes: CheckingAccount and SavingsAccount.

These classes will implement the IAccount interface.
public class CheckingAccount : IAccount {

private int _accountNumber; public int AccountNumber {
get { return _accountNumber;} set{_accountNumber = value; }

public string GetAccountinfo()

return "Printing checking account info for account number "
+ AccountNumber.ToString();

}
public class SavingsAccount : I1Account {

private int _accountNumber; public int AccountNumber {
get { return _accountNumber; } set { _accountNumber = value; }

public string GetAccountinfo()

return "Printing savings account info for account number "
+ AccountNumber.ToString();

}

}

5. Select Build > Build Solution. Make sure there are no build errors in
the Error List window. If there are, fix them, and then rebuild.

Testing the Polymorphic Interface Method

To test the polymorphic method, follow these steps:
1. Open the Program.cs file in the code edito r and locate the Main method.
2. Change the code to instantiate an instance of a list of IAccount types.
List<lAccount> AccountList = new List<IAccount>();

3. Change the for each loop to loop through the list and call the

GetAccountinfo() method of each IAccount type in the list.
foreach (IAccount a in AccountList)

Console.WriteLine(a.GetAccountinfo());

}

Console.ReadLine();

4, Select Build > Build Solution. Make sure there are no build errors in
the Error List window. If there are, fix them, and then rebuild.

5. Select Debug > Start to run the project. You should see a console
window with the return string for the GetAccountinfo method of each
object in the list.

6. After testing the polymorphism, hit the enter key to close the console
window, which will stop the debugger.

131

CHAPTERY CREATING CLASS HIERAR(

Summary

This chapter introduced you to two of OOP's most powerful features: inheritance and
polymorphism. Knowing how to implement these features is fundamental to becoming a
successful object - oriented programmer, regardless of the language you u se.

In the next chapter, you will take a closer look at how the objects in your applications
collaborate. The topics covered include how objects pass messages to one another, how events
drive your programs, how data is shared among instances of a class, and how exceptions are
handled.

132

CHAPTERS

Implementing Object Collaboration

In the previous chapter, you learned how to create and use class hierarchies in C#. That chapter
also introduced the concepts of inheritance, polymorphi sm, and interfaces. In this chapter, you'l
learn how to get the objects of an application to work together to perform tasks. You will see
how objects communicate through messaging and how events initiate application processing.
You'll also learn how the o bjects respond and communicate exceptions that may occur as they
carry out their assigned tasks.

After reading this chapter, you should be familiar with the following:

The process of object communication through messaging.

The different types of messaging that can occur.

How to use delegation in C# applications.

How objects can respond to events and publish their own events.

The process of issuing and responding to exceptions.
How to create shared data and procedures among several instances of the
same clas s.

How to issue message calls asynchronously.

Communicating Through Messaging

One of the advantages of OOP is that OOP applications function in much the same way that

people do in the real world. You can think of your application as a large company. In large
companies, the employees perform specialized functions. For example, one person is in charge

of accounts payable processing, and another is responsible for the accounts receivable

operations. When an employee needs to request a service . paid time off (PTO), for example .
the employee (the client) sends a message to her manager (the server). This client/server

request can involve just two objects, or it can be a complex chain of client/server requests. For
example, the employee requests the PTO from her m anager, who, in turn, checks with the
human resources (HR) department to see if the employee has enough accumulated time. In this
case, the manager is both a server to the employee and a client to the HR department.

Defining Method Signatures

When a messag e passes between a client and server, the client may or may not expect a

response. For example, when an employee requests PTO, she expects a response indicating 137
approval or denial.

However, when the accounting department issues paychecks, the staff members do not expect

everyone in the company to issue a response e - mail thanking them!

A common requirement when a message is issued is to include the information necessary to

carry out the request. When an employee requests PTO, her manager expects her to provi de

char RN EDedRle D she i amesting off. In OOP terminology, you refer to the name of the

138

method (requested service) and the input parameters (client - supplied information) as the
method signature.
The following code demonstrates how methods are defined in C#. The access modifier is

first followed by the return type (void is used if no return value is returned) and then the name
of the method. Parameter types and names are listed in parenthesis separated by commas. The
body of the method is contained in opening and closing curly brackets.

public int AddEmployee(string firstName,string lastName)
/ICode to save data to database
public void LogMessage(string message)

/ICode to write to log file.

Passing Parameters

When you define a method in the class, you also must indicate how the parameters are passed.
Parameters may be passed by value or by reference.

If you choose to pass the parameters by value, a copy of the parameter data is passed from
the client to the server. The server works with the copy and, if changes are made to the data,
the server must pass the copy back to the client so that the client can choose to discard the
changes or replicate them. Returning to the company analogy, think about the process of
updating your employee file. Th e HR department does not give you direct access to the file;
instead, it sends you a copy of the values in the file. You make changes to the copy, and then
you send it back to the HR department. The HR department then decides whether to replicate
these cha nges to the actual employee file. In C#, passing parameters by value is the default, so
no keyword is used. In the following method, the parameter is passed by value:

public int AddEmployee(string firstName)

/ICode to save data to database

Another way you can pass parameters is by reference. In this case, the client does not pass
in a copy of the data but instead passes a reference to where the data is located. Using the
previous example, instead of sending you a copy of the data in your employee file w hen you
want to make updates, the HR department informs you where the file is located, and tells you to
go to it to make the changes. In this case, clearly it would be better to pass the parameters by
reference. In C# code, when passing parameters by refer ence the ref keyword is used. The
following code shows how you define the method to pass values by reference:

public int AddEmployee(ref string firstName)

/ICode to save data to database

In highly distributed applications, it is advantageous to pass parametars fyeyaievenTine BStSEd AoraT
by reference. Passing parameters by reference can cause increased overhead, because when

the server object must work with parameter information, it needs to make calls across
processing boundaries and the network. Passing values by reference is also less secure when
maintaining data integrity. The client is opening a channel for the data to be manipulated without
the client's knowledge or control.

On the other hand, passing values by reference may be the better choice when the client
and server a re in the same process space (they occupy the same cubicle, so to speak) and have
a clearly established trust relationship. In this situation, allowing direct access to the memory
storage location and passing the parameters by reference may offer a perform ance advantage
over passing the parameters by value.

The other situation where passing parameters by reference may be advantageous is if the
object is a complex data type, such as another object. In this case, the overhead of copying the
data structure and passing it across process and network boundaries outweighs the overhead of
making repeated calls across the network.

ZNoteThe .NET Framework addresses the problem of complex data types by allowing you to
efficiently copy and pass those types by serializi ng and deserializing them in an XML structure.

Understanding Eveblriven Programming

So far, you have been looking at messaging between the objects in which the client initiates the
message interaction. If you think about how you interact with objects in real life, you often
receive messages in response to an event that has occurred. For example, when the sandwich
vendor comes into the building, a message is issued over the intercom informing employees that

the lunch has arrived. This type of messaging is referred to as broadcast messaging. The server
issues the message, and the clients decide to ignore or respond to the message.
Another way this event message could be issued is by the receptionist sending an e - mail to

a list of interested employees when th e sandwich vendor shows up. In this case, the interested
employees would subscribe to receive the event message with the receptionist. This type of
messaging is often referred to as subscription - based messaging.

Applications built with the .NET Framework are object - oriented, event - driven programs. If
you trace the client/server processing chains that occur in your applications, you can identify
the event that kicked off the processing. In the case of Windows applications, the user
interacting with a GUI us ually initiates the event. For example, a user might initiate the process
of saving data to a database by clicking a button. Classes in applications can also initiate events.
A security class could broadcast an event message when an invalid login is detect ed. You can
also subscribe to external events. You could create a web service that would issue an event
notification when a change occurs in a stock you are tracking in the stock market. You could
write an application that subscribes to the service and res ponds to the event notification.

Understanding Delegation

In order to implement event - based programming in C#, you must first understand
delegation. Delegation is when you request a service from a server by making a method
call. The server then reroutes th is service request to another method, which services the
request. The delegate class can
examine the service request and dynamically determines at runtime where to route the request.
Returning to the company analogy, when a manager receives a service reque st, she often
delegates it to a member of her department. (In fact, many would argue that a common trait
among successful managers is the ability to know when and how to delegate responsibilities.)

When you create a delegated method, you first define the d elegated method's signature.
Because the delegate method does not actually service the request, it does not contain any

139

crw%‘ﬁw@?ﬂ@ﬂ?&&%%c? hg, fallgwing code shows a delegated method used to compare integer
values:

public delegate Boolean Comparelnt(int 11, int 12);

Once the delegated method's signature is defined, you can then create the methods that will
be delegated to. These methods must have the same parameters and return types as the
delegated method. The following code shows two methods that the de legated method will
delegate to:

private Boolean AscendOrder(int I1, int 12)

if (11 <12)

{ return true;}
else

{return false; }

private Boolean DescendOrder(int 11, int 12)

if (11> 12)
{return true; }
else

{return false; }

}

Once the delegate and its delegating methods have been defined, you are ready to use the
delegate. The following code shows a portion of a sorting routine that determines which
delegated method to call depending on a SortType passed in as a parameter:

public void Sortintegers(SortType sortDirection, int[] intArray)

{
Comparelnt CheckOrder; if (sortDirection
== SortType.Ascending)
{ CheckOrder = new Comparelnt(AscendOrder); }
else
{ CheckOrder = new Comparelnt(DescendOrder); }
/I Code continues ...
}

Implementing Events

In C#, when you want to issue event messages, first you declare a delegate type for the event.
The delegate type defines the set of arguments that will be passed to the method that handles
the event.

public delegate void DataUpdateEventHandler(string msg);
Once the delegate is declared an event of the delegate type is declared.
public event DataUpdateEventHandler DataUpdate;
When you want to raise the event, you call the event passing in the appropriate
arguments. public void Savelnfo()
try
DataUpdate("Data has been updated");
catch

DataUpdate("Data could not be updated");

140

} CHAPTERIMPLEMENTING OBJECLLABORATI

Responding To Events

To consume an event in client code, an event handling method is declared that executes program
logic in response to the event. This event handler must have the same method signature as the
event delegate declared in the class issuing the event.

void odata_DataUpdate(string msg)

MessageBox.Show(msg);

This event handler is registered with the event source using the += operator. This process is
referred to as event wiring. The following code wires up the event handler for the DataUpdate
event declared previously:

Data odata = new Data();
odata.DataUpdate += new
DataUpdateEventHandler(odata_DataUpdate); odata.Savelnfo();

Windows Control Event Handling

Windows Forms also implement event handlers by using the += operator to wire up the event
handler to the event. The following code wires up a button to a click event and a textbox to a
mouse down event:

this.button1.Click += new System.EventHandler(this.button1_CI ick);
this.textBox1.MouseDown += new
System.Windows.Forms.MouseEventHandler(this.textBox1_MouseDown);

The event handler methods for control events take two parameters: the first parameter,
sender, provides a reference to the object that raised the event. T he second parameter passes an
object containing information specific to the event that is being handled. The following code shows
an event handler method for a button click event and an event handler for the textbox mouse down
event. Notice how e isusedt o determine if the left button was clicked.
private void buttonl_Click(object sender, EventArgs e)

private void textBox1_MouseDown(object sender, MouseEventArgs e) {
if (e.Button == System.Windows.Forms.MouseButtons.Left)

/lcode goes here.

ACTIVITY-8. ISSUING AND RESPONDING TO EVENT MESSAGES

In this activity, you will learn to do the following:

Create and raise events from a server class.
Handle events from client classes.
Handle GUI events.

Adding and Raising Event Messaging in the Okfasition

To add and raise event messaging in a class definition file, follow these steps:

141

CHAPTERBIMPLEMENTINGOIRHEATiSARISRIdio. Select File > New > Project.

2. Choose a Windows Application project. Name the project Act
3. A default form is included in the project. Add cont
change the property values, as listed in Table 8

should look similar to Figure 8 - 1.

81
rols to the form and
- 1. Your completed form

Table 8 - 1. Login Form and Control Properties

Object Property Value
Forml Name frmLogin
Text Login
Label 1 Name IbIName
Text Name:
Label2 Name IbIPassword
Text Password:
(continuea)
Table 8 - 1. (continued)
Object Property Value
Textbox1 Name txtName
Text (empty)
Textbox2 Name txtPassword
Text (empty)
PasswordChar *
Button 1 Name btnLogin
Text Login
Button2 Name btnClose
Text Close

142

(:) CHAPTER\BIMPLEMENTING OBJEOLLABORATI
a3 Login o | &3 | R
Name: l Login l
Close l
Password:
ur 7 1

Figure 8 - 1. The completed login form

4. Select Project > Add Class. Name the class Employee. Open the Employee class
code in the code editor.

5. Above the class declaration, add the following line of code to define the
Login event handler delegate. You will use this event to track employee
logins to your application.

public delegate void LoginEventHandler(string loginName, Boolean status);

6. Inside the class declaration, add the following line of code to define the
LoginEvent as the delegate type:

143

orne PUBURENERL WA YER dANlgs LoginEvent

144

7. Add the following Login method to the class, which will raise the LoginEvent:
public void Login(string loginName, string password)

//Data normally retrieved from database. if (loginName ==
"Smith" && password == "js")

LoginEvent(loginName, true);
else

LoginEvent(loginName, false);

8. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

Receiving Events in the Client Class

To receive events in the client class, follow these steps:

1. Open the frmLogin in the design window.

2. Double - click the Login button to view the Login button click event handler.

3. | EEdUI EAEONNOUT 01 dEOEEdUOdUT xEdUOdUI Ed2 OONOPEEdE

handler in the form class:
private void btnLogin_Click(object sender, EventArgs €)

Employee oEmployee = new Employee();
oEmployee.LoginEvent += new LoginEventHandler(oEmployee_LoginEvent);
oEmployee.Login(txtName.Text, txtPassword. Text);

4. Add the following event handler method to the form that gets called when the
Employee class issues a LoginEvent:
void oEmployee_LoginEvent(string loginName, bool status)

MessageBox.Show("Login status :" + status);

5. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.
6. Select Debug > Start to run the project.

7. To test to make sure the Login event is raised, enter a login name of Smith and a
password of js. This should trigger a login status of true.
8. After testing the Login event, close the form, which will stop the debugger.

Handling Multiple Events with One Method

To handle multiple events with one method, follow these steps:

1. Open frmLogin in the form d esigner by right - clicking the frmLogin node in the
Solution Explorer and choosing View Designer.

N

FEQ

2. «x00dUI Ed* OONCOYpd ZEEd Ad2 EOU, UxT OdEOOUxONd UOd Ui Ed

-ExE d&£OEdEOUE x d- teVefhtenu afdlExit bk ifs dubniefu, as shown
Figure 8 - 2.

o Login E=mE-§

(Fe] l

Exit

l l CHAPTERIMPLEMENTING OBJECT COLLABO

Password: [00455

Figure 8 - 2. Adding the MenuStrijp control

3. Add the following method to handle the click event of the menu and the Close
button:

private void FormClose(object sender, EventArgs e)
this.Close();

4. Open the frmLogin in the designer window. In the properties window, select the

exitToolStripMenultem. Select the event button at the top of the properties window
to show the events of the control. In the click event drop - down, select the
FormClose method (see Figure 8 - 3).

145

CHAPTERBIMPLEMENTING OBJECLLABORATI

146

Properties €~ X

exitToolStripMerultem System .Windows. Form s.Tool Strip ii710
S==A
S=.z+

BackColorChanged
CheckedChanged
CheckStateChanged
Click
DisplayStyleChanged

FormC lose

DoubleClick
DropDownClosed
DropDownltem G licked
DropDownOpened
DropDownOpening

EnabledChanged
Click

Occurs when the item is clicked.

Figure 8 - 3. Winng up an event handler

5. Repeat step 4 to wire up the btnClose button click event to the FormClose
method.

6. Expand the frmLogin node in the Solution window. Right
click on the frmLogin.Designer.cs node and select View
Code.

7. Inthe code editor, expand the Windows Form Designer generated
code region. Search for the following code:
this.btnClose.Click += new System.EventHandler(this.FormClose);
this.exitToolStripMenultem.Click += new
System.EventHandler(this.FormClose);

8. This code was generated by the form designer to wire up the events
to the FormClose method.

9. Select Build > Build Solution. Make sure there are no build errors in
the Error List window. If there are, fix them, and then rebuild.

10. Select Debug > Start to run the project. Test the Exit menu and the Close
button.

CHAPTERIMPLEMENTING OBJECT COLLABO

11. After testing, save the project, and then exit Visual Studio.

147

CHAPTERIMPLEMENTING OBJECOLLABORATI

Handling Exceptions in the .NET Framework

When objects collaborate, things can go wrong. Exceptions are things that you do not expect to
occur during normal processing. For example, you may be trying to save data to a database
over the network when the connection fails, or you may be trying to save to a drive without a
disk in the drive. Your applications should be able to gracefully handle any exceptions that
occur during application processing.

The .NET Framework uses a structured exception handling mechanism. The following
are some of the benefits of this structured exception handling:

Common support and structure across all .NET languages.
“ Support for the creation of protected blocks of code.

“ The ability to filter ~ exceptions to create efficient robust error handling.
” Support of termination handlers to guarantee that cleanup tasks are completed,
regardless of any exceptions that may be encountered.

The .NET Framework also provides an extensive number of exception cla sses used to
handle common exceptions that might occur. For example, the FileNotFoundException class
encapsulates information such as the file name, error message, and the source for an exception
that is thrown when there is an attempt to access a file tha t does not exist. In addition, the
.NET Framework allows the creation of application - specific exception classes you can write to
handle common exceptions that are unique to your application.

Using the Try-Catch Block

When creating code that could end up causing an exception, you should place it in a Try block.
Code placed inside the Try block is considered protected. If an exception occurs while the
protected code is executing, code processing is transferred to the Catch block, where it is
handled. The fo llowing code shows a method of a class that tries to read from a file that does
not exist. When the exception is thrown, it is caught in the Catch block.

public string ReadText(string filePath)
StreamReader sr; try

sr = File.OpenText(filePath);
string fileText = sr.ReadToEnd();
sr.Close(); return fileText;

catch(Exception ex)
return ex.Message;

All Try blocks require at least one nested Catch block. You can use the Catch block to catch
all exceptions that may occur in the Try block, or you can use it to filter exceptions based on
the type of exception. This enables you to dynamically respond to different exceptions based on
the exception type. The following code demonstrates filtering exceptions based on the different
exceptions that could occur wh en trying to read a text file from disk:

?ublic string ReadText(string filePath)

StreamReader sr; try {
sr = File.OpenText(filePath);
} string fileText = sr.ReadToEnd();
sr.Close(); return fileText;

catch (DirectoryNotFoundException
ex) {
return ex.Message ;

148

catch (FileNotFoundException ex)

return ex.Message; CHAPTERIMPLEMENTING OBJECT COLLABO

}
catch(Exception ex)

return ex.Message;

Adding a Finally Block

Additionally, you can nest a Finally block at the end of the Try block. Unlike the Catch block, the
use of the Finally block is optional. The Finally block is for any cleanup code that needs to
occur, even if an exception is encountered. For example, you may need to close a database
connection or release a file. When the code of the Try block is executed and an exception
occurs, pr ocessing will jump to the appropriate Catch block. After the Catch block executes, the
Finally block will execute. If the Try block executes and no exception is encountered, the Catch
blocks don't execute, but the Finally block will still get processed. Th e following code shows a
Finally block being used to close and dispose a StreamReader:

?ublic string ReadText(string filePath)

StreamReader sr = null; try {
sr = File.OpenText(filePath);
string fileText = sr.ReadToENnd();
return fileText;

}

catch (DirectoryNotFoundException ex)
return ex.Message;

}

catch (FileNotFoundException

ex) {
return ex.Message;

}

catch (Exception ex)

return ex.Message;

}
finally
if (sr !=null)
sr.Close();
sr.Dispose();
}

Throwing Exceptions

During code execution, when an exception occurs that does not fit into one of the predefined

system exception classes, you can throw your own exception. You normally throw your own

exception when the error will not cause problems with execution but rather with the pro cessing
of your business rules. For example, you could look for an order date that is in the future and

throw an ApplicationException. The ApplicationException class inherits from the

System.Exception class. The following code shows an example of throwing an
ApplicationException:

public void LogOrder(long orderNumber, DateTime orderDate)

{
try

149

i :
CHAPTERBIMPLEMENTING dBiprdeifiates DateTime.Now)
throw new ApplicationException("Order date can not be in the future.");

/IProcessing code...
}
catch(Exception ex)

//[Exception handler code...

Nesting Exception Handling

In some cases, you may be able to correct an exception that occurred and continue processing
the rest of the code in the Try block. For example, a division - by- zero error may occur, and it

would be acceptable to

150

assign the result a value of zero and continue processing. In this case, a Try - Catch block could
be nested around the line of code that would cause the exception. After the exception is
handHeek pirotessingNeaBemiBORATo the line of code in the outer Try - Catch block immediately
after the nested Try block. The following code demonstrates nesting one Try block within
another:

try

{

try

Y = X1/ X2;
}
catch (DivideByZeroException ex)
Y =0;
} .
/IRest of processing code.
}
catch (Exception ex)

/IOuter exception processing

ZNoteFor more information about handling exceptions and the .NET Framework exception
classes, refer to Appendix B.

Static Properties and Methods

When you declare an object instance of a class, the object instantiates its own instances of the
properties and methods of the class it implements. For example, if you were to write a counting
routine that increments a counter, then instantiated two object instances of the class, the
counters of each object would be independent of each other; when you incremented one
counter, the other would not be affected. Normally, this object independence is the behavior you
want. However, sometimes you may want different object instances of a class to access the
same, shared variables. For example, you might want to build in a counter that logs how many
of the object instances have been instantiated. In this case, you would create a static property
value in the class definition. The following code demonstrates how you cr eate a static TaxRate
property in a class definition:

public class AccountingUtilities {

private static double _taxRate = 0.06;

public static double TaxRate {
get { return _taxRate; }

To access the static property, you don't create an object instance of the class; instead, you
refer to the class directly. The following code shows a client accessing the static TaxRate
property defined previously:

public class Purchase

public double CalculateTax(double purchasePrice)

{

return purchasePrice * AccountingUtilities.TaxRate;

}

Staticimethods are useful if you have utility functions that clients need to access, but you
don't want the overhead of creating an object instance of a class to gain access to the method.
Note that static methods can acces s only static properties. The following code shows a static

151

method used to count the number of users currently logged in to an application:

CHAPTERBIMBLEMENTING 0BJECT COLLABO
ub ¢ class UserLog

private static int _userCount; public static void
IncrementUserCount()

{

_userCount += 1;

}
public static void DecrementUserCount()

{
}

_userCount - =1,

}

When client code accesses a static method, it does so by referencing the class directly. The
following code demonstrates accessing the static method defined previously:

public class User

/lot her code ...
public void Login(string userName, string password)

/lcode to check credentials
/lif successful
UserLog.IncrementUserCount();

}

Although you may not use static properties and methods often when creating the classes in
your applications, they are useful when creating base class libraries and are used throughout
the .NET Framework system classes. The following code demonstrates the use of the Compare
method of the System.String class. This is a static method that compares two strings
alphabetically. It returns a positive value if the first string is greater, a negative value if the
second string is greater, or zero if the strings are equal.

public Boolean CheckStringOrder(string stringl, string string2)
if (string.Compare(stringl, string2) >=0)

152

return true,
CHAPTERIMPLEMENTING OBJECT COLLABO

return false;

}
{
ACTIVITES 82. IMPLEMENTING EXCEPTION HANDLING AND STATIC METH(
else
In this i activity, you will learn how to do the following:

Create and call static methods of a class.
Use structured exception handling.

Creating Static Methods

To create the static methods, follow these steps:
1. Start Visual Studio. Select File >New > Project.
2. Choose a Windows Application project. Name the project Act8_2.
3. »T @UANd, UUET OdExXxEZAUEQDBd AdEEEAUNUdEOXxOdEOxdUI EdOxOT EI
use to create a login form named Logger. Add controls to the form

and change the property values, as listed in Table 8 - 2. Your
completed form should look similar to Figure 8 - 4.
"1

es' Logger o |[@] =R
C:\Test\LogTest b

Test Message

Log Info

Figure 8 - 4. The comp/étéd logger form

153

CHAPTERIMPLEMENTING OBJECT COLLABO

154

Table 8 - 2. Logger Form and Control Pro perties

Object Property Value CHAPTERBIMPLEMENTING OBJECT COLLABO
Forml Name frmLogger

Text Logger
Textbox1 Name txtLogPath

Text c:\ Test\ LogTest.

txt

Textbox2 Name txtLoglInfo

Text Test Message
Buttonl Name btnLoglInfo

Text Log Info

4. Select Project > Add Class. Name the class Logger.

5. Because you will be using the System.IO class within the Logger
class, add a using statement to the top of the file:
using System.IO;
6. Add as static LogWrite method to the class. This method will write
information to alog file. To open the file, create a FileStream object.

Then create a StreamWriter object to write the information to the file.
public static string LogWrite(string logPath, string loginfo)

FileStream oFileStream = new FileStream(logPath, FileMode.Open, Fil eAccess.Write);
StreamWriter oStreamWriter = new StreamWriter(oFileStream);

oFileStream.Seek(0, SeekOrigin.End);

oStreamWriter.WriteLine(DateTime.Now);

oStreamWriter.WriteLine(loginfo);

oStreamWriter.WriteLine();

oStreamWriter.Close();

return "Info Logged" ;

7. Open frmLogger in the visual design editor. Double click the
btnLoglnfo button to bring up the btnLoglnfo_Click event method in
the code editor. Add the following code, which runs the LogWrite
method of the Logger class and displays the results in the EOxO” gdUEYUd
property. Note that because you designated the LogWrite method as
static (in step 6), the client does not need to create an object instance
of the Logger class. Static methods are accessed directly through a

class reference.
private void btnLog Info_Click(object sender, EventArgs e)

{
}

this.Text = Logger.LogWrite(txtLogPath.Text, txtLogInfo.Text);

8. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

9. Select Debug > Run. When the form launches, click the Log Info button. You should get an
unhandled exception message of type System.|O.FileNotFoundException. Stop the

155

debugger.

CHAPTERWIMPLEMENTING OBJECT COLLABO)
Creating the Structured Exception Handler

To create the structured exception handler, follow these steps:
1. Open the Logger class code in the code editor.

2. Locate the LogWrite method and add a Try - Catch block around the current code. In the
Catch block, return a string stating the logging failed.
try

FileStream oFileStream =

new FileStream(logPath, FileMode.Open, FileAccess.Write);
StreamWriter oStreamWriter = new StreamWriter(oFileStream);
oFileStream.Seek(0, SeekOrigin.End);
oStreamWriter.WriteLine(DateTime.Now);
oStreamWriter.WriteLine(loginfo);
oStreamWriter.WriteLine();
oStreamWriter.Close();
return "Info Logged";

catch

return "Logging Failed";

3. Select Build > Build Solution. Make sure there are no build errors in the Error List window.
If there are, fix them, and then rebuild.

4. Select Debug > Run. When the form launches, click the Log Info button. This time, you
should not get the exception message because it was handled by the LogWrite method.
%0Ud @i OUNEJdQZEEdUI EdOEQ@@ Al Ed” +01 11 01 d« &l NEE dT OdUI Ed |

Filtering Excepiins

To filter exceptions, follow these steps:
1. Alter the Catch block to return different messages depending on which exception is
thrown.

catch (FileNotFoundException
ex) return ex.Message; catch
(IOException ex) return
ex.Me ssage; catch

return "Logging Failed"”;

156

CHAPTERIMPLEMENTING OBJECT COLLABO

2. Select Build > Build Solution. Make sure there are no build errors in
the Error List window. If there are, fix them, and then rebuild.

3. Select Debug > Start to run the project. Test the
FileNotFoundException catch by clicking the Log Info button. Test the
IOException by changing the file path to the A drive and clicking the
Log Info button. These errors should be caught and the appropriate
message prese OUEEdT Od Ui EdEOx O~ @gd EADOUT OOr
4. After testing, close the form.

5. Using Notepad, create the LogTest.txt file in a Test folder on the C
drive and close the file. Make sure the file and folder are not marked
as read only.

6. Select Debug > Start to run the project. Test the WriteLog method by

indicate that the log write was successful.
7. Stop the debugger.
8. Open the LogTest.txt file using Notepad and verify that the information was logged.

9. Save the project, and then exit Visual Studio.

Using Asynchronous Messaging

When objects interact by passing messages back and forth, they can pass the message
synchronously or asynchronously.

When a client object makes a synchronous message call to a server object, the client
suspends processing and waits for a response back from the server before continuing.
Synchronous messaging is the easiest to implement and is the default type of messaging
implemented in the .NET Framework. However, some times this is an inefficient way of passing
messages. For example, the synchronous messaging model is not well suited for long - running
file reading and writing, making service calls across slow networks, or message queuing in
disconnected client scenarios. To more effectively handle these types of situations, the .NET
Framework provides the plumbing needed to pass messages between objects asynchronously.

When a client object passes a message asynchronously, the client can continue processing.
After the serv er completes the message request, the response information will be sent back to
the client.

If you think about it, you interact with objects in the real world both synchronously and
asynchronously. A good example of synchronous messaging is when you are in the checkout line
at the grocery store. When the clerk can't determine the price of one of the items, he calls the
manager for a price check and suspends the checkout process until a result is returned. An
example of an asynchronous message call is whent he clerk notices that he is running low on
change. He alerts the manager that he will need change soon, but he can continue to process his
customer's items until the change arrives.

In the .NET Framework, when you want to call a method of the server object
asynchronously, you first need to create a delegate. Instead of making the call directly to the

157

CHAPTERWIMPLEMENTING OBJECT COLLABO

158

server, the call is passed to the delegate. When a delegate is created, the compiler also creates
two methods you can use to interact with a server class async hronously. These methods are
called Begininvoke and EndInvoke.

The Beginlnvoke method takes the parameters defined by the delegate plus an
AsyncCallback delegate. The delegate is used to pass a callback method that the server will call
to return informatio n to the client when the asynchronous method completes. Another parameter
that can be sent in the Begininvoke method is a context object that the client can use to keep
track of the context of the asynchronous call. When the client calls the Begininvoke me thod, it
returns a reference to an object that implements the IAsynchResult interface. The Begininvoke
method also starts the execution of the asynchronous method call on a different thread from the
main thread used by the client when initiating the call.

The Endinvoke method takes the parameters and the IAsyncResult object returned by the
Begininvoke method and blocks the thread used by the Beginlnvoke method until a result is
returned. When the results are returned by the asynchronous method, the Endinvok e method
intercepts the results and passes them back to the client thread that initiated the call.

ZNoteThe method of the server class is not altered to enable a client to call its methods
asynchronously. It is up to the client to decide whether to call the server asynchronously and
implement the functionality required to make the call.

The following code demonstrates the process to make a call to a server method
asynchronously. In this example, the client code is making a call to a server method over a s low
connection to read log information. The first step is to define a delegate type that will be used
to make the call.

private delegate string AsyncReadLog(string filePath);

The next step is to declare a variable of the delegate type and instantiate it, passing in the
method you are calling asynchronously.

private AsyncReadlLog LogReader = new AsyncReadLog(Logger.LogRead);
ZNoteBecause the LogRead method of the Logger class is a static method, you call it directly.

You then declare a variable of type Asyn cCallback and instantiate it, passing in the method
that you have set up to process the results of the asynchronous call.

AsyncCallback aCallBack = new AsyncCallback(LogReadCallBack);

You are now ready to call the server method asynchronously by implementi ng the
Begininvoke method of the delegate type. You need to declare a variable of type
IAsyncResult to capture the return value and pass the parameters required by the server
method and a reference to the AsyncCallback object declared previously.

IAsyncResult aResult = LogReader.Begininvoke(txtLogPath.Text, aCallBack,null);

You can now implement the callback method in the client, which needs to accept an input
parameter of type IAsyncCallback that will be passed to it. Inside this method, you will make a
call to the delegate's Endinvoke method. This method takes the 1AsyncCallback object type
returned by the Beginlnvoke method. The following code displays the results of the call in a
message box:

public void LogReadCallBack(IAsyncResult asyncResult)
{

CHAPTERIMPLEMENTING OBJECT COLLABO

MessageBox.Show(LogReader.Endinvoke(asyncResult));

ZNote You can also use the BackgroundWorker component to call methods using a thread
separate from the Ul thread. For more information about using the BackgroundWorker thread,
consult the Visual Studi o help files.

ACTIVITY-8. CALLING METHODS ASYNCHRONOUSLY

®O0dUI T @d £ZEUT UT UPpdPOUdUT NNd N E Aalboeih@&syridtdandushyd Ui EdEONRNOUT O
Call methods asynchronously.

Creating a Method and Calling It Synchronously

To create the method and call it synchronously, follow these steps: 1. Start Visual
Studio. Select File > Open > Project.

2. Open the solution file you completed in Act8_2.

3. Add the buttons shown in Table 8 - 3 to the frmLogger form. Figure
8- 5 shows the completed form.

159

CHAPTERWIMPLEMENTING OBJECT COLLABO

160

Logger

G\ Tesh Log Test .txt Test Message

[Sync Read

Log Inf —_—
oo [Async Read
Figure 8 - 5. The completed logger form for lMess—age‘ synchronous and

asynchronous reading Table 8 - 3. Adlliional Buttons for the Logger Form

Object Property Value

Button 1 Name btnSyncRead
Text Sync Read

Button2 Name btnAsyncRead
Text Async Read

Button3 Name btnMessage
Text Message

4. Open the Logger class in the code editor.

5. Recall that because you are using the System.lO namespace within the Logger
class, you added a using statement to the top of the file. You are also going to use
System.Threading namespace, so add a using statement to include this
namespace.

using System.Threading;

6. Add a static LogRead function to the class. This function will read information
from a log file. To open the file, create a FileStream object. Then create
StreamReader object to read the information from the file. You are also using the
Thread class to suspend processing for five seconds to simulate a long call
across a slow network.
?ublic static string LogRead(string filePath)

StreamReader oStrea mReader; string
fileText;

CHAPTERIMPLEMENTING OBJECT COLLABO

try
{
oStreamReader = File.OpenText(filePath); fileText =

oStreamReader.ReadToEnd(); oStreamReader.Close();
Thread.Sleep(5000); return fileText;

E:atch (FileNotFoundException ex)
return ex.Message;
E:atch (IOException ex)
return ex.Message;
catch
return "Logging Failed";
| }
7. Open frmLogger in the visual design editor. Double click the btnMessage button to bring up

the btnMessage_Click event method in the code editor. Add code to display a message

box.
private void btnMessage_Click(object sender, EventArgs e)

MessageBox.Show("Hello");

8. Open frmLogger in the visual design editor. Double - click the btnSyncRead button to bring
up the btnSyncRead_Click event method in the code editor. Add code that calls the

LogRead me thod of the Logger class and displays the results in a message box.
rivate void btnSyncRead_Click(object sender, EventArgs e)

p
{
MessageBox.Show(Logger.LogRead(txtLogPath.Text));
}
9. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

10. Select Debug > Run. When the form launches, click the Sync Read button. After clicking
the Sync Read button, try clicking the Message b utton. You should not get a response
when clicking the Message button because you called the ReadLog method synchronously.
After the ReadLog method returns a result, the Message button will respond when clicked.

11. When you have finished testing, close thefo ~ rm.
Calling a Method Asynchronously

To call a method asynchronously, follow these steps:
1. Open the frmLogger class code in the code editor.
2. After the class definition statement at the beginning of the class file, add code to
create a delegate definition that will be used to make the asynchronous call. On the
next line, declare a LogReader variable of the delegate type and instantiate it, passing

the LogRead method of the Logger class.
public partial class frmLogger : Form {

161

CHAPTERWIMPLEMENTING OBJECT COLLABO

private delegate string AsyncRe adLog(string filePath);

private AsyncReadLog LogReader = new AsyncReadLog(Logger.LogRead);
3. Create a callback method that will be used to retrieve the results of the
asynchronous message call. This method needs to accept a parameter of type

IAsyncResult.
public void LogReadCallBack(IAsyncResult asyncResult)

{
}

4. Open frmLogger in the visual design editor. Double - click the btnAsyncRead button
to bring up the btnAsyncRead_Click event method in the code editor. Add code that
declares a variable of type AsyncCallback and instantiate it, passing in the
LogReadCallBack method you created. On the next line of code, call the Begininvoke
method of the LogReader delegate, passing in the file path and the AsyncCallback

variable. Capture the return value in avar iable of type IAsyncResult.
private void btnAsyncRead_Click(object sender, EventArgs €)

AsyncCallback aCallBack = new AsyncCallback(LogReadCallBack);
IAsyncResult aResult = LogReader.Begininvoke(txtLogPath.Text,
aCallBack,null);

5. Add code to the LogReadCallBack method that calls the Endinvoke method of the
LogReader delegate, passing in the file path and the IAsyncResult parameter. Display

the results in a message box.
public void LogReadCallBack(IAsyncResult asyncResult)

MessageBox.Show(LogReader.Endinvoke(asyncResult));

6. Select Build > Build Solution. Make sure there are no build errors in the Error List
window. If there are, fix them, and then rebuild.

7. Select Debug > Run. When the form launches, click the Async Read button. After
clicking the Async Read button, click the Message button. This time, you should get
a response because you called the ReadLog method

asynchronously. After five seconds you should see a message box

containing the results of the Logger.LogRead method. 8. When

you have finished testing, close the form.

9. Save the project, and then exit Visual Studio.

Summary

This chapter described how the objects in your applications collaborate. You saw how objects
pass messages to one another, how events drive your programs, how instances of a class share
data, and how to han dle exceptions.

In the next chapter, you will look at collections and arrays. Collections and arrays organize
similar objects into a group. Working with collections is one of the most common programming
constructs you will need to app ly in your applications. You will examine some of the basic types

162

CHAPTERIMPLEMENTING OBJECT COLLABO

of collections available in the NET Framework and learn how to employ collections in your
code.

163

CHAPTER

Working with Collections

In the previous chapter, you looked at how objects collaborate and communicate in object -
oriented programs. That chapter introduced the concepts of messaging, events, delegation,
exception handling, and asynchronous programming. In this chapter, you will look at how
collections of objects are organized an d processed. The .NET Framework contains an extensive
set of classes and interfaces for creating and managing collections of objects. You will look at
the various types of collection structures .NET provides and learn what they are designed for
and when to use each. You will also look at how to use generics to create highly reusable,
efficient collections.

In this chapter, you will learn the following:

The various types of collections exposed by the .NET Framework.
How to work with arrays and array lists.
How to create generic collections.

How to implement queues and stacks.

Introducing the .NET Framework Collection Types

Programmers frequently need to work with collections of types. For example, if you are working
with employee time records in a payroll system, you need to group the records by employee, loop
through the records, and add up the hours for each.
All collections need a basic set of functionality, such as adding objects, removing objects,
and iterating through their objects. In addition to the basic set, some collections need additional
specialized functionality. For example, a collection of help desk e - mail requests needs to
implement a first - in, first - out functionality when adding and removing items from the collection.
The .NET Framework pr ovides a variety of basic and specialized collection classes for you to

use.
The System.Collections namespace contains interfaces and classes that define various types of
collections, such as lists, queues, hash tables, and dictionaries. Table 9 - 1lists an d describes some

of the commonly used collection classes. If you do not find a collection class with the functionality
you need, you can extend a .NET Framework class to create your own.

163

CHAPTERYWWORKING WITH COLLECT

Table 9 - 1. Commonly Used Collection Classes

Class Description

Array Provides the base class for language implementations that support strongly
typed arrays.

ArrayList Represents a weakly typed list of objects using an array whose size is
dynamically increased as required.

SortedList Represents a collection of key/value pairs that are sorted by the keys and are
accessible by key and by index.

Queue Represents a first - in, first - out (FIFO) collection of objects.

Stack Represents a simple last - in, first - out (LIFO), nongeneric collection of objects.

Hashtable Represents a collection of key/value pairs that are organized based on the

CollectionBase

DictionaryBase

hash code of the key.
Provides the abstract base class for a strongly typed collection.

Provides the abstract base class for a strongly typed collection of key/value
pairs.

Table 9 - 2 describes some of the interfaces implemented by these collection classes.

Table 9 - 2. Collection Class Interfaces

Interface Description

ICollection Defines size, enumerators, and synchronization methods for all
nongeneric collections.

IComparer Exposes a method that compares two objects.

IDictionary Represents a nongeneric collection of key/value pairs.

IDictionaryEnumerator Enumerates the elements of a nongeneric dictionary.

IEnumerable

IEnumerator

IList

Exposes the enumerator, which supports a simple iteration over a
nongeneric collection.

Supports a simple iteration over a nongeneric collection.

Represents a nongeneric collection of objects that can be
individually accessed by index.

In this chapter, you will work with some of the commonly used collection classes, beginning
with the Array and ArrayList classes.

Working with Arrays and Array Lists

An array is one of the most common data structures in computer programming. An array holds
data elements of the same data type. For example, you can create an array of integers, strings,

164

CHAPTERYWORKING WITH COLLECT

or dates. Arrays are often used to pass values to methods as parameters. For example, when you
use a Console application, it's common to provide command line switches. The following DOS
command is used to copy a file on your computer:

copy win.inic: \ windows fy

The source file, destination path, and overwrite indicator are passed into the copy program as an
array of strings.

You access the elements of an array through its index. The index is an integer representing
the position of the element in the array. For example, an array of strings representing the days
of the week has the following index values:

Index Value

0 Sunday

1 Monday

2 Tuesday

3 Wednesday
4 Thursday

5 Friday

6 Saturday

This days - of- the- week example is a one - dimensional array, which means the index is
represented by a single integer. Arrays can also be multidimensional. The index of an element of
a multidimensional array is a set of integers equal to the number of dimensions. Figure 9 -1
shows a seating chart that represents atwo - dimensional array where the student's name (value)
is referenced by the ordered pair of row number, seat number (index).

165

CHAPTERYWWORKING WITH COLLECT

Row 2

Jane

(2,0)

166

Figure 9 - 1. A mo - dimensional array

You implement array functionality when you

array, updating the elements of the array, and copying

Row 0 Row 1
Mary Jim
(0,0) (1,0
* - D
Bob Noah
(0,1) cJ (1,1)
PR I V—
Amy Morgan
Seat2 0.2) (1,2)

Cindy
(21

Grec
(2,2)

declare its type. The common types
implemented as arrays are humeric types such as integers or double types, as well as the
character and string types.
When declaring a type as an array, you use square brackets ([]) after the type, followed by the

name of the array. The elements of the array are designated by a comma separated list
enclosed by curly brackets ({}). For example, the following code declares an array of type

Integer and fills it with five values:

int] intArray ={ 1, 2, 3,4,5};

Once a type is declared as an array, the properties and methods of the Array class are
exposed. Some of the functionality includes querying for the upper and lower bounds of the

the elements of the array. The Array

class contains many static methods used to work with arrays, such as methods for clearing,
reversing, and sorting its elements.

CHAPTERYWORKING WITH COLLECT

The following code demonstrates declaring and working with an array of integers. It also
uses several static methods exposed by the Array class. Notice the foreach loop used to list the
values of the array. The foreach loop provides a way to iterate through the elements of the
array. Figure 9 - 2 shows the output of this code in the Console window

int]] intArray ={1,2,3,4,5};
Console.WriteLine("Upper Bound");
Console.WriteLine(intArray.GetUpperBound(0));
Console.WriteLine("Array elements"); foreach
(int item in intArray)

Console.WriteLine(item);
Array.Reverse(intArray);
Console.WriteLine("Array reversed"); foreach
(int item in intArray)

Console.WriteLine(item);

}

Array.Clear(intArray, 2, 2);
Console.WriteLine("Elements 2 and 3 cleared");
foreach (int item in intArray)

Console.WriteLine(item);

}
intArray[4] = 9;
Console.WriteLine("Element 4 reset"); foreach
(int item in intArray)
Console.WriteLine(item);

Console.ReadLine();

167

CHAPTERYWWORKING WITH COLLECT

fil e://IC:/U se rs/Dan/Doc u...

Array elements A

1 .
i=

5

Array reversed

5

1

Elements 2 and 3 cleared

5

1

Element 4 reset

<" 77

Figure 9 - 2. One- dimensional array output

Although one - dimensional arrays are the most common type you will run into, you should

understand how to work with the occasional multidimensional array. Two - dimensional arrays

are used to store (in active memory) and process data that fits in the rows and columns of a
table. For example, you may need to process a series of measurements (temperature or
radiation level) taken at hourly intervals over several days. To create a multidimensional array,
you place one or more commas inside the square brackets to indicate the number of dimensions.
One comma indicates two dimensions; two commas indicate three dimensions, and so forth.
When filling a multidemensional array, curly brackets within curly brackets define the elements.
The following code declares and fills a two - dimensional array:

int[,] twoDArray ={{1,2},{3,4},{561}}
/IPrint the index and value of the elements
for (inti=0;i<=twoDArray .GetUpperBound(0); i++)

for (int x = 0; x <= twoDArray.GetUpperBound(1); x++)
{

}

Console.WriteLine("Index = [{0},{1}] Value = {2}", i, X, twoDArrayl[i, X]);

Figure 9 - 3 shows the output of this code in the Console window.

168

CHAPTERYWORKING WITH COLLECT

Index = [0,0] Ualue =1
Index = [0,1] Ualue =2
Index = [1,0] Ualue =3
Index = [1,1] Ualue =4
Index = [2,0] Ualue =5
Index = [2,1] Ualue =6

Figure 9 - 3. Two - dimensional array ouput

When you work with collections, you often do not know the number of items it contains until
runtime. This is where the ArrayList class fits in. The capacity of an array list automatically
expands as required, with the memory reallocation and copying of elements performed
automatically. The ArrayList class also provides methods and properties for working with the
array elements that the Array class does not provide. The following code demonstrates some of
these properties and methods. Notice that the capacity of the list expands dynamically as more
names are added.

ArrayList nameList = new ArrayLi st();
nameList.Add("Bob");
nameList.Add("Dan");
nameList.Add("Wendy");
Console.WriteLine("Original Capacity");
Console.WriteLine(nameList.Capacity);
Console.WriteLine("Original Values");
foreach (object name in namelList)

Console.WriteLine(name);

nameList.Insert(nameList.IndexOf("Dan"), "Cindy");
nameList.Insert(nameList.IndexOf("Wendy"),
"Jim");

Console.WriteLine("New Capacity");
Console.WriteLine(nameList.Capacity);
Console.WriteLine("New Values"); foreach (object
name in nameList)

Console.Writ eLine(hname);

Figure 9 - 4 shows the output in the Console window.

169

CHAPTERYWWORKING WITH COLLECT

ffile:///C:/Users/D .
Original Capacity ”
4

B1

Original Ualues 11
Bob

Dan

Uendy

New Capacity

S

Hew Ualues

Bob

Cindy

Dan

Jim

Uendy o

<leed 3

Figure 9 - 4. The ArrayList oulput

Although it's often easier to work with an ArrayList than with an Array, an ArrayList can
have only one dimension. Also, an Array of a specific type offers better performance than an
ArrayList, because the elements of ArrayList are of type Object. When types are added to the
ArrayList, they are cast to a generic Object type. When the items are retrieved from the list,
they must be cast once again to the specific type.

ACTIVITY-9. WORKING WITRRAYS AND ARRAYLISTS

In this activity, you will become familiar with the following:
Creating and using arrays.
Working with multidimensional arrays.
Working with array lists.

Creating and Using Arrays

To create and populate an array, follow these steps:
1. Start Visual Studio. Select File > New > Project.

2. Choose a Console application project. Name the project Act9_1. The
Console application contains a class called Program with a Main
method. The Main method is the first method that is accessed when
the appli cation is launched.

3. Notice that the Main method accepts an input parameter of a string
array called args. The args array contains any command line args
passed in when the Console

170

file:///C:/Users/D

CHAPTERYWORKING WITH COLLECT

application is launched. The members of the args array are

separated by a space when passed in.
static void Main(string[] args)

{
}
4. Add the following code to the Main method to display the
command line arguments passed in:

Console.WriteLine("parameter count = {0}",
args.Length); for (inti = 0; i < args.Length; i++)
Console.WriteLine("Arg[{0}] = [{1}]", i, args][i]);

}
Console.ReadLine();

5. In Solution Explorer, right- click the project node and choose
Project. In the project properties window, select the Debug tab. In

Ul Ed EOOOZAOEd NT OEd £x1 UOEOU®Dd ET ENEpd EOUExd"~ "gd EOQET Ol

Figure 9 - 5).
Application
Configuration: ‘Act'tve (Debug) V‘ Platform: ‘Active (x86) v]
Build
Acti
Build Events St fction
Debug” @ Start project
Start external program:
Resources
1 Start browser with URL:
Services
Start Opti
Settings sl
Command line arguments: # coding is -
Reference Paths g S¥coding i fun
Signing
Securi)
o Working directory: ‘ ‘
Publish

"] Use remote machine
Enable Debuggers

Figure 9 - 5. Adding comand line arguments

6. Select Debug > Start to run the project. The Console window should launch with
the output shown in Figure 9 - 6. After viewing the output, stop the debugger.

171

CHAPTERYWWORKING WITH COLLECT

172

CHAPTERYWORKING WITH COLLECT

yfile:/ ;-Lisers/ dan/.

parameter count=4 :
y' " AEA [t

flrgti] = [coding] J
Arg[2] = [is]

flrg[3] = [fun]

Vorrr !

Figure 9 - 6. The Console output for the array

7. Add the following code before the Console.ReadLine() method in the Main method.
This code clears the value of the array at index 1 and sets the value at index 3 to
I xEAEU

Array.Clear(args, 1, 1); args[3] = "great";
for (inti=0; i< args.Length; i++)

Console.WriteLine("Arg[{0}] = [{1}]", i, args][i]);

}
8. Select Debug > Start to run the project. The Console window should launch with the
additional output shown in Figure 9 - 7. After viewing the output, stop the debugger.
v dile:/l/c;lusers/dan ...~
parameter count= 4 A
Arg[0] = [Ct]
ftrg[i] = [coding] 1
fral2 1 [is]
flrjy]= [fun]
ArjJifo] [Ctt]
flrg[i] = 1
Arg[2] = [is]
flrg[3] = [great] ™
44 44 i \

Figure 9 - 7. The Console oulpuit for the upoated aray
Working wittMultidimensional Arrays

To create and populate a multidimensional array, follow these steps:
1. Comment out the code in the Main method.

2. Add the following code to the Main method to create and populate a
two dimensional array:
string[,] seatingChart = new
string[2,2]; seatingChart[0, 0] =
"Mary"; seatingChart[0, il
"Jim"; seatingChart[1, 0]
"Bob"; seatingChart[1, 1

173

/c;/users/dan

CHAPTERYWWORKING WITH COLLECT

"Jane";

3. Add the following code to loop through the array and print the names

to the Console window:
for (int row = 0; row < 2; row++)

for (int seat = O; seat < 2; seat++)

Console.WriteLine("Row: {0} Seat: {1} Student: {2}",
(row + 1),(seat + 1),seatingChart[row, seat]);

Console.ReadLine();

4. Select Debug > Start to run the project. The Console window should launch
with the output that shows the seating chart of the students (see Figure 9 -
8).

n ' file:////C:/Users/Dan/Docume... | = C) %

ow: 1 Seat: 1 Student: Mary a
l ow: 1 Seat: 2 Student: Jim

ow: 2 Seat: 1 Student: Bob

ow: 2 Seat: 2 Student: Jane

4 I »

Figure 9 - 8. The Console output for the two - dimensional anay

5. After viewing the output, stop the debugger.
Workingwith ArrayLists

Although the two dimensional array you just created works, it may be more intuitive to store
then to organize these objects into an ArrayList structur e. To create and populate an array
list of seating assignments, follow these steps:

1. Add a class file to the project named SeatingAssignment.cs.

2. Add the following code to create the SeatingAssignment class. This class
contains a Row, Seat, and Student property. It also contains an overloaded
constructor to set these properties.

public class SeatingAssignment {

int _row; int _seat; string

_student; public int Row {
get{ return _row; } set {

_row = value; }

}

public int Seat {
get { return _seat; } set {
_seat = value; }

}
public string Student {

174

CHAPTERYWORKING WITH COLLECT

get { return _student; } set {
_student = value; }

public SeatingAssignment(int row, int seat, string student)

this.Row = row;
this.Seat = seat;
this.Student = student;

}
}

3. Inthe Main method of the Program class, comment out the previous code.
4. Add the following code to create an ArrayList of SeatingAssignments:
ArrayList seatingChart = new ArrayList();
seatingChart.Add(new SeatingAssignment(0, 0, "Mary"));
seatingChart.Add(new SeatingAssignment(0, 1, "Jim")) ;
seatingChart.Add(new SeatingAssignment(1, 0, "Bob");
seatingChart.Add(new SeatingAssignment(1, 1, "Jane"));
After the ArrayList is populated, add the following code to write the SeatingAssignment
information to the console window.
foreach (SeatingAssign ment sa in seatingChart)

Console.WriteLine("Row: {0} Seat: {1} Student: {2}",
(sa.Row + 1), (sa.Seat + 1), sa.Student);

}Console.ReadLine();
5. Select Debug > Start to run the project. The Console window should
launch with the same output as shown in Figure 9 - 8 (the seating
chart of the students).

6. One of the advantages of the ArrayList class is the ability to add and
remove items dynamically. Add the following code after the code in
step 4 to add two more students to the seating chart:

seatingChart.Add(new SeatingAssignment(2, 0, "Bill"));
seatingChart.Add(new SeatingAssignment(2, 1, "Judy"));
7. Select Debug > Start to run the project. The Console window should
launch with the output showing the new students.

8. When finished, stop the debugger, and close Visual Studio.

Using Generic Collections

Working with collections is a common requirement of application progr amming. Most of the data
we work with needs to be organized in a collection. For example, you may need to retrieve
customers from a database and load them into adrop - down list in the Ul (User Interface). The
customer information is represented by a custom er class, and the customers are organized into a
customer collection. The collection can then be sorted, filtered, and looped through for
processing.

With the exception of a few of the specialized collections strongly typed to hold strings, the

175

CHAPTERYWWORKING WITH COLLECT

collections provided by the .NET Framework are weakly typed. The items held by the collections
are of type Object, and so they can be of any type, since all types derive from the Object type.

Weakly typed collections can cause performance and maintenance problems for your
application. One problem is there are no inherent safeguards for limiting the types of objects
stored in the collection. The same collection can hold any type of item, including dates, integers,
or a custom type such as an employee object. If you bui Id and expose a collection of integers,
and that collection inadvertently gets passed a date, the chances are high that the code will fail
at some point.

Fortunately, C# supports generics, and the .NET Framework provides generic - based
collections in the Sy stem.Collections.Generic namespace. Generics let you define a class without
specifying its type. The type is specified when the class is instantiated. Using a generic
collection provides the advantages of type safety and the performance of a strongly typed
collection while also providing the code reuse associated with weakly typed collections.

The following code shows how to create a strongly typed collection of Customers using the
Generic.List class. The list type (in this case, Customer) is placed between the angle brackets
(<>). Customer objects are added to the collection, and then the Customers in the collection are
retrieved, and the Customer information is written out to the Console. (You will look at binding
collections to Ul controls in Chapter 11.)

List<Customer> customerList = new
List<Customer>(); customerList.Add(new Customer

("WHITC", "White Clover Markets", "Karl Jablonski")); customerList.Add(new
Customer("RANCH", "Rancho grande", "Sergio Gutierrez")); customerList.Add(new
Customer("ALFKI","Alfreds Futterkiste","Maria Anders")); customerList.Add

(new Customer("FRANR", "France restauration", "Carine Schmitt"));

176

CHAPTERYWORKING WITH COLLECT

foreach (Customer c in customerList)

Console.WriteLine("ld: {0} Company: {1} Contact: {2}",
c.Companyld, c.Compan yName, c.ContactName);

There may be times when you need to extend the functionality of the collection provided by
the .NET Framework. For example, you may need the ability to sort the collection of Customers
by either the Companyld or the CompanyName. To implement sorting, you need to define a
sorting class that implements the IComparer interface. The IComparer interface ensures the
sorting class implements a Compare method with the appropriate signature. (Interfaces were
covered in Chapter 7.) The Custom erSorter class shown next sorts a list of Customer by
CompanyName. Note that since the CompanyName property is a string, you can use the String
Comparer to sort them.

public class CustomerSorter : IComparer<Customer>
public int Compare(Customer customerl , Customer customer2)
return customerl.CompanyName.CompareTo(customer2.CompanyName);
}
Now you can sort the Customers by CompanyName and then display them.
customerList.Sort(new CustomerSorter());

The output is shown in Figure 9- 9.

and Settings/drclark/my doc untents/visual studio 2 VA - nx

Id: ALFKI Company: Alfreds Futterkiste Contact: Maria Anders
Id: FRANK Company: France restauration Contact: Carine Schmitt

Id: RANCH Company: Rancho grande Contact: Sergio Gutierrez

Id: UHITC Company: Uhite Clouer Markets Contact: Karl Jablonski

Figure 9 - 9. The Console output for the sorted list of Customer

177

file:///C:/Documents

CHAPTERYWWORKING WITH COLLECT

ACTIVITY-2. IMPLEMENTING AND EXTENDING GENERIC COLLECTIONS

In this activity, you will become familiar with the following:
Implementing a generic collection.
Extending a generic collection to implement sorting.
To create and popula te a generic list, follow these steps:
1. Start Visual Studio. Select File > New > Project.
2. Choose a Console Application project. Name the project Act9_2.

3. Select Project > Add Class. Name the class Request.
4. Add the following properties to the Request class:

public class Request

{
string _requestor; int _priority;
DateTime _date;
public string Requestor

get { return _requestor; }
set { _requestor = value; }

public int Priority {
get { return _priority; }
set { _priority = value; }

public DateTime Date {
get { return _date; }
set { _date = value; }
}
5. Overload the constructor of the Request class to set the

properties in the constructor.
public Request(string requestor, int priority, DateTime date)

this.Requestor =
requestor; this.Priority =
priority; this.Date = date;

6. Add a method to override the ToString() method of the base Object
class. This will return the request information as a string when the

method is called.
public override string ToString()

178

CHAPTERYWWORKING WITH COLLECT

}

7.

return String.Format("{0} , {1}, {2}",this.Requestor,
this.Priority. ToString(), this.Date);

Open the Program class in the code editor and add the following code to the
Main method. This code populates a generic list of type Request and displays
the values in the Console window.

static void Main(string[] args)

{

9.

List<Request> reqList = new List<Request>(); regList.Add(new
Request("Dan",2 ,new DateTime(2011,4,2))); reqList. Add(new
Request("Alice", 5, new DateTime(2011, 2, 5))); regList.Add(new
Request("Bill", 3, new DateTime(2011, 6, 19)); foreach (Request req in
reqList)

Console.WriteLine(req.ToString());

}
Console.ReadLine();

Select Debug > Start to run the project. The Console window should launch
with the request items listed in the order they were added to the reqList.

Select Project > Add Class. Name the class DateSorter.

10. Add the following code to the DateSorter class. This class implements

the IComparer interface and is used to enable sorting Requests by
date.

public class DateSorter:IComparer<Request>

public int Com pare(Request R1, Request R2)
{

}
}

return R1.Date.CompareTo(R2.Date);

11. Add the following code in the Main method of the Program class prior to

the. Console.WriteLine method. This code sorts the regList by date and
displays the values in the Console window.

Console.WriteLine("Sorted by date.");
reqList.Sort(new DateSorter()); foreach
(Request req in reqList)

Console.WriteLine(req.ToString());

Console.ReadLine();
12. Select Debug > Start to run the project. The Console window should launch

Alice, 5,

with the output shown in Figure 9 - 10. After viewing the output, stop the
debugger and exit Visual Studio.

2/5/2011 12:00:00 AM

Bill, 3, 6/19/2011 12:00:00 AM

Sorted by date.
Alice, 5,

2/ 5/2011 12:00:00 AM

Dan, 2, 4/2/2011 12:00:00 AM Bill,

3, 6/19/2011

179

12:00:00 AM

4 |. 0 G d
CHAPTERWORKING WITH COLLECT

180

Figure 9 - 10. Generic collection unsorted and sorted by aate

Programming with Stacks and Queues

Two special types of collections often used in programming are the stack and the queue. A stack
is a last - in, first - out collection of objects. A queue represents a first - in, first - out collection of
objects.

A stack is a good way to maintain a list of moves made in a chess game. When a user wants
to undo his moves , he be gins with his most recent move, which is the last one added to the list
and also the first one retrieved . Another example of using a stack occurs when a program
executes a series of method calls. A stack maintains the addresses of the methods, and executi on
returns to the methods in the reverse order in which they were called. When placing items in a
stack, you use the push method. The pop method removes items from the stack. The peek
method returns the object at the top of the stack without removing it. T he following code
demonstrates adding and removing items from a stack. In this case, you're using generics to
implement a stack of ChessMove objects. The RecordMove method adds the most recent move to
the stack. The GetLastMove method returns the most rece nt move on the stack.

Stack<ChessMove> moveStack = new
Stack<ChessMove>(); void RecordMove(ChessMove
move)

moveStack.Push(move);
}
ChessMove GetLastMove()
return moveStack.Pop();

An application that services help desk requests is a good example of when to use a queue. A
collection maintains a list of help desk requests sent to the application. When requests are
retrieved from the collection for processing, the first ones in should be the first ones retrieved.
The Queue class uses the enqueue and deq ueue methods to add and remove items. It also
implements the peek method to return the item at the beginning of the queue without removing
the item. The following code demonstrates adding and removing items from a PaymentRequest
queue. The AddRequest metho d adds a request to the queue and the GetNextRequest method
removes a request from the queue.

Oueue<PaymentRequest> payRequest = new
Oueue<PaymentRequest>(); void AddRequest(PaymentRequest
request)

payRequest.Enqueue(request);
PaymentRequest GetNextReq uest()
{

return payRequest.Dequeue();

Summary

In this chapter, you examined the various types of collections exposed by the .NET Framework.
You learned how to work with arrays, array lists, queues, stacks, and generic collections.

This chapter is the final one in a series that introduced you to the various OOP constructs
such as classes, inheritance, and polymorphism. You should have a firm understanding of how
class structures, object collaboration, and collections are implemented in C#. You have been
introduced to the Visual Studio IDE and you've practiced using it. You are now ready to put the

CHAPTERYWORKING WITH COLLECT

pieces together and develop a working application.

The next chapter is the first in a series in which you will de velop .NET applications. In the
process, you will investigate data access using ADO.NET, create a Windows - based GUI using the
Widows Presentation Framework, create a web - based GUI using Silverlight, and create web
services using the Windows Communication F ramework.

181

CHAPTERI1O

Implementing the Data Access
Layer

In the past several chapters, you have looked at the various object - oriented programming
constructs such as classes, inheritance, and polymorphism as they are implemented in C#
code. You have b een introduced to and practiced using the Visual Studio integrated
development environment. You should also have a firm understanding of how class structures

and object collaboration are implemented.

You are now ready to put the pieces together and develop a working application. Because
most business applications involve working with and updating data in a back - end relational
database, you will look at how the .NET Framework provides the functionality to work with
relational data.

After reading this chapter , you will understand the following:

How to establish a connection to a database using the Connection object.
How to use a Command object to execute SQL queries.

How to use a Command object to execute stored procedures.

How to retrieve records with the DataReader object.

How to populate DataTables and DataSets.

How to establish relationships between tables in a DataSet.

How to edit and update data in a DataSet.

How to create an Entity Data Model.

How to use LINQ to EF to query data.

How to use the Entity = Framework to update data.

Introducing ADO.NET

A majority of applications developed for businesses need to interact with a data storage
device. Data storage can occur in many different forms: for example, in a flat file system, as is
the case with many traditional mainframe systems, or in a relational database management
system, such as SQL Server, Oracle, or Sybase. You can also maintain data in a hierarchical
textual file structure, as is the case with XML. To access and work with data in a consistent
way across these various data stores, the .NET
Framework provides a set of classes organized into the System.Data namespace. This collection of
classes is known as ADO.NET.

Looking at the history of Microsoft's data access technologies reveals an evolution from a
connected model to a disconnected one. When developing the traditional two - tier client - server

182

L)) CHAPTER 30IMPLEMENTING THE DATA ACCESS
applications prevalent in the 1980s and early 1990s, it was often more efficient to open a connection

with the database, work with the data implementing s erver - side cursors, and close the connection
when finished working with the data. The problem with this approach became apparent in the late
1990s as companies tried to evolve their data - driven applications from traditional two - tier client -
server applicati ons to multitier web - based models: opening and holding a connection open until
processing was complete is not scalable. Scalability is the ability of an application to handle an
increasing number of simultaneous clients without a noticeable degradation of performance.
Microsoft has designed ADO.NET to be highly scalable. To achieve scalability, Microsoft has
designed ADO.NET around a disconnected model. A connection is made to the database, the data and
metadata are retrieved and cached locally, and the con nection is closed.

Another problem with the traditional data access technologies developed during this time was
the lack of interoperability. Systems with a high degree of interoperability can easily exchange data
back and forth between each other regardle ss of the implementation technologies of the various
systems. Traditional data access technologies rely on proprietary methods of data exchange. Using
these techniques, it is hard for a system built using Microsoft technologies such as ADO (pre - .NET)
and DCOM to exchange data with a system built using Java technologies such as JDBC and CORBA.
The industry as a whole realized it was in the best interest of all parties to develop open standards
for exchanging data between disparate systems. Microsoft has embr aced these standards and has
incorporated support of the standards into the .NET Framework.

Working with Data Providers

To establish a connection to a data source, such as a SQL Server database, and work with its data,

you must use the appropriate .NET pro vider classes. The SQL Server provider classes are located in
the System.Data.SQLClient namespace. Other data providers exist, such as the OLEDB data provider
for Oracle classes located in the System.Data.OLEDB namespace. Each of these providers

implements a similar class structure, which you can use to interact with its intended data source.

Table 10 - 1 summarizes the main classes of the System.Data.SQLClient provider namespace.

Table 10 - 1. Classes in the System.Data.Sq/Client Namespace

Class Responsibility

SqglConnection Establishes a connection and a unique session with a database.

SqglCommand Represents a Transact - SQL statement or stored procedure to execute at the
database.

SqlDataReader Provides a means of reading a forward - only stream of rows from the da tabase.

SqlDataAdapter Fills a DataSet and updates changes back to the database.

SqlParameter Represents a parameter used to pass information to and from stored procedures.
Class Responsibility
SqlTransaction Represents a Transact - SQL transaction to be made in the database.
SqlError Collects information relevant to a warning or error returned by the database
server.
SqlException Defines the exception that is thrown when a warning or error is returned by

the database server.

A similar set of classes exists in the System.Data.OLEDB provider namespace. For
example, instead of the SglConnection class, you have an OleDbConnection class.

183

CHAPTER 30IMPLEMENTING THE DATA ACCESS

184

Establishing a Connection

The first step to retrieving data from a database is to establish a connection, which is done

using a Connection object based on the type of provider being used. To establish a connection

to SQL Server, you instantiate a Connection object of type SglConnection. You also need to
provide the Connection object with a ConnectionString. The ConnectionSt ring consists of a
series of semicolon - delineated name - value pairs that provide information needed to connect to
the database server. Some of the information commonly passed by the ConnectionString is the
name of the target server, the name of the database , and security information. The following
code demonstrates a ConnectionString used to connect to a SQL Server database:

"Data Source=TestServer;lInitial Catalog=Pubs;User ID=Dan;Password=training"

The attributes you need to provide through the ConnectionSt ring are dependent on the
data provider you are using. The following code demonstrates a ConnectionString used to
connect to an Access database using the OLEDB provider for Access:

"Provider=Microsoft.Jet.OleDb.4.0;Data Source=D: \ Data\ Northwind.mdb"

The ne xt step is to invoke the Open method of the Connection object. This will result in
the Connection object loading the appropriate driver and opening a connection to the data
source. Once the connection is open, you can work with the data. After you are done
interacting with the database, it is important you invoke the Close method of the Connection
object, because when a Connection object falls out of scope or is garbage collected, the
connection is not implicitly released. The following code demonstrates th e process of opening
a connection to the Pubs database in SQL Server, working with the data, and closing the
connection:

SglConnection pubConnection = new SglConnection(); string connString; try {
connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
pubConnection.ConnectionString = connString;
pubConnection.Open();
/lwork with data

}
catch (SqlException ex) {
throw ex;

2
finally

if (pubConnection != null) {
pubConnection.Close();

Executing a Command

Once your application has established and opened a connection to a database, you can execute SQL
statements against it. A Command object stores and executes command statements against the
database. You can use the Command object to execute any valid SQL stateme nt understood by the
data store. In the case of SQL Server, these can be Data Manipulation Language statements

(Select, Insert, Update, and Delete), Data Definition Language statements (Create, Alter, and Drop),

or Data Control Language statements (Grant, Deny, and Revoke). The CommandText property of
the Command object holds the SQL statement that will be submitted. The Command object contains
three methods for submitting the CommandText to the database depending on what is returned. If
records are returne d, as is the case when a Select statement is executed, then you can use the
ExecuteReader. If a single value is returned . for example, the results of a Select Count aggregate
function . you should use the ExecuteScalar method. When no records are returned fro m a query .
for example, from an Insert statement . you should use the ExecuteNonQuery method. The

following code demonstrates using a Command object to execute a SQL statement against the Pubs
database that returns the number of employees:

SqlConnection pubCo nnection = new SqglConnection(); string connString;

SqglCommand pubCommand,; try {

. " . CH/aPTER 30IMPLEMENTING THE DATA ACCESS
connsString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";

pubConnection.ConnectionString = connString;

pubConnection.Open();

pubCommand = new SglCommand();

pubCommand.Connection = pubConnection;

pubCommand.CommandText = "Select Count(emp_id) from employee"; return
(int)pubCommand.ExecuteScalar();

E:atch (SqlException ex)
throw ex;

%inally
if (pubConnection != null)

pubConnection.Close();

Using Stored Procedures

In many application designs, instead of executing a SQL statement directly, clients must execute

stored procedures. Stored procedures are an excellent way to encapsulate the database logic,

increase scalab ility, and enhance the security of multitiered applications. To execute a stored

procedure, you use a Command object, setting its CommandType property to StoredProcedure

and its CommandText property to the name of the stored procedure. The following code e xecutes
a stored procedure that returns the number of employees in the Pubs database:

SqglConnection pubConnection = new SglConnection(); string connString;
SqglCommand pubCommand; try {
connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
pubConnection.ConnectionString = connString;
pubConnection.Open();
pubCommand = new SglCommand();
pubCommand.Connection = pubConnection;
pubCommand.CommandText = "GetEmployeeCount";
pubCommand.CommandType = CommandType.StoredProcedure;
retu rn (int)pubCommand.ExecuteScalar();

%:atch (SqlException ex)
throw ex;

%inally
if (pubConnection != null)

pubConnection.Close();

}

When executing a stored procedure, you often must supply input parameters. You may also
need to retrieve the results of the stored procedure through output parameters. To work with
parameters, you need to instantiate a parameter object of type SqlParameter, and then add it to
the Parameters collection of the Command object. When constructing the parameter, you su pply
the name of the parameter and the SQL Server data type. For some data types, you also supply
the size. If the parameter is an output, input - output, or return parameter, then you must indicate
the parameter direction. The following example calls a stor ed procedure that accepts an input
parameter of a letter. The procedure passes back a count of the employees whose last name
starts with the letter. The count is returned in the form of an output parameter.

SqglConnection pubConnection = new SglConnection() ; string connString;
SqglCommand pubCommand; 185

CHAPTER 30IMPLEMENTING THE DATA ACCESS

e
connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
pubConnection.ConnectionString = connString;
pubConnection.Open();
pubCommand = new SqlCommand();
pubCommand.Connection = pubConnection;
pubCommand.CommandText = "GetEmployeeCountByLastInitial";
SqlParameter inputParameter = pubCommand.Parameters.Add ("@Lastlnitial",
SqIDbType.NChar, 1); inputParameter.Value = lastlnitial. ToCharArray()[0];
SqlParameter outputParameter = pubCo mmand.Parameters.Add ("@EmployeeCount",
SqIDbType.Int); outputParameter.Direction = ParameterDirection.Output;
pubCommand.CommandType = CommandType.StoredProcedure;
pubCommand.ExecuteNonQuery(); return (int)outputParameter.Value;

E:atch (SqlException ex)
throw ex;

%inally
if (pubConnection != null)

pubConnection.Close();

Using the DataReader Object to Retrieve Data

A DataReader object accesses data through a forward - only, read - only stream. Oftentimes you
will want to loop through a set of records and process the results sequentially without the
overhead of maintaining the data in a cache. A good example of this would be loading a list or
array with the values returned from the database. After declaring an object of type
SglDataReader, you i nstantiate it by invoking the ExecuteReader method of a Command object.
The Read method of the DataReader object accesses the records returned. The Close method of

the DataReader object is called after the records have been processed. The following code
demonstrates the use of a DataReader object to retrieve a list of names from a SQL Server
database and return it to the client:

public ArrayList ListNames()
{

SqlConnection pubConnection = new SqlConnection(); string connString;
SglCommand pubCommand;

ArrayList nameArray;

SglDataReader employeeDataReader; try {

186

CHAPTER 30IMPLEMENTING THE DATA ACCESS

connString = "Data Source=drcsrv0l1;" +

"Initial Catalog=pubs;Integrated Security=True";
pubConnection.ConnectionString = connString;
pubConnection.Open(); pubCommand = new
SglCommand(); pubCommand.Connection =
pubConnection; pubCommand.CommandText =

"Select Iname from employee"; employeeDataReader
= pubCommand.ExecuteReader(); nameArray = new
?rrayList(); while (employeeDataReader.Read())

nameArray.Add(employeeDataReader["Iname"]);
return nameArray;
E:atch (SqlException ex)
throw ex;
%inally
if (pubConnection != null)

pubConnection.Close();

Using the DataAdapter to Retrieve Data

In many cases, you need to retrieve a set of data from the database, work with the data, and

return any updates to the data back to the database. In that case, you use a DataAdapter as a
bridge between the data source and the in - memory cache of the data. Thisin - memory cache of
data is contained in a DataSet, which is a major component of the ADO.NET architecture.

ZNoe! | Ed©ZAUZL, EUdOCT EEUdT GdET GEUBPEEdT Odl xEAZUEXxdEEUA Ndi OdUI Ec
©OFEUALE, EUZ dBEEUT OO0r

To retrieve a set of data from a database, you instantiate a DataAdapter object. You set the
SelectCommand property of the DataAdapter to an existing Command object. You then execute
the Fill method, passing the name of a DataSet object to fill. Here you see how to use a
DataAdapter to fill a DataSet and pass the DataSet back to the client:

SqglConnection pubConnection = new SglConnection(); string conn String;
SglCommand pubCommand,;
SqlDataAdapter employeeAdapter;
DataSet employeeDataSet; try {
connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
pubConnection.ConnectionString = connString;
pubConnection.Open();
pubCommand = new SglCommand();
pubCommand.Connection = pubConnection;
pubCommand.CommandText = "Select emp_id, Iname, Hire_Date from employee";
employeeAdapter = new SqlDataAdapter();
employeeAdapter.SelectCommand = pubCommand;
employeeDataSet = new DataSet();
employe eAdapter.Fill(employeeDataSet);
return employeeDataSet;

}
catch (SqlException ex)

throw ex; 187

CHAPTER 30IMPLEMENTING THE DATA ACCESS

}
finally
if (pubConnection != null)

pubConnection.Close();

}

You may find that you need to retrieve a set of data by executing a stored procedure as
opposed to passing in a SQL statement. The following code demonstrates executing a stored
procedure that accepts an input parameter and returns a set of records. The records are loaded
into a DataSet object and returned to the client.

SqlConnection pubConn ection = new

SglConnection(); string connString;

SglCommand pubCommand;

SqlDataAdapter employeeAdapter;

DataSet employeeDataSet; try {
connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";
pubConnection.ConnectionString = connString;
pubConnection.Open();
pubCommand = new SqglCommand();
pubCommand.Connection = pubConnection;
pubCommand.CommandText = "GetEmployeeCountByLastlnitial";
SqlParameter inputParameter = pubCommand.Parameters.Add ("@LastInitial",
SqlDbType.NChar, 1); inputParameter.Value = lastInitial. ToCharArray()[0];
pubCommand.CommandType = CommandType.StoredProcedure; employeeAdapter = new
SqlDataAdapter(); employeeAdapter.SelectCommand = pubCommand; employeeDataSet = new
DataSet();
employeeAdapter.Fill(employeeDat aSet); return employeeDataSet;

%:atch (SqlException ex)
throw ex;

%inally

{ if (pubConnection != null)

pubConnection.Close();

ACTIVITY 1D RETRIEVING DATA FROM A SQL SERVER DATABASE

In this activity, you will become familiar with the following:

Establishing a connection to a SQL Server database.
Executing queries through a Command object.
Retrieving data with a DataReader object.

Executing a stored procedure using a Command object.

ZNoteFor the activities in this chapter to work, you must have access to a SQL Server 2005 or
higher database server with the sample Microsoft Pubs and Northwind databases installed. You
must be logged on under a Windows account that has been given the appropri ate rights to these

188databases. You may have to alter the ConnectionString depending on your settings. For more

CHAPTER 30IMPLEMENTING THE DATA ACCESS

T OEOxOEUT OOpdxEEExdUOdUI Ed-

Creating a Connection and Executing SOL Queries

To create a connection and execute SQL queries, follow these steps:
1. Start Visual Studio. Select File > New > Project.
Choose a Console Application project. Name the project ActiO_i.

After the project opens, add a new class to the project named Author.

Open the Author class code in the code editor. Add the following
statements at the top of the file:

2
3.
4

using

189

CHAPTER 30IMPLEMENTING THE DATA ACCESS

using System.Data;
using System.Data.SqlClient;
5. Add this code to declare a private class - level variable of type SQLConnection:

public class Author {
SqlConnection _pubConnection; string _connString;

6. Create aclass constructor that instantiates the Pubs Connection object and sets up the

ConnectionString property.
public Author()
{

_connsString =

"Data Source=localhost;Initial Catalog=pubs;Integrated Security=True"; _pubConnection =
new SqlConnection();
_pubConnection. ConnectionString = _connString;

7. Add a method to the class that will use a Command object to execute a query to count the
number of authors in the Authors table. Because you are only returning a single value,

you will use the ExecuteScalar method of the Command object.
public int CountAuthors()

{
try
SglCommand pubCommand = new SglCommand(); pubCommand.Connection = _pubConnection;
pubCommand.CommandText = "Select Count(au_id) from authors";
_pubConnection.Open();
return (int)pubCommand.ExecuteScalar();
catch (SqlException ex)
throw ex;
}
finally
if (_pubConnection != null)
_pubConnection.Close();
}
}
}

8. Add the following code to the Main Method of the Program class, which will execute the

GetAuthorCount method defined in the Author class:
static void Main(string[] args)

try

190

CHAPTER 30IMPLEMENTING THE DATA ACCESS

Author author = new Author();
Console.WriteLine(author.CountAuthors());
Console.ReadLine();

}
catch (Exception ex)

Console.WriteLine(ex.Message);
Console.ReadLine();

}
}
9. Select Debug > Start to run the project. The Console window should launch with the
number of authors displayed. After viewing the output, stop the debugger.
Using the DataReader Object to Retrieve Records
To use the DataReader object to retrieve records, follow these st eps: 1. Open the Author class code

in the code editor.

2. Add a public method to the class definition called GetAuthorList that returns an generic
List of strings:

?ublic List<string> GetAuthorList()
}

3. Add the following code, which executes a SQL Select GUEVUEOEOUdUOdxEUxT EVOEdUI Ed £UU
last names. A DataReader object then loops through the records and creates a list of
names that gets returned to the client.

SglCommand authorsCommand = new SqglCommand();
SqlDataReader authorDataReader;
List<string> nameL ist = new List<string>(); try {

authorsCommand.Connection = _pubConnection; authorsCommand.CommandText = "Select

au_Iname from authors"; _pubConnection.Open();

authorDataReader = authorsCommand.ExecuteReader(); while (authorDataReader.Read() ==

true)

{
nameList.Add(authorDataReader.GetString(0));
return nameList;
}
catch (SqlException ex)

throw ex;

2
finally

191

CHAPTER 30IMPLEMENTING THE DATA ACCESS

if (_pubConnection != null)

_pubConnection.Close();

4. Change the code in the Main Method of the Program class to show the list of names in

the console window.
static void Main(string[] args)

try
{

Author author = new Author();
foreach (string name in author.GetAuthorList())

Console.WriteLine(name);
}
Console.ReadLine();
}
catch (Exception ex)

Console.WriteLine(ex.Message);
Console.ReadLine();

}

5. Select Debug > Start to run the project. The Console window should launch with the
names of the authors displayed. After viewing the output, stop the debugger.

Executing a Stored Procedure Using a Command Object

To execute a stored procedure using a Command object, follow these steps: 1.
Open the Author class code in the code editor.

2. Add a public method that overloads the GetAuthorList method by accepting an integer
parameter named Royalty. This function will call the stored procedure by royalty in the
Pubs database. The procedure takes an integer input of royalty percentage and returns a
list of author IDs with the percentage.

public List<string> GetAuthorList(int royalty)
{

SglCommand authorsCommand = new SglCommand();

SglDataReader authorDataReader;

List<string> nameList = new List<string>();

SqlParameter inputParameter = new SqlParameter(); try {
authorsCommand.Connection = _pubConnection;
authorsCommand.CommandType = CommandType.StoredProcedure;
authorsCommand.CommandText = "byroyalty";

inputParameter.ParameterName = "@percentage";
inputParameter.Direction = ParameterDirection.Input;
inputParameter.SqIDbType = SqIDbType.Int;
inputParameter.Value = royalty;
authorsCommand.Parameters.Add(inputParameter);
_pubConnection.Open();

authorDataReader =
authorsCommand.ExecuteReader(); while
(authorDataReader.Read() == true)

nameList.Add(authorDataReader.GetString(0));
return namelList;
}éatch (SqlException ex)
192

CHAPTER 30IMPLEMENTING THE DATA ACCESS

throw ex;
}
finally
if (_pubConnection != null)

__pubConnection.Close();

3. Inthe Main method of the Program class, supply an input parameter
of 25 to the GetAuthorList method.
foreach (string name in author.GetAuthorList(25))

4. Select Debug > Start to run the project. The Console window should
launch with the IDs of the authors displayed. After viewing the output,
stop the debugger.

5. When finished testing, exit Visual Studio.

Working with DataTables and DataSets

DataSets and DataTables are in - memory caches of data that provide a consistent relational
programming model for working with data regardless of the data source. A DataTable represents

one table of relational data and consists of columns, rows, and constraints. You can think of a
DataSet as a minirelational database, which includes the data tables and the relational integrity
constraints between them. If you are retrieving data from a single table, you can populate and
use the DataTable directly without the overhead of creating a DataSet f irst. There are several
ways to create a DataTable or DataSet. The most obvious method is to populate a DataTable or
DataSet from an existing relational database management system (RDBMS) such as a SQL Server
database. As mentioned previously, a DataAdapte r object provides the bridge between the
RDBMS and the DataTable or DataSet. By using a DataAdapter object, the DataTable or DataSet

is totally independent from the data source. Although you need to use a

specific set of provider classes to load either typ e of object, you use the same set of .NET
Framework classes to work with a DataTable or DataSet, regardless of how it was created and
populated. The System.Data namespace contains the framework classes for working with

DataTable or DataSet objects. Table 1 0- 2 lists some of the main classes contained in the
System.Data namespace.

193

CHAPTER 30IMPLEMENTING THE DATA ACCESS

Table 10 - 2. The Main Members of the System.Data Namespace

Class Description

DataSet Represents a collection of DataTable and DataRelation objects.
Organizes an in - memory cache of relational data.

DataTable Represents a collection of DataColumn, DataRow, and Constraint
objects. Organizes records and fields related to a data entity.

DataColumn Represents the schema of a column in a DataTable.

DataRow Represents a row of dataina DataTable.

Constraint Represents a constraint that can be enforced on DataColumn objects.
ForeignKeyConstraint Enforces referential integrity of a parent/child relationship between

two DataTable objects.

UniqueConstraint Enforces uniqueness of a DataColumn or set of DataColumns. This is
required to enforce referential integrity in a parent/child relationship.

DataRelation Represents a parent/child relation between two DataTable objects.

Populating a DataTable from a SQL Server Database

To retrieve data from a database, you set up a connection with the database using a
Connection object. After a connection is established, you create a Command object to retrieve

the data from the database. As stated earlier, if you are retrieving data from a single table or
result set, you can populate and work with a DataTable directly without creating a DataSet
object. The Load method of the DataTable fills the table with the contents of a DataReader
object. The following code fills a DataTable with data fro m the publishers table of the Pubs
database:

SqlConnection pubConnection = new SqlConnection(); string connString;
SqglCommand pubCommand,;
SglDataReader pubDataReader;
DataTable pubTable; try {
connString = "Data Source=drcsrv0l1;" +
"Initial Catalog=pubs;Integrated Security=True";
pubConnection.ConnectionString = connString;
pubCommand = new SqlCommand();
pubCommand.Connection = pubConnection;
pubCommand.CommandText =
"Select pub_id, pub_name, city from publishers";
pubConnection.Open();
pubDataReader =
pubCommand.ExecuteReader(); pubTable =
new DataTable();
pubTable.Load(pubDataReader); return

194

CHAPTER 30IMPLEMENTING THE DATA ACCESS

pubTable;

E:atch (SqlException ex)
throw ex;

%inally
if (pubConnection != null)

pubConnection.Close();

Populating a DataSet from a S@tver Database

When you need to load data into multiple tables and maintain the referential integrity between the
tables, you need to use the DataSet object as a container for the DataTables. To retrieve data from

a database and fill the DataSet, you set up a connection with the database using a Connection
object. After a connection is established, you create a Command object to retrieve the data from

the database, and then create a DataAdapter to fill the DataSet, setting the previously created
Command o bject to the SelectCommand property of the DataAdapter. Create a separate

DataAdapter for each DataTable. The final step is to fill the DataSet with the data by executing the

Fill method of the DataAdapter. The following code demonstrates filling a DataSet with data from
the publishers table and the titles table of the Pubs database:

SqlConnection pubConnection = new SglConnection(); string connString;
SqglCommand pubCommand,;
SqglCommand titteCommand,
SqglDataAdapter pubDataAdapter;
SqglDataAdapter titleDataAda pter;
DataSet bookInfoDataSet; try {
connString = "Data Source=drcsrv0l1;" +
"Initial Catalog=pubs;Integrated Security=True";
pubConnection.ConnectionString = connString;
/[Create pub table command pubCommand =
new SglCommand(); pubCommand.Connection
= pubConnection; pubCommand.CommandText
"Select pub_id, pub_name, city from publishers";
pubDataAdapter = new SglDataAdapter();
pubDataAdapter.SelectCommand = pubCommand;
/[Create title table command titeCommand
= new SqglCommand();
titteCommand.Connection = pubConnection;
titteCommand.CommandText =
"Select pub_id, title, city, ytd_sales from titles";
titteDataAdapter = new SqlDataAdapter();
titteDataAdapter.SelectCommand = titteCommand;
/[Create and fill dataset bookinfoDataSet = new
DataSet(); pubDataAdap ter.Fill(bookinfoDataSet,
"Publishers"); titteDataAdapter.Fill(bookinfoDataSet,
"Titles"); return bookIinfoDataSet;

195

CHAPTER 30IMPLEMENTING THE DATA ACCESS

E:atch (SqlException ex)
throw ex;

;inally
if (pubConnection != null)

pubConnection.Close();

Establishing Relationships betwdeales in a DataSet

In an RDBMS system, referential integrity between tables is enforced through a primary key and
foreign key relationship. Using a DataRelation object, you can enforce data referential integrity
between the tables in the DataSet. This object contains an array of DataColumn objects that define
the common field(s) between the parent table and the child table used to establish the relation.
Essentially, the field identified in the parent table is the primary key, and the field identified i n the
child table is the foreign key. When establishing a relationship, create two DataColumn objects for

the common column in each table. Next, create a DataRelation object, pass a name for the
DataRelation, and pass the DataColumn objects to the construc tor of the DataRelation object. The
final step is to add the DataRelation to the Relations collection of the DataSet object. The following
code establishes a relationship between the publishers and the titles tables of the bookinfoDataSet
created in the pr evious section:

/ICreate relationahip between tables DataRelation Pub_TitleRelation;

DataColumn Pub_PubldColumn;

DataColumn Title_PubldColumn;

Pub_PubldColumn = bookinfoDataSet.Tables["Publishers"].Columns[*pub_id"];

Title_PubldColumn = bookiInfoDataSet.Tab les["Titles"].Columns["pub_id"];

Pub_TitleRelation = new DataRelation("PubsToTitles", Pub_PubldColumn, Title_PubldColumn);
bookIinfoDataSet.Relations.Add(Pub_TitleRelation);

return bookIinfoDataSet;

Editing Data in the DataSet

Clients often need to be ablet 0 update a DataSet. They may need to add records, delete records,
or update an existing record. Because DataSet objects are disconnected by design, the changes
made to the DataSet are not automatically propagated back to the database. They are held locally
until the client is ready to replicate the changes back to the database. To replicate the changes,
you invoke the Update method of the DataAdapter, which determines what changes have been
made to the records and implements the appropriate SQL command (Upd ate, Insert, or Delete)
that has been defined to replicate the changes back to the database.

To demonstrate the process of updating a DataSet, the following code constructs an Author
class that will pass a DataSet containing author information to a client when the GetData method
is invoked. The Author class will accept a DataSet containing changes made to the author
information and replicate the changes back to the Pubs database when its UpdateData method is
invoked. The first step is to define the class an d include a using statement for the referenced
namespaces, like so:

using System.Data;
using System.Data.SqlClient;

196

CHAPTER 30IMPLEMENTING THE DATA ACCESS

Define class - level variables for SQLConnection, SQLDataAdapter, and DataSet objects: public

class Author {
private SglConnection _pubConnect ion; private SqlDataAdapter _authorsDataAdapter; private
DataSet _pubsDataSet;

In the class constructor, initialize a Connection object, like so: public Author()

SqglCommand selectCommand;

SglCommand updateCommand;

string connectionString = "Integrated Se curity=True;Data Source=LocalHost;" +
"Initial Catalog=Pubs";

_pubConnection = new SglConnection(connectionString);

Then create a Select Command object, like so:
string selectSQL = "Select au_id, au_lname, au_fname from authors";

selectCommand = new SglCommand(selectSQL,_pubConnection);
selectCommand.CommandType = CommandType.Text;

Next you create an Update Command. The command text references parameters in the
command's Parameters collection that will be created next.

string updateSQL = "Update autho rs set au_lname = @au_Ilname," +
"au_fname = @au_fname where au_id = @au_id";

updateCommand = new SqglCommand(updateSQL,
_pubConnection); updateCommand.CommandType =
CommandType.Text;
A Parameter object is added to the Command object's Parameter collection for each

Parameter in the Update statement. The Add method of the Parameters collection is passed
information on the name of the Parameter, the SQL data type, size, and the source column of the
DataSet, like so:

updateCommand.Parameters.Add("@au_id", SqIDb Type.VarChar, 11, "au_id");
updateCommand.Parameters.Add("@au_lname", SqIDbType.VarChar, 40,

"au_lname"); updateCommand.Parameters.Add("@au_fname", SqlDbType.VarChar,

40, "au_fname");

The final step is to create and set up the DataAdapter object. Set the S electCommand
and UpdateCommand properties to the appropriate SQLCommand objects, like so:

_authorsDataAdapter = new SglDataAdapter();

_authorsDataAdapter.SelectCommand = selectCommand,;

} _authorsDataAdapter.UpdateCommand = updateCommand;

Now that the SQLDataAdapter has been set up and created in the class constructor, the
GetData and UpdateData methods will use the DataAdapter to get and update the data from the
database, like so:

?ublic DataSet GetData()

_pubsDataSet = new DataSet();
_authorsDataAda pter.Fill(_pubsDataSet, "Authors"); return _pubsDataSet;

}
public void SaveData(DataSet authorChanges)

_authorsDataAdapter.Update(authorChanges, "Authors");

In a similar fashion, you could implement the InsertCommand and the DeleteCommand

197

CHAPTER 30IMPLEMENTING THE DATA ACCESS

properties of the DataAdapter to allow clients to insert new records or delete records in the
database.

ZNoteFor simple updates to a single table in the data source, the .NET Framework provides a
CommandBuilder class to automate the creation of the InsertCommand, Upda teCommand, and
DeleteCommand properties of the DataAdapter.

ACTIVITY 1D WORKING WITH DATASET OBJECTS

Server database.
Editing data in a DataSet.

Updating ch anges from the DataSet to the database.

Establishing relationships between tables in a DataSet.
Populating a DataSet from a SQL Server Database

To populate a Dataset from a SQL Server database, follow these steps: 1. Start Visual Studio. Select
File >New > Project.

2. Choose Windows Application. Rename the project to Act10_2 and click the OK button.

3. After the project opens, add a new class to the project named Author.

4. Open the Author class code in the code editor. Add the following using statements at

the top of the file:
using System.Data;
using System.Data.SqlClient;

5. Add the following code to declare private class level variables of type SQLConnection,
SglDataAdapter, and DataSet:
public class Author {
SqlConnection _pubConnection; string _connString;
SqglDataAdapter _pubDataAdapter;
DataSet authorDataSet;

6. Create a class constructor that instantiates the Pubs Connection object, sets up the

ConnectionString property and creates a select command.
public Author()
{

_connString =

"Data Source=localhost;Initial Catalog=pubs;Integrated Security=True"; _pubConnection
= new SqlConnection();

_pubConnection.ConnectionString = _connString;

SqglCommand selectCommand =

new SglCommand("Select au_id, au_lname,au_fname from authors”, _pubConnection);
_pubDataAdapter = new SqlDataAdapter();

_pubDataAdapter.SelectCommand = selectCommand;

198

CHAPTER 30IMPLEMENTING THE DATA ACCESS

7. Create a method of the Author class called GetData that will use the DataAdapter

object to fill the DataSet and return it to the client.
public DataSet GetData()

try

{
authorDataSet = new DataSet();
_pubDataAdapter.Fill(authorDataSet, "Author"); return authorDataSet;

catch (Exception ex)

throw ex;

}

8. Build the project and fix any errors.
9. Add the controls listed in Table 10 - 3 to Form1 and set the propertiesas ~ shown.

Table 10 - 3. Forml Controls

Control Property Value
DataGridView Name dgvAuthors
AllowUserToAddRows False

AllowUserToDeleteRows False

ReadOnly False
Button Name btnGetData
Text Get Data
Button Name btnUpdate
Text Update
10. Open the Forml class code file in the code editor. Declare a class - level DataSet

object after the class declaration.
public partial class Form1 : Form {
private DataSet _pubDataSet;
11. Open Form1l in the Form Designer. Double - click on the Get Data button to open the
button click event method in the code editor.

12. Add the following code to the btnGetData click event procedure, which will
execute the GetData method defined in the Author class. This dataset is then

loaded into the grid using the DataSource property.
private void btnGetData_Click(object sender, EventArgs e)

Author author = new Author();

199

CHAPTER 30IMPLEMENTING THE DATA ACCESS

__pubDataSet = author.GetData();
dgvAuthors.DataSource = _pubDataSet.Tables["Authors"];

}

13. Build the project and fix any errors. Once the project builds, run the project in debug
mode and test the GetData method. You should see the grid filled with author
information. After testing, stop the debugger.

Editing and Updating Data in a DataSet

To edit and update data in a DataSet, follow these steps:
1. Open the Author class code in the code editor.

2. Atthe end of the class constructor, add code to set up a SqlCommand object that will
execute an Update query. Create the update parameters in the Parameters collection
AOEJdPBEUdUI EdOo&AUA EAOUExdOCT EEU” @d° OE £UE abjecdOOLOCEd Ox O

SglCommand updateCommand = new SglCommand

("Update authors set au_lname = @au_Ilname," +

"au_fname = @au_fname where au_id = @au_id",

_pubConnection);

updateCommand.Parameters.Add("@au_id", SqlDbType.VarChar, 11, "au_id");
updateCommand.Parameters. Add("@au_Iname", SqlDbType.VarChar, 40, "au_lname");
updateCommand.Parameters.Add("@au_fname", SqlDbType.VarChar, 40, "au_fname");
_pubDataAdapter.UpdateCommand = updateCommand;

3. Create a method of the Author class called UpdateData that will use the Update method
of the DataAdapter object to pass updates made to the DataSet to the Pubs database.

public void UpdateData(DataSet changedData)

{ try
{_pubDataAdapter.Update(changedData, "Authors");
catch (Exception ex)

throw ex;

}

4. Build the project and fix any errors.
5. Open Form1l in the Form Designer. Double - click on the Update Data button to open the
button click event method in the code editor.

6. Add the following code to the btnUpdate click event procedure, which will execute the
UpdateData method defined i n the Author class. By using the GetChanges method of the
DataSet object, only data that has changed is passed for updating.

private void btnUpdate_Click(object sender, EventArgs €)

Author author = new Author();
author.UpdateData(_pubDataSet.GetChanges());

7. Build the project and fix any errors. Once the project builds, run the project in debug
mode and test the Update method. First, click the Get Data button. Change the last

200

CHAPTER 30IMPLEMENTING THE DATA ACCESS

name of several authors and click the Update button. Click the Get Data button again to
retrieve the changed values back from the database. After testing, stop the debugger.

Establishing Relationships between Tables in a DataSet

To establish relationships between tables in a DataSet, follow these steps:
1. Add a new class named StoreSal es to the project.

2. Open the StoreSales class code in the code editor. Add the following using statements
at the top of the file:
using System.Data;
using System.Data.SqlClient;

3. Add the following code to declare private class level variables of type SQLConnection,
SqlDataAdapter, and DataSet:
class StoreSales {
SqlConnection _pubConnection; string _connString;
SqlDataAdapter _storeDataAdapter = new SqlDataAdapter();
SqlDataAdapter _salesDataAdapter = new SqlDataAdapter();
DataSet storeSalesDataSet;

4. Create a class constructor that instantiates the Pubs Connection object and sets up the

ConnectionString property.
public StoreSales()
{

_connString =

"Data Source=localhost;Initial Catalog=pubs;Integrated Security=True"; _pubConnection
= new SglConnection ();
_pubConnection.ConnectionString = _connString;

5. Create a method of the StoreSales class called GetData that will use the select store
information and sales information and establish a relationship between them. This

information is used to filla DataSet and return it to the client.
public DataSet GetData()

{
try

/IGet Store Info
string selectStoresSQL = "SELECT [stor_id] ,[stor_name]," +
"[city],[state] FROM [stores]";
SglCommand selectStoresCommand =

new SqglCommand(selectStoresSQL,
_pubConnection); selectStoresCommand.CommandType
= CommandType.Text;

_storeDataAdapter.SelectCommand =

selectStoresCommand;

//Get Sales Info

string selectSalesSQL = "SELECT [stor_id],[ord_num]," +
"[ord_date],[qty] FROM [sales]"

SglCommand selectSalesCommand =
new SglCommand(selectSalesSQL,

_pubConnection); selectSalesCommand.CommandType

= CommandType.Text;

)

201

CHAPTER 30IMPLEMENTING THE DATA ACCESS

_salesDataAdapter.SelectCommand =
selectSalesCommand;
/IGet data and fill DataSet storeSalesDataSet = new
DataSet();
store DataAdapter.Fill(storeSalesDataSet, "Stores");
_salesDataAdapter.Fill(storeSalesDataSet, "Sales");
/[Create relationahip between tables DataColumn
Store_StoreldColumn =
storeSalesDataSet.Tables["Stores"].Columns[“stor_id"];
DataColumn Sales_StoreldColumn =
storeSalesDataSet.Tables["Sales"].Columns["stor_id"];
DataRelation StoreSalesRelation =
new DataRelation("StoresToSales", Store_StoreldColumn, Sales_StoreldColumn);
storeSalesDataSet.Relations.Add(StoreSalesRelation);

return storeSalesDataSet;
catch (Exception ex)

throw ex;

6. Build the project and fix any errors.

7. Add a second form to the project. Add the controls listed in Table
10- 4 to Form2 and set the properties as shown.

Table 10 - 4. Form?2 Controls

Control Property Value
DataGridView Name dgvStores
DataGridView Name dgvSales
Button Name btnGetData
Text Get Data

8. Open the Form2 class code file in the code editor. Declare a class -

level DataSet object after the class declaration.
public partial class Form2 : Form {
DataSet StoreSalesDataSet;

9. Open Form2 in the Form Designer. Double - click on the Get Data
button to open the button click event method in the code editor.

10. Add the following code to the btnGetData click event procedure,
which will execute the GetData method defined in the StoreSales
class. This Stores table is then loaded into the Stores grid using
the DataSource property. Setting the DataMember property of the
Sales grid loads it with the sales data of the store selected in the
Stores grid.

private void btnGetData_C lick(object sender, EventArgs e)

{

202

CHAPTER 30IMPLEMENTING THE DATA ACCESS

StoreSales storeSales = new StoreSales();
StoreSalesDataSet = storeSales.GetData();
dgvStores.DataSource =
StoreSalesDataSet.Tables["Stores"];
dgvSales.DataSource
=StoreSalesDataSet.Tables["Stores"];
dgvSales.DataMember = "StoreSales";

11. Open the Program class in the code editor. Change the code to

launch Form2 when the form loads.
Application.Run(new Form2());

12. When the form loads, click the Get Data button to load the grids.
Selecting a new row in the Stores grid should u pdate the Sales grid
UOd @i OUd UTl Ed gUOxE~ @gd 0 £ANEGr d val EOd POUd £xEd ET O1 @i EEd U
debugger and exit Visual Studio.

Working with the Entity Framework

The Entity Framework (EF) is an Object - Relational Mapping (ORM) technology built into
ADO.NET. EF tries to eliminate the mismatch between the objected - oriented programming
constructs of the .NET language and the relational data constructs of the database system. For
example, to load and work with a customer object, a developer has to send a SQL string to the
database engine. The developer must be familiar with the relational schema of the data and this
information is hardcoded into the application. A big disadvantage of this approach is the

application is not shielded from changes in the underlying sche ma. Another disadvantage is that
since the application sends the SQL statements as a string to the database engine for processing,
Visual Studio can't implement syntax checking and issue warnings and build errors to the help the
programmer.

The Entity Fram ework provides the mapping schema that allows programmers to work at a

higher level of abstraction. They can write code using object - oriented constructs to query and
load the entities
(objects defined by classes). The mapping schema translates the queries against the entities
into the required database specific language needed to perform CRUD (create, read, update, and
delete) operations against the data.

In order to use the Entity Framework in your application, you must first add an ADO.NET
Entity Data Mod el to your application. This step launches the Entity Data Model Wizard, which
allows you to develop your model from scratch or generate it from an existing database.
Choosing to generate it from an existing database allows you to create a connection to th e
database and select the tables views and stored procedures you want to include in the model.

The .edmx file generated by the wizard is an XML - based file that has three sections. The first
consists of store schema definition language (SSDL); this describ es the tables and relationships
where the data is stored. The following code shows a portion of the SSDL for a data model
generated from the Pubs database:

<EntityContainer Name="pubsModelStoreContainer">
<EntitySet Name="sales" EntityType="pubsModel.Store .sales" store:Type="Tables"
Schema="dbo" />

203

CHAPTER 30IMPLEMENTING THE DATA ACCESS

<EntitySet Name="stores" EntityType="pubsModel.Store.stores" store:Type="Tables"
Schema="dbo" />
<AssociationSet Name="FK sales ___ stor_id 1273C1CD"
Association="pubsModel.Store.FK sales _ stor_id _ 1273C1CD">
<End Role="stores" EntitySet="stores" />
<End Role="sales" EntitySet="sales" />
</AssociationSet>
</EntityContainer>
<EntityType Name="sales">
<Key>
<PropertyRef Name="stor_id" />
<PropertyRef Name="ord_num" />
<PropertyRef Name="title_id" />

</Key>

<Proper ty Name="stor_id" Type="char" Nullable="false" MaxLength="4" />
<Property Name="ord_num" Type="varchar" Nullable="false" MaxLength="20" />
<Property Name="ord_date" Type="datetime" Nullable="false" />

<Property Name="qty" Type="smallint" Nullable="false" />

<Property Name="payterms" Type="varchar" Nullable="false"
MaxLength="12" /> <Property Name="title_id" Type="varchar"

Nullable="false" MaxLength="6" /> </EntityType>

The second section consists of conceptual schema definition language (CSDL); it specifies
the entities and relationships between them. These entities are used by the application to work
with data in the application. The following code comes from the CDSL section of a data model
generated from the Pubs database:

<EntityContainer Name="pubsEntit ies" annotation:LazylLoadingEnabled="true">
<EntitySet Name="sales" EntityType="pubsModel.sale" />
<EntitySet Name="stores" EntityType="pubsModel.store" />
<AssociationSet Name="FK__sales__stor_id___1273C1CD"
Association="pubsModel.FK sales_ stor_id _ 1273C1CD" >
<End Role="stores" EntitySet="stores" />
<End Role="sales" EntitySet="sales" />
</AssociationSet>
</EntityContainer>
<EntityType Name="sale">
<Key>
<PropertyRef Name="stor_id" />
<PropertyRef Name="ord_num" />
<PropertyRef Name="title_id" />
</Key>
<Property Name="stor_id" Type="String" Nullable="false"
MaxLength="4" Unicode="false" FixedLength="true" >
<Property Name="ord_num" Type="String" Nullable="false"
MaxLength="20" Unicode="false" FixedLength="false" 1>
<Property Name="ord_date" Type="DateTime" Nullable="false" />
<Property Name="qty" Type="Int16" Nullable="false" />
<Property Name="payterms" Type="String" Nullable="false"
MaxLength="12" Unicode="false" FixedLength="false" />
<Property Name="title_id" Type ="String" Nullable="false"
MaxLength="6" Unicode="false" FixedLength="false" />
<NavigationProperty Name="store"
Relationship="pubsModel.FK sales _stor_id _ 1273C1CD"
FromRole="sales" ToRole="stores" />

204

CHAPTER 30IMPLEMENTING THE DATA ACCESS

</EntityType>
The final section of the .edmx file consists of code written in the mapping specification
language (MSL). The MSL maps the conceptual model to the storage model. The following code
shows a portion of the MSL section of a data model generated from the Pubs database:

<EntityContainerMapping St orageEntityContainer="pubsModelStoreContainer"
CdmEntityContainer="pubsEntities">
<EntitySetMapping Name="sales"><EntityTypeMapping
TypeName="pubsModel.sale"> <MappingFragment StoreEntitySet="sales">

<ScalarProperty Name="stor_id" ColumnName="stor_id" />
<ScalarProperty Name="ord_num" ColumnName="ord_num" />
<ScalarProperty Name="ord_date" ColumnName="ord_date" />
<ScalarProperty Name="gty" ColumnName="qty" />

<ScalarProperty Name="payterms" ColumnName="payterms" />

<ScalarProperty Name="title_id" ColumnName="title_id" />
</MappingFragment></Entity TypeMapping></EntitySetMapping>

Querying Entities with LINQ to EF

When creating the ADO.NET entity data model using the Entity Data Model Wizard, an
ObjectContext class is created that represents the entit y container defined in the model. The
ObjectContext class supports CRUD - based queries against the entity model. Queries written
against the ObjectContext class are written using LINQ to EF. LINQ stands for Language -
Integrated Query. LINQ allows developers to write queries in C# syntax, which, when executed,
are converted to the query syntax of the data provider. Once the query is executed and data is
returned, the Entity Framework converts the results back to the entity object model.

The following code uses the Select method to return all the rows from the Stores table and
return the results as a list of Store entities. The Store names are then written to the console
window.

var context = new pubsEntities(); var query = from s in context.stores select s; var stores =
query.ToList();
foreach (store s in stores)

{
}

Console.WriteLine(s.stor_name);

Console.ReadLine();

LINQ to EF provides a rich set of query operations including filtering, ordering, and
grouping operations. The following code demonstrates filtering stores by state:
var context = new pubsEntities(); var query = from s in context.stores
where s.state == "WA" select s; var stores = query.ToList();

The following code selects sales entities that have ordered more than 25 objects and then
orders them by descending date:
var context = new pubsEntities(); var query = from s in context.sales where
s.qty > 25 orderby s.ord_date descending select s; var sales =
query.ToList();

Since the Entity Framework includes navigation properties between entities, you can easily
build complex queries based on related entities. The following query selects stores with more
than five sales orders:

var context = new pubsEntities(); var query = from s in context.stores
where s.sales.Count > 5 select s; var stores = query .ToList();

205

CHAPTER 30IMPLEMENTING THE DATA ACCESS

ZNoteFor more information on the LINQ query language, refer to the MSDN library at
http://msdn.microsoft.com.

Updating Entities with the Entity Framework

The Entity Framework tracks changes made to the entity types represented in the Context
object. You can add, update or delete entity objects. When you are ready to persist the changes
back to the database, you call the SaveChanges method of the context object. The EF creates
and executes the insert, upd ate, or delete statements against the database. You can also
explicitly map stored procedures to implement the database commands. The following code
selects a store using the store ID, updates the store name, and sends it back to the database:

206

http://msdn.microsoft.com/

CHAPTER 30IMPLEMENTING THE DATA ACCESS

var context = new pubsEntities(); var store =
(from s in context.stores where s.stor_id ==
storeld select s).First(); store.stor_name =
"DRC Books"; context.SaveChanges();

ACTIVITY 18 RETRIEVING DATA WITH THE ENTITY FRAMEWORK
In this activity, you will become fami liar with the following:

Creating an Entity Data Model.
Executing queries using LINQ to EF.

Creating an Entity Data Model

To create an entity data model, follow these steps:
1. Start Visual Studio. Select File > New > Project.

Choose Console Application. Rename the project to Act10_3 and click the OK button.

2
3. Right click on the project node in solution explorer and select Add > New Item.
4

Under the Data node in the Add New Item window, select an ADO.NET Entity Data
Model. Name the model Pubs.emdx and click A dd.

5. In the Choose Model Contents screen, select the Generate from database and click
Next.

6. ®O0d Ul Ed” " | OOGEd %OUxdOAUAd” OOOEEUT
database and choose Next. (See Figure 10 - 1)

207

CHAPTER 30IMPLEMENTING THE DATA ACCESS

208

‘L b Choose Your Data Connection

Which data connection should your application use to connect to the database?

[dan—hp.pubs.dbo v] [New Connection...

T}

s COoNNeciion string

st i required to
S FEqUIre

(es, Include the sensitive gata 1n the connection string
Entity connection string:

metadata=res://*/Pubs.csdl|res://*/Pubs.ssdl|res://*/Pubs.msl;provider=System.Data.SqlClient;provider »
connection string="Data Source=Initial Catalog=pubs;Integrated Security=True"

Save entity connection settings in App.Config as:

pubsEntities

<Previous || Net> || Finsh || Concel

Figure 10 - 1. Creating a database connection with the Entity Data Model Wizard

7. ®0d Ui Ed” "1 OOQEd%O0UxdOAUAGCAQED CI EEUQ® d@ExXxEEOpd

node and select the Sales, Stores, and Titles tables, as shown in
Figure 10 - 2. Click Finish.

CHAPTER 30IMPLEMENTING THE DATA ACCESS

Which database objects do you want to include in your model?

[7] 5 Tables
73 authors (dbo)
[7]=3 discounts (dbo)
[7]3 employee (dbo)
[T jobs (dbo)
[7]23 pub_infe (dbo)
[T publishers (dbe)
[T roysched (dbo)
(7|3 sales (dbo)
[V stores (dbo) L
["173 titleauthor (dbo)
VI3 titles (dbo) _

[V| Pluralize or singularize generated object names

>

m

Include foreign key columns in the model

Model Namespace:

[<Previous || e [Finish | | Cancel |

Figure 10 - 2. Selecting aatabase objects for an Entity Data Mode/

8. You are presented with the Entity Model Designer containing the
sales, store, and title entities, as shown in Figure 10 -3.

209

CHAPTER 30IMPLEMENTING THE DATA ACCESS

y store safe titfe
= Properties = Properties - Properties
storjd storjd tiSftitlejd
2" stor_name ord_num gftitlel
A
~Mr* stor_address S Jj* ord_date I type It
pubjd
a'cfty 1* ifal
q y 10+ price
¢ = e *state payternns
L I
~Z,p Mitle_id
I N - . advance
* Navigation Properties - Navigation Properties
royalty
sales store
28*ytd_s
A title .
Vv J ales Hfj*
A e J notes

Navigation Properties
Hfj*

sales
pubdate

Figure 10 - 3. Entity Model Designer

9. In the Entity Model Designer right click on the title entity and
select rename. Rename it to book. In the book entity, rename the
titlel property to title.

Querying an Entity Data Model

To query this entity data model using LINQ, follow these steps:
1. Open the Program.cs file in the Code Editor Window.

2. Addthe following method to select the book entities and write

their titles to the Console window:
private static void GetTitles()

{

var context = new pubsEntities();

var query = from b in context.books select b;
var books = query.ToList();

foreach (book b in books)

Console.WriteLine(b.title);

}
Console.ReadLine();

3. Call the GetTitles method from the Main method.

210

CHAPTER 30IMPLEMENTING THE DATA ACCESS

static void Main(string[] args)

GetTitles();

4. Run the program in debug mode. You should see the titles listed in the
Console window. When you are done testing, stop the debugger.

5. Add the following method that gets books in the 10 to 20 dollar range

and orders them by price:
private static void GetTitlesByPrice()
{

var context = new pubsEntities(); var query = from b in context.books
where b.price >= (decimal)10.00
&& b.price <= (decimal)20.00
orderby b.price select b; var books =
query.ToList(); foreach (book b in books)

Console.WriteLine(b.price +" -- "+ b.title);

Console.ReadLine();

6. Call the GetTitlesByPrice method from the Main method.
static void Main(string[] args)

/IGetTitles();
GetT itlesByPrice();

7. Run the program in debug mode. You should see the titles and prices
listed in the Console window. When you are done testing, stop the
debugger.

8. Add the following method to list the book titles and the sum of their
sales amount. Notice that this query gets the sales amount by adding
UOdUI EdCOOP" BdxENAUVUEEdZANEGd EOUT Ul E@r
?rivate static void GetBooksSold()

var context = new pubsEntities();
var query = from bin
context.books select new {
BookID = b.title_id,
TotalSold = b.sales.Sum(s =>(int?) s.qty)
b
foreach (var item in query)
Console.WriteLine(item.BookID + " -- " +item.TotalSold);
Console.ReadLine();
9. Call the GetBooksSold method from the Main method.
static void Main(string[] args)

//GetTitles();

211

CHAPTER 30IMPLEMENTING THE DATA ACCESS

//GetTitlesByPrice();
GetBooksSold();
}

10. Run the program in debug mode. You should see the book IDs and
amount sold listed in the Console window. When you are done
testing, stop the debugger and exit Visual Studio.

Summary

This chapter is the first in a series that will show you how to build the various tiers of an OOP
application. To implement an application's data access layer, you learned about ADO.NET and
the classes used to w ork with relational data sources. You looked at the various classes that
make up the System.Data.SqlClient namespace; these classes retrieve and update data stored in
a SQL Server database. You also examined the System.Data namespace classes that work with
disconnected data. In addition, you were exposed to the Entity Framework and LINQ and saw
how they allow you to query the data using OOP constructs. You wrote queries in terms of
entities and the framework translated the queries into the query syntax of t he datasource,
retrieved the data, and loaded the entities.

In the next chapter, you will look at implementing the user interface (Ul) tier of a
Windows application. Along the way, you will take a closer look at the classes and
namespaces of the .NET Framework used to create rich Windows - based user interfaces.

CHAPTER11

212

CHAPTER J1DEVELOPING WINDOWS APPLIC3

Developing Windows Applications

In the previous chapter, you learned how to build the data access layer of an application. To
implement its logic, you used the classes of the System.Data namespace. These classes retrieve
and work with relational data, which is a common requirement of many business applications.

You are now ready to look at how users will interact with your application. Users interact wit h
an application through the user interface layer. This layer, in turn, interacts with the business

logic layer, which, in turn, interacts with the data access layer. In this chapter, you will learn

how to build a user interface layer with the .NET Windows Presentation Foundation (WPF). WPF
takes advantage of modern graphics hardware and uses a vector - based rendering engine to
display its output. It consists of a comprehensive set of application - development features that

include Extensible Application Mark up Language (XAML), controls, data binding, and layout.
After reading this chapter, you will be comfortable performing the following tasks:

Using XAML markup to design a user interface.
Working with layout controls.

Working with display controls.

Respondin g to control events.

Using data binding controls.

Creating and using control templates.

Windows Fundamentals

Windows are objects with a visual interface that are painted on the screen to provide users a

way to interact with programs. Like most objects you work with in object - oriented languages,
.NET windows expose properties, methods, and events. A window's properties define its
appearance. Its Background property, for example, determines its color. The methods of a
window define its behaviors. For example, calling its Hide method hides it from the user. A
window's events define interactions with the user (or other objects). You can use the
MouseDown event, for example, to initiate an action when the user clicks the right mouse
button on the window.

Controls are components with visual interfaces that give users a way to interact with the
program. A window is a special type of control, called a container control, that hosts other
controls. You can place many different types of controls on windows. Some common controls
used on windows are TextBoxes, Labels, OptionButtons, ListBoxes, and CheckBoxes. In
addition to the controls provided by the .NET Framework, you can also create your own custom
controls or purchase controls from third - party vendors.

Introducing XKL

WPF user interfaces are built using a declarative markup language called XAML. XAML
declares the controls that will make up the interface. An opening angle bracket (<) followed

by the name of the control type and a closing bracket defines the control. F or example, the
following markup defines a button control inside a Grid.

<Grid>
<Button/>
</Grid>
Notice the Grid needs a formal closing tag because it contains the Button control. Since the
216

CHAPTER J1DEVELOPING WINDOWS APPLIC/

Button control does not contain any other controls, you can use a forward slash () in front of
the end bracket to close it.
The next step is to define the properties of the controls. For example, you may want to set
the background color of the buttontor ed and write some text on it. The properties of the
control are set by using attribute syntax, which consists of the property name followed by an
equal sign and the attribute value in quotation marks. The following markup shows the Button
control with some attributes added:

<Grid>
<Button Content="Click Me" Background="Red"/>
</Grid>
For some properties of an object element, attribute syntax is not possible. For these cases,
a different syntax known as property element syntax can be used. The syntax for the property

element start tag is <typeName.propertyName>. For example, you can create rows and columns
in the layout grid to control placement of controls in the grid, as shown:

<Grid.ColumnDefinitions>
<ColumnDefinition Width="100" />
<ColumnDefinition Widt h="*" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="25" />
<RowDefinition Height="25" />
<RowDefinition Height="25" />
</Grid.RowDefinitions>

Controls are positioned in the grid by including a Grid.Row and Grid.Column attribute, as
shown:
<Label Grid.Column="0" Grid.Row="0" Content="Name:" />
<Label Grid.Column="0" Grid.Row="1" Content="Password:" >

<Button Grid.Column="1" Grid.Row="3"
Content="Click Me" HorizontalAlignment="Right"
MinWidth="80" Background="Red"/>

Figure 11 - 1 shows the window with two textboxes created by the previous XAML code.

y Login ‘ 1=1 v
v

Name:

Password:

clicc Me

Figure 11 - 1. A window created with XAML

Using Layout Controls

Although you can use fixed positioning to place controls on a WPF window, it's not recommended.
Using fixed positioning usually works well for a fixed resolution size but it doesn't scale well to
different resolutions and devices. To overcome the limitations of fixed positioning, WPF offers
severa | layout controls. A layout control allows you to position other controls within it using a

relative positioning format. One of the main layout controls for positioning other controls is the

Grid. As seen previously, a Grid control contains columns and row s to control the placement of
its child controls. The height and width of the columns and rows can be set to a fixed value, auto,

or *. The auto setting takes up as much space as needed by the contained control. The * setting
takes up as much space as is a vailable. The Grid control is often used to lay out data entry forms.
The following code lays out a simple data entry form used to collect user information. The

resulting form is shown in Figure 11 - 2.

217

CHAPTER J1DEVELOPING WINDOWS APPLIC3

218

<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Aut 0" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="28" />
<RowDefinition Height="*" />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="200" />
<ColumnDefinition Width="*" />
</Grid.ColumnDefinitions>
<Label Grid.Row="0" Grid.Column="0" Content="Name:"/>
<Label Grid.Row="1" Grid.Column="0" Content="0Old Password:"/>
<Label Grid.Row="2" Grid.Column="0" Content="New Password:"/>
<Label Grid.Row="3" Grid.Column="0" Content="Confirm Password:"/>

<TextBox Grid.Column="1" Grid.Row="0" Margin="3" />
<TextBox Grid.Column="1" Grid.Row="1" Margin="3" />
<TextBox Grid.Column="1" Grid.Row="2" Margin="3" />

<TextBox Grid.Column="1" Grid.Row="3" Margin="3" />
<Button Grid.Column="1" Grid.Row="4" HorizontalAlignment="Right"
MinWidth="80" Margin="0,0,0,8" Content="Submit" />
</Grid>

Reset Password

I "nila TilC w td'
i | Name
[
2| Old Password:

1
‘
1

New Password:
c

Confirm
Password

Submit

Figure 11 - 2. /nput form window

Another useful layout control is the StackPanel. It lays out child controls either vertically or
horizontally depending on the orientation setting. The following code shows two buttons in a
StackPanel control:

<StackPanel Grid.Column="1" Grid.Row="4" Orientation="Horizontal" >
<Button MinWidth="80" Margin="0,0,0,8" Content="Submit" />
<Button MinWidth="80" Margin="0,0,0,8" Content="Cancel" />
</StackPanel>

Some other layout controls available are the DockPanel, WrapPanel, and Canvas. The
DockPanel is used to provide docking of elements to the left, right, top, bottom, or center of the
panel. The WrapPanel acts like a StackPanel but will wrap child controls to a new line if no room
is left. The Canvas control is used to lay out its child elements with absolute positioning relative
to one of its sides. It is typically used for graphics elements and not to lay out user interface
controls.

CHAPTER J1DEVELOPING WINDOWS APPLIC/

Adding Display Controls

The goal of most business applications is to present data to their users, allow them to update

the data and save it back to a database. Some common controls used to facilitate this process

are the Textbox, ListBox, ComboBox, Checkbox, DatePicker, and DataGrid. You have alr eady
seen the TextBox used on a window; the following code shows how to add a ListBox and
ComboBox to a window. Figure 11 - 3 shows how the window is rendered.

<Grid>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
<ColumnDefinition Width="*" />

</Grid.ColumnDefinitions>

<ListBox Margin="20" Grid.Column="0">
<ListBoxltem>Red</ListBoxltem>
<ListBoxltem>Blue</ListBoxIltem> <ListBoxltem>Green</ListBoxItem>
<ListBoxIltem>Yellow</ListBoxltem>

</ListBox>

<ComboBox Grid.Column="1"
VerticalAlignment="Top">
<ComboBoxIltem>Small</ComboBo

xltem>
<ComboBoxltem>Medium</Combo
Boxltem>
<ComboBoxItem>Large</ComboB
oxltem> <ComboBoxltem>X -
Large</ComboBoxItem>
</ComboBox>
</Grid>
[Window2 1-10
1
Red Small
Blue Medium
Green Large
Yellow X-Large
1
4 J

Figure 11 - 3. Window containing a ListBox and ComboBox

Although you can code the items displayed in these controls directly in the XAML markup,
it is more likely you will use data binding to display their values. You'll look at data binding
shortly.

219

CHAPTER J1DEVELOPING WINDOWS APPLIC3

Using the Visual Studio Designer

Even though it's quite possible to create your window entirely through code using a text editor,
you will probably find this process quite tedious and not a very productive use of your time.
Thankfully, the Visual Studio IDE includes an excellent designer for creating your WPF
windows. Using the designer, you can drag and drop controls from the Toolbox to the Visual
Studio designer, set its properties using the Visual Studio Properties window, and get the
benefits o f auto completion and syntax checking as you enter code using the XAML editor.
Figure 11 - 4 shows a window in the Visual Studio designer.

oo WpfDemolla - Microsoft Visual Studio

| File Edit View Project Build Debug Team Data Tools Test Analyze Window Help

Plrs Tl @ 8 AR - -5 b (Debug -/ |6 e o s 1 fow
PO REE |2 2| 06003 wlld wli
M Toolbox v 3 X WindowZxamlcs" App.xami WindowZ2aami™ Windowlxami X + Solution Explarer -0 x
g 4 A\ll WPF Controls A « B S SHETE]
- R Pointer A Solution ‘WpfDemolla (1 project)
3 B Border % 4 7 WpfDemolla
e (3 Butten 1 Namé T T =i Properties
E = Calendat | =3 References
- B3 Canvas Oid Password: w Appxaml
o @ Cheds | - E | MainWindow xam!
g CheckBox ‘r\e-w Password: « Windowl.xaml
2 Com =
¢ =8 CombaBox « Window2.xaml
E@l 5 ContentControl . =
- ' Submits.| . Cancel EPETL Y) Team Dp.. BB Class View
A DataGnd = 3
: >0 x
I DatePicker Properties
0 DockPanel Gild <noname>
3 DocumentViewer P t 5 Event
a operties vents
ot Q Design u} = ol
'.;, Ellipse = .
(¥) Expander o
> ———
L1/ Freme Manipulation$t |}
1 Ghd 2 2
2 E ManipulationStart.., O
BB GridSplitter
GroupBox =
/> MouseEnter o
&4 Image -e 3"/ ;
R 1d Password:"/> Meuseleave a
b Pacsword: />
e . - eV aresnde MouseleftButton... O
= ListBox 100% -4 ~ o
v, - MoussleftButton.. O
HstView [Z Grid Window/Gnd ¥
.) Mc
Ready tnls Col3l Chi3l INS

Figure 11 - 4. Designing a window in Visual Studio

Handling Control Events

Windows graphical user interface (GUI) programs are event - driven. Events are actions initiated
by either a user or the system, whenever a user clicks a button, for example, or a SglConnection
object issues a StateChange event. Event - driven applications respond to the various events that
occur b y executing code that you specify. To respond to an event, you define the event handler

to execute when a particular event occurs. As you saw in Chapter 8, the .NET Framework uses

delegation to bind an event, with the event handler procedures written to re spond to the event. A
delegation object maintains an invocation list of methods that have subscribed to receive

notification when the event occurs. When an event occurs . for example, a button is clicked , the
control will raise the event by invoking the deleg ate for the event, which in turn will call the

event handler methods that have subscribed to receive the event notification. Although this
sounds complicated, the framework classes do most of the work for you.

In Visual Studio, you can add an event to a WPF control either by writing XAML code or by
selecting it in the control's Properties window. Figure 11 - 5 shows wiring up an event handler in
the XAML Editor window; Figure 11 - 6 shows wiring up an event handler using the Events tab of
the Properties window. Note that when working with controls in code, you need to give them a
unigue name using the Name attribute.

220

CHAPTER J1DEVELOPING WINDOWS APPLIC/

BorderThickne:: {}

. ButtonBa:e ~f * CacheMode
mfirm Password

tcds £ {} Calendar
tcds £ _
& -/ Click I\
tc
S ClickMode
:ation="Horizon Clip
EOAT 6" Ry Y@AEC
"3 Oal I
itent="Cancel" />

Figure 11 - 5. Wining up an event handler in theXAML edlitor Properties

v 01 X
Button <no name>
Sr Properties # Events -
{ Search x |
N -
ContextMenuClosing o [Button_Click !}_I‘ l
ContextMenuOpening a
Figure 11 - 6. Wining up an event handler in the Properties window
Regardless of how you wire up an event handler, the Visual Studio code editor inserts

an empty event handler method in the codebehind file. The following code shows the event
handler method inserted for the button click event:
private void btnCancel_Click(object sender, RoutedEventArgs e)

%

By convention, the name of the event handler method begins with the name of the
object issuing the event followed by an underscore (_) and the name of the event. The
actual name of the event handler, however, is unimportant. The Click attribute in the XAML
code adds this met hod to the invocation list of the event's delegation object.

All event handlers must provide two parameters, which are passed to the method when the
event is fired. The first parameter is the sender, which represents the object that initiated the
event. The second parameter, of type System.Windows.RoutedEventArgs, is an object used to
pass any information specific to the particular event.

Because the .NET Framework uses delegates for event notification, you can use the same
method to handle more than one event, provided the events have the same signature. For
example, you could handle a button click event and a menu click event with the same event
handler, but not a button KeyPress event, because it has a different signature. The foll owing
code demonstrates how to handle the

221

CHAPTER J1DEVELOPING WINDOWS APPLIC3

button click event of two buttons that use the same handler method. The sender parameter is
cast as a Button type and interrogated to determine which button fired the event.
private void Button_Click(object sender, RoutedEventArgs e)

Button btn = (Button)sender; if
(btn.Name == "btnCancel")

/ICancel code goes here
else if (btn.Name == "btnSubmit")

//Submit code goes here

}

In the following activity, you will work with forms and controls to construct a simple memo
viewer application that will allow users to load and view memo documents.

}

ACTIVITY 11 WORKING WITH WINDOWS AND CONTROLS

In this activity, you will become familiar with the
E ON N O UCréating d Windows Form - based
GUI application.

Working with Men u, StatusStrip, and Dialog controls.

Working with Control events.

Creating the Memo Viewer Interface
To create the memo viewer interface, follow these steps: 1. Start Visual Studio. Select
File >New > Project.
2. Choose a WPF Application under the C# Projects folder. Rename
the project to Actll_1 and click the OK button.
3. The project contains a MainWindow.xaml file. This file is where
you design the user interface. The project also contains a
MainWindow.xaml.cs file. This is the codebehind file and it i S
where you will add the code to respond to the events.
4. In the Window tag in the XAML Editor Window, add a Name
AUUxT CUUEdUT Ul d Zd0UZENUEd OEd” 2 EOO»T EUEx rd~ |1 £01 EdUI Ed
UOd” 2 EOQOOd»T EUEX" r
<Window x:Class="Actl1l_1.MainWindow"
xmins=" http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmins:x=" http://schemas.microsoft.com/winfx/2006/xaml|"
Name="Mem oViewer" Title="Memo Viewer" Height="350"

Width="525">
5. Add a DockPanel control in the Grid control.
<Grid>
<DockPanel LastChildFill="True"> </DockPanel>
</Grid>

222

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER J1DEVELOPING WINDOWS APPLIC/

6. Add a Menu control inside the DockPanel and dock it to the top using the following
XAML:

<DockPanel LastChildFill="True">
<Menu DockPanel.Dock="Top">
<Menultem Header="_File">
<Menultem Name="mnuNew" Header="_New..." />
<Separator />
<Menultem Name="mnuOpen" Header="_Open... " />
<Separator />
<Menultem Name="mnuSave" Header="_Save" />
<Menultem Name="mnuSaveAs" Header="_Save As... " />
<Separator />
<Menultem Name="mnuExit" Header="_Exit" />
</Menultem>
<Menultem Header="_Edit">
<Menultem Header="_Cut..." />
<Menultem Header="_Copy... " />
<Menultem Header="_Paste" />
</Menultem>
</Menu>
</DockPanel>

7. Add a StatusBar control by inserting the following code between the ending Menu tag
and the ending DockPanel tag. Note that you are using a Grid control inside the StatusBar
control to layout the items in the StatusBar.

<StatusBar DockPanel.D ock="Bottom">
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="*"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="4*"/>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>
</Grid>
<StatusBarltem Grid.Column="0" HorizontalAlignment="Left">
<TextBlock Name="sbTextbox1">File Name</TextBlock>
</StatusBarltem>
<StatusBarltem Grid.Column="1" HorizontalAlignment="Right">
<T extBlock Name="sbTextbox2">Date</TextBlock>
</StatusBarltem>
</StatusBar>
8. Add a RichTextBox control after the StatusBar end tag and before the

DockPanel end tag.
</StatusBar>
<RichTextBox Name="rtbMemo" />
</DockPanel>

9. Note that as you add the XAML, the Visual Designer updates the
appearance of the window. The MemoEditor window should look

223

CHAPTER J1DEVELOPING WINDOWS APPLIC3

similar to the one shown Figure 11 - 7.

File Edit

File Name Date

I

Figure 11 - 7. The completed MemoEdiitor window

10. Build the solution. If there are any errors, fix them and rebuild.
Coding the Control Events

To code the control events, follow these steps:

1. Inthe XAML Editor window, add the Loaded event attribute to the
Window, as shown:
<Window x:Class="Actl1l_ 1.MainWindow"
xmins=" http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmins:x=" http://schemas.microsoft.com/winfx/2006/xaml"
Name="MemoViewer" Title="Memo Viewer" Height="350" Width="525"
Loaded="MemoViewer_Loaded">

2. Open the codebehind file by right -clicking the XA ML code editor and
selecting View Code. Add the following code to the MemoViewer_Loaded
event handler.

When the window loads, it should show the message on the left side of the

StatusPanel and the date on the right.
private void MemoViewer_Loaded(object se nder, RoutedEventArgs e)

{
sbTextbox1.Text = "Ready to load file"; sbTextbox2.Text =

DateTime.Today.ToShortDateString();

224

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER J1DEVELOPING WINDOWS APPLIC/

}

3. Inthe XAML editor, add the Click event to the mnuOpen control.

<Menultem Name="mnuOpen" Header="_Open..."
Click="mnuOpen_Click"/>

4. In the Code Editor window of the codebehind file, add the following code to
the menu click event. This code configures and launches an Open File
Dialog box, which returns the file path. The file path is then passed to a
FileStream object, which loads the fil e into the RichTextBox. The file path is

also loaded into the StatusBar TextBox.
private void mnuOpen_Click(object sender, RoutedEventArgs e)

/I Configure open file dialog box
Microsoft.Win32.0penFileDialog dlg = new Microsoft.Win32.0penFileDialog();

dig.FileName = "Document"; // Default file name dlg.DefaultExt = ".txt"; /I Default
file extension
dlg.Filter = "Text documents (.txt)|*.txt"; /I Filter files by extension // Show o pen

file dialog box Nullable<bool> result = dlg.ShowDialog();
/I Process open file dialog box results if (result == true)

/l Open document and load RichTextBox string fileName = dlg.FileName;
TextRange range;

{System.lO.FiIeStream fStream; if (System.lO.F ile.Exists(fileName))
range = new TextRange(rtbMemo.Document.ContentStart,
rtbMemo.Document.ContentEnd); fStream = new
System.lO.FileStream(fileName,
System.lO.FileMode.OpenOrCreate); range.Load(fStream,
System.Windows.DataFormats.Text); fStream.Close()

}
sbTextbox1.Text = fileName;
}
5. Add a click event for the mnuExit control with the following code
to close the window:
private void mnuExit_Click(object sender, RoutedEventArgs e)

this.Close();
}
6. Build the solution and fix any errors.
7. Create a Memos folder on the C drive. Using Notepad, create a text

file containing a test message. Save the file as Test.txt.

8. Select Debug > Start. Test the application by loading the Test.txt file.

After viewing the file, close the window by clicking the Exit menu.
9. After testing the application, exit Visual Studio.

225

CHAPTER J1DEVELOPING WINDOWS APPLIC3

226

Creating and Using Dialog Boxes

Dialog boxes are special windows often used in Windows - based GUI applications to display or
retrieve information from users. The difference between a normal window and a dialog box is

that a dialog box is displayed modally. A modal window prevents the user from performing
other t asks within the application until the dialog box has been dismissed. When you start a new
project in Visual Studio, you are presented with a New Project dialog box, as shown in Figure

11- 8. You can also use dialog boxes to present the user with critical in formation and query
them for a response. For example, if you try to run an application in debug mode and a build

error is encountered, the Visual Studio IDE presents you with a dialog box asking whether you

want to continue (see Figure 11 - 9).

New Project

CHAPTER J1DEVELOPING WINDOWS APPLIC/

.NET Framework4& Sort by: Default * 111! (=iil] Search Installed TemP |
Installed Templates - H & Windows Forms Applicatio n Visual C# Type: Visual C#
) < Windows Presentation Foundation client
a Visual C#
Windows 1® WPF Application Visual C# = application
Web
I> office 1
Cloud = Console Application Visual C#
Reporting
Silverlight Ial ASP.NET Web Application Visual C#
Test
WCF L Class Library Visual C#
U
Workflow
Other Languages ~ 45Cr ASP.NET MVC2 Web Applica...Visual C#
w
Online Templates tcw w
1
Name: WpfApplicationl
Location: c:\usersdan\documents\visual studio 2010Projects -1 [Browse...
Solution: | Create new solution 1
Solution name: WpfApplication!
ut PHApplicat [71 Createdirectory for solution
Add to source control
OK
Cancel
Figure 11 - 8. The New Project dialog box
\
Microsoft Visual Studio &
=™\ There were build errors. Would you like to continue and run the last

—r’

successful build?

[Do not show this dialog again

Yes

-

Figure 11 - 9. Displaying critical information using a dialog box

Presenting a MessageBox to the User

The dialog box shown in Figure 11

-9 is a special predefined type called a MessageBox. The
MessageBox class is part of the System.Windows namespace. The MessageBox class can display

a standard Windows
message dialog box. To display a MessageBox to the user, you call the static Show
method of the M essageBox, like so:

227

CHAPTER J1DEVELOPING WINDOWS APPLIC3

MessageBox.Show("File Saved");

The Show method is overloaded so that you can optionally show a MessageBox icon, show a
title, change the buttons displayed, and set the default button. The only required setting is the
text message to be displayed on the form. Figure 11 - 10 shows the MessageBox displayed by the
previous code.

r N

&

File Saved

oK |

L A

Figure 11 - 10. A basic MessageBox

The following code calls the Show method using some of the other parameters. Figure 11
11 shows the resulting MessageBox that gets displayed. For more information on the various
parameters and settings available, look up the MessageBox class in the Visual Studio help file.

MessageBox.Show("Are you sure you want to quit?",
"Closing Application",MessageBoxButton.OKCancel,
MessageBoxImage.Question);

' S
Closing Application @

lje] Are you sure you want to quit?

OK Cancel

Figure 11 - 11. A more complex Messagebox

You will often use a MessageBox to query for a user response to a question. The user
responds by clicking a button. The result is passed back as the return value of the
MessageBox.Show method in the
form of a MessageBoxResult enumeration. The following code captures the dialog box result
entered by a user and closes the window (or not) depending on the result:

MessageBoxResult result = MessageBox.Show("Are you sure you want to quit?",
"Closing
Application",MessageBoxButton.OKCancel,

228

CHAPTER J1DEVELOPING WINDOWS APPLIC/

MessageBoxlmage.Question); if (result == MessageBoxResult.OK)

this.Close();

Creating a Custom Dialog Box

One of the most exciting features about the .NET Framework is its extensibility. Although there

are OEOPd UPOE®@d OEd ET £NOI d ¢ O Y & pfdtie OQUGIYE ACAIOERIJIE OxIdidUET d UZ£ZD
printing, saving files, and loading files. You can also build your own custom dialog boxes. The

first step in creating a custom dialog box is to add a new window to the a pplication. Next, add

any controls needed to interact with the user. Figure 11 - 12 shows a dialog box you might use

to verily a user's identity.

Name:

Password:

lLoginl Cancel ‘

i:igure 11 - 12. Acustom dialog box

Setting the IsCancel property of the Cancel button to true associates it to the keyboard
shortcut of the ESC key. Setting the isDefault property of the Login button to true associates it
with the keyboard Enter key. This is shown in the following XAML code:

<StackPanel Grid.Column="1" Grid.Row="3" Orientation="Horizontal">
<Butto n Name="loginButton" IsDefault="True">Login</Button>
<Button Name="cancelButton" IsCancel="True">Cancel</Button>
</StackPanel>

When the Login button is clicked, the click event of the button is responsible for validating
the user input and setting the DialogResult property to either true or false. This value is
returned to the window that called the Show method of the DialogWindow for further
processing. The following code shows the LoginDialog window called and the DialogResult
property being interroga ted. Notice that the calling window has access to the objects defined on
the DialogWindow. In this case, it is interrogating the UserName textbox's Text property.
LoginDialog dlg = new
LoginDialog(); dlg.Owner = this;
dlg.ShowDialog();
i{f (dlg.DialogResult == false)

string user = dlg.UserName.Text;

MessageBox.Show("Invalid login for " + user, "Warning",
MessageBoxButton.OK,
MessageBoxImage.Exclamation); this.Close();

229

CHAPTER J1DEVELOPING WINDOWS APPLIC3

Data Binding in Windoased GUIs

Once you have retrieved the data from the business logic tier, you must present it to the user.
The user may need to read through the data, edit the data, add records, or delete records.
Many of the controls you'll want to add to a window can display data. The choice of what
control to use often depends on the type of data you want to display, the ways you want to
manipulate it, and the design you have in mind for your interface. Among the controls .NET
developers commonly use to present data are the TextBox, DataGrid, Label, ListBox,
CheckBox, and Calendar . When different fields of a data source are presented to the user in
separate controls (for example, a first name TextBox and last name TextBox), it is important
that the controls remain synchronized to show the same record.

The .NET Framework encapsulate s much of the complexity of synchronizing controls to a
data source through a process called data binding. When you create a binding between a
control and some data, you are binding a binding target to a binding source. A binding object
handles the interac tion between the binding source and the binding target. OneWay binding
causes changes to the source property to automatically update the target property, but changes
to the target property are not propagated back to the source property. This is useful for read-
only scenarios. TwoWay binding causes changes to either the source property or the target
property to automatically update the other. This is useful for full data updating scenarios.

Binding Controls Using a DataContext

To bind a control to data, you need a data source object. The DataContext of a container
control allows child controls to inherit information from their parent controls about the data
source that is used for binding. The following code sets the DataContext property of the top
level Wind ow control. It uses a DataSet and a TableAdapter to fill a Table object and set it to
the DataContext of the Window.

private void Window_Loaded(object sender, RoutedEventArgs e)

pubsDataSet dsPubs = new pubsDataSet(); pubsDataSetTableAdapters.storesTableAdapter
taStores = new pubsDataSetTableAdapters.storesTableAdapter(); taStores.Fill(dsPubs.stores);
this.DataContext = dsPubs.stores.DefaultView;

}

The following XAML code binds the DataGrid columns to the Store table co ~ lumns using the o
uAEUI d fEUUgI CUAUEr d° gl Ol d §1 OET Qi d EOx dAL‘JI' E PpOUxEEd OE/EOQQ" NOOBd
©FUA OOUEYUdT dEOUOEr " d®0dUIi 1 gdEAQGEpPdI Uk @d DUE YL
<DataGrid AutoGenerateColumns="False" ltemsSource="{Binding}">

<DataGrid.Columns>

<DataGridTextColumn x:Name="stor_idColumn"

Binding="{Binding Path=stor_id}" Header="1d" />
<DataGridTextColumn x:Name="stor_nameColumn"

Binding="{Binding Path=stor_name}" Header="Name" />

<DataGridTextColumn x:Name="stateColumn"Binding="{Binding
Path=state}" Header="State" />
<DataGridTextColumn x:Name="zipColumn"
Binding="{Binding Path=zip}" Header="Zip" />

</DataGrid.Columns>

</DataGrid>

The resulting DataGrid loaded with store data is sho wn in Figure 11 - 13.

d
U

230

CHAPTER J1DEVELOPING WINDOWS APPLIC/

d Stor

Id Name State Zip

63 Eric the Read Books WA 98056
?(()366 DRC Books CA 927B9
7067 | News Si Brews CA 96745
7131 | Doc-U-Mat: Quality Laundry and Books WA 98014
7 A 9| Fricative Bookshoo CA 90019
8042 | Bookbeat OR 89076

Figure 11 - 13. Displaying stored data with a DataGrid
In the following activity, you will bind a DataGrid control to a DataTable containing data from

Pubs database. You will also use a DataAdapter to update data changes made in the DataGrid
control back to the Pubs database.

ACTIVITY 1D WORKING WITH DATA BOUND CONTROLS

In this activity, you will become familiar with the following:
Binding a DataGrid to a DataTable. Updating data using the

DataAdapter.
Binding a DataGrid to a DataTable

To bind a DataGrid to a DataTable object, follow these steps:
Create a DataSet

1. Start Visual Studio. Select File > New > Project.

2. Choose WPF Application. Rename the project to Actl1l_2 and click the OK button.

3. After the project loads, locate the Data Sources window. Click on the Add New Data
Source link.

4. Inthe Data Source Configuration wizard, choose a data source type of Database.

5. Inthe Choose a Database Model window, select the Dataset.

6. In the Choose your Data Connection window, select or create a connection to th e
Pubs database.

7. On the next screen, save the connection to the application configuration file.

8. ®0d Ui Ed" "1 OO@Ed »#0Uxd ©FUALACAPGEd " Cil EEU@d UT OEOUpd EYDOAEOE
the authors table. Click the Finish button.

231

CHAPTER J1DEVELOPING WINDOWS APPLIC3

9. Note in the Solutions Explorer window a pubsDataSet.xsd file has been added to the
file. This file represents a strongly typed dataset object based on the pubs database.
Double - click the file node in Solution Explorer to launch the dataset visual editor.

10.The visual editor contains an authors table. Select the authorsTableAdapter, as
shown in Figure 11 - 14. In the Properties window, notice that the select, insert,
update, and delete commands have been generated for you (see Figure 11 - 15).

[
$ aujd

aujname

au_fname

phone

address

city

state

zip

contract

authorsTableAdapter z

1RFiUGetDataQ ‘I'

232

CHAPTER J1DEVELOPING WINDOWS APPLIC/

Figure 11 - 14. Selecting authorsableAdapter

Properties 1

authorsTableAdapter TableAdapter

b1
CommandText INSERT INTO[dbo].[authors] ([au_id; >
CommandType Text
Parameters (Collection)
' SelectCommand (S elertCom ma n d)
CommandText SELECT au_id, aujname. au_fnamef,
CommandType Text
Parameters [Collection]
' UpdateCommand [U pdateCom ma nd)
CommandText UPDATE [dbo].[authors] SET [au_id]
CommandType Test
Parameters (Collection) R

-

U pdateCommand

SQL command to update data n a database

Figure 11 - 15. Viewing the generated command text
Create the Window Layout

1. Open the MainWindow in the XAML Editor window. Change the title of
Ul Edwi OEOGUdUOd” pi OOEd+1 @U r

2. Inside the Grid tags, add a DockPanel control. Inside the DockPanel,
add a StackPanel.

<Grid>
<DockPanel>
<StackPanel DockPanel.Dock="Top" Orientation="Horizontal">

</StackPanel>

</DockPanel>

</Grid>

3. Inside the StackPanel, add two buttons . one for getting data and one
for updating data. Add a Click event handler for each button.

<StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
<Button Name="btnGetData" Content="Get Data"
Click="btnGetData_Click" />
<Button Name="btnSaveData" Content="Save Data"
Click="btnSaveData_Click" />
</StackPanel>

233

CHAPTER J1DEVELOPING WINDOWS APPLIC3

4, Outside the StackPanel but inside the DockPanel, add a DataGrid.

<DataGrid Name="dgAuthors"
AutoGenerateColumns="True"
DockPanel.Dock="Bottom" />
</DockPanel>
</Grid>

5. Build the solution and make sure there are no build errors.
Load the DataGrid

1. Open the MainWindow.xaml.cs file in the Code Editor window.

2. Addthree class level variables of type pubsDataset,
authorsTableAdapter, and authorsDataTable.

public partial class MainWindow : Window {

pubsDataSet _dsPubs;

pubsDataSetTableAdapters.authorsTableAdapter _taAuthors;

pubsDataSet.authorsDataTable _dtAuthors;

3. Inthe btnGetD ata_Click event, add code to fill the _taAuthors table
and set it equal to the DataContext of the gdAuthors grid.

private void btnGetData_Click(object sender, RoutedEventArgs e)

_dsPubs = new pubsDataSet();

_taAuthors = new
pubsDataSetTableAdapters.authorsTableAdapter(); _dtAuthors =
new pubsDataSet.authorsDataTable(); _taAuthors.Fill(_dtAuthors);
this.dgAuthors.DataContext = _dtAuthors;

}
4. Add the ItemSource binding to the DataGrids XAML code. This will bind
it to the DataCon text.

<DataGrid Name="dgAuthors" AutoGenerateColumns="True"
DockPanel.Dock="Bottom" ltemsSource="{Binding}" />

5. Select Debug > Start. Test the application by loading Get Data button.
1 EdO&LEUALE-xT EdUT NNdNOAEdUT Ui dUEBBd! UUI Ox@~ dEAUAd| BEE «
Notice that since the AutoGenerateColumns property of the DataGrid is
set to true, the grid loads with all the columns in the table. The

table columns.
6. After viewing the window, stop the debugger.

ITPhone LTst

234

CHAPTER J1DEVELOPING WINDOWS APPLIC/

Get Data Save Data

aujdaujname au_fname phaamdresscity
172321176 Whits Johnson 408497223 10933Bigge Rd. Me~lo Pai
213465915 Green Marjorie 415 984020 309 63 r&t,#411 Oakland
238957766 Carson Cheryl 415 548723 589DarwirLn. Berkeley
267412394 O'Leary Michael 408 28@428 22Cleveland Aviv- San Jose
274809391 Straight Dean 415 834919 5420 College Av. Oakland
341221782 Snr'td Meander 913 848462 10M'ss'ssippi Dr. Lawrence
409567000 Bennet Al 415 658932 6223 Eaternst. Berkeley
427172319 Dull Ann 415 836128 3410 Blonds&t. PaloAlto
472272349 Gringlesby Burt 707 938445 PC Box 792 Ccvelo
486291786 Locksley Charlene 415 588620 18 Broadway Av, San Franc
527723246 Greene Mornhgstar | 615 292723 22Graybar House Rd. | Kashville
648921872 Blotchethalls | Reggy 503 745402 55Hillsdale B. Corvallis
67271:3249 Yocomotc Akiko 415 93522 8 3Sive Ct. WalnuCr
rrr 1 2

Figure11 -16. 1 / Ed AUU[Ox ~ @d ©FUA-~ x T E

Updating Data

1. Open the MainWindow.xaml.cs file in the Code Editor window.

Add the following code to update the data in the btnSaveData_Click

EUEOUdI Z#OENExrd* 1 1 odEOEEdUQE@dUI EAUACNEd AE EOUE X"~ @
send the changes back to the database.

private void btnSaveData_Click(object sender, RoutedEventArgs e)
try
{
_taAuthors.Update (_dtAuthors);
MessageBox.Show("Data Saved.",
"Information",

MessageBoxButton.OK,
MessageBoxImage.Information);

catch (Exception ex)

MessageBox.Show("Could not save
data!",
"Warning",MessageBoxButton.OK,

235

CHAPTER J1DEVELOPING WINDOWS APPLIC3

MessageBoxlmage.Warning);

2. ° OE A£UE d Ul XAk codeBoomydshow the first name, last
name, and phone columns.

<DataGrid Name="dgAuthors" AutoGenerateColumns="False"
DockPanel.Dock="Bottom" ItemsSource="{Binding}">
<DataGrid.Columns>
<DataGridTextColumn Header="Last Name" Binding="{Binding
Path="au_Ilname'}
" />
<DataGridTextColumn Header="First Name" Binding="{Binding
Path="au_fname'} " />
<DataGridTextColumn Header="Phone" Binding="{Binding Path="phone'}"
/> </DataGrid.Columns>
</DataGrid>

3. Select Debug > Start. Test the application by loading the Get Data
button. Update some of the Names. Click the Save Data button and
then click the Get Data button to verify the names were saved to the
database.

4. After testing, stop the debugger and exit Visual Studio.

Creating and Using Control and Data Templates

In WPF, every control has a template that manages its visual appearance. If you don't explicitly
set its Style property, then it uses a default template. Creating a custom template and assig

it to the Style property is an excellent way to alter the look and feel of your applications.

Figure 11 - 17 shows a standard button as well as a rounded button created by using a control
template.

236

ning

CHAPTER J1DEVELOPING WINDOWS APPLIC/

r ~

i MainWindow = | B %

Standard Button : :ngu:\ded Bu—ttg)n)

= = |
Figure 11 - 17. Creating a rounded button with a custom template

The following XAML is the markup that defines the custom template used to create the
rounded button in Figure 11 - 17.

<Window.Resources>
<Style x:Key="RoundedButtonStyle" TargetType="Button">
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="{x:Type Button}">
<Grid>
<Ellipse Fill="{TemplateBinding
Background}" Stroke="{TemplateBinding
BorderBrush}"/>
<ContentPresenter
HorizontalAlignment="Center"
VerticalAlignment="Center"/>
</Grid>
</ControlTemplate>
</Setter.Value >
</Setter>
</Style>

</Window.Resources>

The following XAML code is used to bind the custom style to a button using the button's
Style property:
<Button Content="Rounded Button" Style="{StaticResource RoundedButtonStyle}"

Along with control style templates, you can also create data templates. Data templates let
you customize how your business objects will look when you bind them in your Ul. A good
example of when you need to use a custom data template is the list box. By default, it renders
data as a single line of text. When you try to bind it to a list of employee objects, it calls the
ToString() method and writes it out to the display. As you can see in Figure 11 - 18, this is
clearly not what you want.

237

CHAPTER J1DEVELOPING WINDOWS APPLIC3

'

° Windowl =2 I =

ChapllDemo3.employee
Chapl1Demo3.employee
Chapl1Demo3.employee
Chapl1Demo3.employee
ChapllDemo3.employee
Chapl1Demo3.employee
Chapl1Demo3.employee
Chapl1Demo3.employee
Chapl1Demo3.employee
Chapl1Demo3.employee
ChapllDemo3.employee
ChapllDemo3.employee
ChapllDemo3.employee
Chapl1lDemo3.employee
Chapl1Demo3.employee
Chapl1Demo3.employee v

J w

Figure 11 - 18. ListBox using the default Dat aTemplate

By adding a DataTemplate to the ListBox control, you can not only get the employee data to
display, but you can also control how it gets displayed. The following XAML adds a DataTemplate
to the ListBox, and Figure 11 - 19 shows the result:

<ListBox ItemsSource="{Binding}" >
<ListBox.ltemTemplate>
<DataTemplate>
<StackPanel Orientation="Horizontal">

<TextBlock FontWeight="Bold" Text="{Binding Path="Iname’}" />
<TextBlock Text="," />

<TextBlock Text="{Binding Path="fnrame'}" />

<TextBlock Text= "" />

<TextBlock Text="{Binding Path = 'minit}" />

</StackPanel>
</DataTemplate>
</ListBox.ltemTemplate>
</ListBox>

238

CHAPTER J1DEVELOPING WINDOWS APPLIC/

7 S

° Windowl = | B Py

Accorti, Paclo M -
Afonso, Pedro S ‘
Ashworth, Victoria P ‘
Bennett, Helen

{ | Brown, Lesley

Chang, Francisco
Cramer, Philip T

Cruz, Aria

Devon, Ann M
Domingues, Anabela R
Franken, Peter H
Henriot, Paul X
Hernadez Carios F
Ibsen, Palle D
Jablonski, Karla J
Josephs, Karin F -

Figure 11 - 19. ListBox using a custom DataTemplate

In the following activity, you will bind a ListBox control to an entity created from the Pubs
database using an entity data model. You will also create a master detail view by synchronizing a
ListBox control and a DataGrid control.

ACTIVITY 18 WORKING WITH DATA TEMPLATES

In this activity, you will become familiar with the following:
Binding a ListBox to an Entity.
Creating a DataTemplate.
Creating a Master Detail View.

Binding a ListBox to an Entity

To bind a Listbox to an entity object, follow these steps:
1. Start Visual Studio. Select File > New > Project.
2. Choose WPF Application. Rename the project to Actll 3 and click the OK button.

3. After the project loads locate the Data Sources window. Click on the
Add New Data Source link.

4. Inthe Data Source Configuration wizard, choose a data source type of Database.

239

CHAPTER J1DEVELOPING WINDOWS APPLIC3

5. Inthe Choose a Database Model wi ndow, select the Entity Data Model.

6. Inthe Choose Model Contents window, select the Generate from database option.
7. In the Choose your Data Connection window, select or create a connection to the
Pubs database.

8. On the next screen, save the connection to the application configuration file.
9. ®O0dUI Ed" | OOQEd %0Uxd ©OFULCADGEd CIl EEU@d UT OEOUpd EYOAOEd Ui E
the stores and sales tables. Click the Finish button.

10. Notice in the Solutions Explorer window a Modell.edmx file has been added to the
file. Thi s file contains the relational mapping between the entities and the tables in
the pubs database.

Creating the Data Template

1. Add a DockPanel and a ListBox control in the XAML Editor window.

<Grid Name="StoresGrid">
<DockPanel>
<ListBox Name="StoresList" DockPanel.Dock="Left" ltemsSource="{Binding}">

</ListBox>
</DockPanel>
</Grid>

2. Add a Window_Loaded event handler in the code file that sets the DataContext of
the ListBox to the stores entities.

private void Window_Loaded(object sender, RoutedEventArgs e)

{
pubsEntities db = new pubsEntities();
this.StoresGrid.DataContext = db.stores;

3. Add a DataTemplate to display the store name in a TextBox control.

<ListBox Name="StoresList" DockPanel.Dock="Left"
ItemsSource="{Binding}">
<ListBox.ltemTemplate>
<DataTemplate>
<TextBlock FontWeight="Bold" Text="{Binding Path="'stor_name'}" >
</DataTemplate>
</ListBox.ltemTemplate>
</ListBox>

4. Select Debug > Start. Make sure the ListBox shows the store names. When
POU” xEdEOOEdUT EUT Ol dUTl Ed+1 gU8OYpd@uUOOdUI EdEECUI T Exr
5. To implement a master/detail data view, add a DataGrid control to the DockPanel
control after the ListBox control. The Binding of the grid is set to the same as
the list box, which is the store entity, but the binding path is set to the sales
entity.

240

CHAPTER J1DEVELOPING WINDOWS APPLIC/

This will cause the data grid to show the sales items of the store selected in the
list box.

<DataGrid Name="SalesGrid" DockPanel.Dock="Right"
ltemsSource="{Binding Path='sales'}" AutoGenerateColumns="False">

<DataGrid.Columns>

<DataGridTextColumn Header="Order = Number" Binding="{Binding”
Path='ord_num'}"/>

<DataGridTextColumn Header="Order Date" Binding="{Binding”
Path='ord_date'}"/>

</DataGrid.Columns>
</DataGrid>

6. Add the following property to the ListBox control in the XAML code. This will ensure
that the List Box control and DataGrid control will remain in sync.

IsSynchronizedWithCurrentltem="True"

7. Launch the application in the debugger. Your window should look similar to Figure

11- 20. Click on different stores in the list box. You should see the data grid upda te
UT UidUIl EdJQGUOXxE~" ddBANEDGAdEAUALr d! EUExdUEQ@UT Ol pd@UOOdU
T 1=10£3
*MainWindow
Eric theReadBooks DRC Books New®#ews OrderMumbeOrder Date
DocU-Mat: Qua“ty Laundry an8ooks Fricativ QQ2299 10/28/19982:00:00 AM
Bookshop TO456 T2/12/19982:00:00 AM
X999 2/21/19932:00:00 AM
Bookbeat
1 1r [dz

Figure 11 - 20. Viewing master/detail data
Summary

In this chapter, you looked at implementing the interface tier of an application. You implemented
the user interface through a WPF - based application front end. Along the way, you took a closer
look at the classes and namespaces of the .NET Framework used to implement rich Windows -
based user interfaces. You saw how to use XA ML syntax to define the controls and layout of the
interface. You also saw how easy it is to bind the controls to the data and present it to the users.

In the next chapter, you will revisit the Ul tier of a .NET application, but ins tead of
implementing the GUI using WPF, you will implement the GUI as a web - based application using
Silverlight. Along the way, you will take a closer look at the namespaces available for creating
web - based GUI applications and the techniques involved in i mplementing the classes contained in
these namespaces.

241

CHAPTER12

Developing Web Applications

In the previous chapter, you learned how to build a simple Windows - based graphical user
interface (GUI) using C# and WPF. Although WPF gives programmers the ability to easily build
extremely rich user interfaces, it is not always practical to assume users will access your
programs through a traditional Windows - based PC. With the proliferation of intranets, web
applications, and mobile devices, applications now need to allow users the ability to access the
interface through a variety of browsers and devices. This chapter shows you how to build a web -
based user interface using Silverlight. If you experience a sense of deja vu while reading this
chapter, itis by design. Silverlight interface design and programming uses an object model that is
remarkably similar to the one used to design and program a WPF interface. As a matter of fact,
prior to the release of Silverlight 1.0, it was referred to as Windows Pres entation
Foundation/Everywhere (WPF/E).

In this chapter, you will be performing the following tasks with Silverlight:

U sing XAML markup to design the user interface.

Working with layout controls.
Working with display controls.
Responding to control events
Working with data binding controls.

How to perform data validation and conversion.

What Is Silverlight?

Although you can build extremely rich and sophisticated Ul for your applications using WPF, it is
limited to running on a computer that is running a Windows operating system. More and more
users are demanding Rich Internet - based Applications (RIA) that run on a variety of devices and a
variety of browsers. This demand is not limited to traditional web - based applications; business
users no longer wantt o be tied to client applications running on their desktop PCs in the office.
They want to access the applications on laptops via wireless hotspots or through their Internet -
capable cell phones. In response to these demands, Microsoft developed Silverlight.

Silverlight is what is known as a cross - browser, cross - platform technology. It runs in all
popular web browsers, including Microsoft Internet Explorer, Mozilla Firefox, Apple Safari, Google
Chrome, and on Microsoft Windows and Apple Mac OS X. Running Silv erlight requires a free plug -
in that automatically installs (with permission) if users don't have it. The download is small and 242
installs quickly. Application code is compiled and runs on the client; it only needs to contact the
server for resources such as data and media.

Silverlight is based on a subset of the Windows Presentation Foundation (WPF) technology

and the .NET Framework. As a result, Silverlight greatly extends the elements and classes

available for creating rich Ul running in the browser.

that it uses a declarati

CHAPTER 32DEVELOPING WEB APPLICA

Silverlight applications are created using
any .NET Framework - supported language (including Visual Basic, C#, and JavaScript). Like WPF
windows, pages in a Silverlight application are created using XAML. XAML is similar to HTML in

Creating a Silverlight Application

You can develop a Silverlight application in Visual Studio much as you would a WPF application.

As a matter of fact, if you look at Figure 12

ve syntax; however, XAML provides significantly more powerful elements.

- 1, you can see that the layout of the designer is

almost identical. There is a Visual Design window, XAML Code Editor window, Toolbox,

Properties window, and Solution Explorer.

| File Edit View Project Build Debug Team Data Format Tools Test Analyze Window Heip

Figure 12 - 1. Visual Studlio Silveriight designer

One of the major differences betwee

EE S R - I R e N ARSI < RS I 20 [P -1 % -SG5 50 B T -
RN % e | 5 EEE D Gae.iloubaefEFEes = 2|088 el » R
Toolbox MRl MainPagexami X ~ Solution Explorer
4 Common Silverfigh... + =]l
R Pointer = -7 Solution 'Chapl12Demol’ 2 projects) -
O Border 4 3 Chapl2Demol
3@) Butten E = Properties
CheckBox =i References A
&% ComboBox i Appoam)
) = MainPagexaml
DataGnd =
‘:: e Fl _'Q Chap12Demol.Web
[Gnd =d Properties
Ed Image =i References
A Label =4 ClientBin
- ; = S gt M AT N oo oo
Sy ListBox K:‘ W Team Bp.. BB Ciass View
® RadioButton QDesign -~ ti @xamL og®
= <UserControl x:Class="Chapl2Demol.MainPage" EY Properties Mt
xmins="http://schemas.microsoft. com/winfx/208¢/xaml/pres « B UserControl <no name>
"http://schemas.microsoft. com/winfx/2006/xanl"
"http://schemas.microsoft.com/expression/blend/2 " Properties F Events
xmlns imc="htto://schemas.ovenxmlformats.ore/markuo-comoa
00% - ¢ " ’ 22 BV 0L | search *
[3 UserControl UserControl »
4 Common
DataContext » 4
Style o y
) Ly

n a WPF application and a Silverlight application is that

the Silverlight solution requires two projects. One project is the Silverlight application and the

other is a web site to host it. When you build a Silverlight application, the code is compiled and
compressed into a XAP file. A link to the XAP file is then hosted in a web page control. When a
user loads the web page, the XAP file is downloaded and the code is decompressed and hosted in

the browser using the Silverlight plug

-in. If the plug - inis not installed, its absence is detected

and the user is shown a link where a copy can be found for download. The following markup

shows the link to the XAP in an HTML web page:

<object data="data:application/x

- silverlight - 2,"

type="application/x

- silverlight - 2" width="100%" height="100%">

<param name="source" value="ClientBin/Chapl12Demol.xap"/>
<param name="onError" value="onSilverlightError"

<param name="background" value="white"

/>

/>

<param name="minRuntimeVersion" value="4.0.50826.0"

<param name="autoUpgrade" value="true"
<a

/>

/>

href=" http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.

243

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0

CHAPTER 32DEVELOPING WEB APPLICA

244

0" style="text - decoration:none">
<img src=" http://go.microsoft.com/fwlink/?Linkld=161376"
alt="Get Microsoft Silverlight" style="border - style:none"/>

</object>

Using Layout Controls

The main container for a Silverlight control is the Page element. Inside the Page element, a main
layout control must be declared. This can be a Grid, Canvas, or StackPanel. By default, the

Visual Studio designer uses the Grid control. The following XAML is the default XAML inserted

when you add a new page. Notice that the page ele ment is actually a UserControl hosted by a

web page.

<UserControl x:Class="Chapl2Demol.MainPage"
xmins=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmins:x=" http://schemas.microsoft.com/winfx/2006/xaml"
xmins:d=" http://schemas.microsoft.com/expression/blend/2008"
xmins:mc=" http://schemas.openxmlformats.org/markup - compatibility/2006"
mc:lgnorable="d"
d:DesignHeight="300" d:DesignWidth="400">
<Grid x:Name="LayoutRoot" Background="White">

</Grid>
</UserControl>

Just as in WPF, fixed positioning to place controls on a page it is not recommended. Fixed
positioning does not scale well to different resolutions and devices. The following code lays out
a Silverlight login page used to capture a user's nam e and password. The resulting form is
shown in Figure 12 - 2.

<Grid x:Name="LayoutRoot" Background="White" Margin="10" >

<Grid.RowDefinitions>

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />

<RowDefinition Height="Auto" />
</Grid.RowDefinitio ns>
<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />

<ColumnDefinition Width="Auto" />
</Grid.ColumnDefinitions>
<sdk:Label Grid.Row="0" Grid.Column="0" Content="Name:"/>
<sdk:Label Grid.Row="1" Grid.Column="0" Content="Password:"/>
<TextBox Grid.Column="1" Grid.Row="0" Margin="3" MinWidth="150"/>
<TextBox Grid.Column="1" Grid.Row="1" Margin="3"
MinWidth="150"/> <Button Grid.Column="1" Grid.Row="4"
HorizontalAlignment="Right" MinWidth="80" Margin="0,0,0,8"
Content="Submit" />

</Grid>

Name
Pass word

Submit

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0
http://go.microsoft.com/fwlink/?LinkId=161376
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 32DEVELOPING WEB APPLICA

Figure 12 - 2. Input page

You often use layout controls inside other controls. To add a Cancel button to the form and
lay it out horizontally alongside the Submit button, you would use a StackPanel inside the Grid
control, as shown in the following markup:

<StackPanel Grid.Column="1" Grid.Row="4" Orientation="Horizontal" >
<Button MinWidth="80" Margin="0,0,0,8" Content="Submit" />
<Button MinWidth="80" Margin="0,0,0,8" Content="Cancel" />
</StackPanel>

Adding Display Controls

Silverlight pages can host many of the same controls as a WPF window. Most business
applications are designed to present and capture data from the users. Some common controls
used to facilitate this process are the Textbox, ListBox, ComboBox, Checkbox, DatePicker, and
DataGrid. The following code shows how to add a DatePicker and CheckBoxes to a Silverlight
page. The sdk designation in front of the DataPicker control signifies that it's part of the

libraries in the Silverlight Software Development Kit (SDK) and is avai lable when you install the
SDK. Figure 12 - 3 shows how the page is displayed to the user.
<Grid>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />

</Grid.ColumnDefinitions>

<sdk:DatePicker Grid.Column="0" VerticalAlignment="Top" MinWidth="175" >

<StackPanel Grid.Column="1" >
<CheckBox Content="Morning" />
<CheckBox Content="Afternoon" />
<CheckBox Content="Evening" />

</StackPanel>

</Grid>

245

CHAPTER 32DEVELOPING WEB APPLICA

4
Morning
A”ernoon
=M/d/
“Midlyyy nmg
4 March, 2011 <
Su Meé Tu We Th Fr vy’
27 28 1 2 3 4 D
S 1 N 9 10 11 12
13 14 15 IE 17 18 19
20 21 22 23 24 25 26
27 2 20 30 31 1 2
3 4 5 6 7 E 9
o

Eve

Figure 12 - 3. Page coritaining a DatePicker and Checkboxes

Handling Control Events

Silverlight follows an event - driven programming model similar to WPF. Events are messages
sent by an object to signal the occurrence of an action. This can be an action initiated by a user,
such as a ButtonClick, or an action initia ted by the program, such as a LayoutUpdated event.

To add events, you typically wire up an event handler to a control using XAML code. When
working with controls in code, you need to give them each a unique name using the Name
attribute. The following mark up shows how to add a click event to a button:

<Button Name="btnSave" Click="btnSave_Click" Grid.Column="2" MinWidth="80"
Height="20" Content="Save" VerticalAlignment="Top"/>

When an event handler is assigned to an event in the XAML, the code editor inserts an
event handler method in the codebehind file. All event handlers include two parameters: the
sender parameter contains a reference to the object that initiated the event and the event args
passes data specific for a certain kind of event. For exa mple, mouse events may pass
information pertaining to the position of the cursor when the event occurred. The following
code shows the event handler method inserted for the button click event:

private void btnSave_Click(object sender, RoutedEventArgs e)
{
}

Remember that by convention, the name of the event handler method is the name of the

246

CHAPTER 32DEVELOPING WEB APPLICA

object issuing the event followed by an underscore character (_) and the name of the event. The
actual name of the event handler, however, is unimportant. The Click attr ibute in the XAML
code adds this method to the invocation list of the event's delegation object.

In the following activity, you'll build a Silverlight page, add some common controls, and
respond to control events.

247

CHAPTER 32DEVELOPING WEB APPLICA

ACTIVITY 12 WORKG WITH SILVERLIGHT CONTROLS

In this activity, you will become familiar with the following:

Creating a Silverlight application.
Adding and working with various controls on a page.

Implementing control events.

ZNoteln order to complete the activities in this chapter, you need to install the Silverlight Tools
for Visual Studio 2010. Refer to Appendix C for instructions.

Creating a Silverlight Application and Adding Controls

To create the Silverlight application, follow these steps:
1. Start Visual Studio. Select File ~ >New > Project.

2. Choose a Silverlight Application under the C# Projects folder. Rename
the project to Act12_1 and click the OK button.

3. The next screen asks if you want to host the Silverlight application in a
new web site. It also asks you what version of Silverlight you want to

use. Accept the defaults shown in Figure 12 - 4 and click OK.
New Silverlight Application

Click the checkbox below to host this Silverlight application in a Web site. Otherwise, a test page will be

gen erated during build.

[/ Host the Silverlight application in anew Web site
New Web project name:
Acti2_|Web

New Web project type:
ASP.NET Web Application Project &

Options
Silverlight Version:

Silverlight 4 N

' Enable WCF RIA Services

| ‘ Cancel

J

Figure 12 - 4. Setting application gptions

248

CHAPTER 32DEVELOPING WEB APPLICA

4. The project contains a MainPage.xaml file. This file is where you design the
user interface. The project also contains a MainPage.xaml.cs file. This is the
EOEECEI T OEdET NEd £AOEdT U~ @d Ul ExEdpOUdvehisNNd AZEEd Ul EdE
5. Add a StackPanel inside the main Layout Grid control. Inside the StackPanel, add
a TextBox and ComboBox, as shown:
<Grid x:Name="LayoutRoot" Background="White" >
<StackPanel Orientation="Vertical" HorizontalAlignment="Center"> <TextBox

Name="txtColor" Text="Color Me!" FontSize="18"/> <ComboBox
Name="cboColors">

<ComboBoxIltem Name="Item1" Content="Red"/>
<ComboBoxItem Name="ltem2" Content="Blue"/>
<ComboBoxItem Name="Item3" Content="Green"/>
</ComboBox>
</StackPanel>
</Grid>
6. Add a SelectionChanged event handler to the ComboBox.
<ComboBox Name="cboColors" SelectionChanged="cboColors_SelectionChanged">

7. Inthe codebehind file, add the following code to interrogate the

on what was

249

CHAPTER 32DEVELOPING WEB APPLICA

selected. The SelectionChangedEventArgs parameter (e) passes in a

list of selected items. In this case, there is only one item in the list.
private void cboColors_SelectionChanged(object sender, SelectionChangedEv entArgs e) {
ComboBoxItem | = (ComboBoxItem) e.Addedltems[0]; if
(I.Content.ToString() == "Red")

SolidColorBrush brush = new SolidColorBrush(Colors.Red);
txtColor.Foreground = brush;

}
if (.Content.ToString() == "Blue")

SolidColorBrush brush = new SolidColorBrush(Colors.Blue);
txtColor.Foreground = brush;

}
if (.Content.ToString() == "Green")

SolidColorBrush brush = new SolidColorBrush(Colors.Green);
txtColor.Foreground = brush;

}

8. Run the application in the debugger. You should see a page with the TextBox
and a ComboBox. Test the application by selecting different colors in the
ComboBox and verify the text color of the Textbox changes. After testing,
stop the debugger.

Adding Event Handling to Silverlight Controls

1. In the XAML Editor below the ComboBox, add a Canvas and a Textbox
control. Note that an event handler for the Canvas's MouseEnter and

MouselLeave events has been added.
<Canvas Width="150" Height="150" Background="Aqua"
MouseEnter="Canvas_MouseEnter" MouselLeave="Canvas_MouselLeave">
<Te xtBox Name="txtMessage" FontSize="18" Visibility="Collapsed"
Canvas.Left="35" Canvas.Top="46" Background="Aqua" />
</Canvas>

2. Open the codebehind file by right - clicking the XAML Editor and selecting
View Code. Add the following code to the Canvas_MouseEnter event

handler:
private void Canvas_MouseEnter(object sender, MouseEventArgs e)

txtMessage.Visibility = Visibility.Visible; txtMessage.Text = "Hello";

3. Add the following code to the Canvas_MouseLeave event handler:
private void Canvas_MouselLeave(object sender, MouseEventArgs e)

{
txtMessage.Text = "Goodbye";

4. Run the application in the debugger. You should see the Canvas
control on the page. Test the application by moving the mouse

250

CHAPTER 32DEVELOPING WEB APPLICA

cursor in and out of the Canvas control. Verify that the Textbox
shows the Hello and Goodbye messages. After testing, stop the
debugger.

5. In the XAML Editor, after the Canvas control, add a ProgressBar and

event has been added.

<ProgressBar Name="pbProgress" F oreground="Aqua" Background="Gray"
Value="10" Maximum="100" Width="200" Height="20" Margin="20"/>

<Button Name="btnAdvance" Height="20" Width="60"
Content="Advance" Click="btnAdvance_Click"/>

6. Add the following code to the btnAdvance_Click event handler:
private void btnAdvance_Click(object sender, RoutedEventArgs e)

if (pbProgress.Value < pbProgress.Maximum)

{
pbProgress.Value+=20;
}

7. Run the application in the debugger. You should see the progress
bar and button on the page. Click on the Advance button. You should
see the progress bar advancing. After testing, stop the debugger
and exit Visual Studio.

Data Binding in Silverlight

Binding a Silverlight control to data is done in a way that is very similar to the way it's handled
in WPF. When you do the binding with XAML, you use the Binding attribute available with each
control. When you bind a control in code, you set its source with the DataContext property.
When you set the DataContext for a parent element, such as a Grid control, the child elemen ts
will use the same DataContext unless their DataContext is explicitly set.

The .NET Framework encapsulates much of the complexity of synchronizing controls to a
data source through the data binding process. The Mode property determines how the data
binding flows and reacts to data changes. OneWay binding causes changes to the source
property to automatically update the target property, but changes to the target property are
not propagated back to the source property. This is useful for read - only scenarios and is the
default binding. TwoWay binding causes changes to either the source property or the target
property to automatically update the other. This is useful for full data updating scenarios.

The following code shows the DataContext of a Grid control s et to a CollectionViewSource
that contains a list of authors. The CollectionViewSource allows you to move through the list
of authors.

CollectionViewSource cvs = new
CollectionViewSource(); cvs.Source = authorList;
this.AuthorList.DataContext = cvs;

cvs.Vi ew.MoveCurrentToFirst();

251

CHAPTER 32DEVELOPING WEB APPLICA

The following XAML code binds TextBox controls and a CheckBox control to the
properties of the Authors class using the Path attribute. Using Binding to designate the source
OE&AO@d” NOOPAdUOdUI EAEOOUAI OExdil pEEEIEGE Ppdd@Od BlidiEa OEEEE DOWUIE
DataContext will be the one specified for the Grid container.
<Grid Name="AuthorList" DataContext="{Binding}">

<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<sdk:Label Content="First Name:" Grid.Column="0" Grid.Row= "o"
HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" />
<TextBox Grid.Column="1" Grid.Row="0" Height="23" HorizontalAlignment="Left"
Margin="3" Name="txtFirstName" Text="{Binding Path=FirstName}"
VerticalAlignment="Center" Width="120" />
<sdk:Label Content="Last Name:" Grid.Column="0" Grid.Row="1"
HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" />
<TextBox Grid.Column="1" Grid.Row="1" Height="23" HorizontalAlignment="Left"
Margin="3" Name="txtLastName" Text="{Binding Path=L astName}"
VerticalAlignment="Center" Width="120" />
<CheckBox Name="chkContract" Content="Under Contract”
IsChecked="{Binding Path=UnderContract}"
Grid.Row="2" Grid.ColumnSpan="2" FlowDirection="RightToLeft" />
<StackPanel Grid.Column="1" Grid.Row="3" Grid.ColumnSpan="2"
Orientation="Horizontal"> <Button Name="btnPrev" Content="Prev" MinWidth="50"/>
<Button Name="btnNext" Content="Next" MinWidth="50"/>

</StackPanel>

</Grid>

The resulting page loaded with author data is shown in Figure 12 - 5.

€ Chapl2Demo2

First Name: ‘ Clive J

Last Name: ‘ Cussler J

Under Contract ||
| Prev | Next |

Figure 12 - 5. Page displaying author data

While some controls can only bind to one record at a time, other controls, such as the
DataGrid control, bind to and display the entire collection. The following code sets the
ItemSource of a DataGrid to the listo f authors. In this case, it's not necessary to use a
CollectionViewSource.

252

CHAPTER 32DEVELOPING WEB APPLICA

this.AuthorDataGrid.ltemsSource = authorList;

The following XAML creates the DataGrid and binds the columns of the grid. The resulting
page is shown in Figure 12 - 6.

<sdk:DataGrid Name="AuthorDataGrid" AutoGenerateColumns="False">
<sdk:DataGrid.Columns>
<sdk:DataGridTextColumn Header="First Name"
Width="SizeToHeader" Binding="{Binding FirstName}" />
<sdk:DataGridTextColumn Header="Last Name"
Width="SizeToHeader" Binding="{Binding La stName}" />
<sdk:DataGridCheckBoxColumn Header="Under Contract"
Width="SizeToHeader" Binding="{Binding UnderContract}"
/> </sdk:DataGrid.Columns>
</sdk:DataGrid>

A Chapl2Demo?2
First Name Last Name Under Contract
Clive U ussier a
S:eve Berry
Kate Morton LJ
Karma Wilson O

Figure 12 - 6. Page displaying author data in a DataGrid

In the following activity, you will build a page with controls bound to a collection of Author
objects. You will also use TwoWay binding to update author data.

ACTIVITY22. WORKING WITH DATA BOUND CONTROLS

In this activity, you will become familiar with the following:
Binding controls to a collection.
Updating data using TwoWay binding.

Binding Controls to a Collection

To bind controls to a collection, follow these steps:
1. Start Visual Studio. Select File > New > Project.
2. Choose a Silverlight Application. Rename the project to Actl2_2 and

click the OK button.

3. The next screen asks if you want to host the Silverlight application
in a new web site. It also asks you what version of Silverlight you

253

CHAPTER 32DEVELOPING WEB APPLICA

want to use. Accept the defaults and click OK.

4. Right- click on the Act12_2 project node in Solution Explorer and
choose Add >Class. Name the class Author.

5. At the top of the class file, add the following using statement:
using System.ComponentModel;

6. In the Author class, implement the INotifyPropertyChanged interface.
This is needed to facilitate binding.

public class Author : INotifyPropertyChanged {

public event PropertyChangedEventHandler PropertyChanged; void

RaisePropertyChanged(string propertyName)

{
var handler =
PropertyChanged; if (handler
1= null)
handler(this, new PropertyChangedEventArgs(propertyName));
}
}
7. Add the following properties. Note that when the values are changed,

the Proper tyChanged event is raised.
string _firstName;
public string
FirstName {
get { return _firstName; }
set {
if (_firstName != value)

_firstName = value;
RaisePropertyChanged("FirstNam

e");
}
}
string _lastName;
public string
LastName {
get{return _lastName;}
set {
if (_lastName != value)
{
_lastName = value;
RaisePropertyChanged("LastNam
e");
}

254

CHAPTER 32DEVELOPING WEB APPLICA

Boolean _underContract;
public Boolean UnderContract
{
get { return _underContract; }
set {
if (_underContract != value)

{

_underContract = value;
RaisePropertyChanged("UnderContract

);
}

double _royalty; public double
Royalty {
get { return _royalty; } set {
i{f (_royalty != value)

_royalty = value;
RaisePropertyChanged("Royalty")

}

8. Add the following constructor to the Author class:

public Author(string firstName, string lastName,
Boolean underContract, double royalty)

{
this.FirstName = firstName; this.LastName =
lastName; this.UnderContract = underContract;
this.Royalty = royalty;

}

9. Build the project and make sure there are no errors. If there are, fix
them and rebuild.

10. Add the following XAML markup to the MainPage.xaml file to create
the user interface:

<Grid x:Name="LayoutRoot" Background="White" >
<Grid Name="AuthorList" DataContext="{Binding}" HorizontalAlignment="Center">

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height ="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<sdk:Label Content="Author Info" Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2"

255

CHAPTER 32DEVELOPING WEB APPLICA

256

HorizontalAlignment="Center"
Margin="3" VerticalAlignment="Center" />
<sdk:Label Content="First Name:" Grid.Column="0"
Grid.Row="1" HorizontalAlignment="Left"
Margin="3" VerticalAlignment="Center" />
<TextBox Grid.Column="1" Grid.Row="1" Height="23" HorizontalAlignment="Left"
Margin=" 3" Name="txtFirstName" Text="{Binding Path=FirstName}"
VerticalAlignment="Center" Width="120" >
<sdk:Label Content="Last Name:" Grid.Column="0" Grid.Row="2"
HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center"

<TextBox Grid.Column="1" Grid.Row="2" Height="23" HorizontalAlignment="Left"

Margin="3" Name="txtLastName" Text="{Binding Path=LastName}"
VerticalAlignment="Center" Width="120" />
<sdk:Label Content="Royalty:" Grid.Column="0" Grid.Row="3"
HorizontalAlignment="Left" Margin="3" Vert icalAlignment="Center"
<TextBox Grid.Column="1" Grid.Row="3" Height="23" HorizontalAlignment="Left"
Margin="3" Name="txtRoyalty" Text="{Binding Path=Royalty}"
VerticalAlignment="Center" Width="120" />
<CheckBox Name="chkContract" Content="Under Contract "
IsChecked="{Binding Path=UnderContract}"
Grid.Row="4" Grid.ColumnSpan="2" FlowDirection="RightToLeft" />
</Grid>
</Grid>

11. Launch the application in the debugger. You should see a page
similar to the one shown in Figure 12 - 7. After testing, stop the

debugger.
A-:hor Info
First Name
LastNsTIS
Rjoyalty:

Under Contract

Figure 12 - 7. Author info page

Updating Data Using TwoWay Binding

1. Inside the MainPage UserControl tag, add a Loaded event handler attribute.

<UserControl
xmins:sdk=" http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"

x:Class="Act12_2.MainPage"
xmins=" http://sc_hemas.microsoft.com/winfx/2006/xaml/presentation"
xmins:x="http://schemas.microsoft.com/winfx/2006/xaml"

http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 32DEVELOPING WEB APPLICA

xmins:d=" http://schemas.microsoft.com/expression/blend/2008"

xmins:mc=" http://schemas.openxmlformats.org/markup - compatibility/2006"
mc:lgnorable="d"

d:DesignHeight="300" d:DesignWidth="400" Loaded="UserControl_Loaded">

2. In the codebehind file MainPage.xaml.cs, add the following using

statement to the top of the file:
using System.Windows.Data;

3. In the codebehind file, add the following code to the
UserControl_Loaded event handler. This code cr eates a list of
authors, adds it to a CollectionViewSource, and sets the
DataContext of the AuthorList Grid control.

CollectionViewSource cvs;
private void UserControl_Loaded(object sender, RoutedEventArgs e)

List<Author> authorList = new List<Author>(); authorList.Add(new
Author("Clive", "Cussler", true,.15)); authorList.Add(new Author("Steve",
"Berry", false,.20)); authorList.Add(new Author("Kate", "Morton",
false,.20));

authorList.Add(new Author("Karma", "Wilson", true,.18)); cvs =

new CollectionViewSource(); cvs.Source = authorList;

this.AuthorList.DataContext = cvs;

cvs.View.MoveCurrentToFirst();

4. Launch the application in the debugger. Make sure the page is loaded with the

ET x@Ud £AUUI Ox~ @dl OEOrd} EUExdUEQ@UI Ol pd@UOOdUI EdEECUI I
5. To ena ble moving through the records, add the following XAML after the

Checkbox control in the MainPage.xaml file:

<StackPanel Grid.Column="1" Grid.Row="5" Grid.ColumnSpan="2"
Orientation="Horizontal">
<Button Name="btnPrev" Content="Prev" MinWidth="50"
Click="btnPrev_Click"/>
<Button Name="btnNext" Content="Next" MinWidth="50"
Click="btnNext_Click" />
</StackPanel>

6. Add the following code to the btnPrev_Click event handler in the codebehind
file. This code uses the CollectionViewSource to loop backward th rough the

records.
private void btnPrev_Click(object sender, RoutedEventArgs e)

cvs.View.MoveCurrentToPrevious(); if (cvs.View.IsCurrentBeforeFirst)

{
}

cvs.View.MoveCurrentToLast();

7. Add the following code to the btnNext_Click event handler in the codebehind
file. This code uses the CollectionViewSource to loop forward through the

257

http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 32DEVELOPING WEB APPLICA

records.
private void btnNext_Click(object sender, RoutedEventArgs e)

cvs.View.MoveCurrentToNext(); if (cvs.View.IsCurrentAfterLast)

cvs.View.MoveCurrentToFirst();

8. Launch the application in the debugger. Test the buttons to make sure you
can move through the authors list. After testing, stop the debugger.

9. Launch the application in the debugger. Update the royalty of the first author,
move to the next author, and move back. You should see that your change
was not kept. This is because the default binding mode is one way. Stop the
debugger. . o L o o
10. Update the txtRoyalty textbo Y~ @d %! 2 +dEOEEdOADEd Ui EdCT OET Oi d* UOY
<TextBox Grid.Column="1" Grid.Row="3" Height="23"

HorizontalAlignment="Left" Margin="3"

Name="txtRoyalty" Text="{Binding Path=Royalty,

Mode=TwoWay}" VerticalAlignment="Center" Width="120" />

11. Launch the application in the debugger. Update the royalty of the
first author, move to the next author, and move back. You should
now see that your change was kept. This is because the default
binding mode is TwoWay.

12. After testing, stop the debugger and exit Visual Studio.

Validaing and Converting Data

When you allow users to update data, it is very important to validate the data before it is saved

back to the data store. For example, you don't want to allow a customer to order a negative

amount of an item or set a birth date that occurs in the future. Silverlight supports error

notification when exceptions are thrown by either the binding engine's type converter or the

binding object's set accessor. If the ValidatesOnExceptions property and the NotifyOnExceptions
property values a re set to true, Silverlight will provide visual feedback that an error has

occurred and will display the error message passed by the binding object. In this case, the

Author class will throw an error if you try to set the Royalty property to a value less t han zero.
The following XAML markup shows the Binding setting of the textbox used to display the

royalty. Figure 12 - 8 shows how the exception is displayed in the page.

Text="{Binding Path=Royalty, Mode=TwoWay,
NotifyOnValidationError=True,
ValidatesOnExcept ions=True}"

258

CHAPTER 32DEVELOPING WEB APPLICA

€ Chapl2Demo2

First Name: ‘Kate |

Last Name: |Morton

A
Royalty: [—5 | Amount must be greater than zero.

Under Contract |_|
| Prev | Next |

Figure 12 - 8. Displaying a valioation error

A common scenario in business applications is to convert data from the format used to
store it to a more user - friendly format for display. For example, you may want to change the
date format or disp lay null values as user - friendly default values. Silverlight facilitates
formatting string values using the
StringFormat property. The TargetNuUValue property allows you to display a friendly
default value instead of null values. You can also set a custom converter on the binding.
You set the Converter property to a class that implements the IValueConverter interface.

The following XAML sets the StringFormat property to show the royalties in percent
and the TargetNullValue to NA. Figure 12 - 9 shows the resul ting display in the page.
Text="{Binding Path=Royalty, Mode=TwoWay,

NotifyOnValidationError=True, ValidatesOnExceptions=True,
StringFormat=p, TargetNullValue=NA}"

A Chapl2Demo?2

Clive
First Name:
8 dssier
Last Nsne:
15.00 %
Royalty:
Under Contra;t |Vj
Pnev Next

Figure 12 - 9. Displaying royalties as percentages

In the following activity you will implement some of the data validation and conversion
capabilities of Silverlight controls described in this section.

259

CHAPTER 32DEVELOPING WEB APPLICA

ACTIVITY 12 VALIDATING ANIDNVERTING DATA

In this activity, you will become familiar with the
EONNOUI ODatadalidation

Data conversion To implement data validation, follow

these steps: 1. Start Visual Studio. Select File > Open >

Project.
2. Navigate to the Actl2_2 solution file and click the Open button.
3. Open the Author class file in the Code Editor and update the

Royalty property to check to make sure it is not negative. If it is,
throw an exception.

public double Royalty

{

get { return _royalty; } set {

260

CHAPTER 32DEVELOPING WEB APPLICA

if (_royalty != value)

if (value <= 0) throw new Exception
("Amount must be greater than zero.");

_royalty = value;

RaisePropertyChanged("Royalty");

}

4. Right- click on the Act 12_2 project node in Solution Explorer and select Add

>New Item. Add a_ Silverlight UserControl and name it Page2.xaml, 5. ~_ Add o R
Ul EdEONRNOUT OT dEOCEEJdUOdET gONAPdUI Ed AUUI Ox~ @dl OEOdT Od A£d © £U.
Royalty column. The NotifyOnValidationError and ValidatesOnExceptions attributes

are set to true.

<Grid x:Name="LayoutRoot" Background="White">
<sdk:DataGrid Name="AuthorDataGrid" AutoGenerateColumns="False"
HorizontalAlignment="Center">
<sdk:DataGrid.Columns>
<sdk:DataGridTextColumn
Header="First Name"
Width="SizeToHeader"
Binding="{Binding FirstName}" />
<sdk:DataGridTextColumn
Header="Last Name"
Width="SizeToHeader"
Binding="{Binding LastName}" />
<sdk:DataGridTextColumn
Header="Royalty"
Width="SizeToHeader"
Binding="{Binding Royalty,Mode=TwoWay,
NotifyOnValidationError=True,
ValidatesOnExceptions=True}" />
<sdk:DataGridCheckBoxColumn Header="Under
Contract"
Width="SizeToHeader"
Binding="{Binding UnderContract}" />
</sdk:DataGrid.Columns>
</sdk:DataGrid>
</Grid>

6. Inside the MainPage UserControl tag, add a Loaded event handler attribute.

<UserControl xmins:sdk=" http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"
x:Class="Act12_2.Page2"
xmlins=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmins:x=" http://schemas.microsoft.com/winfx/2006/xaml"
xmins:d=" http ://schemas.microsoft.com/expression/blend/2008"
xmins:mc=" http://schemas.openxmlformats.org/markup - compatibility/2006"
mc:lgnorable="d"
d:DesignHeight="300" d:DesignWidth="400" Loa ded="UserControl_Loaded">
7. In the UserControl_Loaded event handler, add the following code to load the
author list and bind it to the DataGrid:
private void UserControl_Loaded(object sender, RoutedEventArgs e)

261

http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 32DEVELOPING WEB APPLICA

List<Author> authorList = new List<Author>(); authorList. Add(new
Author("Clive", "Cussler", true, .15)); authorList.Add(new
Author("Steve", "Berry", false, .20)); authorList.Add(new
Author("Kate", "Morton", false, . 20)); authorList. Add(new
Author("Karma", "Wilson", true, .18));

this.AuthorDataGrid.lt emsSource = authorList;

8. To make Page?2 the startup page, open the App.xaml.cs code in the code
editor. Change the Application_Startup event handler to use Page2.

private void Application_Startup(object sender, StartupEventArgs €)

this.RootVisual = new P age2();

9. Launch the application in the debugger. You should see the grid showing the
AUUT Ox~ @d1 OEOr

10. Change one of the royalties to a negative value and click on another row.
When the value tries to update, the debugger will stop on the error. Select

Continue under the Debug menu. You should see the grid with the error
message stating the amount must be greater than zero.

11. Stop the debugger.
12. In the Page2.xaml, update the Royalty column XAML to include formatting to
display it as a percentage and change null values to NA.

<sdk:DataGridTextColumn

Header="Royalty"

Width="SizeToHeader"

Binding="{Binding Royalty,Mode=TwoWay,

NotifyOnValidationError=True,

ValidatesOnExceptions=True,

StringFormat=p, TargetNullValue=NA}" >

13. Update the Royalty property in the Author class so it can be set to null. The
double? makes it a nullable type.
double? _royalty; public double? Royalty {
get { return _royalty; } set {
i{f (_royalty != value)

if (value <= 0) throw new Exception("Amount must be greater than zero.");
_royalty = value;
RaisePropertyChanged("Royalty");

}

14. Update the Author class constructor to accept null values.

public Author(string firstName, string lastName,
Boolean underContract, double? royalty)
{

this.FirstName = firstName;
this.LastName = lastName;
this.UnderContract = underContract;
this.Royalty = royalty;

262

} CHAPTER 32DEVELOPING WEBPLICATIO

15. In the UserControl_Loaded event handler, include some null royalty values.
private void UserControl_Loaded(object sender, RoutedEventArgs e)

List<Author> authorList = new List<Author >();
authorList.Add(new Author("Clive", "Cussler", true, .15));
authorList.Add(new Author("Steve", "Berry", false, null));
authorList.Add(new Author("Kate", "Morton", false, null));
authorList.Add(new Author("Karma", "Wilson", true, .18));
this.AuthorDataG rid.ltemsSource = authorList;

}
16. Select Debug > Start. You should see the royalties as percentages
AOEdUI EAOUNNdUANUEDZd £A@d?* ! r d ul EOdPOU” xEdEOOEJdUEQZUI
debugger and exit Visual Studio.
Summary
In this chapter, you took a second look at implementing the interface tier of an application, this

time using the web - based Silverlight framework. Along the way, you took a close look at how
to implement rich web - based user interfaces. You saw how to use XAML syntax to define
Silverlight controls and their lay out on a Silverlight page. You also saw how easy it is to bind
the controls to the data and present it to the users. What's still missing from the story is
information on how to retrieve data from a relational database on a server. In order to provide
serv erside data to a Silverlight application, you need to utilize a web service.

In the next chapter, you will look at creating web services using the Windows
Communication Framework (WCF). You will also look at the fundamentals of impl ementing web
services. As an exercise, you will create web services that will be consumed by a Silverlight
application and databound to controls of the user interface.

26¢

CHAPTER13

Developing and Consuming WCF
Services

In the previous two chapters, yo u examined the steps required to create the graphical user
interface of an application. Graphical user interfaces created with WPF and Silverlight provide
users a way to interact with your applications and employ the services the application
provides. This chapter shows you how to build another type of interface, one that is
implemented using the Windows Communication Foundation (WCF) and is meant to be
consumed by an application. Such a WCF service provides an application with a programmatic
interface with which to access its functions, without the need for human interaction.

After reading this chapter, you will have a clearer understanding of the following:

What WCF services are and how they came about.

How WCF processes service requests.

How to create a WCF service.

How to consume a WCF service.

How to use a WCF Data Services in a Silverlight Application.

What Are Services?

Microsoft first introduced the concept of services with its inclusion of web services support in

.NET Framework 1.0. A web service provides a way for an application to request a service and

receive a reply. This is essentially the same as a client object requesting a service (method) fr om
a server object within the boundaries of your application. The difference is the location of the

client objects and server objects. If they reside in the same application, then they can issue and

receive binary messages and inherently understand each ot her because they are speaking the
@AOEd” NAEOI ULl Er d! @dUil Ed £O0ONT E&AUT 00@dpPOUdCUT NEdI xOUdOOx EdE(
application up into distinct components. When you segment an application into components, each
designed to perform a distinct spec ialized service, you greatly enhance code maintenance,

reusability, and reliability. Additionally, separate servers can host the client components and

server components for increased performance, better maintenance, and security.

265

CHAPTER 330DEVELOPING AND CONSUMING WCF S

266

Prior to the introduction of web services, the clients and servers of an application relied on
distributed technologies such as DCOM and CORBA, which are based on proprietary standards.
This is fine if the client and server applications utilize the same technologies, but when the ¢ lient
and server utilize disparate technologies, this becomes very problematic. The power of web
services lies in the fact that they use a set of open XML - based messaging and HTTP - based
transport protocols. This means that client and server components util izing different technologies
can communicate in a standard way. For example, a Java - based application running on an Apache
web server can request a service from a .NET - based application running on an IIS server. In
addition, since they communicate via HTT P, they can be located virtually anywhere in the world
that has an Internet connection.

With the release of the .NET Framework 3.0, Microsoft introduced a new way to create web
services in the form of Windows Communication Foundation services (WCF). Before WCF,
Microsoft had a robust but confusing set of messaging technologies including ASP.NET Web
services, MSMQ, Enterprise services, and .NET Remoting. Microsoft decided to roll all these
technologies into a single framework for developing service - oriented applications. This made
developing service - oriented applications more consistent and less confusing for developers.

Creating a WCF Web Service

A WCF service is made up of three parts: the service, an end point, and a hosting environment.
The service is a class that contains methods you want to expose to clients of the service. An end
point is a definition of how clients can communicate with the s ervice. It's worth noting that a
service can have more than one endpoint defined. An endpoint consists of the base address of the
service, its binding information, and its contract information (the three are often referred to as the
ABCs of WCF). The hosti ng environment refers to the application hosting the service. For your
purposes, this will be a web server, but there are other options that exist depending on the type of
WCEF service you implement.

Creating and consuming WCF services using Visual Studio 2010 is a fairly easy process. If you
use the templates Visual Studio provides, much of the plumbing work is done for you. Figure 13 -1
shows the available templates. To create a WCF web service, you use the WCF Service
Application template.

CHAPTER 33DEVELOPING AND CONSUMING WCF St
Recent Templates v Sort by: Default 4H]:. Search Installed Temple

.NET Framework 4

Installed Templates
Type: Visual C#
Vi | C#
Q Visual WCF Service Library WCF Service Application@ff C# A project for creating WCF services
Windows Web Cloud Reporting
Silverlight Test WCF Workflow IS Workflow Service Application Visual C# Visual C#
Other Languages!S Other Project
Types|S DatabaselS Test Projects

Visual C#

Online T emplates
Name:

| WefService2
Location: [c:\documents and settingd drdark\my documents\visual studio 2010Projectf v [Browse..
Solution name: | WefService2 fy~l Create directory for solution

11 Add to sourceontrol

OK Cancel

Figure 13 - 1. WCF templates provided by Visual Studio

Selecting a template adds two important files to the project: one defines the service

contract using an interface and one is a class file that contains the service implementation
code. In Figure 13 -2, the IServicel.cs file defines the interface and the
Servicel.svc.cs contains the class implementation for the service.

2
HISBIIE&IIt*

Solution 'WcfDemoService' (1 project)
- WcfDemoService

: ~AProperties References
App_Data IServicel 8
Servicel.sve” Servicel
.svc.csWeb.config

+

Figure 13 - 2. WCF interface and class files

267

CHAPTER 3B0DEVELOPING AND CONSUMING WCF S

When you create a service, you need to define the service contract. The contract is
defined by an interface definition. The interface defines the methods exposed by the service,
any input parameters expected by the methods, and any output parameters passed back by the
methods. The following code shows the interface code for a tax service. The interface is
marked with the [ServiceContract] attribute and any exposed methods are marked with the
[OperationContract].

[ServiceContract]
public interface ITax {

[OperationContract]
) double GetSalesTax(string statecode);

Once the interface is defined, the next step is to define the class that implements the
interface. The following code implements the ITax interface and provides the code to
implement its exposed methods.

public class Tax: ITax
public double GetSalesTax(string stateCode)
if (stateCode == "PA")
return .06;
else

return .05;
}

Once the interface and class are defined, compiling and running the application produce
the web page shown in Figure 13 - 3. This page provides information on how you can create a
test client for the service and a link to the WSDL file for the service. The WSDL (Web
Services Description Language) file is an XML document that specifies the location of the
service and the operations it expo ses. Figure 13 - 4 shows a portion of the Tax Service's
WSDL file as it appears when displayed by a browser.

}

268

CHAPTER 33DEVELOPING AND CONSUMING WCF St

Tax Service

You have created a service.

To test this service, you will need to create a client and use it to call the service. You can do this using the
svcutil.exe tool from the command line with the following syntax:

svcutil.exe nttp://lcocalhost:1934/Tax.svc2wsdl

This will generate a configuration file and a code file that contains the client class. Add the two files to your
client application and use the generated client class to call the Service. For example:

cz

class Test

{
static void Main ()
{
TaxClient client = new TaxClient():
// Use the 'client' variable to call operations on the service.
// Always clcse the client.
client.Close():
3
}

Figuré 13 - 3. Oulput of the service file

xmins:wsa 10-' http://www.w3.0rg/ 2005/08/ __addressing
xmins:wsx=" http://schemas.xmlsoap.ora/ws/2004/09/mex " xmlins: wsam -
' http://www.w3.0rg/2007/05/addre ssing/metadata ">

269

http://www.w3.org/2005/08/addressing
http://schemas.xmlsoap.org/ws/2004/09/mex
http://www.w3.org/2007/05/addressing/metadata

CHAPTER 330DEVELOPING AND CONSUMING WCF S

270

<wsdl:types>
- <xsd:schema targetNamespace=" http://tempuri.org/Imports ">
<xsd: import schemalocation=" http://localhost:1934/Tax.svc?xsd=xsdO "
namespace="http://tempuri.org/ " />
<xsd: import schemalocation=" http://localhost:1934/Tax.svc?xsd=xsdl "
namespace=" http://schemas.microsoft.com/2003/10/Serialization/ ">
</xsd:schema>
<Awvsdl: types:=
<wsdl:message name="|Tax_GetSalesTax_InputMessage">
<wsdl:part name="parameters" element="tns:GetSalesTax" />

</wsdl:message>

<wsdl:message name="JTax_GetSalesTax_OutputMessage">

<wsdl:part name="parameters" element="tns:GetSalesTaxResponse" />
</wsdl:message>

<wsdl:portType name -'ITax">

- <wsdl:operation name="GetSales Tax">

<wsdl:input wsaw:Action=" http://tempuri.org/ITax/GetSalesTax " message
="tns:Uax_GetSalesTax_InputMessage" />

<wsdl:output

wsaw:Action=" http://tempuri.org/rTax/GetSalesTaxResponse " message -
‘tns:ITax_GetSalesTax_OutputMessage" >

</wsdl: opera tion>
</wsdl:portType>

Figure 13 - 4. The WSDL file, as displayed in a browser

Consuming a WCF Web Service

To consume a WCF service in a .NET client, you must add a service reference to the project.
When you add a service reference in Visual Studio 2010, you are presented with an Add
Reference window (see Figure 13 -5). This window allows you to discover the services
available and the operations they exp 0se. You can also change the namespace that you use to
program against the service.

http://tempuri.org/Imports
http://localhost:1934/Tax.svc?xsd=xsdO
http://tempuri.org/
http://localhost:1934/Tax.svc?xsd=xsdl
http://schemas.microsoft.com/2003/10/Serialization/
http://tempuri.org/ITax/GetSalesTax
http://tempuri.org/rTax/GetSalesTaxResponse

CHAPTER 33DEVELOPING AND CONSUMING WCF St

Add Service Reference l I lr

To see a list of available services on a specific server, enter a service URL andelckv@e for
available services, click Discover.

Address:
http://localhost : 1934/Taji*vc vGo Discover ‘
Services: Operations:
0u Tax.svc VGetSalesTax
-gj) Tax
5°ITax

1 service(s) found at addrelsgp://localhost1934/Tax.svc'.

Namespace:
Tax5ervice

Cancel

~0

Figure 13 - 5. Adldling a service reference

Once the service reference is added to the project, Visual Studio updates the
application configuration file with the information needed to call the service. This
includes the endpoint configuration with the address, binding, and contract
information.

<endpoint address=" http://localhost:1934/Tax.svc " binding="basicHttpBinding"
bindingConfiguration="BasicHttpBinding_ITax"
contract="TaxServiceReference.ITax"
name="BasicHttpBinding_ITax" />

A client proxy is also added to the client application. The client application uses this proxy
to interact with the service. The following code shows a client console application calling the
service using the TaxClient proxy and writing the results out to the console window. Figure 13
6 show s the output in console window.

271

http://localhost:1934/Tax.svc
http://localhost/
http://localhost/

TaxServiceReference.TaxClient webService = new

CHAPTERSEPREREREIE A TANSINMING)VSfring statel = "PA";

272

double salesTax1 = webService.GetSalesTax(statel);

Console.WriteLine("The sales tax for {0} is {1}", statel, salesTaxl); s tring state2
="NJ";

double salesTax2 = webService.GetSalesTax(state2);

Console.WriteLine("The sales tax for {0} is {1}", state2, salesTax2);

webService.Close();

Console.ReadLine();

cv and Settings/dr
The sales tax for PA is 0.06 The sales tax for NJ is 0.05

hud
il | i3

Figure 13 - 6. Ouiput from calling the TaxService

Using Data Contracts

In the previous example, the WCF web service used only simple types to pass data back and

forth between the service and the client. Simple types such as integer, double, and string do not
require any special encoding to pass them between the client and server. There are times when

you want to pass complex types between the client and server. Complex types are co mprised of
simple types. For example, you may have a service that takes an address type made up of

street, city, state, and zip code and returns a location type made up of longitude and latitude. To
facilitate the exchange of complex types, the WCF service uses data contracts. You create your
data class normally then mark it with the [DataContract] attribute. The properties of the class

that you want exposed are marked with the [DataMember] attribute. The following code

exposes the Location class to clients of the service:

[DataContract] public class Location {
double _longitude;
double _latitude;
[DataMember]
public double Latitude

get { return _latitude; } set
{ _latitude = value; }

file:///C:/Documents

}
[p?j%tlﬁ:'véeorggleer{ongitude CHAPTER 33DEVELOPING AND CONSUMING WCF St

get{ return _longitude; } set { _longitude = value; }

}

By marking the classes with the [DataContract] and [DataMember] attributes, an XSD file is
created describing the complex types. Clients use this file to determine what to supply the
service and whatto expect as a return type. Figure 13 - 7 shows the portion of the XSD file
created for the Location type returned by the service.

}

ocs:element minOccurs="0" name-'Latitude" type="xs:double" {> ocs:element
minGccurs="0" name="Longitude" type="xs:double" />

yocsi el eme'lbotationdmikable-'true" type-'tns:Location" />

Figure 13 - 7. XSD file defining the Location fype, as displayed in a browser

Let's put what you've learned so far to work by building a simple service that supplies a list
of stores from th e Pubs database. The service will then be consumed in a Silverlight client to
display a list of stores.

ACTIVITY 1B CREATING AND CONSUMING A WCF SERVICE

®0dUI 1T gd £EUT U1 UbppdpPOUdUT NNd CE EfaifghiveaoSeiiteex d UT Ul dUT EdE

Consuming a WCF Service in a Silverlight client.

Creating a WCFE Service

To create the WCF Service, follow these steps: 1. Start Visual Studio. Select File >New >
Project.

2. Choose a Silverlight Application under the C# Projects folder.
Rename the project to Actl3_1 and click the OK button.

3. The next screen asks if you want to host the Silverlight application
in a new web site. It also asks you what version of Silverlight you
want to use. Accept the defaults and click OK.

4. Right- click on the Act13_1 .Web project node in the Solution
Explorer window and select Add > New ltem.

5. In the Add New Item window, click on the Web node in the Installed

Templates section. Select the WCF Service template, rename it to
PubsService, and click the Add button (see Figure 13 - 8).

273

0

N

N

Add New ltem - Act13 _1.Web

274

Installed Templates Sort by: | De,,f?!,‘t, v P
= Visual C#
T 2 Visual C#

Code % Generic Handler Visual C# yPes YA

Data - A class for creating a WCF service

General 4 | Global Application Class Visual C#t

o]

Windows Forms “:‘ Site Map Visual C#

WPF

Reporting : 7} 5kin File Visual C#t

Sikverlight L

Workflow

WCF Data Service Visual G

-

Online Templates

C”.ﬁ WCF Service Visual Gt
% } Web Configuration File Visual C#
ml Web Service Visual C#

Name: ' Pﬁt?Se;/te.svc |

= N

Figure 13 - 8. Adding the WCF Service
6. Right- click the PubsService.svc node in the Solution Explorer and select View
Code. After the PubsService class definition, add a Store class definition. Add the
[DataContract] attribute to the Store class and the [Data Member] attributes to the
ID and name properties.
namespace Actl3_1.Web {

public class PubsService : IPubsService {
/lubsService class code

[DataContract] public class Store {

string _id;
[DataMember] public string Id {
get { return _id; } set{ _id = value; }

string _name;

[DataMember] public string Name {
get { return _name; } set{ _name =
value; }

}

7. At the top of the file, add a using System.Data.SqlClient statement. In the body of
the PubsService class, add a GetStores method that returns a list of stores. This
method uses the SQLDataReader to retrieve the data from the Pubs database.
(Using the SqlDataReader class was covered in Chapter 10.)

public class PubsService : IPubsService {
public List<Store> GetStores()

SqlConnection con = new Sq IConnection(@"Data Source=. \ SQLEXPRESS;
Initial Catalog=pubs;Integrated Security=True");
SglCommand cmd = new
SglCommand("Select stor_id, stor_name from stores", con); List<Store>
stores = new List<Store>(); con.Open();

SglDataReader dr = cmd.ExecuteReader(); while
(dr.Read()) CHAPTER 3B8DEVELOPING AND CONSUMING WCF Si

Store store = new Store(); store.ld =
(string)dr[O0];

store.Name = (string)dr[1];
stores.Add(store);

return stores;

8. Open the IPubsService.cs file in the Code Editor window. Update the code to
define the GetStores method.
[ServiceContract] public interface
IPubsService {
[OperationContract]
List<Store> GetStores();

9. In the Solution Explorer, right - click on the Act13_1.Web node and select Build. If
there are any errors, fix them, and then rebuild.

Creating th&ilverlight Client

1. In the Solution Explorer, right - click the Actl3 1 project node and select Add
Service Reference. In the Add Service Reference dialog, click the Discover button.
You should see the PubsService.svc as s hown in Figure 13 - 9. Click the OK button
to add the reference.

275

CHAPTER 380DEVELOPING AND CONSUMING WCF S

Add Service Reference @

To see a list of available services on a specific server, enter a service URL and click Go. To browse for
available services, click Discover,

Address:
{http:,l'!localhost:2688,l’pubsService.svc v'[Go] [Discover v]

Services: Operations:
@ (&)@ PubsService.svc '

1 service(s) Found in the solution.

Namespace:
E ServiceReferencel

_—— Em

Figure 13 - 9. Adding the service reference

ZNoteThe port number of your service address may change when you develop it locally.

2. Open the MainPage.xaml file in the XAML Editor. Add the

following XAML markup to add a Label and a ListBox control:
<Grid x:Name="LayoutRoot" Background="White">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>
<sdk:Label Content="Stores:" HorizontalAlignment="Center"/>
<ListBox Name="StoreList" Width="200" Height="200"
HorizontalAlignment="Center" Grid.Row="1"/>
</Grid>

276

CHAPTER 33DEVELOPING AND CONSUMING WCF St

Add a Loaded event handler to the user control.

<UserControl x:Class="Act13_1.MainPage"
xmins=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmins:x=" http://schemas.microsoft.com/winfx/2006/xaml|"
xmins:d=" http://schemas.microsoft.com/expression/blend/2008"
xmins:mc=" http://schemas.openxmlformats.org/markup - compatibil ity/2006"
mc:lgnorable="d"
d:DesignHeight="300" d:DesignWidth="400" Loaded="UserControl_Loaded">

At the top of the MainPage.xaml.cs codebehind file, add a
namespace reference to the service you added in Step 1.

using Actl13_1.ServiceReferencel;

In the UserC ontrol_Loaded event handler, call the service through the
PubsServiceClient proxy. Since the Silverlight client calls the service
asynchronously, you need to provide a callback event handler for when the
call completes.

private void UserControl_Loaded(object sender, RoutedEventArgs e)

PubsServiceClient context = new PubsServiceClient();
context.GetStoresCompleted += context_GetStoresCompleted;
context.GetStoresAsync();

}

Add the following callback event handler. In the handler, load the ListBox
control with the store info returned by the service.

private void context_GetStoresCompleted(object sender,
GetStoresCompletedEventArgs €)

foreach (var store in e.Result)

this.StoreList.ltems.Add(store.ld + ", " + store.Name);

Run the application in the debugger. You should see a web page with the
list of stores, as shown in Figure 13 -ut r d %l EOd POU~ xEd @&£U1 GET EEd U1 U
testing, stop the debugger and exit Visual Studio.

Sio6 AO(q
6380, Ere the Reac Eooks
7066, Barnun's
7067, News St Brews
7131, Doc - U- Mat: Quality
+ ¢ f 2896 dricatve

277

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 380DEVELOPING AND CONSUMING WCF S

3Gokshop S04 2, Bcokbeat

Figure 13 - 10. List of store information

WCF Data Services

Most business applications must work with data contained in a database. Clients need to be able
to perform CRUD (create, read, update, and delete) operations on the data. While you can
support these operations using the HTTP SOAP based WCF services discussed thus far, you
need to write a lot of code to hook up the database layer and expose it through the operations
exposed by the WCF service. This is where WCF Data Services can help. WCF Data Services is
a framework that enables you to easily create services to expose and consume data over the
Web.

WCF Data Services uses the Open Data (OData) protocol for addressing and updating
resources. It exposes data in atext - based data exchange for mat an application can address with
URIs. Data is accessed and changed by using the standard HTTP verbs GET, PUT, POST, and
DELETE. WCF Data Services also includes a client library specifically for Silverlight - based
applications that provides an object - based programming model to access an OData feed.

Visual Studio 2010 provides the templates to easily create a WCF Data Service. First you
create a web application to host the service. Once the web application is created, add an
ADO.NET Entity Data Model. As e xplained in Chapter 10, the ADO.NET Entity Data Model
creates an entity - to- relational mapping layer. This allows you to develop against the object -
oriented data model, which then gets converted into the relational model of the database for you.
Once the en tity data model is created, add a WCF Data Service to the project. The Data Service
class provides the functionality necessary to process request messages, interact with the entity
data model, and generate response messages. This class inherits from a base Data Service class
of the data entity type defined by the Entity Data Model. The following code shows a WCF Data
Service class set up to interact with an Entity Data Model created for the Pubs database:

public class pubsDataService : DataService<PubsEntit ies >

The DataServiceConfiguration class defines the behaviors of the data service. This class is
supplied by the InitializeService method of the data service. It can be used to set behaviors such
as access to the entities by clients of the service. The fo llowing code shows the PubsDataService
class limiting the access to the entities of the data model:
public static void InitializeService(DataServiceConfiguration config)

config.SetEntitySetAccessRule("stores", EntitySetRights.AllRead);
config.SetEntitySetAccessRule("sales", EntitySetRights.None);
config.SetEntitySetAccessRule("titles", EntitySetRights.All);

/I config.SetServiceOperationAccessRule("MyServiceOperation”,
ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion =
DataServiceProtocolVersion.V2;

278

CHAPTER 33DEVELOPING AND CONSUMING WCF St

To consume a WCF Data Service in a client application developed in Visual Studio 2010, you
simply create a service reference to it using the Add Service Reference dialog. Usin g this dialog
will request the service metadata document from the data service. By using this metadata
document, client side proxies are created to interact with the data service. The WCF Data
Services client library enables you to execute language integra ted querys (LINQ) against a data
service. The client library translates a query into an HTTP GET request message.

The following code shows how to instantiate an instance of the data service proxy and use it
to execute a LINQ query to return all the records from the titles table in the Pubs database. The
result of the query can then be bound to the client Ul controls.

svcPubs = new pubsEntities (new
Uri(" http://localhost:1396/pubsDataService.svc ")); v ar g = from t in svcPubs.titles
select t;

In the following activity, you'll create a WCF Data Service that supplies data from the Pubs
database. After creating the service, you will use it to load a DataGrid with title (book)
information.

ACTIVITY IB CREATING AND CONSUMING A WCFE DATA SERVICE

In this activity, you will become familiar with the
E ON N O UCrdating alWWCF Data Service.

Consuming a WCF Data Service in a Silverlight client.

Creating a WCF Data Service
To create a WCF Data Service, followt hese steps: 1.

Start Visual Studio. Select File ~ >New >

Project.

2. Choose a Silverlight Application. Rename the project to Act13_2
and click the OK button.

3. The next screen asks if you want to host the Silverlight
application in a new web site. It also asks you what version of
Silverlight you want to use. Accept the defaults and click OK.

4. Right- click on the Act13_2.Web project node in the solution explorer window

and select Add > New ltem.

5. Under the Data node in the Add New Item window, select an ADO.NET Enti ty
Data Model. Name the model Pubs.emdx and click Add.

6. In the Choose Model Contents screen, select the Generate from database option
and click Next.

7. Inthe Choose Your Data Connection screen, choose an existing connection or
create a new connection to the Pubs database and choose Next.

8. In the Choose Your Database Objects screen, expand the tables node; select the
sales, stores, and titles tables; and then click Finish.

9. Right- click on the Act13_2.Web project node in the Solution Explorer window

279

http://localhost:1396/pubsDataService.svc

CHAPTER 380DEVELOPING AND CONSUMING WCF S

and select Ad d > New ltem.

10. In the Add New Item window, click on the web node in the Installed Templates.
Select the WCF Data Service template, rename it to PubsDataService, and click
the Add button.

11. Open the PubsDataService.svc.cs file in the Code Editor. Update the co de so
that the PubsDataService class implements a DataService of type pubEntities.

public class PubsDataService : DataService< pubsEntities >

{

12. In the InitializeService method, update the code to set the entity access rules
for the store, sale, and title entities created in the Entity Data Model.

public static void InitializeService(DataServiceConfiguration config)

{

config.SetEntitySetAccessRule("stores", EntitySetRights.AllRead);
config.SetEntitySetAccessRule("sales", EntitySetRights.All);

config.SetEnti tySetAccessRule("titles", EntitySetRights.All);

/I config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All);
config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;

13. In the Solution Explorer, right - click on the Act13_2.Web node and select Build.
If there are any errors, fix them and rebuild.
14. In the Solution Explorer, right - click on the PubsDataService.svc node and select
View in Browser. You should see the entities listed as in Figure 13 - 11. Note the
URI for setting the service reference later.
<?xml version="1.0" encoding-6 u-8"fsta - *service xml:base
="http://localhost:l: xni Ins-'http://www.w3.0rg/2007/a

<atom:title>Defadltatom:title>

<atom:title>sales</atom:title>

<atom:title>stores</atom:title>

Figure 13 - 11. Viewing the PubsDataService.svc in the browser

280

http://www.w3.org/2007/a

CHAPTER 33DEVELOPING AND CONSUMING WCF St

Consuming a WCF Data Service in a Silverlight Client

To consume the WCF Data Service, follow these steps: 1. Add the following XAML
markup to the MainPage.xaml file to create the user interface. Note that you are using a cell

editing template for the PubDate column. It will display a DatePicker control when edited.

<Grid x:Name="LayoutRoot" Backgr ound="White" DataContext="{Binding}">
<Grid.RowDefinitions>

<RowDefinition Height="Auto"/>

<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>
<Button Name="btnSave" Content="Save" Width="80" />
<sdk:DataGrid AutoGenerateColumns="False"
HorizontalAlignment="Center"
ItemsSource="{Binding}" Name="titlesDataGrid" VerticalAlignment="Top"
Grid.Row="1" > <sdk:DataGrid.Columns>
<sdk:DataGridTemplateColumn x:Name="pubdateColumn"
Header="Pubdate" Width="SizeToCells">
<sdk:DataGridTemplateColumn.Ce IlIEditingTemplate> <DataTemplate>
<sdk:DatePicker
SelectedDate="{Binding Path=pubdate,
Mode=TwoWay,
ValidatesOnExceptions=true,
NotifyOnValidationError=true}" />
</DataTemplate>
</sdk:DataGridTemplateColumn.CellEditingTemplate>
<sdk:DataGridTemplateColumn.CellTemplate>
<DataTemplate>
<TextBlock Text="{Binding Path=pubdate,
StringFormat= \ {0:d\ }}" />
</DataTemplate>
</sdk:DataGridTemplateColumn.CellTemplate>
</sdk:DataGridTemplateColumn>
<sdk:DataGridTextColumn x:Name="title_idColum n"

Binding="{Binding Path=title_id}"

Header="Title id"

Width="SizeToCells" Visibility="Collapsed"/>
<sdk:DataGridTextColumn x:Name="titte1Column"
Binding="{Binding Path=title1}" Header="Title"
Width="SizeToCells" /> <sdk:DataGridTextColumn
x:Name="typeColumn" Binding="{Binding Path=type}"
Header="Type" Width="SizeToCells" />
<sdk:DataGridTextColumn x:Name="ytd_salesColumn"
Binding="{Binding Path=ytd_sales, StringFormat=c}"

Header="Ytd sales" Width="SizeToCells" />

</sdk:DataGrid.Columns>
</s dk:DataGrid>
</Grid>

281

CHAPTER 380DEVELOPING AND CONSUMING WCF S

2. Inside the MainPage UserControl tag, add a Loaded event handler attribute.
<UserControl xmins:sdk=" " http://schemas.microsoft.com/winfx/2006/xaml/presentation/ sdk"

x:Class="Act13_2.MainPage"

xmins=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmins:x=" http://schemas.microsoft.com/winfx/2006/xaml|"

xmins:d=" http://schemas.microsoft.com/expression/blend/2008"

xmins:mc=" http://schemas.openxmlformats.org/markup - compatibility/2006"
mc:Ignorable="d"

d:DesignHeight="300" d:DesignWidth="400" Loaded="UserControl_Loaded">

3. In the Solution Explorer window, r ight- click the Actl3_2 project node and
select Add Service Reference. In the Add Service Reference dialog, click
the Discover button. You should see the PubsService.svc in the list, Click
the OK button to add the service reference.

4. Inthe MainPage.xaml.cs codebehind file, add the following using statements

to the top of the file:
using Actl3_2.ServiceReferencel;
using System.Data.Services.Client;
5. In the codebehind file, add the following class level variables:

public partial class MainPage : UserControl

pubsEntities svcPubs;

DataServiceCollection<title> dscTitles;

6. Inthe codebehind file, add the following code to the UserControl_Loaded event
handler. Use the URI noted in step 14 of the previous section. This code
instantiates an instance of the data servi ce that svcPubs uses it to load data from
a LINQ query. The DataServiceCollection (dscTitles) is loaded from the result of

the query and is used as the DataContext for the LayoutRoot grid.
private void UserControl_Loaded(object sender, RoutedEventArgs e)

//Do not load your data at design time.
if (ISystem.ComponentModel.DesignerProperties.GetlsInDesignMode(this))
{

svcPubs = new pubsEntities
(new Uri(" http://localhost:1396/pubsDataService.svc ");
dscTitles = new DataServiceCollection<title>();
var q = from t in svcPubs.titles select t;

dscTitles.LoadAsync(q);
this.LayoutRoot.DataContext = dscTitles;

7. Launch the application in the debugger. Make sure the page is loaded with the
title info loaded in the grid. After testing, stop the debugger.
8. To enable updating records, add a Click event handler to the XAML of the Save
button in the MainPage.xaml file.
<Button Name="btnSave" Content="Save" Width="80" Click="btnSave_Click" />
9. Add the following code to the btnSave_Click event handler in the codebehind file.
This code uses the data service proxy to call the save changes method of the data

282

http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://localhost:1396/pubsDataService.svc

CHAPTER 33DEVELOPING AND CONSUMING WCF St

service. This is an asynchronous call so a callback method is passed in as well as

a message to pass back indicatin g the changes saved.
private void btnSave_Click(object sender, RoutedEventArgs e)

svcPubs.BeginSaveChanges(OnChangesSaved,"Data Saved");

10. Add the following call back event handler, which will fire when the data service

completes the save changes method:
private void OnChangesSaved(IAsyncResult result)

MessageBox.Show((string)result.AsyncState);

11. Launch the application in the debugger. Test updating the data and
saving the changes. Refresh the page after saving the data to
verify it was saved back to the database. After testing, stop the
debugger and exit Visual Studio.

Summary

In this chapter, you were introduced to the fundamentals of implementing web services. In
particular, you saw how to create web services using the Windows Communication Framework
(W CF). You also built a Silverlight client application that consumes the WCF service and

updates data back to the database through the service.

This was the final chapter in a series aimed at exposing you to the v arious technologies and
.NET Framework classes used to build .NET applications. The goal of these chapters has been to
give you the information necessary to start building .NET applications. These chapters only
scratched the surface of these technologies. As you gain experience developing .NET
applications, you will need to look more deeply into each of these technologies.

Thus far in your journey you have studied UML design, object - oriented programming, the C#
language, the .NET Frame work, creating graphical user interfaces, and developing WCF Services.
You are now ready to put the pieces together and develop a working application. In the next
chapter, you will revisit the UML models you developed for the case study introduced in Chapt er
4. You will transform these models into a fully functional application.

CHAPTER14

283

CHAPTER MDEVELOPING THE OSO APPLIC

288

Developing the OSO Application

In the previous chapters, you looked at two ways to develop the graphical user interface of an
application. Graphical user interface s created with WPF and Silverlight provide human users a
way to interact with your applications and use the services they provide. You also saw how
services create programmatic interfaces that other programs can call to use the services of the
application without any user interaction.
In this chapter you come full circle, back to the office supply ordering application (called
OSO for short) that you designed in Chapter 4. This chapter is one big activity and a final exam
of sorts. You will create a function al application incorporating the concepts you have learned in
the previous chapters. As you work through creating the application, you should be able to
identify these concepts and relate them back to the concepts covered previously. The
application will c ontain a data access layer, a business logic layer, and a user interface layer.
After reading this chapter, you will understand why applications are split into different
layers and how to construct them.

Revisiting Application Design

When you design an application, you can typically proceed in three distinct phases. First, you
complete a conceptual design, then a logical design, and then a physical design.

The conceptual design, as explained in Chapter 4, constitutes the discovery phase of the
process. T he conceptual design phase involves a considerable amount of collaboration and
communication between the users of the system and the system designers. The system
designers must gain a complete understanding of the business processes that the proposed
syste m will encompass. Using scenarios and use cases, the designers define the functional
requirements of the system. A common understanding and agreement on system functionality
and scope among the developers and users of the system is the required outcome of this
phase.

The second phase of the design process is the logical design. During the logical design phase,
you work out the details about the structure and organization of the system. This phase consists
of the development and identification of the busines S objects and classes that will compose the
system. UML class diagrams identify the system objects for which you identify and document
the attributes and behaviors. You also develop and document the structural interdependencies of
these objects using the ¢ lass diagrams. Using sequence and collaboration diagrams, you
discover and identify the interactions and behavioral dependencies between the various system
objects. The outcome of this phase, the application object model, is independent of any
implementati on- specific technology and deployment architecture.

The third phase of the design process is the physical design. During the physical design
phase, you transform the application object model into an actual system. You evaluate and
decide upon specific tech nologies and infrastructures, do cost analysis, and determine any
constraints. Issues such as
programmer experience and knowledge base, current implementation technologies, and legacy
system integration will all influence your decisions during the physical design phase. You must
also analyze security concerns, network infrastructure, and scalability requirements.

When designing a distributed application, you normally separate its logical architectural
structure from its physical architectural structure. By separating the architectural structure in
this way, you will find it much easier to maintain and update the ap plication. You can make any
physical architectural changes (to increase scalability, for example) with minimal impact. The
logical architectural design typically separates the various parts of an application into tiers.

Users interact with the presentation tier, which presents data to the user and gives the user ways

CHAPTER 34DEVELOPING THE OSO APPLIC

to initiate business service requests. The business logic ier encapsulates and implements the
business logic of an application. It is responsible for performing calculations, processing data,
and controlling application logic and sequencing. The data tier is responsible for managing
access to and storage of information that must be persisted and shared among various users

and business processes. Figure 14 - 1 shows the different logical tiers of atypical 3 - tier
application.

Ul Layer

\

Business Layer

A
\%

Data Access Layer

A
\Y

Database

Figure 14 - 1. Logical tiers ofa 3 - tiered application

When you create the physical tiers of an application, each logical tier would ideally
correspond to a distinct physical tier on its own dedicated server. In reality, the physical layers
of the application are influenced by such factors as available hardware and network
infrastructure. You may have all the logical tiers on one physical server or spread across a web
and database server. What is important is that you create applications that implement clear
separation of duties among the classes. Figure 14 - 2 shows the layout of the OSO application.
The business logic classes and the data access classes are contained in the same assembly
(BLL assembly), while the user interface layer is contained in its own assembly (Ul assembly).
Both assemblies are contained on the same server. Because there is a clear separation of duties
between the business logic classes and the dat a access classes, as the application grows in
features and users, it can easily be refactored into separate assemblies hosted on separate
severs.

289

CHAPTER MDEVELOPING THE OSO APPLIC

BLL Assembly Ul Assembly
Serve Business Logi| S s| Ul Classes
Classes |4 ‘ ‘ s

Y
Data Acces€lasses

Figure 14 - 2. Physical tiers of the OSO application

Building the OSO Applicati or
Logic Layers

In order to develop the business logic and data access layers of the application, you need to

review the OSO class diagram you created in Chapter 4 (shown in Figure 14 - 3).
Employee cont ai Order Orderltem
Employeeld:Integer| OrderNo:Long ProductNo:String
LoginName:String OrderDateiDate Quantity:Integer
Password:String 7 T Status:String UnitPrice:Real
1 Department:String C Addl contains
Purchaser (Ul) FirstName:String Retrigq\gltemo < 1.n
LastName:String Submititemo
LoginQ
)) i -4 contains
«inherits» _| ProductCatalc %(:)Tarins Product
h ProductNo:String
DepartmentManagel ProductName:String
Category:String
ApprovePurchaseC Description:String
UnitPrice:Decimal
) o) VendorCode:String
Figure 14 - 3. OSO gpplication class diagram
As discussed in Chapter 4, you need to create an Employee class that implements a login

method (Login()). The login method will interact with the database to verify login information.
To accomplish this, you will create two employee classes: one for the business logic layer
(Employee) and one for the

290

CHAPTER 34DEVELOPING THE OSO APPLIC

data access layer (DALEmployee). The Employee class will pass the request to login from the

User Interface (Ul) to the DALEmployee class, which in turn will interact with the database to
retrieve the requested information. Figure 14 - 4 is the database schema for the Of fice Supply
database. This database is hosted in a SQL Server database.

Orders
@ Ord=ID OrderItem
d ¢ Y= 10
,.<|]
& = - bt 10
"
Product
o
Employee g Prodetin [~ Category
‘ o) 10 ¥ &=«
e 1
j?
Supplier

g Semld

Figure 14 - 4. Office Supply database diagram

ZNotelf you did not install the Office Supply database, see Appendix C for instructions.

Now, you'll begin with the data access layer an
1.

d then implement the business logic layer.

In Visual Studio, create a Class Library application and name it

OSOBLL; this application will contain the classes for the business

logic layer and data access layer of the OSO application. If not

already there, add the references shown in Figure 14 - 5. Figure 14 -5
also shows the classes you will create to implement the data access

and business logic of the application.

ZNoteREd POUdEOO~" UdUAOUdUOJdEOEEdUI Ed”
Apress web site. See Appendix C for details.

" d £O00ONT E £U

B

Solution Explorer

SI®HI*

Z Folution 'OSOBLL' (2 projects)
N OSOBLL

+ i"#Propertiegt-_/

0

Od E x

201

0

0

d g

E

x [E

CHAPTER MDEVELOPING THE OSO APPLIC

292

References

Z Microsoft.CSharg O

Systen# Bystem.Core

Z Gbystem.Data

Z Bystem. Data. DataSetExtensira

System.Xrn# GBystem.Xml.Ling

DALErmployee.cs DALOrder.cs

DALProductCatalog.ts DALUtility.es

Employee.c8&)=]0rder.es
<S1Drderlterm.es

Figure 14 - 5. References and classes of the OSOBLL class library

Next, you'll create a static class (DALULtility) that implements the setting
of the database connection string in one centralized location. The other
classes will call its GetSQLConnection to retrieve the connection string.

2. Add a class to the application and name it DALUTtility. Add the
following code to the class file:
using System;
using System.Collections.Generic; using System.Ling; using System.Text;

namespace OSOBLL {
public static class DALUtility {

public static string GetSQLConnection()

return @"Integrated Security=True;Data Source=.\ SQLEXPRESS;" + "Initial
Catalog=0OfficeSupply";

3. The next class to add is the DALEmployee class. This class contains a Login
method that checks the user name and password supplied to the values in the
database. It uses a SQLCommand object to execute a SQL statement against the
database. If a match is found, it returns the employee ID. If no match is found, it
returns - 1. Since a single value is returned by the SQL statement, you can use the
ExecuteScalar method of the SQLCommand object. Add a class named
DALEmployee and insert the following code into the class file:

using System;

using System.Collections.Generic; using
System.Ling; using System.Text; using
System.Data.SqlClient; using
System.Diagnostics; using System.Data;

namespace OSOBLL {
class DALEmployee {
public int LogIn(string userName, string password)

string connString = DAL Utility.GetSQLConnectionQ;

SglConnection conn = new SqglConnection(connString); try {
SglCommand cmd = new SglCommand(); cmd.Connection = conn;
cmd.CommandText = "Select EmployeelD from Employee where "

+ " UserName = @UserName and Password = @Password ";
cmd.Parameters.AddWithValue("@UserName", userName);

CHAPTER 34DEVELOPING THE OSO APPLIC
cmd.Parameters.AddWithValue("@Password", password); int userld;
conn.Open();
userld = (int)emad.ExecuteScalar();
if (userld > 0)
return userld;
else

return - 1;

293

catch (EXCGptiOﬂ EX) CHAPTER 34DEVELOPING THE OSO APPLIC

Debug.WriteLine(ex.ToString()); return -1;
}
finally

if (conn.State == ConnectionState.Open)

conn.Close();

4. The next class to construct is the DALProductCatalog class, the purpose of which
is to encapsulate the functionality the application needs to retrieve and list the
available products in the database. You also want to be able to view the products
based on the category to whi ch they belong. The information you need is in two
database tables: the catalog table and the products table. These two tables are
related through the CatlD field.

When a client requests the product catalog information, a dataset is created and
returned to the client. This service is provided in the DALProductCatalog class's
GetProductinfo method. The code for the DALProductCatalog class is shown in here:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using System.Data .SqlClient;

using System.Data;

using System.Diagnostics;

namespace OSOBLL {
public class DALProductCatalog {
SqlConnection _conn;
DataSet _dsProducts;

public DALProductCatalog()
{

string connString = DALUtility.GetSQLConnection(); _conn =
new SglConnection(connString);

}
public DataSet GetProductinfo()
try
{ .
/IGet category info

String strSQL = "Select Catld, Name, Description from Category";
SglCommand cmdSelCategory = new SglCommand(strSQL, _conn);
SqlDataAdapter daCatagory = new SqlDataAdapte r(cmdSelCategory);
_dsProducts = new DataSet("Products"); daCatagory.Fill(_dsProducts,
"Category");
/IGet product info
String strSQL2 = "Select ProductID, CatID, Name," +
"Description, UnitCost from Product";

SglCommand cmdSelProduct = new SqglCommand(strSQL2, _conn);
SqglDataAdapter daProduct = new SqlDataAdapter(cmdSelProduct);

{ daProduct.Fill(_dsProducts, "Product");
//Set up the table relation

294

. . CHAPTER 3ADEVELOPING THE OSO APPLIC
DataRelation drCat_Prod = new DataReIatlon("drCat_ProHA, v

_dsProducts.Tables["Category"].Columns["C atlD"],
_dsProducts.Tables["Product’ '].Columns[' 'CatID'"].false);
_dsProducts.Relations.Add(drCat_Prod);

catch(Exception ex)
Debug.WriteLine(ex.Message);

return _dsProducts;

5. When a client is ready to submit an order, it will call the PlaceOrder method of the
Order class, which you will define shortly in the business logic classes. The client
will pass the employee ID into the method and receive an order number as a return
value. The PlaceOrder method of the Order class will pass the or der information in
the form of an XML string to the DALOrder class for processing. The DALOrder
class contains the PlaceOrder method that receives an XML order string from the
Order class and passes it into a stored procedure in the SQL Server database. Th e
stored procedure updates the database and passes back the order number. This
order number is then returned to the Order class, which in turn passes it back to
the client.

Add the following code to define the DALOrder class:

using System;
using System.Col lections.Generic;
using System.Ling;
using System.Text;
using System.Data.SqlClient;
using System.Data;
using System.Diagnostics;
namespace
OSOBLL {
class DAL Order

public int PlaceOrder(string xmlOrder)

string connString = DALUtility. GetSQLConnectionQ;

SqlConnection cn = new

SqlConnection(connString); try {
SglCommand cmd = cn.CreateCommand();
cmd.CommandType = CommandType.StoredProcedure;
cmd.CommandText = "up_PlaceOrder";
SqlParameter inParameter = new SqlParameter();
inParameter.ParameterName = "@xml|Order";
inParameter.Value = xmlOrder; inParameter.DbType =
DbType.String; inParameter.Direction =
ParameterDirection.Input;
cmd.Parameters.Add(inParameter);
SqlParameter ReturnParameter = new SqlParameter();
ReturnParameter .ParameterName = "@OrderID";
ReturnParameter.Direction = ParameterDirection.ReturnValue;
cmd.Parameters.Add(ReturnParameter);
int intOrderNo;
cn.Open();

295

CHAPTER MDEVELOPING THE OSO APPLIC

cmd.ExecuteNonQuery(); cn.Close();
intOrderNo = (int)cmd.Parameters["@OrderID"].Value;
return intOrderNo;

E:atch (Exception ex)
Debug.WriteLine(ex.ToString()); return 0;
%inally
if (cn.State == ConnectionState.Open)

cn.Close();

Now that you have constructed the data access layer classes, you are ready to
construct the business logic layer set of classes.

6. Add a class named Employee to the application. This class will
encapsulate employee information used by the Ul and pass a login
request to the data access layer. Add the following code to the
Employee. csf ile:

using System;

using System.Collections.Generic;
using System.Ling; using
System.Text;

namespace OSOBLL {
public class
Employee {
int _employeelD;
public int EmployeelD

{

get { return _employeelD;
} set { _employeelD =
value; }

string _loginName;
public string
LoginName {

get { return _loginName; }
set { _loginName = value;

296

string _password;
public string

Password {

get { return _password; }
set { _password = value; }

Boolean _loggedin =
false; public Boolean

Loggedin {
get { return _loggedin ;}

public Boolean LoglIn()
{

DALEmployee dbEmp = new
DALEmployee(); int empld;

empld = dbEmp.LogIn(this.LoginName,

this.Password); if (empld > 0)
{
this.EmployeelD =
empld; this._loggedin
= true; return true;

else

this._loggedin = false;
return false;

7. The ProductCatalog class provides the Product dataset to the Ul. It
retrieves the dataset from the DALProductCatalog class. You could
perform any business logic on the DataSet before passing it to the UI.
Add the following code to ac lass file for the ProductCatalog class:

using System;

using
System.Collections.Generic;
using System.Ling; using
System.Text; using System.Data;

namespace OSOBLL {
public class
ProductCatalog {
public DataSet GetProductinfo()

CHAPTER DEVELOPING THE OSO APPLIC

297

CHAPTER WADEVELOPIN, B4y Blisiness logic befor passing to client.

298

/I None needed at this time.
DALProductCatalog prodCatalog = new
DALProductCatalog(); return
prodCatalog.GetProductinfo();

When a user adds items to an order, the order item information is encapsulated

in an Orderltem class. This class implements the INotifyPropertyChanged
interface. This interface is necessary to notify the Ul that a property changed

so that it can update any controls bound to the class. It also overrides the
ToString method to provide an XML string containi ng the item information. This
string will get passed to the DAL when an order is placed. Add the following

code to implement the Orderltem class:

using System;

using
System.Collections.Generic;
using System.Ling; using
System.Text; using
System.ComponentMo del;

namespace OSOBLL {

public class Orderltem :
INotifyPropertyChanged {
#region INotifyPropertyChanged Members
public event PropertyChangedEventHandler PropertyChanged;
protected void Notify(string propName)
if (this.PropertyChanged != null)

PropertyChanged(this, new PropertyChangedEventArgs(propName));

}
#endregion string _ProdID; int _Quantity; double _UnitPrice; double _SubTotal;
public string ProdID {

get { return _ProdID; } set { _ProdID = value; }

public int Quantity {
get { return _Quantity; } set {
_Quantity = value;
Notify("Quantity");
}

}
public double UnitPrice {
get { return _UnitPrice; } set { _UnitPrice = value; }

public double SubTotal {
get { return _SubTotal; }

public Orderltem(String productID,double unitPrice,int quantity)
_ProdID = productID;
_UnitPrice = unitPrice;
_Quantity = quantity;
_SubTotal = _UnitPrice * _Quantity;

}
public override string ToString()

string xml = "<Orderltem";
xml +=" ProductID=""+ _ProdID +
xml +=" Quantity=""+ _Quantity +
xml+="/>"; return xml;

CHAPTER DEVELOPING THE OSO APPLIC

299

CHAPTER 3ADEVELOPING THE OSO APPLIC

9. The final class of the business logic layer is the Order class. This class is
responsible for maintaining a collection of order items. It has methods for adding
and deleting items as well as passing the items to the DALOrder class when an
order is placed. The following code implements the Order class:

using System;

using System.Collections.Generic; using
System.Ling; using System.Text;

using System.Collections.ObjectModel; using
System.ComponentModel;

namespace OSOBLL {
public class Order {

ObservableCollection<Orderltem> _orderltemList = new
ObservableCollection<Orderltem>();

public ObservableCollection<Orderltem> OrderltemList {
get { return _orderltemList; }

public void AddItem(Orderltem orderltem)
foreach (var item in _orderltemList)

if (item.ProdID == orderltem.ProdID)

item.Quantity += orderltem.Quantity; return;

}

_orderltemList.Add(orderltem);
public void Removeltem(string productID)
foreach (var item in _orderltemList)
if (item.ProdID == productID)

_orderltemList.Remove(item);
return;

}
public double GetOrderTotal()
if (_orderltemList.Count == 0)

return 0.00;
else
{
double total = 0;
foreach (var item in _orderltemList)
total += item.SubTotal;
return total;
}

}
public int PlaceOrder(int employeelD)

{ string xmlOrder;

xmlOrder = "<Order EmployeelD=""'+ employeelD.ToString() +

300

}
}

CHAPTER 34DEVELOPING THE OSO APPLIC

">" foreach (var item in _orderltemList)
xmlOrder += item.ToString();

xmlOrder += "</Order>";
DALOrder dbOrder = new DALOrder(); return
dbOrder.PlaceOrder(xmlOrder);

Now that you have constructed the data access and business logic layers of the OSO
application, you are ready to construct the Ul. In the next section you will construct a WPF
application users will use to place office supply orders.

Creating the OSO Application Ul

In order to create the ordering system's WPF interface, you'll need to add a WPF project to the
solution containing the OSOBLL project.

1.

In Visual Studio, add a WPF project to the solution and name it OSOWPFUI.
Figure 14 - 6 shows the Solution Explorer with both projects added.

Make sure you add the references shown in Figure 14 - 6 for the
OSOWPFUI application.
Notice a reference to the OSOBLL class library is included.

301

CHAPTER 34DEVELOPING THE OSO APPLIC

QSolution 'OSOBLL' (2 projects)

+ OSOBLL

OSOWPFUI

H{ 1Properties Referenc&sO
Microsoft.CSharp OSOBLL
PresentationCore

+

PresentationFramewadrkSystem

1 System.Core System.Data

1 System.Data.DataSetExtensibns
System.Xanl System.Xnll System.Xml.Ling
1 WindowsBase App.xaml LoginDialog.xam
MainWindow.xaml OrderltemDialog.xaml

+ o+ 4+

Figure 14 - 6. References and classes of the OSOWPFUI application

The first goal of the user interface is to present information about the products

that can be ordered. The product information is presented in a DataGrid control.

The user will view products in a particular category by selecting the category in
a ComboBox control. Once products are listed, users can add products to an
order. When a product is added to an order, it's displayed in a ListView below

the DataGrid. Figure 14 - 7 shows the OSO order form with the items added to an
order.

302

CHAPTER 34DEVELOPING THE OSO APPLIC

< Office Supply Ordering

Audio Visual v Login Exit
ProdLCt IC Name Description Unit Cost
APO -CG7Q7Q Transparency Quick dry inkjet 24.49
APO -FXL Overhead Bulb High intensity replacement bulb 12.00
APO -MP12GO Laser Pointer General purpose laser pointer 29.99
MMM -9700P Overhead Projector Portable with travel cover 759.97
Product Ic Unit Price Quantity
APO- FXL 12 1
MMM - 9700P 75S.97 3
Add Item Remove Item Place Order

You must login to place an order.

Figure 14 - 7. Form foradding items to an order

2. Add the following XAML code to the MainWindow.xaml file to create the OSO
order form. Notice the use of data binding for the various controls.

<Window x:Class="OSOWPFUIl.MainWindow"
xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmins:x=" http://schemas.microsoft.com/winfx/2006/xaml"
Title="Office Supply Ordering" Height="484" Width="550" Loaded="Window_Loaded">
<Grid>
<StackPanel Name="LayoutRoot" DataContext="{Binding}"
Orientation="Vertical" HorizontalAlignment="Left" Height="auto" Width="auto">
<StackPanel Orientation="Horizontal" HorizontalAlignment="Left">
<Label Content="Categories:" Margin="10,0,0,0"/>
<ComboBox ItemsSource="{Binding}" Name="categoriesComboBox"
IsSynchronizedWithCurrentltem="True"
DisplayMemberPath="Name" Height="23" Margin="12"
Width="200" > <ComboBox.ltemsPanel>

303

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 34DEVELOPING THE OSO APPLIC

<ltemsPanelTemplate>
<VirtualizingStackPanel />
</It emsPanelTemplate>
</ComboBox.ltemsPanel>

</ComboBox>
<Button Content="Login" Height="30" Name="loginButton"

Width="75" Margin="20,5,0,0" Click="loginButton_Click" />
<Button Content="Exit" Height="30" Name="exitButton"

Width="75" Margin="20,5,0,0" Click="exitButton_Click" />

</StackPanel>
<DataGrid AutoGenerateColumns="False" Height="165"
IltemsSource="{Binding drCat_Prod}"
Name="ProductsDataGrid" RowDetailsVisibilityMode="VisibleWhenSelected"
Width="490" HorizontalAlignm ent="Left" Margin="20,0,20,10"
SelectionMode="Single">
<DataGrid.Columns>
<DataGridTextColumn
x:Name="productIDColumn" Binding="{Binding Path=ProductID}"
Header="Product ID" Width="40*" />
<DataGridTextColumn
x:Name="nameColumn" Binding="{Binding Path=Name}"
Header="Name" Width="40*" />
<DataGridTextColumn
x:Name="descriptColumn" Binding="{Binding Path=Description}"
Header="Description" Width="80*" />
<DataGridTextColumn
x:Name="unitCostColumn" Binding="{Binding Path=UnitCost}"
Header="Unit Cost" W idth="30*" />
</DataGrid.Columns>
</DataGrid>

<StackPanel Orientation="Vertical">
<ListView Name="orderListView" MinHeight="150" Width="490"
ItemsSource="{Binding}" SelectionMode="Single">
<ListView.View>
<GridView>
<GridViewColumn Width="140" Header="Product Id"
DisplayMemberBinding="{Binding ProdID}" />
<GridViewColumn Width="140" Header="Unit Price"
DisplayMemberBinding="{Binding UnitPrice}" />
<GridViewColumn Width="140" Header="Quantity"
DisplayMemberBinding="{Binding Quantity}" />
</GridView>
</ListView.View>
</ListView>

</StackPanel>
<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
<Button Name="addButton" MinHeight="25" MinWidth="80"
Content="Add Item" Click="addButton_Click" />
<Button Name="removeButton" MinHeight="25" MinWidth="80"
Content="Remove Item" Click="removeButton_Click"/>
<Button Name="placeOrderButton" MinHeight="25" MinWidth="80"

304

CHAPTER 34DEVELOPING THE OSO APPLIC

Content="Place Order" Click="placeOrderButton_Click"/>

</StackPanel>
</StackPanel>

<StatusB ar VerticalAlignment="Bottom" HorizontalAlignment="Stretch">

<TextBlock Name="statusTextBlock">You must login to place an
order.</TextBlock> </StatusBar>
</Grid>
</Window>

To add an order item, the user first selects a row in the DataGrid
and then selects the Add Item button. The Add Item button displays
a dialog box the user uses to enter a quantity and add the item.
Figure 14 - 8 shows the Order Item Dialog.

Product Id:

Unit Price: I

oy [

[oK][Cancel]

Figure 14 - 8. The Order ltem dialog
3. Add a new Window to the project named OrderltemDialog.xaml. Ad
the following XAML code to create the OrderltemDialog form:

<Window x:Class="OSOWPFUI.OrderltemDialog"
xmins=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmins:x=" http://schemas.microsoft.com/winfx/2006/xaml|"

WindowsStartupLocation="CenterOwner"

Title="Order Item" Height="169" Width="300">

<Grid>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="Auto" />
<ColumnDefinition />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.R owDefinitions>
<Label Grid.Column="0" Grid.Row="0" Margin="2">Product Id:</Label>
<TextBox Name="productldTextBox" Grid.Column="1"

Grid.Row="0" Margin="2" Grid.ColumnSpan="2" IsEnabled="False"/>

305

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 34DEVELOPING THE OSO APPLIC

<Label Grid.Column="0" Grid.Row="1" Margin="2">Unit Price:< /Label>
<TextBox Name="unitPriceTextBox" Grid.Column="1"

Grid.Row="1" Margin="2" Grid.ColumnSpan="2" IsEnabled="False"/>
<Label Grid.Column="0" Grid.Row="2" Margin="2" >Quantity:</Label>
<TextBox Name="quantityTextBox" Grid.Column="1"

Grid.Row="2" Margin=" 2" MinWidth="80" Text="1"/>
<StackPanel Grid.Column="0" Grid.ColumnSpan="3"

Grid.Row="3" Orientation="Horizontal"
HorizontalAlignment="Center">
<Button Name="okButton" Click="okButton_Click" IsDefault="True"
MinWidth="80" Margin="5">0K</Button>
<Button Name="cancelButton" Click="cancelButton_Click" IsCancel="True"
MinWidth="80" Margin="5">Cancel</Button>
</StackPanel>
</Grid>
</Window>

Before users can submit an order, they must log in. When they click on the
Login button, they are presented with a Login Dialog window, shown in Figure
14-9.

BED

Name:

Password:

[oK][Cancel]

Figure 14 - 9. The Login dialog

4. Add a new Window to the project named LoginDialog.xaml. Add the
following XAML code to create the LoginDialog form.

<Window x:Class="OSOWPFUI.LoginDialog"
xmins=" http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmins:x=" http: // schemas.microsoft.com/winfx/2006/xam!" Title="Lo gin"
Height="131" Width="300" WindowStartupLocation="CenterOwner"
FocusManager.FocusedElement="{Binding ElementName=nameTextBox}">
<Grid>

<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto" />

<ColumnDefinition />
</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>
<Label Grid.Column="0" Grid.Row="0" Margin="2">Name:</Label>

306

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

<TextBox Name="nameTextBox" Grid.Colu
<Label Grid.Column="0" Grid.Row="1" Margin="2">Password:</Label>
<PasswordBox Name="passwordTextBox" Grid.Column="1" Grid.Row="1" Margin="2"/>

<StackPanel Grid.Column="0" Grid.ColumnSpan="2" Grid.Row="2"
Orientation="Horizontal" HorizontalAlignment="Center">
<Button Name="okButton" Click="okButton_Click" IsDefault="True"
MinWidth="80" Margin="5">0K</Button>
<Button Name="cancelButton" Click="cancelButton_Click" IsCancel="True"
MinWidth="80" Margin="5">Canc

</StackPanel>
</Grid>
</Window>

Now that you have created the windows that make up the Ul, you are ready
to add the implementation to the window's codebehind files.

5. Add the following code to the MainWindow.xaml.cs codebehind file:

using System;

using System.Collections.Generic; using
System.Ling; using System.Text; using
System.Windows; using
System.Windows.Controls; using
System.Windows.Data; using
System.Windows.Documents; using
System.Windows.Input; using
System.Windows.Media; using
System.Wi ndows.Media.lmaging; using
System.Windows.Navigation; using
System.Windows.Shapes; using
System.Data; using OSOBLL;

using System.Collections.ObjectModel;

namespace OSOWPFUI {
/Il <summary>
/Il Interaction logic for MainWindow.xaml ///

</summary>

public partial class MainWindow : Window {
DataSet _dsProdCat;
Employee _employee;

Order _order;
public MainWindow()

InitializeComponent();

}

private void Window_Loaded(object sender, RoutedEventArgs €)

ProductCatalog prodCat = new ProductCatalog();
_dsProdCat = prodCat.GetProductinfo(); this.DataContext =

_dsProdCat.Tables["Category"];
_order = new Order();
_employee = new Employee();

mn="1" Grid.Row="0" Margin="2"/>

CHAPTER 34DEVELOPING THE OSO APPLIC

307

CHAPTER 34DEVELOPING THE OSO APPLIC

this.orderListView.ltemsSource = _order.OrderltemList;

}
private void loginButton_Click(object sender, RoutedEventA rgs e)
LoginDialog dlg = new LoginDialog(); dlg.Owner = this; dlg.ShowDialog();
/I Process data entered by user if dialog box is accepted if
(dlg.DialogResult == true)
{
_employee.LoginName = dlg.nameTextBox.Text;
_employee.Password = dlg.passwordTextBox.Password; if
(_employee.LogIn() == true)
this.statusTextBlock.Text = "You are logged in as employee number " +
_employee.EmployeelD.ToString();
}
else
{
MessageBox.Show("You could not be verified. Please try again.");
}
}
}

private void exitButton_Click(object sender, RoutedEventArgs e)

this.Close();

private void addButton_Click(object sender, RoutedEventArgs e) {

OrderltemDialog orderltemDialog = new OrderltemDialog();
DataRowView selectedRow;
selectedRow = (DataRowView)this.ProductsDataGrid.Selectedltems|[0];
orderltemDialog.productldTextBox.Text =
selectedRow.Row.ltemArray[0]. ToString();
orderltemDialog.unitPriceTextBox.Text =
selectedRow.Row.ltemArray[4]. ToString(); orderltemDialog.Owner = this;
orderltemD ialog.ShowDialog(); if (orderltemDialog.DialogResult == true)

string productld = orderltemDialog.productldTextBox.Text; double
unitPrice = double.Parse(orderltemDialog.unitPrice TextBox.Text); int
quantity = int.Parse(orderltemDialog.quantityTextBox.Text);
_order.AddItem(new Orderltem(productld,unitPrice,quantity));

}

private void removeButton_Click(object sender, RoutedEventArgs e)
if (this.orderListView.Selectedltem != null)

var selectedOrderltem = this.orderListView.Selectedltem as Orderltem;
_order.Removeltem(selectedOrderltem.ProdID);

}

308

CHAPTER 34DEVELOPING THE OSO APPLIC

}
private void placeOrderButton_Click(object sender, RoutedEventArgs e)
if (_employee.LoggedIn == true)
/Iplace order int orderld;
orderld = _order.PlaceOrder(_employee.EmployeelD);
MessageBox.Show("Your order has been placed. Your order id is " +
orderld.ToString());
else
MessageBox.Show("You must be logged in to place an order.");
}
}

A look at the preceding code reveals that when the window loads, the
Window_Loaded event retrieves the ProdCat DataSet and sets it equal to the
DataContext of the window so that the ComboBox and GridView controls can bind
to it. An Order object is created and the ListView control is bound to its

Orderltem collection. This code segment is repeated here for your revi ew:

private void Window_Loaded(object sender, RoutedEventArgs €)

ProductCatalog prodCat = new ProductCatalog();
_dsProdCat = prodCat.GetProductinfo(); this.DataContext =
_dsProdCat.Tables["Category"];

_order = new Order();

_employee = new Employee();

thi s.orderListView.ltemsSource = _order.OrderltemList;

The loginButton_Qick event launches an instance of the LoginDialog window

and checks the Dialog result. If it comes back as true, the _employee object's
values are set to the values entered in the dialog and the Login method of the
Employee class is called. If the Login method returns true, the user is notified
that they are logged in.

private void loginButton_Click(object sender, RoutedEventArgs e)

LoginDialog dig = new LoginDialog();

dlg.Owner = this; dlg.ShowDialog();

/I Process data entered by user if dialog box is accepted if
%dlg.DiangResuIt == true)

_employee.LoginName = dlg.nameTextBox.Text;
_employee.Password = dlg.passwordTextBox.Password; if (_employee.LogIn()
== true)

this.statusTextBlock.Text = "You are logged in as employee number " +
_employee.EmployeelD.ToString();

else

MessageBox.Show("You could not be verified. Please try again.");

309

CHAPTER 34DEVELOPING THE OSO APPLIC

}
}

The addButton_Click event launches an instance of the OrderltemDialog window
and fills the textboxes with information from the selected row of the

ProductsDataGrid. If the DialogResult returns true, the information entered in

the dialog is used to create an Orderltem object and add it to the Order's

Orderltem collection.

private void addButton_Click(object sender, RoutedEventArgs e)

OrderltemDialog orderltemDialog = new OrderltemDialog();

DataRowView selectedRow;

selectedRow = (DataRowView)this.ProductsDataGrid.Selectedltems[0];
orderltemDialog.pr oductldTextBox.Text = selectedRow.Row.ltemArray[0]. ToString();
orderltemDialog.unitPriceTextBox.Text = selectedRow.Row.ltemArray[4]. ToString();
orderltemDialog.Owner = this; orderltemDialog.ShowDialog();

if (orderltemDialog.DialogResult == true)

string productld = orderltemDialog.productldTextBox. Text; double unitPrice =
double.Parse(orderltemDialog.unitPrice TextBox.Text); int quantity =
int.Parse(orderltemDialog.quantityTextBox.Text); _order.Addltem(new
Orderltem(productld,unitPrice,quantity));

The removeButton_Qick event checks to see if an item is selected
in the orderList view and removes it from the order.

private void removeButton_Qick(object sender, RoutedEventArgs €)

if (this.orderListView.Selectedltem != null)

{
var selectedOrderltem = this .orderListView.Selectedltem as Orderltem:;
_order.Removeltem(selectedOrderltem.ProdID);
}
}
The placeOrderButton_Click event checks to see if the user is logged in and places the
order if they are.
private void placeOrderButton_Click(object sender, RoutedEventArgs e)
if (_employee.LoggedIn == true)
/Iplace order int orderld;
orderld = _order.PlaceOrder(_employee.EmployeelD);
MessageBox.Show("Your order has been placed. Your order id is " + orderld.ToString());
}
else
{
MessageBox.Show("You must be logged in to place an order.");
}

Now that the MainWindow's codebehind is implemented, you are ready to add the
code behind for the dialog widows.

6. Add the following code to the OrderltemDialog.xaml.cs codebehind file. If the user

310

CHAPTER 34DEVELOPING THE OSO APPLIC

clicks the OK button , the DialogResult is set to true. If the user clicks cancel, the
DialogResult is set to false.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Data; using
System.Windows.Documents; using
System.Windows.Input; using
System.Windows.Media; using
System.Windows.Media.lmaging; using

System.Windows.Shapes;

namespace OSOWPFUI {
/Il <summary>
/Il Interaction logic for OrderltemDialog.xaml /Il <[summary>
public partial class OrderltemDialog : Window {
public OrderltemDialog()

InitializeComponent();

private void okButton_Click(object sender, RoutedEventArgs e)

this.DialogResult = true;

private void cancelButton_Click(object sender, RoutedEventArgs e)

this.DialogResult = false;

7. Add the following code to the LoginDialog.xaml.cs codebehind file. It is similar to
OrderltemDialog code.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Data;

using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Shapes;

namespace OSOWPFUI {
/Il <summary>

311

CHAPTER 34DEVELOPING THE OSO APPLIC

/Il Interaction logic for LoginDialog.xaml /// </summary>
public partial class LoginDialog : Window {
public LoginDialog()

InitializeComponent();

private void okButton_Click(object sender, RoutedEventArgs €)

this.DialogResult = true;

private void cancelButton_Click(object sender, RoutedEventArgs e)

—~

this.DialogResult = false;

—

Now that you have added the implementation code to the Ul, you are ready to
test the application.

8. Launch the application in debug mode. You are presented with the
order form (see Figure 14 - 7). Using the category drop - down, switch
between the different categories and verify that the products are
updated in the product grid. Select an item in the product grid and
click the Add It em button. You are presented with the Order ltem
dialog (see Figure 14 -8). Add some items to the order and test
removing some items from the order. To test placing an order, click
the Login button. You are presented with the Login dialog (see Figure
14-9). Enter a value of JSmith for the user and a value of js for the
password. You should receive confirmation you are logged in. Click
the Place Order button. You should receive confirmation the order
was placed. When you've finished testing, click the Exit bu tton to stop
the program.

ZNote} NUT OUI 1 dUi 1 @d1 @d AZdEUOEUT OOANd £O0ONT EAUT O0Opdi U” gdEOXxdE
production ready.

Summary

In this chapter, you revisited the office supply ordering (OSO) application desig ned in Chapter 4.
You created a functional application incorporating the concepts you learned in the previous

chapters. The application contains a data access layer, a business logic layer, and a user

interface layer. You learned why applications are split into different layers and how to construct

a working application comprised of the various layers. Although you didn't create a web - based
user interface application layer, because you created the application in distinct tiers, you could

easily replace the Windows - based WPF Ul with a web - based Silverlight Ul.

312

Wrapping Up

If you've made it this far, take a moment and pat yourself on the back. You've come a long way
since the day you first cracked open the cover of this book; you've gained v aluable skills and
learned concepts you can use to successfully program using the .NET Framework, C#, and the
Visual Studio IDE. These include, but are not limited to, the following:

The importance of the application design cycle.

The Unified Modeling Language and how it can help facilitate the analysis
and design of object - oriented programs.

The Common Language Runtime (CLR).

The structure of the .NET Framework.

How to create and use class structures and hierarchies.

How to implement inheritance, polym orphism, and interfaces.

Object interaction and collaboration.

Event - driven programming.

Structured error handling.

How to work with data structures and data sources using ADO.NET.

Using the Entity Framework to create object relational mappings to a SQL
Server database.

How to use the features of the Visual Studio IDE to increase productivity
and facilitate debugging.

How to implement a Windows - based graphical user interface using the
Windows Presentation Framework.

How to implement a web - based graphical user interface using Silverlight.
How to create and consume services using Windows Communication Framework.

Congratulations! You can now call yourself a C# programmer (albeit a neophyte).
However, don't get too high on yourself. If your goal is to become a professional C# programmer,
your journey has just begun. The next stage of your development is to gain expe rience. In other
words, design and code, and
then design and code some more. If you are designing and coding C# at work, this will be easy.
(Although it will be stressful if you are expected to be an expert after that three - day course
they sent you to!)

313

CHAPTER 35WRAPPING !

If you are learning on your own, you will have to find the time and projects on which to
work. This is easier than you might think. Commit to an hour a day and come up with an idea for
a program. For example, you could design a program that converts recipes into Extensible
Markup Language (XML) data. The XML data could then generate a shopping list. Heck, if you
really want to go all out, incorporate an inventory tracking system that tracks ingredients you
have in stock. However you go about gaining experienc e, remember the important adage: use it
or lose it!
The following sections highlight some other important things to consider as you develop
your programming skills.

Improve Your Obje€@rriented Design Skills

Object - oriented analysis and design is one of th e hardest tasks you will perform as a
programmer. This is not a skill that comes easily for most programmers. It is, however, one of
the most important skills you should strive to master. It is what separates what | call a
programmer from a coder. If you talk to most CIOs and programming managers, finding coders is
easy; it is the programmer they are after.
- EOEOCExdUI £ZUdUI ExEdT gd O0OdOOEd” UxUE dOEUI OEONOI bpdx £UI

Investigate the .NET Framework Namespaces

The .NET Fra mework contains a vast number of classes, interfaces, and other types aimed at
optimizing and expediting your development efforts. The various namespaces that make up the
.NET Framework Class Library are organized by functionality. It's important you take the time
to become familiar with the capabilities provided by these namespaces.

Start out with the namespaces that incorporate functionality you will use most often, such as
the root namespace System and the System.Data.EntityClient, which contains the .NE T
Framework Data Provider for the Entity Framework.

After you become familiar with the more common namespaces, explore some of the more
obscure ones. For example, System.Security.Cryptography provides cryptographic services
such as data encoding, hashing, and message authentication. You will be amazed at the extent of
the support provided by the framework. You can find a wealth of information on the members of
the various namespaces in Visual Studio's integrated documentation.

Become Familiar with ADO.NI&d the Entity Framework

Data is fundamental to programming. You store, retrieve, and manipulate data in every program

you write. The data structure a program works with during execution is nonaurable data, itis
held in RAM. When the application terminates , this data is lost and has to be re - created the next
time the application runs. Durable data is data that is maintained in a permanent data structure

such as a file system or a database. Most programs need to retrieve data from and persist data

to some so rt of durable data storage. This is where ADO.NET steps in. ADO.NET refers to the
namespaces that contain the functionality for working with durable data. (It also contains

functionality for organizing and working with nondurable data in a familiar relatio nal database or
XML - type structure.) Although | have introduced you to ADO.NET and the Entity Framework,

this is such an important topic that it deserves a book devoted solely to these data access

technologies. (Don't worry . there are many!) This is definit ely

an area where you need to devote further study. To learn more about these technologies, visit the
Data Developer Center site at _http://msdn.microsoft.com/en - us/data. A good book on the Entity
Framewo rk is Entity Framework 4.0 Recjpes by Larry Tenny and Zeeshan Hirani (Apress, 2010).

314

http://msdn.microsoft.com/en-us/data

CHAPTER 35WRAPPING |
Learn More About WPF and Silverlight

Although you were introduced to WPF and Silverlight in Chapters 11 and 12, | only scratched the
surface of these powerful technologies . Silverlight and WPF are packed full of features for
developing engaging, interactive user experiences on the web, desktop, and mobile devices. For
more information on programming WPF, visit the Windows Client development center at
http://windowsclient.net. For more information about programming in Silverlight visit the

Silverlight developer center at www.silverlight.net. Both these sites are full of learning materials
and demo applications showcasing the power of these technologies. A good book on WPF is
Applied WPF 4 in Context by Raffaele Garofalo (Apress, 2011). A good book for further study into
Silverlightis Pro Silverlight 4 in C# 3rd Edlition by Matthew MacDonald (Ap ress, 2010).

Move Toward Componddsed Development

After you have mastered object - oriented development and the encapsulation of your programming

logic in a class system, you are ready to move toward component - based development. Components
are assemblies that further encapsulate the functionality of your programming logic. Although the

OSO application's business logic tier is logically isolated from the data access tier, physically they

reside in the same assembly. You can increase code maintenance and reu se by compiling each into
its own assembly. You should start moving to a Lego approach of application development. This is

where your application is comprised of a set of independent pieces (assemblies) that can be

snapped together and work in conjunction to perform the necessary services. For more

information on this and other best practices, go to the Microsoft's patterns & practices web site at
http://msdn.microsoft.com/en - us/practices/.

Find Hed

An enormous amount of information is available on the .NET Framework and the C# programming
language. The help system provided with Visual Studio is an excellent resource for programmers.

Get in the habit of using this resource religiously. Another extre mely important resource is
http://msdn.microsoft.com. This web site, provided by Microsoft for developers, contains a wealth

of information including white papers, tutorials, and webcast seminars; quite honestly, i t's one of
the most informative sites in the industry. If you are developing using Microsoft technologies,

visiting this site should be as routine as reading the daily paper. There are also a number of
independent web sites dedicated to the various .NET pr ogramming languages. One good site is C#
Corner (www.c - sharpcorner.com/), w _hich contains tons of articles on all aspects of programming

in C#. You can use your favorite search engine to discover other good site s on the web dedicated
to C# programming.

Join a User Group

Microsoft is investing a lot of support for the development of local .NET user groups. The

user groups consist of members with an interest in .NET programming. These groups

provide a great

avenue for learning, mentoring, and networking. There is a listing of .NET user groups
available at http://msdn.microsoft.com. The International .NET Association (INETA) also
provides support for .NET user groups; you can find a listing of INETA affiliated user groups

at www.ineta.org.
If you can't find a .NET user group in your area, heck, why not start one?

31t

http://windowsclient.net/
http://windowsclient.net/
http://www.silverlight.net/
http://msdn.microsoft.com/en-us/practices/
http://msdn.microsoft.com/en-us/practices/
http://msdn.microsoft.com/
http://www.c-sharpcorner.com/
http://msdn.microsoft.com/
http://www.ineta.org/

CHAPTER 35WRAPPING !

Please Provide Feedback

Although every effort has been made to provide you with an error - free text, it is inevitable
that some mistakes will make it through the editing process. | am committed to providing
updated errata at the Apress Web site (www.apress.com), bu t | can't do this without your help.
If you have come across any mistakes while reading this text, please report them to me
through the Apress site.

Thank You and Good Luck

| sincerely hope you found working your way through this text an enjoyable and worthwhile
experience.

| want to thank you for allowing me to be your guide on this journey. Just as yo ur skills as a
developer increased as a result of reading this book, my skills as a developer have increased
immensely as a result of writing it. My experience of teaching and training for the past two
decades has been that you really don't fully comprehen d a subject until you can teach it to
someone else. So, again, thank you and good luck!

APPENDIXA

Fundamental Programming
Concepts

The following information is for readers who are new to programming and need a primer on
some fundamental programming concepts. If you have programmed in another language,
chances are the concepts presented in this appendix are not new to you. You should, however,
review the material briefly to become familiar with the C# syntax.

Working with Variables and Data Types

Variables in programming languages store values that can change while the program executes. For
example, if you wanted to count the number of times a user tries to log in to an application, you

could use a variable to track the number of attempts. The variabl e is a memory location where the
value is stored. Using the variable, your program can read or alter the value stored in memory.

Before you use a variable in your program, however, you must declare it. When you declare a

variable, the compiler also needst o know what kind of data will be stored at the memory location.
For example, will it be numbers or letters? If the variable will store numbers, how large can a

number be? Will the variable store decimals or only whole numbers? You answer these questions

by assigning a data type to the variable. A login counter, for example, only needs to hold positive

whole numbers. The following code demonstrates how you declare a variable named counter in C#

316

http://www.apress.com/

APPENDIXAFUNDAMENTAL PROGRAMMING COI!

with an Integer data type:
int counter;

Specifying the data type is referred to as stong fping. Strong typing results in more
efficient memory management, faster execution, and compiler type checking, all of which
reduces runtime errors.

Once you declare the variable, you can assign it an initial value, either in a s eparate
statement or within the declaration statement itself. For instance, the following code

int counter = 1;
is equivalent to this

int counter;
counter = 1;
If you do not explicitly assign an initial value to a variable at the time you declare it, the
compiler will do so implicitly, assigning numeric data types to 0, Boolean data types to false,
Eil Ax FEUExdEAUAIUPOE@dUOd E OQM/manl, ” add objgrtdldaBpds domuEU £d Ub OE@d UOd
(which is an empty reference pointer). The following sections further describe these various data
types.

Understanding Elementary Data Types

C# supports elementary data types such as numeric, character, and date.

Integral Data Types

Integral data types represent whole numbers only. Table A - 1 summarizes the integral data types used
in
CH#.
Table A - 1. Integral Data Types

Data Type Storage Size Value Range

Byte 8- bit 0 through 255

Short 16- bit - 32,768 through 32,767

Integer 32- hit - 2,147,483,648 through 2,147,483,647
Long 64- bit - 9,223,372,036,854,775,808 through

9,223,372,036,854,775,807

Obviously, memory size is important when choosing a data type for a variable. A less obvious
consideration is how easily the compiler works with the data type. The compiler performs
arithmetic operations with integers more efficiently than the other types. Often, it's better to use

integers as counter variables even though a byte or short type could easily manage the maximum
value reache d.

317

APPENDIXYAFUNDAMENTAL PROGRAMMING COI

Non-Integral Data Types

If a variable will store numbers that include decimal parts, then you must use a non - integral data type.
C# supports the non - integral data types listed in Table A - 2.
Table A - 2. Non- Integral Data Types

Data Type Storage Size ValueRange

Single 32- bit - 3.4028235E+38 through - 1.401298E - 45 for negative values;
1.401298E - 45 through 3.4028235E+38 for positive values

Double 64- bit 1.79769313486231570E+308 through - 4.94065645841246544E -
324 for negative values; 4.94065645841246544E - 324 through
1.79769313486231570E+308 for positive values

Decimal 128- bit 0 through +/ - 79,228,162,514,264,337,593,543,950,335 with no
decimal point; O through +/ - 7.9228162514264337593543950335
with 28 places to the right of the decimal

The decimal data type holds a larger number of significant digits than either the single or
the double data types and it is not subject to rounding errors. Decimal data types are usually
reserved for financial or scientific calculations that require a higher degree of precision

Character Data Types

Character data types are for variables that hold characters used in the human language. For
example, a character data type holds letters such as a or numbers used for display and printing
QUEI d £0d " vd £ZOONE@r " d ! [Eid G4 afexbaEAIdR WUdicBdE Unviidh WeéfiaeE @ d
character set that can represent the characters found in every language from English to Arabic

and Mandarin Chinese. C# supports two character data types: char and string. The char data

type holds single (16 - bit) Unicode character values such as a or B. The string data type holds a
sequence of Unicode characters. It can range from zero up to about two billion characters.

Boolean Data Type

The Boolean data type holds a 16 - bit value that is interpreted as true or fa Ise. It's used for
variables that can be one of only two values, such as yes or no, or on or off.

Date Data Type

Dates are held as 64 - bit integers where each increment represents a period of elapsed time
from the start of the Gregorian calendar (1/1/0001 at 12:00 a.m.).

Object Data Type

An object data type is a 32 - bit address that points to the memory location of another data type.

It is commonly used to declare variables where the actual data type they refer to can't be
determined until runtime. Althought he object data type can be a catch - all to refer to the other
data types, it is the most inefficient data type when it comes to performance and should be

avoided unless absolutely necessary.

318

APPENDIXAFUNDAMENTAL PROGRAMMING COI!

Nullable Types

By default, value types such as the Boolean, integer, and double data types can't be assigned a null
value. This can become problematic when retrieving data from data structures such as a database

that does allow nulls. When declaring a value type variable that may be assigned a null, you make it

a nullable type by placing a question mark symbol (?) after the type name, like so:

double salary = null; // Not allowed. double? salary = null; // allowed.

Introducing Composite Data Types

Combining elementary data types creates composite data types. Structu res, arrays, and classes are
examples of composite data types.

Structures
A structure data type is useful when you want to organize and work with information that is mostly
just a piece of data and does not need the overhead of class methods and constructo rs. It's well

suited for representing lightweight objects such as the coordinates of a point or rectangle. A single
variable of type structure can store such the information. You declare a structure with the struct
keyword. For example, the following code creates a structure named Point to store the coordinates
of a pointin atwo dimensional surface:

public struct Point {
public int _x, _y;

public Point(int X, int y)
{

X=X
Y=Y,

}
Once you define the structure, you can declare a variable of the structure type and create a
new instance of the type, like so:

Point p1 = new Point(10,20);

Arrays
Arrays are often used to organize and work with groups of the same data type; for example, you
may need to work with a group of names, so you declare an arra y data type by placing square

brackets ([]) immediately following the variable name, like so:

string[] name;

The new operator is used to create the array and initialize its elements to their default
values. Because the elements of the array are referenced by a zero - based index, the following
array holds five elements:

string[] name = new string[4];

To initialize the elements of an array when the array is declared, you use curly brackets ({}) to
list the values. Since the size of the array can be inferred, you do not have to state it.
string[] name = {"Bob","Bill","Jane","Judy"};

C# supports multidimensional arrays. When you declare the array, you separate the size of the

dimensions by commas. The following declaration creates a two - dimensional array of inte gers with
five rows and four columns:

319

APPENDIXYAFUNDAMENTAL PROGRAMMING COI

string[,] name = new string[4,3];

To initialize the elements of a two dimensional array when the array is declared, you use curly
brackets inside curly brackets to list the array elements.

int[,] intArray = {{1,2}, {3, 43, {5,6}, {7,8}};

You access elements of the array using its name followed by the index of the element in
brackets. For example, name[2] references the third element of the names array declared
previously and has a value of Jane.

Classes

Classes are used extensively in object - oriented programming languages. Most of this book is

devoted to their creation and use. At this point, it suffices to say that classes define a complex data

type definition for an object. They contain information about how an object s hould behave, including
its name, methods, properties, and events. The .NET Framework contains many predefined classes

with which you can work. You can also create your own class type definitions. A variable defined as

a class type contains a 32 - bit addres s pointer to the memory location of the object. The following

code declares an object instance of the StringBuilder class defined in the .NET Framework:

StringBuilder sb = new StringBuilder();

Looking at Literals, Constants, and Enumerations

Although the v alues of variables change during program execution, literals and constants contain
items of data that do not change.

Literals

Literals are fixed values implicitly assigned a data type and are often used to initialize variables. The
following code uses ali teral to add the value of 2 to an integer value:

Count = Count + 2

By inspecting the literal, the compiler assigns a data type to the literal. Numeric literals without
decimal values are assigned the integer data type; those with a decimal value are assigned as double
data type. The keywords true and false are assigned the Boolean data type. If the literal is contained
in quotes, it is assigned as a string data type. In the following line of code, the two string literals are
combined and assigned to a string variable:

FullName = "Bob" + "Smith"

It's possible to override the default data type assignment of the literal by appending a type
character to the literal. For example, a value of 12.25 will be assigned the double data type but a
value of 12.25f w ill cause the compiler to assign it a single data type.

Constants
Many times you have to use the same constant value repeatedly in your code. For example, a series
of geometric calculations may need to use the value of pi. Instead of repeating the literal 3.14in

your code, you can make your code more readable and maintainable by using a declared constant.
You declare a constant using the const keyword followed by the constant name and the data type:

const Single pi = 3.14159265358979323846f;

The constant is assigned a value when it is declared and this value can't be altered or reassigned.

320

APPENDIXAFUNDAMENTAL PROGRAMMING COI!

Enumerations

You often need to assign the value of a variable to one of several related predefined constants. In
these instances, you can create an enumeration type to g roup together the values. Enumerations
associate a set of integer constants to names that can be used in code. For example, the
following code creates an enum type of Manager used to define three related manager constants
with names of DeptManager, General Manager, and AssistantManager with values of 0, 1, and 2,
respectively:

enum Manager {
DeptManager,
GeneralManager,
AssistantManager,

A variable of the enum type can be declared and set to one of the Enum constants.
Manager managerLevel = Manager.DeptManager;

ZNoteThe .NET Framework provides a variety of intrinsic constants and enumerations designed to
make your coding more intuitive and readable. For example, the StringAlignment enumeration
specifies the alignment of a text string relativ e to its layout rectangle.

Exploring Variable Scope

Two important aspects of a variable are its scope and lifetime. The scope of a variable refers to
how the variable can be accessed from other code. The lifetime of a variable is the period of time
when the variable is valid and available for use. A variable's scope and lifetime are determined by
where it is declared and the access modifier used to declare it.

Block-Level Scope

A code block is a set of grouped code statements. Examples of code blocks incl ude code organized
inif - else, do - loop, or for - next statements. Block - level scope is the narrowest scope a variable

can have. A variable declared within a block of code is available only within the block it is

declared. In the following code, the variable blockCount can only be accessed from inside the if

block. Any attempt to access the variable outside the block will generate a compiler error.

if (icount > 10)

int blockCount;
blockCount = icount;

Although the scope of blockCount is limited to the if block, the lifetime of the variable is for the
entire procedure where the block exists. You will probably find block - level scope to be too
restrictive in most cases and will instead use procedure scope.

Procedure Scope

Procedures are blocks of code that ca n be called and executed from other code. There are two
types of procedures supported in C#: method and property. Variables declared outside of a code
block but within a procedure have procedure - level scope. Variables with procedure scope can be
accessed b y code within the same procedure. In the following code, the counter iCount is declared
with procedure scope and can be referenced from anywhere within the procedure block of the
Counter method:

void Counter()

321

APPENDIXYAFUNDAMENTAL PROGRAMMING COI

intiCount = 0; do {
iCount = iCount + 2;

}

while (iCount < 10);
}

The lifetime of a procedure scope variable is limited to the duration of the execution of the
procedure.

Module Scope

Variables with module scope are available to any code within the class or structure. To have module
scope, the variable is declared in the general declaration section (outside of any procedure blocks)
of the class or structure. To limit the accessibility to the module where it is declared, you use the
private access modifier keyword. In the following code, the iCou nt variable can be accessed by both
procedures defined in the class:
public class Classl {

private int _iCount; public void

IncrementCount()

int iCount = 0; do {
iCount = iCount + 2;

}
while (iCount < 10);

}

public void ReadCount()
Console.WriteLine(_iCount.ToString());

The lifetime of the variable declared with module scope is the same as the lifetime of the
object instance of the class or structure in which it is declared.

ZNoteThere are several additional variations of scope addressed in the main body of the book.

Understanding Data Type Conversion

During program execution there are many times when a value must be converted from one data type
to another. The process of converting between data types is referred to as casting or conversion.

Implicit Conversion

The C# compiler will perform some data type conversions for you automatically. For numeric types,
an implicit conversion can be made when the value to be stored can fit into the variable without
being truncated or rounde d off. For example, in the following code, an integer data type is implicitly
converted to a long data type:

intil =373737373; long I1 = i1,

1 *=11;

Explicit Conversion

Explicit conversion is referred to as casting. To perform a cast, you specify the type that you are
casting to in parentheses in front of the value or variable to be converted. The following code uses
a cast to explicitly convert the double type nl to an integer type:

double n1 =3.73737373; intil = (int)n1;

322

APPENDIXAFUNDAMENTAL PROGRAMMING COI!

Widening and Narrowing Conversions

Widening conversions occur when the data type being converted to can accommodate all the

possible values contained in the original data type. For example, an integer data type can be

converted to a double dataty pe without any data loss or overflow. Data loss occurs when the

number gets truncated. For example, 2.54 gets truncated to 2 if it is converted to an integer data

type. Overflow occurs when a number is too large to fit in the new data type. For example, if the
number 50000 is converted to a short data type, the maximum capacity of the short data type is
exceeded, causing the overflow error. Narrowing conversions, on the other hand, occur when the

data type being converted to can't accommodate all the values that can be contained in the original
data type. For example, when the value of a double data type is converted to a short data type, any
decimal values contained in the original value will be lost. In addition, if the original value is more

than the limi t of the short data type, a runtime exception will occur. You should be particularly

careful to trap for these situations when implementing narrowing conversions in your code.

Working with Operators

An operator is a code symbol that tells the compiler to p erform an operation on a value. The
operation can be arithmetic, comparative, or logical.

Arithmetic Operators

Arithmetic operators perform mathematical manipulation to numeric types. Table A - 3 lists the
commonly used arithmetic operators available in C#.
Table A - 3. Arithmetic Ope rators
Operator Description

= Assignment
* Multiplication
/ Division

+ Addition

- Subtraction

The following code increments the value of an integer data type by the number one:
Count=Count + 1

C# also supports shorthand assignment operators that combine the assignment with the
operation. The following code is equivalent to the previous code:
Count+=1

If you are going to increment by one, you can also use the shorthand assignment ++. The
following code is equivalent to the previous code:
Count ++

323

APPENDIXYAFUNDAMENTAL PROGRAMMING COI

Comparison Operators

A comparison operator compares two values and returns a Boolean value of true or false. Table
A- 4 lists the common comparison operators used in C#.
Table A - 4. Comparison Operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
== Equal to

1= Not equal to

You use comparison operators in condition statements to decide when to execute a block
of code. The following if block checks to see if the number of invalid login attempts is greater
than three before throwing an exception:
if (_loginAttemps > 3)

throw new Exception("Invalid login.");

32:

APPENDIXAFUNDAMENTAL PROGRAMMING COI!

Logical Operators

Logical operators combine the results of conditional operators. The three most commonly used
logical operators are the And, Or, and Not operators. The And operator (&&) combines two
expressions and returns true if both expressions are true. The Or operator (||) combines two
expressions and returns true if either one is true. The Not operator (") switches the result of
the comparison: a value of true returns false and a value of false returns true. The following
code checks to see whether the logged - in user is a department manager or assistant manager
before running a method:

if (currentUserLe vel == Manager.AssistantManager || currentUserLevel ==

Manager.DeptManager)

ReadLog();

Ternary Operator
The ternary operator evaluates a Boolean expression and returns one of two values depending
on the result of the expression. The following shows the syntax of the ternary operator:
condition ? first_expression : second_expression;

If the condition evaluates to true, the result of the first expression is returned. If the
condition evaluates to false, the result of the second expression is returned. The following code
checks to see if the value of X is zero. Ifitis, it returns O; if not, it divides y by X and returns

the result.
return x == 0.0 ? 0 : y/x;

Introducing Decision Structures

Decision structures allow conditional execution of code blocks depending on the evaluation of a
condition statement. The if statement evaluates a Boolean expression and executes the code
block if the result is true. The switch statement checks the same expression for several

different values and conditionally executes a code block depending on the results.

If Statements

To execute a code block if a condition is true, use the following structure: if (condition1)

/lcode

To execute a code block if a condition is true and an alternate code block if it is false, add
an else block.
if (condition1)

/lcode
else

/lcode
}

To test additional conditions if the first evaluates to false, add an else - if block: if
(conditionl)

/lcode

}
else if (condition2)

325

APPENDIXYAFUNDAMENTAL PROGRAMMING COI

32¢

/lcode else

/lcode

An if statement can have multiple else - if blocks. If a condition evaluates to true, the
corresponding code statements are executed, after which execution jumps to the end of the
statements. If a condition evaluates to false, the next else - if condition is checked . The else
block is optional, but if included, it must be the last. The else block has no condition check and
executes only if all other condition checks have evaluated to false. The following code
demonstrates using the if statement to evaluate a series o f conditions. It checks a performance
rating to determine what bonus to use and includes a check to see if the employee is a manager
to determine the minimum bonus.

if (performance ==1)
bonus = salary * 0.1;
else if (performance == 2)
bonus = salary * 0.08;
else if (employeelLevel == Manager.DeptManager)
t bonus = salary * 0.05;
else

bonus = salary * 0.03;

Switch Statements

Although the switch statement is similar to the if - else statement, it's used to test a single
expression for a series of values. The structure of the switch statement is as follows:
switch (expression)

case 1:
Console.WriteLine("Case

1"); break; case 2:
Console.WriteLine("Case

2"); break; default:
Console.WriteLine("Default case");
break;

A switch statement can have multiple case blocks. If the test expression value matches
the case expression, the code statements in the case block execute. After the case block
executes, you need a break statement to bypass the rest of the case statements. If the test
expression doesn't match the case

APPENDIXYAFUNDAMENTAL PROGRAMMING CO!

expression, execution jumps to the next case block. The default block doesn't have an
expression. It executes if no other case blocks are executed. The default block is optional, but

if used, it must be last. The following example uses a switch to evaluate a performance rating
to set the appropriate bonus rate:

switch(performance)

case 1:

bonus = salary * 0.1,
break; case 2:

bonus = salary * 0.08;
break; case 3:

bonus = salary * 0.03;
break; default:

bonus = sal ary * 0.01;

break;

Using Loop Structures

Looping structures repeat a block of code until a condition is met. C# supports the following
looping structures.

While Statement

The while statement repeats the execution of code while a Boolean expression remains true.
The expression gets evaluated at the beginning of the loop. The following code executes until
a valid login variable evaluates to true:

while (validLogin = false)

/lcode statements...

Do-While Statement

The do - while loop is similar to the while loop except the expression is evaluated at the end of
the loop. The following code will loop until the maximum login attempts are met:

do
/lcode statements...

while (iCount < maxLoginAttempts);
For Statement

A for statement loops through a code block a specific number of times based on the value stored
in a counter. For statements are a better choice when you know the number of times a loop

needs to execute at design time. In the parenthesis that follow a for statement, you initialize a
counter, define the evaluation expression, and define the counter increment amount.

for (inti=0;i<10; i++)

/ICode statments...

327

APPENDIXYAFUNDAMENTAL PROGRAMMING COI

For Each Statement

The for - each statement loops through code for each item in a collection. A collection is a group
of ordered items; for example, the controls placed on a Windows Form are organized into a

Controls collection. To use the for - each statement, you first declare a variable of the type of

items contained in the collection. This variable is set to the current item in the collection. The
following for - each statement loops through the employees in an employee list collection:

foreach (Employee e in employeelList)

/ICode statements

If you need to conditionally exit a looping code block, you can use the break statement. The
following code shows breaking out of the for - each loop:
foreach (Employee e in employeel.ist)

/ICode statements if (e.Name == "Bob")

break;

Introducing Methods

Methods are blocks of code that can be called and executed from other code. Breaking an
application up into discrete logical blocks of code greatly enhances code maintenance and reuse.
C# supports methods that return values and methods that do not. When you declare a method,
you specify an access modifier, a return ty pe, and a name for the method. The following code
declares a method with no return type (designated by the keyword void) used to record logins to
the event log:

public void RecordLogin(string userName)

EventLog appLog = new EventLog();

appLog.Source ="0 SO App";

appLog.WriteEntry(userName + " has logged in.");

You can declare methods with a parameter list that defines arguments that must be passed to
the method when it is called. The following code defines a method that encapsulates the
assignment of a bo nus rate. The calling code passes an integer type value to the method and
receives a double type value back.
public double GetBonusRate(int performanceRating)

double bonusRate; switch (performanceRating)

case 1:
bonusRate = 0.1;
break; case 2:
bonusRate =
0.08; break; case 3:
bonusRate =
0.03; break; default:
bonusRate =
0.01; break;

return bonusRate;

The following code demonstrates how the method is called:

328

APPENDIXYAFUNDAMENTAL PROGRAMMING CO!

double salary;

int

performance;

double bonus;

/I Get salary and performance data from data
base... bonus = GetBonusRate(performance) *
salary;

If the access modifier of the method is private, it is only accessible from code within the
same class. If the method needs to be accessed by code in other classes, then the public access
modifier is used.

APPENDIXB

Exception Handling in C#

The to pics discussed here extend the discussion of exception handling found in Chapter 8, so this
discussion assumes that you have first thoroughly reviewed Chapter 8. The purpose of this

appendix is to review Microsoft's recommendations for exception management and present a few
of the exception classes provided by the .NET Framework.

Managing Exceptions

Exceptions are generated when the implicit assumptions made by your programming logic are
violated. For example, when a program attempts to connect to a database, it assumes that the
database server is up and running on the network. If the server can't be located, an exception is
generated. It's important that your application gracefully handles any exceptions that may occur.
If an exception is not handled , your application will terminate.

You should incorporate a systematic exception handling process in your methods. To
facilitate this process, the .NET Framework makes use of structured exception handling through
the Try, Catch, and Finally code blocks. Th e first step is to detect any exceptions that may be
thrown as your code executes. To detect any exceptions thrown, place the code within the Try
block. When an exception is thrown in the Try block, execution transfers to the Catch block. You
can use more than one Catch block to filter for specific types of exceptions that may be thrown.
The Finally block performs any cleanup code that you wish to execute. The code in the Finally
block executes regardless of whether an exception is thrown. The following cod e demonstrates
reading a list of names from a file using the appropriate exception handling structure:

public ArrayList GetNames(string file)
{

StreamReader stream = new StreamReader();
ArrayList names = new ArrayList();

try {
} stream = File.OpenText(file);

329

APPENDIX\BEXCEPTION HANDLING

while (stream.Peek() > - 1)

names.Add(stream.ReadLine());

catch (FileNotFoundException e)

/ICould not find file
catch (FileLoadException €)

/[Could not open file
E:atch (Exception e)

/ISome kind of error occurred. Report error.
%inally

stream.Close();

return names;

After an exception is caught, the next step in the process is to determine how to respond to it.
You basically have two options: either recover from the exception or pass the exception to the
calling procedure. The followi ng code demonstrates how to recover from a DivideByZeroException
by setting the result to zero:

try
Z=xly

}catch (DivideByZeroException €)
Z=0

An exception is passed to the calling procedure using the Throw statement. The following code
demonstrates throwing an exception to the calling procedure where it can be caught and handled:

catch (FileNotFoundException e)

throw €;

As exceptions are thrown up the calling chain, the relevanc e of the original exception can
become less obvious. To maintain relevance, you can wrap the exception in a new exception
containing additional information that adds relevancy to the exception. The following code shows
how to wrap a caught exceptioninan ew one and then pass it up the calling chain:

catch (FileLoadException e)

throw new Exception("GetNames function could not open file", e);
}
You preserve the original exception by using the InnerException property of the Exception class.
Implementing this exception management policy consistently throughout the various methods in
your application will greatly enhance your ability to build highly maintainable, flexible, and successful
applications.

330

APPENDIX\BEXCEPTION HANDLING

Using the .NET Framework Exception Classes

The Common Language Runtime (CLR) has a set of built - in exc eption classes. The CLR will throw
an object instance of the appropriate exception type if an error occurs while executing code
instructions. All .NET Framework exception classes derive from the SystemException class,

which in turn derives from the Excepti on class. These base classes provide functionality needed

by all exception classes.

Each namespace in the framework contains a set of exception classes that derive from the
SystemException class. These exception classes handle common exceptions that may oc cur
while implementing the functionality contained in the namespace. To implement robust
exception handling, it's important for you to be familiar with the exception classes provided by
the various namespaces. For example, Table B - 1 summarizes the exceptio n classes in the
System.lO namespace.

Table B - 1. Exception Classes in the System./O Namespace

Exception Description

IOException The base class for exceptions thrown while accessing
information using streams, files, and directories

DirectoryNotFoundException Thrown when part of a file or directory can't be found.

EndOfStreamException Thrown when reading is attempted past the end of a stream.

FileLoadException Thrown when a file is found but can't be loaded.

FileNotFoundException Thrown when an attempt to access a file that does not exist on
disk fails.

PathTooLongException Thrown when a path or filename is longer than the system -

defined maximum length.

Every exception class in the .Net Framework contains the properties listed in Table B - 2.
These properties help identify where the exception occurred and its cause.
Table B - 2. Exception Class Properties

Property Description

Message Gets a message that describes the current exception.

Source Gets or sets the name of the application or the object that causes the error.
StackTrace Gets a string representation of the frames on the call stack at the time the

current exception was thrown.
InnerException Gets the exception instance that caused the current exception.

HelpLink Gets or sets a link to the help file associated with this exception.

In addition, the ToString method of the exception classes provides summary information
about the current exception. It combines the name of the class that threw the current exception,

331

APPENDIX\BEXCEPTION HANDLING

332

the message, the result of calling the ToString method of the inner exception, and the stack
trace information of the current exception.

You will find that the exception classes in the .NET Framework provide you with the
capabilities to handle most exceptions that may occur in your applications. In cases where you
may need to implement custom error handling, you can create your own exception classes.
These classes need to inherit from System.ApplicationException, which in turn inherits from
System.Exception. The topic of creating cu stom exception classes is an advanced one and thus
beyond the scope of this text; for more information, consult the .NET Framework documentation

at http://msdn.microsoft.com/en - us/library/.

http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/

APPENDIX

Installing the Required Software

I have included many learning activities throughout this book. In order to get the most out of the
topics | discuss, you should complete these activities. This is where the theory becomes
concrete. It is my hope that you will take these activities seriously and work through them
thoroughly and even repeatedly.

The UML modeling activities in Part 1 are meant for someone using UMLet. | chose this
program because it is a good diagraming tool to learn on. It enables you to create UML diagrams
without adding a lot of advanced features. UMLet is a free open source tool and can be
downloaded from www.umlet.com. But you don't need a tool to complete these activities; a
paper and pencil will work just fine.

The activities in Part 2 require Visual Studio 2010 with C# installed. You can use either the
free version, Visu al Studio 2010 Express, or a trial version of Visual Studio 2010 Professional.
These versions are available at _http://msdn.microsoft.com/en - us/vstudio/. | encourage you to
install the help files and make abundant use of them while you're completing the activities.

The activities in Part 3 require Microsoft SQL Server 2008 R2. You can use either the free
version SQL Server 2008 R2 Express or a tria | version of SQL Server 2008 R2 available at
http://msdn.microsoft.com/en - us/sqlserver/. When you install SQL Server, be sure you add
yourself as an administrator.

Installing the Sample Databases

T he scripts to install the sample database used in this book are available at www.apress.com. In
order to install the scripts, follow these steps:
1. Open acommand prompt window.

2. From the command prompt, use the cd command to navigate to the
folder containing the sample database scripts.

cd c:\ SampleDatabases

3. Run SQLCmd.exe specifying instOSODB.sq|l as the input file.

4. To install the database on a default instance, use SQLCmd.exe -E-i
instOSODB.sql

5. Toinstall the database on a named instance, use SQLCmd.exe -E-S
ComputerName \ InstanceName - i instOSODB.sql

6. Repeat the procedure for the instpubs.sqgl and instnwnd.sql files.

333

http://www.umlet.com/
http://msdn.microsoft.com/en-us/vstudio/
http://msdn.microsoft.com/en-us/sqlserver/
http://www.apress.com/

APPENDIXINSTALLING THE REQUIRED SOF

334

Verifying the Database Installs

To verify the database installs:

1. Start Visual Studio. If you don't see the Database Explorer window
shown in Figure C - 1, open it by choosing Server Explore on the View
menu.

[server Explo rer - éH|

|JData Connections

cna’

Figure C - 1. The Database Explorer window

2. In the Database Explorer window, right - click the Data Connections
node and select Add Connection. In the Add Connections dialog box
shown in Figure C -2, fill in the name of your server, select the
Northwind database, and click OK.

Add Connection 21 Y

Enter information to connect to the selected data source or click "Change" to
choose a different data source and/or provider.

Data source:
‘Microsoft 5QL Server (SqIClient) ‘ ‘ Change... ‘

Server name:

‘Iocalhost\ SQLEXPRE5SS V‘ ‘ Refresh ‘

Log on to the server
0d° @Edw OEOU®A! lﬁ)UJisd?'aQUJQeﬁeﬂEAUih&@:dtion User name:

Password:

APPENDIXINSTALLING THE REQUIRED SOF

5ave my password
Connect to a database

(3) Select or enter a database name:

v
() attach a database file:

[Test Connection] [OK] [Cancel]

Figure C - 2. The Add Connections dialog box

3. Expand the Northwind database node and the Tables node in the
Database Explorer window, as shown in Figure C - 3.

335

APPENDIXINSTALLING THE REQUIF
SOFTWARE

Server Explorer

Q. lj
- dhf0010957It \ sqglexpress.rjorthwind.dbo

+ . Database Diagrams | Tables
+ 1 categories
+ 1 customerCustomerDemo
+ 1 customerDemographics

+

1 customers

1 Employees

1 EmployeeTerritories
1 Order Details

1 Orders

1 Products

+ 4+ o+ o+ o+

1 Region

+

1 shippers

+

1 suppliers

+ 1 Territories
J Views

_J Stored Procedures

Functions Synonyms _J Types a
Assemblies

++ + 4+ ++

Servers

Figure C - 3. Expanding the Tables node
4. Right- click the Suppliers table node and select Show Table

Data. The Suppliers table data should display as shown in
Figure C - 4.

336

APPENDIXINSTALLING THE REQUIRED SOF

Suppliers: Query (dhf...glexpress,Northwind) X Start Page
SupplierlD CompanyName ContactName
c —I— ————————————— Exotic Liquids Charlotte Cooper
E New Orleans Caj... Shelley Burke
3 Grandma Kelly's ... Regina Murphy
4 Tokyo Traders Yoshi Nagase
5 Cooperativa de ... Antonio del Valle...
6 Mayumi's Mayumi Ohno
7 Pavlova, Ltd. lan Devling
8 Specialty Biscuit... Peter Wilson
9 1 tskhackebrod dzts Lars Peterson
10 Refrescos Ameri... Carlos Diaz
11 Heli 5ufiwaren G... Petra Winkler
12 Plutzer Lebensmi... ~ Martin Bein
13 Nord - Ost- Fisch ... 5ven Petersen
14 Formaggi Fortini ... Elio Rossi
15 Norsks Meierier Beate Vileid
16 Bigfoot Breweries Cheryl 5aylor
L 5vensk 5j6féda AB Michael Bjorn
< IN
K < | 10of29 | E N E Cell is Read Only.

ContactTitle
Purchasing Man...
Order Administr...
5ales Represent...
Marketing Manager
Export Administr...
Marketing Repre...
Marketing Manager
5ales Represent...
5ales Agent
Marketing Manager
5ales Manager
International Ma...
Coordinator For...
5ales Represent...
Marketing Manager
Regional Accoun...

5ales Represent...

Address City
49 Gilbert St.
P.O. Box 78934
707 Oxford Rd.
9- 8 SekJmai Mus...
Calle del Rosal 4
92 5etsuko Chu...
74 Rose 5t. Moo...
29 King's Way
Kaloadagatan 13
Av. das America...
Tiergartenstrafie 5
Bogenallee 51
Frahmredder 112a
Viale Dante, 75
Hatlevegen 5
3400 - 8th Aven...

Brovallavagen 231

a
Londoi
New ©

Ann Ai
Tokyo
Oviedt
Osaka
Melboi
Manch
Gotebi
5ao0 P;
Berlin
Frankf
Cuxha
Raven
5andv
Bend
5tockh
v

L>I-

Figure C - 4. Viewing the table data

5.

exit Visual Studio.

Repeat these steps to test the pubs and the OfficeSupply
databases. After testing,

337

Index

YA
abstract classes, 117, 123 abstract
keyword, 117, 122, 123
abstraction, 3 access modifiers,
117, 118
defining method signatures, 138
activity diagrams, 8, 42 - 48 activity
ownership, 44 creating, 44 - 48
decision point, 43 generic activity
diagram, 42 guard condition, 43
GUI activity diagrams, 49- 50 Login
activity diagram, 70, 71 Login use
case, 67 parallel processing, 43
task analysis, 49
View products activity diagram, 71, 72
activity ownership, 44 actors, UML, 10
developing use case, 57 identifying
actor classes, 63 Add Connections
dialog box, 338, 339 Add method,
ArrayList, 169 Add New Item window
creating WCF Data Services, 281
creating WCF web services, 274 Add
Service Reference dialog WCF Data
Services, 280, 283 WCF web services,
270, 276 addButton_Click event OSO
application Ul, 309 AddEmployee
method, 104 overloading methods, 108
ADO.NET, 80, 181
Command object, 184
Connection object, 183
data providers, 1 82- 183
DataAdapter object, 187- 188
DataReader object, 186, 191- 192
DataSet object, 193, 195, 196, 197
DataTable object, 193, 194 Entity
Framework, 80, 204 - 206, 314
interoperability, 182 namespaces,
314 scalability, 182 stored
procedures, 185 ADO.NET Entity
Data Model, 205 WCF Data

Services, 279, 281 aggregation, 5

modeling object relationships,
21 All Windows Forms node

Toolbox window, VS IDE, 92
And operator (&&), C#, 327
application design

distributed applications, 288
office - supply ordering , 287- 288
application prototyping GUI design,
52 application services, .NET, 81
Application tab

Project Properties window, VS IDE, 87,

88 ApplicationException class, 149

applications
Windows applications, 81 args

array, Main method, 170 arithmetic

operators, C#, 325 Array class,

164, 166, 169, 170 Clear method,

167, 172 properties and methods,

166 Reverse method, 167 array

data type, C#, 320 ArrayList class,

164, 169, 170, 173-175 Add

method, 169 casting type, 170

Insert method, 169
methods and properties,

169 arrays, 165- 175
accessing elements of, 165 args array,
Main method, 170 Array class, 164, 166,
169, 170 ArrayList class, 164, 169, 170
creating and populating, 170 - 172
declaring array type, 166 iterating
through elements of, 167

multidimensional arrays, 165, 168, 173,

321 variable number of items in, 169
ASP.NET, 81 assemblies, 79, 82
building and executing, 94 - 95
component based development, 315
Global Assembly Cache (GAC), 79
manifests, 82 namespaces, 83
referencing, 82, 83 assignment

343

y INDE

operators, C#

shorthand assignment operators, 326
association classes

modeling object relationships, 21- 22
associations

creating class diagrams, 24 identifying

class associations, 65- 66 modeling

object relationships, 19- 20

AsyncCallback delegate, 156, 157

asynchronous messaging, 155- 157

AsyncCallback delegate, 156, 157

BackgroundWorker thread, 157

Begininvoke method, 156, 157 calling

methods, 160 - 161 delegates, 156

Endinvoke method, 156, 157
IAsyncCallback interface, 157
IAsynchResult interface, 156, 157, 160
sequence diagrams, 32 attributes

adding to classes, 63- 65 attributes of
classes see properties auto hide feature,
Toolbox window turning on/off, 92, 93

yB

BackgroundWorker thread,
157 base class library, .NET,
80 base classes
access modifiers, 117
calling derived class method from, 123
calling method from derived class, 124,
128 creating, 118 hiding methods, 125
inheritance, 115, 116 overloading
methods, 125 overriding base class
method, 122 - 123, 126 polymorphism,
115 restricting use of class members,
122 restricting use of methods, 120 base
qualifier
calling base class method from derived
class, 124, 128 Base Types folder, Class
View, 88 Beginlnvoke method
asynchronous messaging, 156, 157
behaviors
modeling class behaviors, 66 - 70
behaviors of classes see methods binding
see data binding Binding attribute,
Silverlight, 251 block - level scope, 323
Boolean data type, C#, 319 branching,
messages
creating activity diagram, 47 sequence
diagrams, 35- 36 Breakpoint Condition
dialog, VS IDE, 98 breakpoints

setting conditional breakpoints, 97- 99
setting in code editor, 96 Breakpoints
window, VS IDE, 97, 99 browsers,
Silverlight, 243 build errors, VS IDE

locating and fixing, 99- 100 Build
Solution

Class View window, VS IDE, 90

building and executing assemblies,

locating and fixing build errors, 100
creating Employee class, 106 overloading
class constructors, 111 overloading class
methods, 113 testing class constructors,
111 testing Employee class, 107 business
logic modeling, 75 business logic layer,
office - supply ordering app., 295- 300
classes for, 288 Employee class, 295

logical architectural design, 288

Order class, 299 Orderltem class,

297 OSO class diagram, 289

ProductCatalog class, 297 button

click event

building and executing assemblies, 94

event handler method, 221 overloading

class methods, 113 testing class
constructors, 111 testing Employee

class, 107 byte data type, C#, 318

yC
C#
classes, 321
constants, 322
data type conversions, 324 - 325
data types, 317, 318- 321 decision
structures, 328 do - while
statement, 330 enumerations, 322
exception handling, 333- 336
for/for - each statements, 331
history of, 5- 6 if statement, 328 -
330 literals, 321
loop structures, 330 - 331
methods, 331 operators,
325- 328 switch statement,
329 using help system, 315
variables, 317
web site learning resources, 315
while statement, 330 callbacks
AsyncCallback delegate, 156, 157
IAsyncCallback interface, 157 Cancel
button
IsCancel property, 229

Canvas control, 218 case
statement, C#, 329 CASE tools,
14
CaselnsensitiveComparer class, 90
casting
explicit type conversion, 325
casting type
ArrayList class, 170 catch
block see try - catch block
character data types, C#,
319 CheckBox control
adding to Silverlight page, 246
class associations, identifying,
65- 66 class attributes
creating class diagrams, 26 class
behaviors, modeling, 66 - 70 class
constructor method see constructors
class def inition file
adding and raising event messaging in,
142 class diagrams, 8, 18 - 19 adding
methods, 41 - 42 aggregation, 21
association, 19- 20 association classes,
21- 22 creating, 22 - 26
creating sequence diagrams,
36 inheritance, 20
modeling object relationships, 19-
22 preliminary diagram for OSO app.,
63 Purchase Request class diagram,
70 class keyword, 102 class models
adding attributes to classes, 63-
65 developing, 61 - 74
developing user interface model
design, 70 - 74
identifying class associations, 65- 66
identifying classes, 61 - 63 modeling
class behaviors, 66 - 70 Class View
window, VS IDE, 88 - 90 Base Types
folder, 88 Build Solution, 90 Form node,
89 classes/objects, 3, 18, 101- 102
abstract classes, 117, 123 aggregation,
21 association, 19- 20 association
classes, 21- 22 asynchronous
messaging, 155- 157, 160- 161
attributes, 101 base classes, 116
access modifiers, 117
C#, 321
collection c lasses, 163
constructors, 107 creating class
methods, 103- 107 creating class
properties, 102 - 103 defining
classes, 102 - 107 derived

classes, 116
event - driven programming,
139 exception classes, 147
final class, 117
identifying classes from SRS,
18 inheritance, 20 methods,
101
modeling object interaction, 29- 52
modeling object relationships, 19- 22
object communication through
messaging, 137- 139
overloading methods, 108 - 114 125
polymorphism, 130 - 132 properties,
101 sealed classes, 117 static
methods, 151 static pr operties,
150- 151 synchronous messaging,
155, 157- 159 classes, list of
ApplicationException,
149 Array, 164
ArrayList, 164
CaselnsensitiveComparer , 90
CollectionBase, 164
CommandBuilder , 198
DataService , 279
DataServiceConfiguration ,
279 DictionaryBase, 164
Exception , 334, 336
FileNotFoundException, 147
Hashtable, 164 MessageBox ,
227 ObjectContext , 206
Queue, 164 SortedList, 164
SqglCommand , 182
SqlConnection , 182
SqlDataAdapter , 182
SqlDataReader , 182 SqlError
, 183 SqlException, 183
SqlParameter , 182
SqlTransaction, 183 Stack,
164
SystemException , 335 Clear method,
Array, 167, 172 CLI (Common Language
Infrastructure), 78 click event
coding control events, 226 updating
data using TwoWay binding, Silverlight,
258 Click Event met hod
testing class constructors, 111,
112 client class
receiving events in,
144 client proxy
consuming WCF web services,
271 Close method

y INDE;

345

y INDE

346

Connection class, 183 DataReader
class, 186 CLR (Common Language
Runtime), 80 exception classes, .NET,
335 CLS (Common Language
Specification), 78 Code Editor window,
225 codebehind file

coding control events, 225 event
handler, 221 OSO app. Ul, 306, 310, 311
codebehind file, Silverlight adding controls,
249 handling control events, 247, 250
updating data using TwoWay bindi ng, 257
collaboration diagrams, 8 collection
classes, .NET, 163 collection interfaces,
.NET, 164 collection types, .NET, 163
CollectionBase class, 164 collections

arrays, 165- 175 generic

collections, 175-179 .NET

Framework, 175 queues,

179 stacks, 179 Collections

namespace collection

classes, 163 collection

interfaces, 164 columns

DataColumn object,

194 Command object

CommandText property, 184

CommandType property, 185

ExecuteNonQuery method, 184

ExecuteReader method, 184, 186

ExecuteScalar method, 184, 190

executing SQL statements, 184

executing stored procedure using, 192 -

193 submitting CommandText to

database, 184 CommandBuilder class,

198 commands

executing, 184
SglCommand class, 182
CommandText property, 184
submitting to database, 184

using stored procedures,

185 CommandType property

using stored procedures, 185
Common Language Infrastructure (CLI),
78 Common Language Runtime (CLR),
80, 335 Common Language
Specification (CLS), 78 communication

object communication through
messaging, 137- 139 Compare method, 151

sorting generic collections, 176
comparison operators, C#, 326
decision structures, 328
components, 315 conceptual

design, 287
conceptual schema definition language
(CsDL), 205
Connection object,
183 connections
data providers, 182
establishing, 183, 189- 190
SqlConnection class, 182
ConnectionString property
establishing connections, 183,
190 establishing relationships, 202
populating DataSet, 199 Console
application
command line switches, 165 creating
and populating arrays, 170 implementing
generic collections, 177 ReadLine method,
172 WriteLine method, 167, 178 co nstants,
C#, 322 Constraint object, 194 constraints
ForeignKeyConstraint object,
194 UnigueConstraint object, 194
constraints, messages sequence
diagrams, 35 constructors, 107
creating, 110 overloading, 110,
111 overloading methods, 109
testing, 111- 112 container
controls, Windows, 215 Context
object
SaveChanges method, 207
control e vents coding, 224 -
226 event handling methods,
141 handling, 220 - 222
Silverlight, 247,
250 control templates
creating/using, 237- 239 controls
container controls, 215 display
controls, 218 layout controls,
217-218
Silverlight, 245- 246,
249 positioning, 216
fixed positioning, 217
relative positioning, 217
properties, 2 16 Windows, 215
XAML, 216 controls,
Silverlight
layout controls, 245- 246, 249
controls, WPF
adding event to, 220
binding using DataContext, 230, 231
Canvas control, 218
data binding in Windows - based GUIs,
230 display controls, 218 DockPanel

control, 218 Grid control, 217 layout

controls, 217- 218 ListBox control, 218

StackPanel control, 218 TextBox control,

218 WrapPanel control, 218 conversions,

data type, 324 - 325 Converter property,

Silverlight, 260 .cs extension, 88

CSDL (conceptual schema definition
language), 205

custom dialog, creating, 229

yD

DALEmployee class, 292 DALOrder class,
294 DALProductCatalog class, 293
DALUtility class, 291 data
WCF Data Services, 279- 280 data
access
ADO.NET, 181 data providers, 182 -
183 DataAdapter retrieving data, 187-
188 DataReader retrieving data, 186,
191- 192 DataSet object, 193
editing data in, 197- 198, 201- 202
establishing relationships between tables in,
196, 202 - 204 populating from SQL Server
database, 195, 199- 201 DataTable object,
193, 194 Entity Framework, 204 - 206
querying entities with LINQ to, 206 -
207 updating entities with, 207 establishing
connections, 183, 189- 190 executing
commands, 184 interoperability, 182 using
stored procedures, 185 data access layer,
office - supply ordering app., 290 - 295
classes for, 288 DALEmployee class, 292
DALOrder class, 294 DALProductCatalog
class, 293 DALULtility class, 291 logical
architectural design, 288 OSO class
diagram, 289 data adapters
SqlDataAdapter class, 182
data binding
binding cont rols using DataContext
property, 230 - 231 binding DataGrid to
DataTable, 232 - 235 data templates,
237 OSO application Ul, 302
Silverlight, 251- 259
binding controls to collection, 254
updating data using TwoWay binding, 257
Windows - based GUIs, 230 data classes
.NET Framework, 80
data contracts, 272 -
273 Data Control

y INDE;

Language DCL
statements, 184 data
conversion
Silverlight, 259, 262, 263
Data Definition Language
DDL statements, 184 data
encapsulation, 103 Data
Mani pulation Language DML
statements, 184 data
providers, 80, 182 - 183
SQL Server provider classes,
182 data readers
SqlDataReader class, 182 data
storage, 181 data templates
creating/using, 237- 241 data type
conversions, 324 - 325 explicit
conversion, 325 implicit conversion,
324 narrowing conversion, 325
widening conversion, 325 data
types, 80 arrays, 165-175
collection types, .NET, 163 complex
data ty pes, .NET, 139 data types,
C#, 317, 318- 321 array data type,
320 Boolean data type, 319 byte
data type, 318 character data types,
319 classes, 321 conversions, 324 -
325 date data type, 319 decimal
data type, 319 double data type,
319 integer data type, 318 long data
type, 318 nullable data types, 320
object data type, 319 short data
type, 318 single data type, 319
strong typing, 317 structure data
type, 320 data validation,
Silverlight, 259, 260, 263
DataAdapter object, 187, 193 Fill
method, 187, 195 populating
DataSet, 195 retrieving data, 187-
188 SelectCommand prop erty, 187,
195 Update method, 197 Database
Explorer window
verifying installation of sample database,
338, 339
database schema, OSO app., 290
databases
executing commands against, 184
installing sample database, 337- 341
submitting CommandText to, 184
DataColumn object, 194, 196 DataContext
property
binding controls using, 230 - 231

347

y INDE

348

data binding, S ilverlight, 251
DataContract attribute, 272, 273
creating WCF web services, 275
DataGrid control
binding controls using
DataContext property, 230 binding to
DataTable, 232 - 235 data binding,
Silverlight, 253 displaying stored
data wi th, 231 OSO application Ul,
301, 304 updating, 236 DataGridView
control, 200, 203 DataMember
attribute, 272, 273 creating WCF web
services, 275 DataMember property,
204 DataReader object Close method,
186 Read method, 186 ret rieving
data, 186, 191- 192 DataRelation
object, 194, 196 DataRow object, 194
DataService class, 279
DataServiceConfiguration class, 279
DataSet object, 193, 194, 198 - 204
binding DataGrid to DataTable, 232
DataAdapter retrieving data to, 187 editing
data in, 197- 198, 201- 202 establishing
relationships between tables in, 196, 202 -
204 GetChanges method, 201 GetData
method, 197, 198, 199 populating from SQL
Server database, 195, 199- 201 UpdateData
method, 197, 198 DataSource property, 204
DataTa ble object, 193, 194
binding DataGrid to, 232 -
235 DataTemplate class
creating, 240
ListBox using, 237, 238,
239 date data type, C#, 319
DatePicker control, 246, 282
debug mode
launching OSO application in, 312
Debug toolbar, VS IDE, 97 debugging,
VS IDE, 95- 100
locating and fixing build errors, 99-
100 setting conditional breakpoints,
97- 99 stepping through code, 95- 97
testing classes, 120 testing
Employee class, 107
decimal data type, C#, 319 decision
point, activity diagrams, 43 decision
structures, C#, 328 delegate class,
139 delegated method, 140
delegates
AsyncCallback delegate, 156
asynchronous messaging, 156

Begininvoke method, 156
Endlnvoke me thod, 156 event
notification, 221 delegation,
139- 140
creating delegated method, 140
events, 140 - 146 delegation object, 220
DeleteCommand proper ty, DataAdapter
editing data in DataSet, 198
DepartmentManager class, 64,
deployment, .NET Framework, 78
dequeue method, Queue class, 179
derived classes
calling base class method from, 124, 128
calling method from base class, 123
creating, 118
hiding base class methods, 125
inher itance, 116
overriding base class method, 122
polymorphism, 130 - 132 restricting use
of class members, 122 restricting use of
methods, 120 design
business logic tier, 288 conceptual
design, 287 creatin g SRS, 56- 57 data
access tier, 288 developing class model,
61- 74 developing OOP solution, 55-74
developing use cases, 57-58
diagramming use cases, 59-61
distributed application, 288 domain
model design, 75 goals of software
design, 7 involving users, 74 logical
design, 287 office - supply ordering app.,
287- 288 OOP design pitfalls, 74 - 75
physical design, 287 presentation tier,
288 Visual Studio designer, 219
developing Windows applications, 215
dialog boxes
creating and using, 226 - 227 creating
custom dialog, 229 displaying critical
information, 227 MessageBox class, 227
New Project dialog, 226, 227 windows
compared, 226 DictionaryBase class, 164
DirectoryNotFoundException, 335
disconnected model, ADO.NET, 182 display
controls
adding, Silverlight, 246, 249
WPF, 218 distributed application
designing, 288
DivideByZeroException recovering
from, 334 DockPanel control, 218
binding DataGrid to DataTable, 234
creating data template, 240, 241 creating

65, 66

memo viewer interface, 223 domain model
design, 75 double data type, C#, 319 do-
while statement, C#, 330

EF see Entity Framework elements,
arrays accessing, 165 iterating
through, 167 else- if blocks, C#, 329
Employee class, 63, 64, 65, 66
AddEmployee method, 104 busi ness
logic layer, OSO, 295 constructor, 107
creating, 104 - 106 DALEmployee
class, 292 Login method, 104, 289
OSO application design, 289 OSO
class diagram, 289 testing, 107
testing class constructors, 111-112
encapsulation, 4
data encapsulation, 103 end point, WCF
web services, 266, 271 Endinvoke method
asynchronous messaging, 156, 157
EndOfStreamException, 335 enqueue
method, Queue class, 179 entities
binding ListBox control to, 239 - 240
querying with LINQ to EF, 206 - 207
updating with EF, 207 Entity Data
Model, ADO.NET, 205 creating,
208- 211 querying, 211-213
querying entities with LINQ to EF, 206
Entity Framework (EF), 204 - 206
ADO.NET, 80, 314 creating entity data
model, 208 - 211 querying entities w ith
LINQ to EF, 206 - 207 querying entity
data model, 211- 213 retrieving data
with, 208 - 213 updating entities with, 207
Entity Model Designer
creating entity data model, 210,
211 enumerations, C#, 322 Error List
window, VS IDE
locating and fixing build errors,
100 errors
SqlError class,
183 event handlers,
220
method handling multiple events,
145 parameters, 221
RoutedEventArgs parameter, 221
sender parameter, 221 Silverlight
controls, 247, 250 Windows Forms
implementing, 141 wiring up in
Properties window, 221 event

y INDE;

handling methods, 141 button click
event, 221 control events, 141
naming convention, 221, 247 event
wiring, 141, 146 event - driven
applications, 220 event - driven
programming, 139 delegation, 139-
140 Silverlight, 247 events, 140 - 146,
220
adding, Silverlight, 247 coding
control events, 224 - 226 delegation
object, 220 event messages, 142
handling control events, 220 - 222
method handling multiple events,
145 receiving in client class, 144
responding to, 141, 220 Exception
class
InnerException property, 334, 336
propertie s, 336 exception classes,
147, 335- 336
ApplicationException, 149 creating
custom excepti on classes, 336
DirectoryNotFoundException, 335
EndOfStreamException, 335
FileLoadException, 335
FileNotFoundException, 147, 335
IOException, 335
PathTooLongException, 335
SqlException class, 183 ToString
method, 336 exception handling
delegates, 220 finally block, 148 in
.NET Framework, 147- 150 nesting,
149
structured exception
handlers benefits of, 147
creating, 154 try - catch block,
147 exception handling, C#,
333- 336 Throw statement, 334
exceptions
filtering, 154 - 155
throwing, 149
ExecuteNonQuery method
Command object, 184
ExecuteReader method
Command object, 184
ExecuteReader method
Command object, 186
ExecuteScalar method
Command object, 184, 190
SQLCommand class, 292 expl icit
type conversion, C#, 325
extends relationship, UML, 12

349

y INDE

350

diagramming use case diagram for OSO,
60 extensibility, .NET Framework, 78

feedback, 316 fields see instance
variables FileLoadException,
335 FileNotFoundException,
147, 335 Fill method,
DataAdapter, 187, 195 filtering
exceptions, 154 - 155 final class,
117 finally block
adding to try - catch block,
148 exception handling, C#,
333
fixed positioning
layout controls, 217
Silverlight, 245 for
statement, C#, 331 foreach
loop, arrays, 167 for- each
statemen t, C#, 331 foreign
keys
referential integrity, 196
ForeignKeyConstraint object,
194 form designer
building and executing assemblies,
94 Form node, Class View, 89 Forml
class file, Solution Explorer, 88

G

XAC (Global Assembly Cache),
79 garbage collection, 79
generalization shape

creating class diagrams, 25
generic collections, 175- 179
implementing, 177 sorting,
176, 178 get block

creating class properties,
102 GetChanges method,
DataSet, 201 GetData method,
DataSet, 197, 198, 199
GetProductinfo method, 293
GetSQLConnection method, 291
Global Assembly Cache (GAC),
79 graphical user interfaces see
GUIs Grid control

positioning, 217 Silverlight, 245
guard condition, activity diagrams, 43
GUI activity diagrams, 49- 50 GUI
design, 48 - 52

application prototyping, 52 developing Ul
model design, 70 - 74 interface flow
diagrams, 51 interface prototyping, 50
Login screen prototype, 71 Order
request screen prototype, 73, 74 View
products screen prototype, 72, 73 GUIs
(graphical user interfaces) co ntrol
events, 220 - 222 creating and using
dialogs, 226 - 227 creating OSO
application Ul, 300 - 312 data binding in
Windows - based GUIs, 230 GUI design,
48- 52

handling exceptions see exception handling
Hashtable class, 164

Hejlsberg, Anders, 6

HelpLink property, Exception class, 336
hosting environment, WCF services, 266

Z |
IAsyncCallback interface, 157
IAsynchResult interface, 156, 157, 160
ICollection interface, 164 IComparer
interface, 164, 176, 178 IDEs

Visual Studio IDE, 83- 100
IDictionary interface, 164
IDictionaryEnumerator interface, 164
IEnumerable interface, 164
IEnumerator interface, 164 if
statement, C#, 328 - 330 else - if
blocks, 329 IList interface, 164
implicit type conversion, C#, 324
includes relationship, UML, 12, 59
indexes, arrays, 165 industry
standards .NET Framework, 77
inheritance, 5, 115- 122 abstract
classes, 117 access modifiers, 117
base classes, 116, 117 derived
classes, 116 identifying class
associations, 65 interfaces, 130

modeling object relationships, 20
multiple inher itance, 130
polymorphism, 130, 132 - 134 sealed
classes, 117 inherits relationship

identifying class associations, 65
InitializeService method

WCF Data Services, 279, 281
InnerException property, 334, 336
INotifyPropertyChanged interface, 254, 297
input parameters see parameters Insert

method, ArrayList, 169 InsertCommand
property, DataAdapter editing data in
DataSet, 198 Installed Templates pane
New Project dialog, VS IDE, 86
instance variables C#, 317
creating class properties, 102
overloading class constructors, 111
scope, 323- 324 integer data type,
C#, 318 interfac e flow diagrams,
GUI design, 51 interface
prototyping, GUI design, 50
interfaces, 129
collection interfaces, 164
IAsyncCallback, 157
IAsynchResu It, 156, 157,
160 ICollection, 164
IComparer, 164, 176, 178
IDictionary, 164
IDictionaryEnumerator, 164
IEnumerable, 164
IEnumerator, 164 IList, 164
INotifyPropertyChanged, 254,
297 method signatures, 129
polymorphism, 131, 134- 135
intermediate language
Common Language Specification (CLS),
78 intermediate language see MSIL, 83
interoperability data access, 182
IOException class, 335 IsCancel property,
Cancel button, 229 IsDefault property,
Login button, 229 IServicel.cs file
WCF web services, 267 iterative
messages, sequence diagrams, 34 - 35

yJ

JIT (just - in- time) compiler, 83

yK

keywords
see also qualifiers
abstract, 117, 122,
123 class, 102 new,
125 override, 122
private, 102
protected, 118
public, 102 ref, 138
sealed,
117
virtual,

122 void,
104, 331

ZL

Language Integrated Query (LINQ),
81 layout controls
Canvas control, 218 DockPanel
control, 218 fixed positioning,
217, 245 Grid control, 217
relative positioning, 217
Silverlight, 245- 246, 249
StackPanel control, 218 WPF,
217- 218 WrapPanel control,
218 LINQ (Language Integrated
Query), 81
querying entities with LINQ to EF, 206 -
207 ListBox control
binding to an entity, 239 - 240 consuming
WCF service in Silverlight client, 278
display controls, WPF, 218
using DataTemplate, 237, 238, 239
literals, C#, 321 Load method,
DataTable, 194 Loaded event
attribute
coding control events, 224
consuming WCF Data Services, 283
consuming WCF service, 278
Locals window, VS IDE
setting conditional breakpoints,
98 logical design, 287 logical
operators, C#, 327 Login activity
diagram, 70, 71 Login button
IsDefault property,
229 Login dialog
OSO application, 305, 309,
312 Login method, 104
creating class methods,
103 DALEmployee class, 292
Employee class, 106, 107, 289
Login screen prototype, 71
Login use case
activity diagram for, 67
modeling class behaviors, 66, 67
sequence diagram for, 68
loginButton_Click event
OSO application Ul,
309 LoginDialog.xaml file,
305 LoginDialog.xa ml.cs
file, 311 long data type,
C#, 318 loop structures,

y INDE;

351

y INDE

C#,330-331 asynchronous messaging, 156 C#, 331
calling as ynchronously, 160 - 161 calling
synchronously, 157- 159 creating class
methods, 103- 107 creating delegated

Main method args method, 140 creating sequence
array, 170 diagrams, 41 - 42 event handling
MainPage.xaml methods, 141 hiding base class methods,
file 125 overloading, 108 - 114, 125
consuming WCF Data Services, overriding base class method, 122 - 123,
282 consuming WCF service, 277 126 polymorphism, 115 restricting use
MainWindow.xaml file of, 120 static methods, 151 Microsoft
creating memo viewer interface, intermed iate language (MSIL), 83
222 OSO0 application Ul, 302 mnuEXxit control
MainWindow.xaml.cs file OSO coding control events, 226 modal
application Ul, 306 managed code, windows, 226 Mode property
.NET data binding, Silverlight, 251 modeling
compiling and executing, 83 business logic, 75 class behaviors, 66 -
manifests, .NET, 82 assemblies, 79 70 confusing with documenting, 74
mapping specification language (MSL), developing class model, 61 - 74 developing
206 Master Detail view, 241 memo complex systems, 74 domain model design,
viewer interface, creating, 222 - 224 75 iterative nature of, 75 methodologies, 75
MemoEditor window, 224 memory object interaction, 29- 52 activity d iagrams,
management, .NET, 79 42- 48 scenarios, 29- 30 sequence diagrams,
MemoViewer_Loaded event handler, 225 30- 42 object relationships, 19- 22 patterns
Menu control and reusability, 75 user interface model
creating memo viewer interface, design, 70 - 74 modifiers
223 Message property, Exception abstract modifier, 117
class, 336 MessageBox class, 227 defining method signatures, 138
displaying MessageBox to user, 227- 229 private access modifier, 117 protected
Show method, 228 messages, sequence access modifier, 118 public access
diagrams asynchronous messages, 32 modifier, 117 sealed modifier, 117 module
creating sequence diagrams, 37 iterative scope, 324 MSDN web site, 85, 315 MSIL
messages, 34 - 35 message branching, (Microsoft intermediate language), 83
35- 36 message constraints, 35 message MSL (mapping specification language),
types, 32 - 33 recursive messages, 33 206 multidimensional arrays, 165, 168,
synchronous messages, 32 messaging 173
asynchronous messaging, 155-157, 160-
161 defining method signatures, 137
delegation, 139- 140 event messages,)/N
142 event - driven programming, 139 namespace node, VS IDE, 88
events, 140 - 146 object communication namespaces, ADO.NET, 314
through, 137- 139 passing parameters, namespaces, .NET Framework
138- 139 receiving events in client class, assemblies, 83 learning more
144 subscription - based messaging, 139 about, 314 referencing, 82 System
synchronous messaging, 155, 157- 159 namespace, 82 narrowing type
metadata, 79 conversion, C#, 325 nesting
.NET Framework, 83 exception handling, 149 .NET
method signatures, 108 Framework, 6, 77-83 ADO.NET,
creating delegated method, 140 defining 181 application services, 81
method signatures, 137 interfaces, 129 assemblies, 82
methods, 101 building and executing, 94 - 95

352

assemblies, referencing, 82
asynchronous messaging, 155 base class
library, 80 classes, 321 collection
classes, 163 collection interfaces, 164
collection types, 163 collections, 175
CommandBuilder class, 198 Common
Language Runtime (CLR), 80 complex
data types, 139 data binding in
Windows - based GUIs, 230 data classes,
80 data providers, 182 - 183 data
storage, 181 delegates, 221 deployment,
78 exception classes, 335- 336
exception handling, 147- 150
extensibility, 78 garbage collection, 79
goals of, 77- 79 industry standards, 77
managed code, compiling and executing,
83 manifests, 82 memory management,
79 metadata, 83 namespaces, 314
referencing, 82 PE (portable executable)
file, 83 security, 79 Silverlight, 244
System.Data nhamespace classes, 194

unified programming models, 78 user

groups, 315 using help system, 315 web

applications, 81 web services, 265

Windows applications, 81 .NET Windows

Presentation Foundation see WPF new

keyword
hiding base class methods,

125 new operator, array type,

321 New Project dialog box

226, 227 creating VS project, 86

Northwind database
verifying installation of sample

database, 338, 339 Not operator (), C#,

327 NotifyOnExceptions property,

Silverlight, 259, 261

noun phrases in use cases, 18,

61, 62 nullable data types, C#, 320

23, 36, 45,

@]

?)/;)ject Browser window, VS IDE, 91 object
data type, C#, 319 object interaction

activity diagrams, 42 -
48 modeling, 29- 52
scenarios, 29- 30 sequence
diagrams, 30 - 42
ObjectContext class

querying entities with LINQ to EF, 206
Object/Relational Mapping (ORM)
framework, 80

object - oriented programming see OOP

objects see classes/objects OfficeSupply

database
verifying installation of sample

database, 341

office - supply ordering application see

OSO OLEDB namespace data providers,

182 OneWay binding, 230 Silverlight,

251 OOP (object - oriented programming)

abstraction, 3 aggregation, 5 C#, 5- 6
characteristics of, 3- 5 constructors, 107
data encapsulation, 103 delegation, 139-
140 design pitfalls, 74 - 75 developing
OOP solution, 55- 74 encapsulation , 4
events, 140 - 146 history of, 1-2
inheritance, 5, 115- 122 modeling object
interaction, 29- 52 modeling object
relationships, 19- 22 object
communication through messaging, 137-
139 objects, 3
overloading methods, 108

polymorphism, 4, 130 - 132 reasons

to use, 3 Unified Mode ling

Language, 8 OOP design solution,

55- 74 creating SRS, 56 - 57

developing class model, 61 - 74

developing use cases, 57-58

diagramming use cases, 59- 61

Open Data (OData) protocol, 279

Open method, Connection class,

183 OperationContract attribute

WCF web services, 268 operators,

C#, 325- 328
arithmetic operators, 325
comparison operators, 326 logical
operators, 327 shorthand
assignment operators, 326 ternary
operator, 328 Options dialog box
customizing VS IDE,

85 Or operator (l1), C#,

327 Order class, 64, 65,

66, 69
business logic layer, OSO, 299

DALOrder class, 294 PlaceOrder

method, 294 Order Item dialog,

304, 309, 312

Order request screen prototype, 73, 74

Orderltem class, 64, 66, 69, 297

OrderltemDialog.xaml file, 304

OrderltemDialog.xaml.cs file, 310 ORM

(Object/Relational Mapping) framework, 80

y INDE;

353

y INDE

354

Entity Framework, 204 - 206 OSO
(office - supply ordering) application
adding attributes to classes, 63- 65
application design, 287- 288
business logic layer, 295- 300 class
diagram, 289 creating SRS, 56 - 57
creating Ul, 300 - 312 data access
layer, 290 - 295 database schema
for, 290 developing class model,
61- 74 developing use cases, 57-58
diagramming us e cases, 59- 61
identifying class associations, 65-
66 identifying classes, 61 - 63
launchin g app. in debug mode, 312
modeling class behaviors, 66 - 70
OSO application Ul, 300 - 312
addButton_Click event, 309
codebehind files, 306, 310, 311
developing Ul model design, 70 - 74
Login dialog, 305, 309
loginButton_Click event, 309
LoginDialog.xaml file, 305
LoginDialog.xaml.cs file, 311
MainWindow.xaml file, 302
MainWindow.xaml.cs file, 306 Order
Item dialog, 304, 309
OrderltemDialog.xaml file, 304
OrderltemDialog.xaml.cs file, 310
placeOrderButton_Click event, 310
removeButton_Click event, 310
Window_Loaded event, 308 OSO
class diagram, 289 Output window,
VS IDE
building and executing assemblies,
95 overloading
class constructors, 110,
111 class methods , 112 -
114 method signatures,
108 methods, 108 - 114,
125 polymorphism, 5
override keyword
calling derived class method from
base class, 123
hiding base class methods, 125

overriding base class method, 122 - 123,

126

zP

Page element
Silverlight controls, 245 parallel

processing, activity diagrams, 43
parameters
defining method signatures, 138
editing data in DataSet, 197
overloading methods, 125 passing
parameters, 138 - 139 SqlParameter
class, 182 using stor ed procedures,
185 PathToolLongException, 335
PE file, .NET Framework, 83 peek
method, 179 physical design, 287
PlaceOrder method, 294
placeOrderButton_Click event, 310
polymorphism, 4, 115, 130- 132
implementing using inheritance, 132 -
134 implementing using interfaces, 134 -
135 overloading, 5 pop method, Stack
class, 179 presentation tier
logical architectural design,
288 primary keys
referential integrity,
196 private keyword
access modifiers, 117 creating
class constructors, 110 creating
class properties, 102 creating
Employee class, 105 scope of code,
103 procedural languages, 2
procedu re scope, 323 Product
class, 64, 66
ProductCatalog class, 62, 62, 65, 66, 67,
293, 297 Program class file, Solution
Explorer, 96, 100 programming
managed languages,
5 OOP, 3
procedural languages, 2
structured programming, 2 Project
node, Solution Explorer, 87 Project
Properties window, VS IDE, 87
Application tab, 87, 88 projects, VS
IDE
creating Employee class, 105 creating
new project, 86 - 87 properties, 101
controls, 216
creating class properties, 102 - 103
private properties, 10 2 public
properties, 102 read - only properties,
102 restrict access to properties, 102
static properties, 150 - 151 Properties
node, Solution Explorer, 87 Properties
window VS IDE, 93-94
wiring up event handler, 220, 221
property block

creating class properties, 102
PropertyChanged event

binding control to collection, 254
protected access modifier, 118 restricting
use of methods, 120 testing methods, 121
protected keyword, 118 prototyping

application, GUI design, 52 Login
screen, 71 O rder request screen, 73,
74 View products screen, 72, 73
public keyword

access modifiers, 117 creating
class properties, 102 creating
Employee class, 105 scope of code,
103 Pubs database

verifying installation of, 341 Purchase
Request class diagram, 70 Purchase
Request use case sequence diagram for, 69
push method, Stack class, 179

yQ

qualifiers
see also keywords base
qualifier, 124, 128 default
qualifier, 124 this qualifier,
124 Queue class, 164
methods, 179 queues, 179

Read method, DataReader, 186
ReadLine method, Console, 172
read- only properties
creating class properties, 102 recursive
messages, sequence diagrams, 33 ref
keyword
passing parameters by reference, 138
reference types, 80
References node, Solution Explorer, 88
referential integrit vy, 196 relational data
DataSet object, 193 DataTable object,
193 relationships
aggregation, 21 association, 19- 20
association classes, 21- 22 DataRelation
object, 194 establishing in DataSet, 196,
202 - 204 inheritance, 20
modeling object relationships, 19- 22
relative positioning layout controls, 217
removeButton_Click event OSO application
Ul, 310 return type
defining method sign atures, 138 Reverse
method, arrays, 167 RichTextBox control
creating memo viewer interface, 224

y INDE;

RoutedEventArgs parameter event handlers,
221 rows
DataRow object, 194

S
za.mple database installing, 337- 341
verifying installation of, 338 - 341
SaveChanges method, Context
updating entities with EF, 207
scalability
ADO.NET, 182 using stored procedures,
185 scenarios, 29- 30
creating sequence diagrams, 36 scope,
variables, 323- 324
block - level scope, 323
modul e scope, 324
private keyword, 103
procedure scope, 323
public keyword, 103
sealed classe s, 117
sealed keyword, 117
overriding base class method, 123
sealed modifier, 117 security
encapsulation, 4 .NET
Framework, 79 using stored
procedures, 185 SecurityLevel
proper ty
testing Employee class, 107
SelectCommand property, DataAdapter, 187
editing data in DataSet, 198 populating
DataSet, 195 SelectionChanged event
handler adding controls, Silverlight, 249
sender parameter, event handlers, 221
sequence diagrams, 8, 30 - 42
adding methods to class diagrams, 41 - 42
creating, 36 - 42 iterative messages, 34 -
35 Login use case, 68 message
branching, 35- 36 message constraints,
35 message types, 32 - 33 Purchase
Request use case, 69 recursive
messages, 33 View Supply Catalog use
case, 68 service contract
WCF web services, 268
service, WCF services,
266 Servicel.svc.cs file,
267 ServiceContract
attribute WCF web
services, 268 services,
WCF, 265- 285
Add Service Reference window,

355

y INDE

356

270 consuming, 270 - 272
in Silverlight client, 276 - 279
creating, 266 - 270, 273- 276 WCF
Data Services, 279- 280 set block
creating class properties, 102 short
data type, C#, 318 shorthand assignment
operators, C#, 326 Show method,
MessageBox, 228 signatures
method signatures, 108
defining, 137 Silverlight, 81,
243- 263 data binding, 251- 259
data conversion, 259, 262, 263
data validation, 259, 260, 263
learning more about, 315
Silverlight application
binding controls to collection, 254
consuming WCF service, 276 - 279
creating, 244, 248 creating WCF Data
Services, 280 creating WCF web
services, 274 Silverlight controls
adding events, 247 binding to
collections, 254 display controls,
adding, 246, 249 Grid control, 245
handling control events, 247, 250
layout controls, 245- 246, 249 Page
element, 245 Silverlight page
adding DatePicker and CheckBox to,
246 single data type, C#, 319 softwar e
design, goals of, 7 software requirement
specification see SRS Solution Explorer, VS
IDE, 87- 88
building and executing assemblies, 94
creating base and derived classes, 118
Form1 class file, 88 Program class
file, 96, 100 Project node, 87 Project
Properties window, 87 Properties
node, 87 References node, 88 Toolbox
window, 91- 93 SortedList class, 164
sorting
generic collec tions, 176, 178 Source
property, Exception class, 336 SQL
Server data provider classes, 182 SQL
Server database free versions, 337
populating DataSet from, 195, 199- 201
populating DataTable from, 194 retrieving
data from, 189- 193 SQL statements
executing commands, 184
SQLClient namespace data
providers, 182
SQLCmd.exe
installing sample database,

337 SglCommand class, 182

ExecuteScalar method, 292
SqlConnection class, 182, 183,
190 SqglDataAdapter class, 182
editing data in DataSet, 198
SglDataReader class, 182

creating WCF web services, 275
DataReader retrieving data, 186 SqlError
class, 183 SqlException class, 183
SglParameter class, 182, 185
SqlTransaction class, 183 SRS (software
requirement specification), 8,
56- 57

creating use case diagram, 13- 14
identify classes from, 18 use cases, 10
SSDL (store schema definition
language) Entity Framework, 205
Stack class, 164 methods, 179
StackPanel control, 218

adding, Silverlight, 246, 249
binding DataGrid to Da taTable, 234
stacks, 179
StackTrace property, Exception class,
336 Start Page, VS IDE, 85 static
methods, 151 creating, 152 - 154 static
properties, 150 - 151 static methods,
151 StatusBar control

creating memo viewer interface,
223 stepping through code, VS IDE,
95- 97 store schema definition
language (SSDL) Entity Framework,
205 stored procedures

executing using Command object, 192
193 retrieving data set, 18 8 using, 185
StringFormat property, Silverlight, 260
strong typing, C#, 317 structure data type,
C#, 320 structured exception handlers
benefits of, 147 creating, 154 structured
programming, 2 Style property, buttons

creating/using control and data

templates, 237

subscription - based messag ing,
139 Suppliers table

verifying installation of sample database,

340

switch statement, C#, 329
synchronous messaging, 155, 157-
159 sequence diagrams, 32 System
namespace, 82 System.Collections
namespace coll ection classes, 163
collection interfaces, 164

9- 10 creating,

System.Data namespace ADO.NET,
182 classes, 194 data providers, 182
System.Data.SQLClient namespace
classes, 182 SystemException class
exception classes, .NET, 335

yT

tables

DataTable object, 193 establishing
relationships in DataSet, 196, 202 - 204

verifying installation of sample database,

340

TargetNullValue property, Silverlight,
260 task analysis, activity diagrams, 49
templates

New Project dialog, VS IDE, 86 ternary
operator, C#, 328 TextBox control

display controls, WPF, 218 using in Grid,
217 this qualifier

calling derived class method from base

class, 124

threads

BackgroundWorker thread,
statement

exception handling, C#, 334 throwing
exceptions, 149 Toolbox window, VS IDE,
91- 93 All Windows Forms node, 92 turning
auto hide feature on/off, 92, 93 ToString
method

exception classes, 336
transactions

SqlTransaction class, 183 try -
catch block, 147

adding finally block, 148 exception
handling, C#, 333 TwoWay bi nding, 230

data binding, Silverlight, 251
updating data using, 257 types see data
types typing

collections, .NET Framework, 175

157 Throw

Ul (user interface)
creating OSO app. Ul, 300 - 312 UML
(Unified Modeling Language), 8 activity
diagrams, 8, 42 - 48 actors, 10 CASE
tools, 14
class diagrams, 8, 18 - 19, 22- 26
collaboration diagrams, 8 creating
activity diagram, 44 - 48 extends

relationship, 12 includes

relationship, 12 modeling object

interaction, 29- 52 scenarios, 29- 30

sequence diagrams, 8, 30 - 42 SRS,

8, 9- 10 UMLet, 337 use cases, 8,

10- 18 UMLet, 337

adding methods to class diagrams, 41 - 42
creating activity diagram, 45- 48 creating
class diagrams, 23- 26 creating sequence
diagrams, 37- 41 creating use case diagram,
14- 18 OSO application, 59- 61 Unified
Modeling Language see UML unified
programming models, .NET, 78
UniqueConstraint object, 194 Update
method

editing data in DataSet, 197 overloading
class methods, 112, 113 UpdateCommand
property editing data in DataSet, 198
UpdateData method

editing data in DataSet, 197, 198, 201
use cases, 8,10 - 12

activity diagram for, 67

CASE tools, 14

creating use case diagram, 12 - 18

developing, 57- 58 diagramming, 59-

61 scenarios, 29- 30 sequence

diagram for, 68 user groups, 315
user interface layer, classes for, 288
user interfa ces see GUIs
user interfaces see WPF user interfaces
UserControl_Loaded event handler, 278,
284
users

involving users in design, 74
using statement, 83

ValidatesOnExceptions property,
Silverlight, 259, 261 value types, 80
variables see instance variables verb
phrases in use cases, 19, 37, 45 View
products activity diagram, 71, 72 View
products screen prototype, 72, 73 View
Supply Catalog use case sequence diagram
for, 68 views

Class View window, VS IDE, 88 -
90 virtual keyword

overriding base class method, 122
Visual Designer

creating memo viewer interface, 224

y INDE;

357

y INDE

358

Visual Studio designer, 219
creating Silverlight application, 24

Visual Studio IDE, 83- 100
Add Service Reference window, 270
adding event to WPF control, 220
binding control to collection, Silverlight,
254
Breakpoint Condition dialog, 98
Breakpoints window, 97, 99 Class
View window, 88 - 90 consuming
WCF web services, 271 creating
base and derive d classes, 118
creating Employee class, 105- 106
creating memo viewer interface, 222
creating new project, 86 - 87 creating
OSO application Ul, 300 creating
WCF web services, 266
customizing, 84 -
85 data access
layer, OSO, 290
Debug toolbar, 97
debugging, 95-
100 Error List
window, 100 free
versions, 337
launching, 84
locating and fixing build errors,
namespace node, 88 New Project
dialog, 86, 226 Object Browser
window, 91 Options dialog, 85 Project
Properties window, 87 Properties
window, 93- 94 setting breakpoint in
code editor, 96 setting conditional
breakpoints, 97- 99 Silverlight
designer, 244 Solution Explorer, 87- 88
stepping through code, 95- 97 Toolbox
window, 91- 93 verifying installatio n of
sample database, 338 - 341 Watch
window, 99 WCF Data Services, 279
void keyword
creat ing class methods,

104 methods, C#, 331 VS IDE

see Visual Studio IDE

4, 248

99- 100

Watch window, VS IDE, 99 WCF (Windows
Communication Foundation), 82
WCF Data Services, 279- 280 consuming,
282- 285 creating, 280 - 282 WCF web
services, 265- 285 consuming, 270 - 272

in Silverlight client, 276 - 279
creating, 266 - 270, 273- 276 data
contracts, 272 - 273 end point,

266 hosting environment, 266

service, 266

WCF Data Services, 279-
280 web applications, 243
.NET Framework, 81
Silverlight, 243- 263 web
browsers

Silverlight, 243 web services see
WCF web services while statement,
C#, 330 widening type conversion,
C#, 325 Window control

binding controls us ing
DataContext property, 230 window
layout

binding DataGrid to DataTable,
234 Window_Loaded event

creating DataTemplate, 240 OSO
application Ul, 308 Windows, 215

container controls, 215 controls, 215
dialogs compared, 226 display controls, 218
layout controls, 217- 218 modal windows,
226 Visual Studio designer, 219 Windows
applications developing, 215 .NET
Framework, 81 Windows Communication
Foundation see WCF Windows Forms

implementing event handling, 141 WPF
(Windows Presentation Foundation), 81, 215

creating memo viewer interface, 222
creating/using control and data templates,
237- 241 learning more about, 315
Silverlight, 244 WPF user interfaces

control events, 220 - 222 creating and
using dialogs, 226 - 227 creating custom
dialog, 229 creating memo viewer interface,
222- 224 creating OSO application Ul, 300 -
312 display controls, 218 layout controls,
217- 218 Visual Studio designer, 219 XAML,
216 WrapPanel control, 218 WriteLine
method, Console, 167, 178 WSDL file

creating WCF web services, 268, 270

XAML, 216
binding con trol to collection, 256 binding
controls using DataContext property,
230 control syntax, 216 creating memo
viewer interface, 224 creating/using
control and data templates, 237
Silverlight, 244

y INDE;

data binding in, 251 binding DataGrid to DataTable, 234
updating DataGrid, 236 coding control events, 224, 225 wiring up
window created with, 217 event handle r, 220 XAML Editor Window
XAML code creating memo viewer interface, 222
OSO application Ul, 302 XAML XAP file

code editor building Silverlight application, 244 XSD
coding control events, 225 handling file

control events, 247, 250 XAML Editor using data contracts, 273

window

Beginning C# Object-
Oriented Programming

Z Z Z
Dan Clark

359

@ qgdrr G
Beginning C# Object -Oriented Programming
"O00bxTl1iUdidvtuudChbdo&A&Od” NExD
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any

means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN- 13 (pbk): 978 - 1- 4302- 3530- 9
ISBN- 13 (electronic): 978 - 1- 4302- 3531-6

Trademarked names, logos, an d images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and

images only in an editorial fashion and to the benefit of the trademark owner, with no intention o f
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to prop rietary rights.
President and Publisher: Paul Manning
Lead Editor: John Osborn Technical
Reviewer: Jeff Sanders
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan
Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Frank Pohimann, Douglas Pundick, Ben Renow - Clarke, Dominic Shakeshaft, Matt Wade, Tom
Welsh Coordinating Editor: Corbin Collins Copy Editor: Mary Behr Compositor: Richard Ables
Indexer: John Collin Artist: April Milne Cover Des igner: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1 - 800- SPRINGER, fax (201) 348 - 4505, e - mail
orders - ny@springer - sbm.com, or visit www.springeronline.com.

For information on translations, please e - mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional

use. eBook versions and licenses are also available for most titles. For more information, reference

our Special Bulk Sales - eBook Licensing web page at www.apress.com/bulk - sales.

1{ Ed]T OEOxOA&AUT 00dT O0dUI T @dCcO0OPdT GdET @UxT CUUEEdOOd £0d” A£BdT @ d ¢
precaution has been taken in the preparation of this work, neither th e author(s) nor Apress shall

have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
guestions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com/
mailto:rights@apress.com
http://www.apress.com/
http://www.apress.com/bulk-sales
http://www.apress.com/

Contents

Z ADOUL T AULNOL......co et ettt e Xii
Z About theTechnical REVIEWEL...........cooiiiiitceeeee e mmmmmm e Xiii
Z ACKNOWIEAGMENLIS.....ciiiiiiiiiiiiiiiimmmmmm s e e e e e e e et et e et eeeemeennsesaea e e s e e e eees e e eeeeeeesssnnnnnnnnn Xiv.
ral | 11 700 [Tox i o] o TSP PPPPPPPP XV
Z Chapter 1: Overview of Obj@ctented Programming........ccooeeeeeeeeescccceeeeeeeeeeiiiiininsmmmeeen 1
The HiStory Of OOR.......uuiiiiiiiiii st eemnmn e e e e e e e e e e e e s mmmnnn e eeeneennnnnns 1..
WHY USE OO 2. . ittt ceemen s e e e e e e e e e e e s smmmn e e et e tbsa e s e s mmmmmm e e e e e e e eeeeeeeennnnnnn 2..
The CharacteristiCS Of OOR........uuui it eeeeer e e e e e mmeeee e 3
(O o)1= od £ U 3
Y 0153 = Lo 1 o] o PO TR PR 3
ENCAPSUIALION.cciiiiiiiiiieiietceemee e e e e e e s et e e s e e mmmmmm e e e e e e e e eeeeennened 4...
011V 0 10T 0] 1 o OSSP PPPPPUPUPRRP 4...
INNEIEANCE.ceieieeee ettt e e 5
Y [0 [£=To T= Lo o ORI 5..
The HIStory Of Cff......cooo oo ceeeee st e s mmmmmm e e e e e e e e e eeeennnes 5...
SUMMIAIY .ttt et e ettt s et e e e e ettt e e e s mmmemn e e e e e e et b e e e e e e s mmmmmm e s 6
Z Chapter 2: Designing OOP Solutions: Identifying the Class Structure..............coeeevennn. .
Goals Of SOftWAIE DESIGN.......uueiiiiiiiiiit ittt e e e e eeeeas 7.
Understanding the Unified Modeling LangUage..............uimmmccieieeeeeeieeieeeeevieeeenesenns 8
DeVvelopiNg @ SRS.. ..o et ———————— e e aaaaees Q...
INTrOAUCING USE CaASES. .. uuiiiiiiiiiieeii it ettt s e s mmmmmm e e e e e e et e eeeeesses s mmnmnn e e e s 10
Understanding Class DIiagramS..... ..o iie e oo eeeeeeeeieiiiiissmmmmmm e e e e e e e eeeeeeeeesssenns 18
Modeling Object RelatioNSNIPS............ovvvviiiicemmmeeiiiee e e e e e et e mmmee 19
ASSOCTALION. ...ttt oo ettt ammmm e e e e e e e e e e e e mmmmnn e e e e e e e e e e eeeaeaaaan 19.
101 0= 41 c= g Lo = TP P PSPPI 20
7 [0 [(=0 T= Lo USSP 21.
ASSOCIALION ClASSES.ttt aeaea e memeee et e e e e e e e e e e e e e e s mmmmmnaeseeeeees 21
YU 101 =T/ U 26

y CONTEN1

Z Chapter 3: Designing OOP Solutions: Modeling the Object Interaction..............c....... 29
Understanding SCENAIIOS.ccoeiiiiiiiii i ceeeee ettt e e e et e e e e mmmmmn e 29
INtroduCing SEQUENCE DIAQIamMS.uuuuiiiiiiiiaaaaaaaeeeeeeeeeea e memeeeeeeeeeaaaaaaaeeeesesmnn 30
MBS SAGE TYPES. .. ittt e ettt ettt e e e e e e e e e e s 32.
RECUISIVE MESSAQES ... tttteeieiiiiiii ettt e e e ammmm e e e e e e e et eeeeen e e e aeaeeeens 33
MESSAQE IEIALIAN.ceiiiiiiiiee ettt e eeeee e e e e e e e e e e e e eas 34.
MESSAGE CONSIIAINLS.uueeeeieiieieee ettt e e e e e e e e e et emeeen e e e aeaeeeens 35
MeSSage BranChing...........uuuuuuiiiiiaia e ceeeee e mmmenn e 35
Understanding Activity DIagrams.........ccccuvviiiieeeaeeeee e eeeessseeeeeeeeeeeeeaee e e e A2

Decision Points and Guard ConditiONS..............oooi i coeemeiiiiiiiiieieeee e e 43
ParalleProCeSSING.........cooiiiiiiitceeeee et mmmeen e e e e e e e e e mmmmm e 43
ACHIVItY OWNEISNIDL...ceiiiiiiiiiieiii ettt mmmmn e A
EXPIOring GUI DESION.....ccoiiiiiiiiiceeeee e mmmmmmvteeeee e e e s im0
GUI Activity DIagramsS..........oooiiiiiiiceeeeeeeeeeeeeeee e e e e e e s esmmmmmesevseseeeeeeeeseessssmmmmm e 49
INterface ProtOtyPinNg........coooiiiiiiiii i ceeeee ettt mmmmmm e s e 50
Interface FIOW DIagramiS........ccouiiiaeiiiiscceeeeiiiiiiee ettt e et emmmmmn s 51
APPLICAtION ProtOtYPING. ...t aeeee e e eeeees e e e e e e e e e e e e e e e e e e mmmenneeees 52
SUMMIAIY. ..ttt emmmmm ettt e e e et e e e e e e e et e tt e s e e e e e et ab e e e e e mmmmnn s 52

Z Chapter 4: Designing OOP Solutions: A Case.StUdY...........covvicccceeeeveevvviiiiin s mmmmee 55

Developing an OOP SOIULION............uuuirieimmmmmm e e e e e eeeereeeesseeeen e e e e eeeeees smmman s 55
Creating the System Requirement Specificatian.............ccooceceecveeieeiiiiiiiieeiiiieee 56
Developing the USE CaSES.......ccccuuiiiiiiceeeeeeeee e e e e e e s s smeeee e e e eeaeaaaa e e e e e mmmmmnad 57
Diagramming the USE CaS@S....uuuuuiiiiiiiiei e eeeeeeeeitiiiiismmmmmm e e e eeeeaeeeeeeeesssnnns 59
Developing the Class MOGEL..........ooviiiiiiiceeeeeiiiiiee e s e e 61

Identifying the ClaSSES.......ccuuuiiiiiiiiiemmmmm e eeeeen e e e e e e s e 61
Adding Attributes t0 the ClaSSES......uuuuiiiiiiie it mmmmmm e 63
Identifying Class ASSOCIAIANS.......uuuuiiiiiee e et mmmmmm e e e e e e e e aeees 65.
Modeling the Class BEhAVIOLS..............euuuivicemmmmiiiiiieee et e 66.
Developing the User Interface Model DeSign.............cevvveeeeeervvvrviiiiinnsnseessmnaaad O
Avoiding Some Common OOP Design PitfallS............ooooii e 74

SUMMIAIY. ..ttt emmmmm et e et et e e e e e et e et e e mmmm e e e e e e sn e e e e e mmmmnn s 75

Z Chapter 5: Introducing the .NET Framework and Visual. Studio..............ccccceeevvvveennnnns 177

Introducing the .NET FrameWQIK.............iiiiiicccocc oo meemmn e e e e e e e e e e ean i1

Goals of the .NET FrameWarKuuuiiitaaaaae e memeee e ee e e e e 77
Support of INAUSErY STARIKRS.eiiiiiiii e e emmmmn e 77
A= 0 Y o1 1 PRSP 78
Unified Programming MOGEIS.........cuuuiiiiiiieeemiiiee et cecmm e enmmm e e D

y CONTEN?

[TS (= 1=][0 1 =Y PR 78
Improved Memory ManagemENt..........cc.uuuuieraccce s eeitreiereeeeeee e mmmmenteeereeeeeeeesssassmmmmaneeeeeeeas 79
IMproved SeCUNty MOEL..........ooiiiiiii e orreer e mreeee e 79.
Components of the .NET FrameWOrKccuuiieiceeeeeeeiiiiieeeeiiieeee s mrmee e svreeeessineeeesmmeeen e eseee 9
Common Language RUNTIME.uuiiiiiiiiaccme et smmmm ettt e s mmmmm e e e 80
Framework Base Class LiDLAIY.........ccouiiiitcceeeie ettt mmree et mmmnee el 80
DALA ClASSES ... uteeiiiiieeee et ceeeee et e e oottt e e sttt et e e e e e e mmmnnteeee e e e e e e e e e e e n s neeaa e e e e e s 80
WiINAOWS APPICALIONS. ... eeeeieiiiiii e ceeem ettt eerm e e et e e e memmmm e e e et e e e e e 81
WED APPIICALIONSeeiiiiiiiiii e ceee et eeeem ettt e s meenm et e e s abee e e e s s meenan s 81
APPIICALION SEIVICES......ceiiiieiiiieieiitceeeeeeieinte e e s mmmmmm s e s e eeeeaeeaaaaeses e eeeeeeeeeeeeeeessssmennd 381
Working with the .NET FrameWOTK...........ueeiiiiis et eeeeee e e e e e eeammmmm e 82
Understanding Assemblies and Manifests...........coooo i 82.
Referencing Assemblies and NameSPaACES......cccvvvivieiii oo ee e 82
Compiling and Executing Managed COOE...........oiviiiiceeeeeeeeeeeieieieiini e ememnm s e e e e e e e e e e mne 83
Using the Visual Studio Integrated Development ENVIrONMENt............ccceceeeveeeeeeiiicivveieee e 83
CUSIOMIZING the IDE......cooiiiiiiii it eeem et eemm et enmmm e e bt e e 84
Creating & NEW PIOJECL.....ccciiiiiiii it eeecmi ettt et eemm et e ettt e e e s b mmmmmm e e e e e snbbeeeeeane 86.
Investigating the Solution EXPloB@Id ClasS VIEW..........ccuuviiiiiiiicmeiiiee e smmmn e 87
Exploring the Toolbox and Properties WiNdQW.............coouuecccmiviieiiiiiiee e esieemmmiee e 9l
Building and Executing the ASSEMDIY..........cuuiiiiiiceeea e eeeec e 94
Y =T 0] o aTo I I g1 e 18 o] o o o =S 95.
Setting Conditional BreaKpOinLS........ccooieee i ereeee e e 97
Locating and Fixing BUild EITOIS...........ooiiiiiiii et mmemnn e s e e e e 29
YU 010 0= Y/ U 100
Z et et eeeeee e e e eeeeeeeeee e et e eee e et ettt h e eeee et eeaa e e e e et aeettr e aaees Cha
Pter 6: CreatiNg ClaSSESuuu it e et ettt mmmmmm e e e e e e e e e e e e e e e ee s meeeensessnnn e e s 101
INtroducing ObJECtS ANA CIASSESouvuiiiiiiiitacme ettt ammn et e st e e e e ammmmn e e e eneeeas 101
DEfINING ClaSSES. .. e e ittt ettt e e e e e et e memmee et et e e e e s e s e s se b mamn e e e e s e st eseeeee e e e mmmmmssseeeeeees 102
Creating Class PrOPertieS........eiii it cceee ettt mmree et mmnee e e e e e 102
(O =T 1] Lo IO F= 1T 1Y =1 T T (PP 103
Defining the EMPIOYEE CIaSS........ccceviiiieit ittt e e e e e s mmeeee e e e ae e e e e s s mmmmn e e e e e e e 105
Testing the EMPIOYEE ClasS......ooiuuuiiiiiiit ettt mme ettt mmmmn e e 107
USING CONSIIUCTOES .. itteeee ettt cmeeee ettt e e ettt e mreee e e e skt et e e e e sab et e e mmeen e e e e bbeeeeessnbeeeemmneneee e e 107
OVErloadiNng MENOAScoi i mn et mmmn e e ettt e e et mmmmn s 108
Creating and Overloading Class CONSLIUCIOLS.........uuuuuueuicememniieesieieee e e e e e e e e e eeeeeeeeen 110
Testing the Employee Class CONSIIUCLOIS............ooviiiicceeee e eeeeme e 111
Overloading @ Class MEtNOM.oiii i e e mmmnen e e e 112
Testing the Overloaded Update MethQd............oooiiieeeeeiii e 113
SUIMIMIAIY ettt eeeeen e bbb s s mmmmmm a4 o4 e e e e e e e e e e e e e e s mmmm aeeeeeeeeeeeeennnnes 114

vi

y CONTEN1

Z Chapter 7: Creating Class HierarChies..............ouu oot 115
Understanding INNEMHTANCE.viii i ceeeee e st e e e e e s mmmmen e e e e e e e e e e e e e ennns s 115
Creating Base and DeriVed ClaSSES.....cciciiiiiiiiiceeeee e e e e e e i e eciitieeescmmmmm s aebatee e e e e e e e s mmmmnneeeeees 116
Creating @ SEalEd Class.........uuuiiiiiiii e ccmeeiiiiie e e e e s eereee e e e e e e s s s st e e s smmmmm s asebeaeeeeeaaeeesnnn 117
Creating an ADSIIACE ClaSS.......cuuuiiiiiiiis et e s eeeeee e e e e e e e s s s b e s mmmmm e rraeeeeeaee s 117
Using Access Modifiers in Base ClaSSES.....uuiuiiiiiiiiiiceeeeeeiee e e e s iiesitsesemmmmm s ssesseeeeeeeeeeesmmnnes 117
Overriding the Metho@$ a Base Class..........c.uuiiiiiiiiaecceiiie e emmm e e 122
Calling a Derived Class Method from @ Base.Class...........ccuuvccccmeiieee i eimmme e 123
Calling a Base Class Method from a Derived.CIass.............oviceeeeeeviiiiiiiieiii s mememeee e 124
Overloading Methods Of @ Base ClaSsS.........ooiiiiiiii e eereen e mmmmmm e 125
Hiding Base Class MethOdS..........oooiiiiiiii e mrmmme e s s e e e e e e e e mmmmmm e e e e e e e aeeeeeeeeeeeemn 125
IMPIEMENtINANEEITACES. ... e eeeeen e e 129
Understanding PoOlYMOIPNISIIL.......uuuiiiiiiiiceemem s es s s e s e e s mmmmm e e e e e e e aeeeeeeeee e s mmmaanseeeeeeeasesnnnens 130
SUMMIIY ..ttt e e errren e oo e sttt mmm s e e e ettt e e e e s s mmmmnn e e et e e e e e e e e ansss s mmmmm e e e e e aa e e e e e e s 135
Z Chapter 8: Implementing Obf@otlaboration..................uuiiiimcccc e ceeeee 137
Communicating Through MeSSagiNg............ooviiiiicceeeee e eereen s mmmmmm e e e e e as 137
Defining Method SIGNatULESuuuiieeieicmmmmm e ee s e st e e e e e e e e e e e e et et et et e eeeeesmmemeneeesseenensnnrnrnnnnn 137
PEESING ParaMEEIS......cciiiiiiiiieiiieitceeeeetetetaaae s s s s s mmmmmm se s e e e aeeaeeaaaeaeesmmmmmneeeeeeeeeeereeessessmmmnnnsseres 138
Understanding EveBlriven Programming............ ..o ccccccveieeeeeeeeeeeeeeess e e eeeseeeassessssesseeeens 139
Understanding Delegation.............oooiiiiiiceeeee et eemmnn s s s e s e s s mmmmmm s e e e e e e e aaaeaeaeeeeeann 139
IMPIEMENTING EVENLS. ...t eeeeee e emnmmm e e s e s e s e e e e e e e e e e e e s 140
RS oo o 1Yo I 1o TN V=) PPN 141
Windows Control Event HanAIGee oot eeeeee e 141
Handling Exceptions in the .NET Framework............oooiii e eeeeee e e 147
UsIiNg the TRZALCh BIOCK...........ceviiiiiiiiitceeeee it s e s s s s e s mmmmmm e e e e e e eeeeaeaeeeee s ammmaneeeeeeesesesennrnne 14.7
Adding @ FINally BIOCK..........ooiiiiiiiie e ememen s s s e s e s e e mmmmmm e s e e e e e e e aaaaaeaeeesman 148
THrOWING EXCEPLONSottt eeeeee et e e e e e s mmmmmm e s e e eeeeaeeaaaeeeees mmmnn 149
TSIy [a0l =5Tot=T o) 1o o I = F= 1 To | 14T 149
Static Properties and MethOds........ccooooo oo e 150
UsIiNg ASYNCNIONOUS MESSAQING.uvuvurururnneniemmmnmeasaasiasesesseseemmmmmmeaaeaeseseterersssssamamansssssssnrnrnnns 155
SUIMMIAIY ettt e ettt e e e e e et e et s s et e e e e e et ebe s S £ e s s e e e e e et eb e e e b e e e e e eebban s 161
Z Chapter 9: Working With CoIlECHIONS.covviiiceeeeeiiiiiie e e e e s e ae 163
Introducing the .NET Framework ColleCtion TYPES.ccuvviiiiiceeee e meeeec e 163
Working with Arrays and Array LISES.......cooiiueeiiiiceeeee ettt mreeee e sttt mmnee e e 165
0 LS To J 1= =T ¢ o @] 1= od T 3PS 175
Programming with Stacks and QUEUES..........c.oiiieiceeeeeeee e e e es sttt es e et ee e e e e e e s mmmmnneeeeee 179

Vil

y CONTEN?

YU 01 =T S U PP PP 180
Z Chapter 10: Implementing the Data ACCESS LayYer............oviiicceeeeiiiiiiiiiiinee e 181
gL 0T [0 Lot aTo A @ 20 1 PP 181
Working With Data PrOVIAELS..........uuueiiiiie s cceeeiiiie e e creres e e e e e e st e s mmmmm et aeeeeaaee e s 182
Establishing @ CONNECHON..........ccoi it ceeeee e s cmmmm e e e e e e e e s s mremnn e e e e e aeeeseeannreesman 183
(S Y Yol W1 o = O 0] 121 4= o PSS 184
L0 LS [] (0] =0 [o o =T o [0« SO 185
Using the DataReader Object t0 REtEBMA................ooviiiiiiceeeeeeeeeee e emrmen e e 186
Using the DataAdapter to RetrieVe Data............vveiiiceeeeeeiiiieiie et mreeee e mmeee e 187
Working with DataTables and DataSeLsS............uuieiiiceeccc et eeem et eeemmm e 193
Populating a DataTable from a SQL Server Databhase............uveeecccveiiiiiiiiiiiiiiee e cccceeeeee e 194
Populating a DataSet from a SQL Server Database.............veicceeeeeeeiiiiieeeesniiieemeeee e eieeee e 195
Establishing Relationships between Tables in a DataSet...........oovicceeeieiiiiiie e 196
Editing Data in the DAtaSEeL........ccoiiiiiiiceeeee ettt mreee ettt e mmeee e e et e e e e s sabeeeemns 197
Working with the Entity FrameWarK. ... cceeei e mmmee e mmmne e 204
Querying Entities with LINQ T0.EE........cooiiiiii et st eeeee e 206
Updating Entities with the Entity FramewOrK............c..ooi e oeree e 207
SUMIMIBIY. .ttt etttk errr ettt mmmmm ettt e e e e e 44 e s mmmmmn ettt e e e e e e s e nnsn s s mmmmmn e e e s e e e ne e e e e 213
Z Chapter 11: Developing Windows AppliCatioNS.............ooiiiceeeeeeeviiiiiiiiiin e e 215
WINAOWS FUNAAMENTALS........oiiiiiiiiiceeeee e ettt e e mmmmmn et e e e e e e e e e eeeeens 215
Lo To [N ToxT T DAY /| 216
L0 LS [To T = Yo 10 o T | £ £ = 217
X0 Lo T o T 1= o1 F= |V @ 0] 11] = 218
Using the VisuBtUdIO DESIGNEL...........coiiiiiiiiieteeeeee et mmmmmm s e s e s e e e e e e e e e s mmmmmm e e e aeaeaaeeees 219
Handling CONLIOl EVENLS........coo oo eeeeee e s s mmmmmm e s e e e e e e e e aaeaeeeee s mmmmnn 220
Creating and UsiNg Dialog BOXES........cociiiii ettt eeeeee et emnmmm e 226
Presenting a MessageBOoX t0 the LUSEr..........uuuuuieiiceeeee e e e e e e e e e e e e e e e e e eeeeeees 227
Creating a Custom Dialog BOX........coooiiiiiiiit et ereeee s mmmmmm e e e e e e e e aaaaaaas 229
Data Binding in WIindoMBRSEd GUIS..........coooiiiiiii e eeeeen s e 230
Binding Controls Using a DataConteXt.............ooiiiicceeeee e eeeeee e mmmmmm e 230
Creating and Using Control and Data TEMPIALES.............uvuiceemmeuieiiiiiiiie i s oo e e e e e e ae e 237
UMY ¢+ttt et ettt e ettt e e mmmmm ettt e e e e e e 44 as mmmmnm e £ e e 244 e 1 b b e b e e e e mmmmm e e e e e e e e an 242
Z Chapter 12: Developing Web ApplicatiQnS..............ooviiceeeeervviiiiiiiine e e e e eeeeeeennens 243
WhaLt IS SIVEITIGRNL?Z. ... e e et mrreee et e e e seb e e e e mmeeee e e e eee 243

viil

y CONTEN1

Craating a Silverlight APPlICAtIQN.oo i mmmee e e e errnnn e e e e e e e e 244

USING LayOUL CONIOIS........uuuiiiiiiiiie e s ccmmme ittt ie e e e e e e e s e s s emmeee e e eeeessesssnseeses s mmmmmm sessnsbaseeeeeeeeesmmmnnnes 245

WY [o [T gl BIESY o] F= Y2 O o] g1 o] (=PRSS 246

Handling CONtrol EVENLS..........ooiiiiiiit e s c ettt e e e e mmmmen et eeeee e e e e e s s s menmnneeeeeesesanssnseees mmmmnn 247

Data Binding in SIVErIGRL..........cooi e cmmmm e e e e e e s mrreen e e e e e e e s e et e e 251

Validating and CoNVErtiNg DAta.........ccceeeeiiiiceeeeeeieeeee e e s e s sttt mrmm e s e e seeeee e e e e s mmmmnesbreaeeeeeeaeeas 259

YU 010 = S ST 263

Z Chapter 13: Developing and Consuming WCF SerVICES........uuuuiiiaraccceeeeeiiiiiiiieneean 265

WAL A8 SEIVICES? .. ittt mee ettt eeeeee e e e e e e e e e e h bbbt e e mmmmm st b b e e et e e e e e e e s mmmmenseees 265

Creating @ WCF WED SEIVICE.......uuuuiiii i cmmmme ettt meeeen e ee e e r s 266

ConsuMINg @ WCF WED SEIVICE.uuiiiiiiiitacme ettt ammmn ettt mmmmmn e snenee s 2170

USING DAt CONIACES. ... ueeieiiitiieie s iceeem bttt e ettt e e s meeam bt e e e ettt e e e s s mmmmam st be e e e e anbbeeee e s s mmmnn sae 272

W DALtA SEIVICES. ...cei it iitetieeietcmcetttieeeeeeeee e s s mmmmmmteeeeaaaeeessasnss s maaaan e e e e s aanssebaseeeescmmmmmnsnee 279

UMY ¢+ttt ettt e ettt e e mmmmn ettt e e e e e e s mmmmn et e e e 44 e s s b e e b e e e e mmmmmm e e e e e e e e e s 285

Z Chapter 14: Developing the OSO APPIICALION..........uuiiiii e eeennn s 287

ReVisitng APPIICALION DESIGN.uuiiieiiiiiiiescmeeee e ettt e e sttt mmeee e st e e e e esbb e e mmnne e e e senbbeeeesanenee 287
Buil ding the OSO Applicationé.s..Dat.a..Ac.ces289 and

Creating the OSO APPHCAtION.UL........ooiiiiii e e e 300

UMY ettt e etttk mrrm e oottt mmmmm ettt e e e e e e 44 s s mmmmmn ettt e e e e e a4 e nnen e s mmmnn £ e e e r e n e e e e een 312

Z Chapter 15: Wrapping ceeeee st e e e e a e e e e e 313

Improve Your Obje€liriented Design SKillS..........ccoooiiiiiiiii oo e 314

Investigite the .NET Framework NamESPACES...........cvvviiieeeeeeeeeeieinininnninnnsmnmnnsananasaeeeeseeesan 314

Become Familiar with ADO.NET and the Entity FrameworK..............ceceeeriiiiiiieiiiiiiicemene s 314

Learn More About WPF and SIlVerlight...............uimiceeeeeiiiiiiies s 315

Move Toward Componddased DevelOPMENL..........oiiiiiiiiiieceeeeeeee e ememen e e e e e 315

o I 1= o O PP PRPPURPPRIN 315

JOIN @ USEE GFOUPD...ceiiitiiiie ettt comeee e e e ekttt ettt omnee e e e s bbbt e e e e sabb et mmmee et e e e eabe e e e e s snbs e e mmmnneeeesane 315

Please Provide FEEUDACKcii it s ettt ecmmmm ettt e e e e e e s s s memenn e e e e e e e eennnnneeee e mmae 316

Thank You and GO0 LUCK..........oiii i ceeeee et et e e e e e mmmmen e e e e e e e e e s e nnnnsees 316

Z et e e eeeeeeeeaeeeeeeeeeeet et et eeaaeeea e e et et e tet e et e et e e aer e eern s App

endix A: Fundamental ProgramgmBONCePLS........cuuuururrmiiiii e eeeeeeeeeeevvevvmmnnnn s 317

Working with Variables and Data Ty PeS......uuuuuuuuuicemmmmiiieieieie e e e e e e e e e e e e eeeeereeeeeeeee s meeeeneeeees 317

Understanding Elementary Data TYRESooouuuuiiit ettt e e mmmen e e e e e e e e e meeeen e e e es 318

LaLCTo o B F T = T Y o= PP OO PPPR 318

N\ o] g3 Talt=To] g B F= = B Y o=t PP PPRPRPR 318

y CONTEN?

Character DAta TYPIESccuvureeeeeeieemmmmmtierteeereeeeessssssememesseeeessssssassssssssmmmmmn s sssssssseseeeeeeeesamnnns 319

[ToTo] =TT T I = = 1Y o= PSS 319
DAte Dat@ TY B ...ttt mmme ettt mmmrnn et e e e s e e s mmam et e e e mmmnnn e s 319
ODJECE DALA TYPE. ..o ittieeeiittite e mrreee ettt e e ettt e e e mnemen e e sk beee e e e et be e e e s mmmma e e sbbeeeeesasbeeeeemmnmeeeeaen 319
NUITBDIE TYPES.. ettt ettt mree e ekttt e e e shb et mmmnn e e e s esb e et e e e sabb e e mmmnn e e e e e aae 320
INtroducing ComMPOSIte DAta TYPES......uueiieiiiiiitcmeeeeeeseitieeeesetbeemmmen e e s s sstbee e e s s sbeemmmnneeeeeeneee 320
SHTUCTUIES ..ottt e eeeee ettt bttt mmmmmm e e e e e e e e e e e e e e e mmmmm e e e e e e e e eeeaens 320
= £ PO OO PUPPPPPRTI 320

O o TSSO PPR 321
Looking at Literals, Constants, and ENUMEratiQNS..........cc.uuvieeeccceeiieciiiiieeee e ccmmmeeeeeeee e e 321
) =T = L PP 321
LO70] 15112 | £ PP 322
ENUMEIALIONS. ...ttt ottt mrmeee ettt e e e e e e s s e aab b mammn e e e e s s anbeb b e e et e e s mmmmm e e e e 322
EXPIOriNg Variable SCOPE.......uuiiiiiiiiie et ceeeee ettt eeee e e e st e e s mmmmm et e e e e e e e e e s e mmnns 323
BIOCKLEVEI SCOPE......cciiiiieiieeeeeeietceeeee et mmmmmm s e s s e s e e e e e e e e e e e e e e e eaeeeeeeeeeeeeeess mmnnnnees 323

L Tt =To LU SIS Yoo o SRR 323
oo [U 1T o o o = 324
Understanding Data Type CONVEISION.........cocuuuiiiiiarcc e eeeieeiieeeeeeeee e mmmenabeeeeeeeeeeesesssnsmmeeeneeeees 324
g o] 11071 @ T 7= =1 (o o S 324
o o] 0] 01Y/=] €= o N PP O TP PPP R OPPRR 325
Widening and Narrowing CONVEISIONS........uuutiititeeacmiteeeeeeatbeeeeessteesmmsbre e e e s sbbeeee e ssmmmmmmnes 325
WOrKING WIth OPEIALOLSeiiiiiiiiiteitaaei ettt e e e e mmmn et et e ettt e e e e e e s s s s mmmmeneeeeeeesesannnsebee s e 325
AITNMETIC OPEIALOLS. ... eeiiiii ittt ceee et eeeem et ettt e s mmeen st e e e s aabbe e e e s s mmennn s 325
COMPATISON OPEIALOLS. .. .veeeeeiiutiieee e ceeiam bt ee e e e sttt e e e e s eaaam e bee e e e e ettt e e e e s maamm s beeee e e anbbeee e e s eems 326
(o o [or= L@ o 1= r= 1o] £ T PP PRSPPI 327
TEINAIY OOeeeeiiiieeeei e it mrreee e e e e e s sttt mmm st e e ettt e e e e e s mmmmnn ettt e eaeeesaesanns s mmnnn e e e s 328
INtroducing DECISION SIUCTULESceviiieee i ceeeee e e e e e e e ettt oo et e e e e e e e e mmmnnnaeeeeeeeaeeeeas 328
L] = U= 0=) PR 328
SWILCN STAEIMENLS.eitiiiitiii e eeeee ettt e et eeeaa e e e e s e bbbt e e et e mmmmm et bbb e e e e e e e e e e s e s s mmmneeeeas 329

L0 LTl 0T o ST (0 o] (1] =SS 330
WHIIE SEAEMENL.......eiiiiiie i ceeeee ettt ettt e e e e s mmmmee et e ee e e e e e s e e ansnb b mammn e e e an 330
DOWNIIE STALEMENL.....cciiiiiiii it ettt mmne bttt et e e e e e e s s meeeee e e e e e e e e e e anbbebe e e mmmmn s 330
FOr SEAIEMENL. ... e mmmmmm s e e e e e e e e e e e e e e e e e e e 331
FOr EACh STatemMENT.....coo it ommm ettt e eeeeee e e e e e e s b e e e mmmmn s 331
INtrodUCING METNOUS.......eiiiiiie ettt mreeee et e e e e e e et s 331
Z Appendix B: Exception HandliN@Ch............ooooiiiiiiiiiceeeee e 333
Y E=Ta = To L a1l =bCol=T o) o] o 1S PP PPPP PP 333
Using the .NET Framework EXCEption ClaSSES.......cuuuiuuitocceeeeeeiiiiieee et mmmee e e 335
Z Appendix C: Installing the Required SOftWAIE............iiiiiccrce e eeeeen s 337
Installing the Sample Databases..........cccuvuiiiamrcc e e e e cmmemn e e e e e e e e e s memnnneeeeeeeennnnnes 337

y CONTEN1

Verifying the Database INStAllS...........oeeiiiii e rrrree e oo e e e 338
S |1 L= OSSO PP P PPUPPPR 383

Xi

Xii

About the Author

v Dan Clark is a senior IT consultant specializing in .NET and SQL
Server technology. He is particularly interested in C# programming
and SQL Server Business Intelligence development. Dan is a
Microsoft Certified Trainer and a Microsoft Certified Solution
Developer. For over a de cade, he has been developing applications
and training others to develop applications using Microsoft
technologies. Dan has published several books and numerous
articles on .NET programming. He is a regular speaker at various
developer conferences and user group meetings, and he conducts
workshops in object - oriented programming and database
development. He finds particular satisfaction in turning new
developers on to the thrill of developing and designing object -

oriented applications. You can reach Danat Clark.drc@gmail.com.

mailto:Clark.drc@gmail.com

About the Technical Reviewer

v Jeff Sanders is a published author, technical reviewer, and an
accomplished technologist. He is currently employed with Avanade
in the capacity of Group Manager/Senior Architect.

Jeff has years of professional experience in the field of IT and
strategic business consulting, leading both sales and delivery efforts.
He regularly contributes to certification and product roadmap
development with Microsoft and speaks publicly on Microsoft
enterprise technologies. With roots in software development, Jeff's
areas of expertise include operational intelligence, collaboration and
content management solutions, digital marketing, distributed
component - based application architectures, object - oriented analysis
and design, and enterprise integration patterns and designs.

Jeff is also the CTO of DynamicShift, a client - focused
organization specializing in Microsoft technologies, specifically
SharePoint Server, Streamlinsight, Windows Azure, AppFabric,
Business Activity Monitoring, BizTalk Server, Commerce Server, and .NET. He is a Microsoft
Certified Trainer, and he leads DynamicShift in both training and consulting efforts.

He enjoys non - work - related travel and spending time with his wife and daughter . and
wishes he more time for both. He may be reached at jeff.sanders@dynamicshift.com.

13

mailto:jeff.sanders@dynamicshift.com

Acknowledgments

A special thanks to the following people who made this book possible:

14

Jonathan Hassell for once again leading the effort to get the project approval.

Corbin Collins for keeping me on task and for managing the madness.
Jeff Sanders for the helpful suggestions and making sure this book was technically
accurate.

John Osborn for clarifying my thoughts and increasing the readability of this book.
The rest of the team at Apress for once again making the process of writing an
enjoyable experience.

And, last but not least, my family for their patience.

