
55  

 

C H A P T E R 4 

Designing OOP 
Solutions: A Case Study 

Designing solutions for an application is not an easy endeavor. Becoming an accomplished 
designer takes time and a conscious effort, which explains why many developers avoid it like the 
plague. You can study all the theories and know all the buzzwords, but the only way to truly 
develop your modeling skills is to roll up your sleeves, get your hands dirty, and start modeling. In 
this chapter, you will go through the process of modeling an office - supply ordering system. 
Although this is not a terribly complex application, it will serve to help solidify the modeling 
concepts covered in the previous chapters. By analyzing the case st udy, you will also gain a better 
understanding of how a model is developed and how the pieces fit together.  

After reading this chapter, you should be familiar with the following:  

 ̋ How to model an OOP solution using UML.  

 ̋ Some common OOP design pitfalls to avoid.  

Developing an OOP Solution 
In the case - study scenario, your company currently has no standard way for departments to order 
office supplies. Each department separately implements its own ordering process. As a result, it is 
next to impossible to trac k company - wide spending on supplies, which impacts the ability to 
forecast budgeting and identify abuses. Another problem with the current system is that it does 
not allow for a single contact person who could negotiate better deals with the various vendor s. 

As a result, you have been asked to help develop a company - wide office - supply 
ordering (OSO) application. To model this system you will complete the following steps:  

 ̋ Create an SRS.  

 ̋ Develop the use cases.  

 ̋ Diagram the use cases.  

 ̋ Model the classes.  

 ̋ Model the user interface design.  

Creating the System Requirement Specification 
After interviewing the various clients of the proposed system, you develop the SRS. Remember 
from Chapter 2 that the SRS scopes the system requirements, defines the system boundaries,  and 
identifies the users of the system.  

You have identified the following system users:  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

56  

 

 

 ̋ Purchaser.  Initiates a request for supplies.  

 ̋ Department manager.  Tracks and approves supply requests from department 
purchasers.  

 ̋ Supply vendor processing application.  Receives order files generated by the 
system.  

 ̋ Purchase manager.  Updates the supply catalog, tracks supply requests, and 
checks in delivered items.  

You have identified the following system requirements.  

 ̋ Users must log in to the system by supplying a userna me and password.  

 ̋ Purchasers will view a list of supplies that are available to be ordered.  

 ̋ Purchasers will be able to filter the list of supplies by category.  

 ̋ Purchasers can request multiple supplies in a single purchase request.  

 ̋ A department manager can request general supplies for the department.  

 ̋ Department managers must approve or deny supply requests for their 
department at the end of each week.  

 ̋ If department managers deny a request, they must supply a short explanation 
outlining the reason for the den ial.  

 ̋ Department managers must track spending within their departments and ensure 
there are sufficient funds for approved supply requests.  

 ̋ A purchase manager maintains the supply catalog and ensures it is accurate and 
current.  

 ̋ A purchase manager checks in t he supplies when they are received and 
organizes the supplies for distribution.  

 ̋ Supply requests that have been requested but not approved are marked with a 
status of pending.  

 ̋ Supply requests that have been approved are marked with a status of approved 
and an order is generated.  

 ̋ Once an order is generated, a file containing the order details is placed in an 
order queue. Once the order has been placed in the queue, it is marked with a 
status of placed.  

 ̋ A separate supply vendor processing application will retr ieve the order files 
from the queue, parse the documents, and distribute the line items to the 
appropriate vendor queues. Periodically, the supply vendor processing 
application will retrieve the orders from a vendor queue and send them to 
the vendor.  

 ̋ When all the items of an order are checked in, the order is marked with a 
status of fulfilled and the purchaser is informed that the order is ready for 
pick up.  

Developing the Use Cases 
After generating the SRS and getting the appropriate system users to sign off on it, the next task 
is to develop the use cases, which will define how the system will function from the users' 
perspective. The first step in developing the use cases is to def ine the actors. Remember from 
Chapter 2 that the actors represent the external entities (human or other systems) that will 



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

57  

 

 

interact with the system. From the SRS, you can identify the following actors that will interact 
with the system:  

 ̋ Purchaser  

 ̋ Departmen t manager  

 ̋ Purchase manager  

 ̋ Supply vendor processing application  

Now that you have identified the actors, the next step is to identify the various use cases 
with which the actors will be involved. By examining the requirement statements made in the 
SRS, you ÈÆÓdÎÉÊÓÙÎËÞdÙÍÊdÛÆ×ÎÔÚØdÚØÊdÈÆØÊØrd«Ô×dÊÝÆÒÕÑÊpdÙÍÊdØÙÆÙÊÒÊÓÙd̆ºØÊ×ØdÒÚØÙdÑÔÌdÎÓdÙÔd
ÙÍÊdØÞØÙÊÒdÇÞdØÚÕÕÑÞÎÓÌdÆdÚØÊ×ÓÆÒÊdÆÓÉdÕÆØØÜÔ×É̇dÎÓÉÎÈÆÙÊØdÙÍÊdÓÊÊÉdËÔ×dÆd±ÔÌÎÓdÚØÊdÈÆØÊrd
Table 4 - 1 identifies the use cases for the OSO application.  

 

Table 4 - 1. Use Cases  for the OSO Application   

Name Actor(s) Description 

Login  Purchaser, Department 
manager, Purchase 
manager  

Users see a login screen. They then enter their 
username and password. They either click Log 
In or Cancel. After login, they see a screen 
containing  product information.  

View Supply Catalog  Purchaser, Department 
manager, Purchase 
manager  

Users see a catalog table that contains a list of 
supplies. The table contains information such 
as the supply name, category, description, and 
cost. Users can filter  supplies by category.  

(continued)  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

58  

 

 

 

Diagramming the Use Cases 
Now that you have identified the various use cases and actors, you are ready to construct a 
diagram of the use cases. Figure 4 - 1 shows a preliminary use case model developed with UMLet, 
which was introduced in Chapter 2.  

Table 4 - 1. (continued)  
Name Actor(s) Description 

Purchase Request  Purchaser, Department 
manager  

Purchasers select items in the table and click a 
button to add them to their cart. A separate 
table shows the items in their cart, the number 
of each item requested and the cost, as well as 
the total cost of the request.  

Department Purchase 
Request  

Department manager  Department managers select items in the table 
and click a button to add them to their cart. A 
separate tab le shows the items in their cart, 
the number of each item requested and the 
cost, as well as the total cost of the request.  

Request Review  Department manager  Department managers see a screen that lists all 
pending supply requests for members of their 
department. They review the requests and 
mark them as approved or denied. If they deny 
the request, they enter a brief explanation.  

Track Spending  Department manager  Department managers see a screen that lists 
the monthly spending of department members 
as well as the running total of the department.  

Maintain Catalog  Purchase manager  The purchase manager has the ability to update 
product information, add products, or mark 
products as discontinued. The administrator 
can also update category information, add  
categories, and mark categories as 
discontinued.  

Item Check In  Purchase manager  The purchase manager sees a screen for 
entering the order number. The purchase 
manager then sees the line items listed for the 
order. The items that have been received are 
marked. When all the items for an order are 
received, it is marked as fulfilled.  

Order Placement  Supply vendor 
processing application  

The supply vendor processing application 
checks the queue for outgoing order files. Files 
are retrieved, parsed, and sent  to the 
appropriate vendor queue.  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

59  

 

 

 

After you have diagrammed the use cases, you now look for any relationships that may exist 
between the use cases. Two relationships that may exist are the includes relationship an d the 
extends relationship. Remember from the discussions in Chapter 2 that when a use case includes 
another use case, the use case being included needs to run as a precondition. For example, the 
Login use case of the OSO application needs to be included i n the View Supply Catalog use case. 
The reason you make Login a separate use case is that the Login use case can be reused by one 
or more other use cases. In the OSO application, the Login use case will also be included with the 
Track Spending use case. Fi gure 4 - 2 depicts this includes relationship.  

ͮNote In some modeling tools, the includes relationship may be indicated in the use case diagram 

by the uses keyword.

 

Figure 4 - 1. Preliminary OSO use case diagram  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

60  

 

 

 

ʫ 
]  

«extends» 

OSO Use Case 

 

 

 

The extends relationship  exists between two use cases when, depending on a condition, a 
use case will extend the behavior of the initial use case. In the OSO application, when a 
manager is making a purchase request, she can indicate that she will be requesting a purchase 
for the department. In this case, the Department Purchase Request use case becomes an 

extension of the Purchase Request use case. Figure 4 - 3 diagrams 
this extension.  

 

After analyzing the s ystem requirements and use cases, you can 
make the system development more manageable by breaking up the application and developing 
it in phases. For example, you can develop the Purchase Request portion of the application 
first. Next, you can develop Requ est Review portion, and then the Item Check In portion. The 
rest of this chapter focuses on the Purchase Request portion of the application. Employees and 
department managers will use this part of the application to make purchase requests. Figure 4 -
4 shows  the use case diagram for this phase.

 

 

Figure 4 - 2. Including the Login use case  

 

Figure 4 - 3. Extending the Purchase Request use case  

«includes» 
ᾛ 

«includes» 
N 



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

61  

 

 

 

Developing the Class Model 
Developing the class model involves several tasks. You begin by identifying the classes, and then 
you add attributes, associations, and behaviors.  

Identifying the Classes 

After you have identified the various use cases, you can start identifying the classes the system 
needs to include to carry out the functionality described in the use cases. To identify the classes, 
you drill down into each use case and define a series of steps needed to  carry it out. It is also 
helpful to identify the noun phrases in the use case descriptions. The noun phrases are often good 
indicators of the classes that will be needed.  

For example, the following steps describe the View Supply Catalog use case:  

 ̋ User has  logged in and been assigned a user status level. 
(This is the precondition.)  

 ̋ Users are presented with a catalog table that contains a list of 
supplies. The table contains information such as the supply name, 

 



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

62  

 

 

category, description, and cost.  

 ̋ Users can filter supplies by category.  

 ̋ Users are given the choice of logging out or making a purchase request.  
(This is the postcondition.)  

From this description, you can identify a class that will be responsible for retrieving product 
information from the database and filtering the products being displayed. The name of this class 
will be the ProductCatalog class.  

Examining the noun phrases in the use case descriptions dealing with making purchase 
requests reveals the candidate classes for the OSO application, as lis ted in Table 4 - 2. 

 

Now that you have identified the candidate classes, you need to eliminate the classes that 
indicate redundancy. For example, a reference to items and line items would represent the same 
abstraction. You can also eliminate classes that represent attributes rather than objects. 
Username, pa ssword, and cost are examples of noun phrases that represent attributes. Some 
classes are vague or generalizations of other classes. User is actually a generalization of 
purchaser and manager. Classes may also actually refer to the same object abstraction but 
indicate a different state of the object. For example, the supply request and order represent the 
same abstraction before and after approval. You should also filter out classes that represent 
implementation constructs such as list and table. For exampl e, a cart is really a collection of 
order items for a particular order.  

Using these elimination criteria, you can whittle down the class list to the following candidate  

classes:  

 ̋ Employee  

 ̋ DepartmentManager  

 ̋ Order  

 ̋ OrderItem  

 ̋ ProductCatalog  

Table 4 - 2. Candidate Classes Used to Make Purchase Requests  
Use Case Candidate Classes 

Login  User, username, password, success, failure  

View Supply Catalog  User, catalog table, supplies, information, supply 
name, category, description, cost  

Purchase Request  Purchaser, items, cart, number, item requested, 
cost, total cost  

Department Purchase Request  Department manager, items, cart, number, item 
requested, cost, total cost, department purchase 
request  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

63  

 

 

 ̋ Product  

You can also  include classes that represent the actors that will interact with the system. 
These are special classes called actor classes and are included in the class diagram to model the 
interface between the system and the actor. For example, you could designate a Purchaser(UI) 
actor class that represents the GUI that a Purchaser (Employee or DepartmentManager) would 
interact with to make a purchase request. Because these classes are not actually part of the 
system, the internal implementations of these classes are encapsulated, and they are treated as 
black boxes to the system.  

You can now start formulating the class diagram for the Purchase Request portion of 
the OSO application. Figure 4 - 5 shows the preliminary class diagram for the OSO 
application.  

 

 

Figure 4 - 5. Preliminary OSO class diagram  

Adding Attributes to the Classes 

The next stage in the development of the class model is to identify the level of abstraction the 
classes must implement. You determine what state information is relevant to the OSO application. 
This required state information will be implemented through the attributes of the class. Analyzing 
the system requirements for the Employee class reveals the need for a login name, password, 
and department. You also need an identifier such as an employee ID to uniquely identify various 
employees. An interview with managers revealed the need to include the first and last names of 
the employee so that they can track spend ing by name. Table 4 - 3 summarizes the attributes that 
will be included in the OSO classes.  

Purchaser (Ul)  Employee  ProductCatalog  Product 

DepartmentManager  Order  Orderltem 



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

64  

 

 

  

Table 4 - 3. OSO Class Attributes  
Class Attribute Type 

Employee  EmployeeID  Integer  

 LoginName  String  

 Password  String  

 Department  String  

 FirstName  String  

 LastName  String  

DepartmentManager  EmployeeID  Integer  

 LoginName  String  

 Password  String  

 Department  String  

 FirstName  String  

 LastName  String  

Order  OrderNumber  Long  

 OrderDate  Date 

 Status  String  

OrderItem  ProductNumber  String  

 Quantity  Short  

 UnitPrice  Decimal  

Product  ProductNumber  String  

 ProductName  String  

 Description  String  

 UnitPrice  Decimal  

 Category  String  

 VendorCode  String  

ProductCatalog  None  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

65  

 

 

Order 

OrderNo:Long 
OrderDate:Date 
Status:String 

Orderltem 

ProductNo:String 
Quantity:lnteger 
UnitPrice:Real 

Figure 4 - 6 shows the OSO class diagram with the class attributes. I have left out the 
attributes for the DepartmentManager class. The DepartmentManager class will probably inherit 
the attributes listed for the Employee class.

 
 

Purchaser (Ul) 

Employee 
Employeeld:lntege
r 
LoginName:String 
Password:String 
Department:String 
FirstName:String 
LastNameLString 

ProductCatalog 

 ______ Product 
ProductNo:String 
ProductName:Stri
ng 
Description:String 
UnitPrice:Decimal 
Category:String 
VendorGode:Strin
g

 

DepartmentManager 

Figure 4 - 6. The Purchase Request component class diagram with attributes added  

Identifying Class Associations 

The next stage in the development process is to model the class associations that will exist 
in the OSO application. If you study the use cases and SRS, you can gain an understanding of 
what types of associations you need to incorporate into the class structural design.  

ͮNote You may find that you need to further refine the SRS to expose the class associations.  

For example, an employee will be associated with an order. By examining the 
multiplicity of the association, you discover that an employee can have multiple orders, but 
an order can be associated with only one employee. Figure 4 - 7 models this association.  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

66  

 

 

 

As you start to identify the clas s attributes, you will notice that the Employee class and 
the DepartmentManager class have many of the same attributes. This makes sense, because 
a manager is also an employee. For the purpose of this application, a manager represents an 
employee with spec ialized behavior. This specialization is represented by an inheritance 
relationship, as shown in Figure 4 - 8.

 

Figure 4 - 7. Depicting the association between the Employee class and the Order class  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

67  

 

 

 

Figure 4 - 8. The DepartmentManager class inheriting from the Employee class  

The following statements sum up the associations in the OSO class structure:  

 ̋ An Order is a collection of OrderItem objects.  

 ̋ An Employee can have multiple Order objects.  

 ̋ An Order is associated with one Employee.  

 ̋ The ProductCatalog is associated with multiple Product objects.  

 ̋ A Product is associated with the ProductCatalog.  

 ̋ An OrderItem is associated with one Product.  

 ̋ A Product may be associated with multiple OrderItem objects.  

 ̋ A DepartmentManager is an Employee with specialized behavior.  

 

Figure 4 - 9. The Purchase Request component class diagram with associations added  

Modeling the Class Behaviors 

Now that you have sketched out the preliminary structure of the classes, you are ready to 
model how these classes will interact and collaborate. The first step in this process is to drill 
down into the use case descriptions and create a more detailed scenario of how the use case 
will be carried out. The following scenario describes one possible sequence for carrying out th e 
Login use case.  

1. The user is presented with a login dialog box.  

2. The user enters a login name and a password.  

3. The user submits the information.  

 

Figure 4 - 9 shows these various associations (excluding the class attribu tes for clarity).  

 



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

68  

 

 

4. The name and password are checked and verified.  

5. The user is presented with a supply request screen.  

Although this scenario depicts the most common processing involved with the Login use case, 
you may need other scenarios to describe anticipated alternate outcomes. The following scenario 
describes an alternate processing of the Login use case:  

1. The user is presente d with a login dialog box.  

2. The user enters a login name and a password.  

3. The user submits the information.  

4. The name and password are checked but cannot be verified.  

5. The user is informed of the incorrect login information.  

6. The user is presented with a login dialog box again.  

7. The user either tries again or cancels the login request.  

At this point, it may help to create a visual representation of the scenarios outlined for the use 
case. Remember from Chapter 3 that activity diagrams are often used to visualize use case 
processing. Figure 4 - 10 shows an activity diagram constructed for the Login use case scenarios.  

 

After analyzing the process involved in the use case scenarios, you can now turn your 
attention to assigning the necessary behaviors to the classes of the system. To help identify the 
class behaviors and interactions that need to occur, you construct a sequence diagram, as 
discussed in Chapter 3.   

 

Figure 4 - 10. An activity diagram depicting the Login use case scenarios  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

69  

 

 

Employee 

PurchaserflJI) 

Figure 4 - 11 shows a sequence diag ram for the Login use case scenarios. The Purchaser (UI) 
class calls the Login method that has been assigned to the Employee class. The message returns 
information that will indicate whether the login has been verified.  

Purchaser(UI) 

Login Login Response 

Figure 4 - 11. A sequence diagram depicting the Login use case scenarios  

Next, let's analyze the View Supply Catalog use case. The following scenario describes the use 
case:  

1. User logged in and has been verified.  

2. User views a catalog table that  contains product information, including the supply name, 
category, description, and price.  

3. User chooses to filter the table by category, selects a category, and refreshes the table.  

From this scenario, you can see that you need a method of the ProductCata log class that 
will return a listing of product categories. The Purchaser class will invoke this method. Another 
method the ProductCatalog class needs is one that will return a product list filtered by category. 
The sequence diagram in Figure 4 - 12 shows th e interaction that occurs between the Purchaser 
(UI) class and the ProductCatalog class.  

ProductCatalog 

  

 

Figure 4 - 12. A sequence diagram depicting the View Supply Catalog scenario  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

70  

 

 

  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

71  

 

 

The following scenario was developed for the Purchase  Request use case:  

1. A purchaser has logged in and has been verified as an employee.  

2. The purchaser selects items from the product catalog and adds them to the 
order request (shopping cart), indicating the number of each item 
requested.  

3. After completing the item selections for the order, the purchaser submits 
the order.  

4. Order request information is updated, and an order ID is generated and 
returned to the purchaser.  

From the scenario, you can identify an AddItem method of the Order class that needs to be 
crea ted. This method will accept a product ID and a quantity, and then return the subtotal of the 
order. The Order class will need to call a method of the OrderItem class, which will create an 
instance of an order item. You also need a SubmitOrder method of th e Order class that will 
submit the request and the return order ID of the generated order. Figure 4 - 13 shows the 
associated sequence diagram for this scenario.  

 

Some other scenarios that need to be included are deleting an item from the shopping cart, 
changing the quantity of an item in the cart, and canceling the order process. You will also need 
to include similar scenarios and create si milar methods for the Department Purchase Request 
use case. After analyzing the scenarios and interactions that need to take place, you can 
develop a class diagram for the Purchase Request portion of the application, as shown in Figure 
4- 14.

 

Figure 4 - 13. A sequence diagram depicting the Purchase Request scenario  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

72  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - 14. Purchase Request class diagram  

Developing the User Interface Model Design 

At this point in the application design process, you don't want to commit to a particular GUI 
implementation (in other words, a technology - specific one). It is helpful, however, to model 
some of the common elements and functionality required of a GUI for the application. This will 
help you create a prototype user interface that you can use to verify the business logic design 
that has been developed. The users will be able to interact with the prototype and provide 
feedback and verification of the logical design.  

The first prototype screen that  you need to implement is the one for logging in. You can 
construct an activity diagram to help define the activities the user needs to perform when 
logging in to the system, as shown in Figure 4 - 15.

OrderItem 

ProductNo:String 
Quantity:lnteger 
UnitPrice:Real 

 ___________ 1 ___________  

Purchaser (Ul) 
1..n 

-4 contains 
«inherits»  __ I  Product 

1..n 

DepartmentManager 

ApprovePurchaseQ 

Employee makes an Ƹ Order 

Employeeld:lnteger 
LoginName:String 
Password:String 

Department:String 
FirstName:String 
LastName:String 

OrderNo:Long 
OrderDateiDate 
Status:String 1 0..n 

AddltemO 
RemoveltemO 
SubmitOrderQ 

LoginQ  

 
ProductCatalog 

contains 
Ƹ 

contains 
Ƹ 1 

ProductNo:String 
ProductName:String 
Category:String 
Description:String 
UnitPrice:Real 
VendorCode:String 

1 1..n 



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

73  

 

 

 

Analyzing the activity diagram reveals that you can implement the login screen as a fairly 
generic interface. This screen should allow the user to enter a username and password. It 
should include a way to indicate that the user is logging in as  either an employee or a 
manager. The final requirement is to include a way for the user to abort the login process. 
Figure 4 - 16 shows a prototype of the login screen.  

 

The next screen you need to consider is the product catalog screen. Figure 4 - 17 depicts 
the activity diagram for viewing and filtering the products.  

 

Figure 4 - 15. An activity diagram depicting user login activities  

 

Figure 4 - 16. Login screen prototype  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

74  

 

 

 

The activity diagram reveals that the screen needs  to show a table or list of products and 
product information. Users must be able to filter the products by category, which can be 
initiated by selecting a category from a category list. Users also need to be able to initiate an 
order request or exit the ap plication. Figure 4 - 18 shows a prototype screen that can be used to 
view the products.

 

Figure 4 - 17. An activity diagram depicting activities for viewing products  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

75  

 

 

 

The final screen that needs to be prototyped for this part of the application is the shopping 
cart interface. This will fa cilitate the adding and removing items from an order request. It also 
needs to allow the user to submit the order or abort an order request. Figure 4 - 19 shows a 
prototype of the order request screen.  

 

That completes the preliminary design for this phase of the OSO application. You applied 
what you learned in Chapters 2 and 3 to model the design. Next, let's review some common 
mistakes to avoid during this process.  

 

Figure 4 - 18. View products screen prototype  

 

Figure 4 - 19. Order request screen prototype  



CHAPTER 4 ƴ DESIGNING OOP SOLUTIONS: A CASE STUDY 

76  

 

 

Avoiding Some Common OOP Design Pitfalls 
When you start to model your own OOP designs, you want to be sure to follow good 
practice. The following are some of the common traps that you should avoid:  

 ̋ Confusing modeling with documenting.  The main value in modeling is not the 
diagrams produced, but rath er the process you go through to produce the 
diagrams.  

 ̋ Not involving the users in the process:  It is worth emphasizing that users are the 
consumers of your product. They are the ones who define the business 
processes and functional requirements of the system.  

 ̋ Trying to model the whole solution at one timer.  When developing complex 
systems, break up  the system design and development into manageable 
components. Plan to produce the software in phases. This will provide for 
faster modeling, developing, testing, and release cycles.  

 ̋ Striving to create a perfect model:  No model will be perfect from the sta rt. 
Successful modelers understand that the modeling process is iterative, 
and models are continuously updated and revised throughout the 
application development cycle.  

 ̋ Thinking there is only one true modeling methodology.  Just as there are many 
different equally viable OOP languages, there are many equally valid 
modeling methodologies for developing software. Choose the one that works 
best for you and the project at hand.  

 ̋ Reinventing the wheel:  Look for patterns and reusability. If you analyze many 
of the business processes that applications attempt to solve, a consistent set 
of modeling patterns emerge. Create a repository where you can leverage 
these existing patterns from project to project and from programmer to 
programmer.  

 ̋ Letting the data model drive the business logic model:  It is generally a bad idea to 
develop the data model (database structure) first and then build the business 
logic design on top of it. The solution designer should first ask what business 
problem needs to be solved, and then build  a data model to solve the 
problem.  

 ̋ Confusing the problem domain model with the implementation model:  You should 
develop two distinct but complementary models when designing applications. 
A domain model design describes the scope of the project and the processing 
involved in implementing the business solutions. This includes what objects 
will be involved,  their properties and behaviors, and how they interact and 
relate to each other. The domain model should be implementation - agnostic. 
You should be able to use the same domain model as a basis for several 
different architecturally specific implementations. In other words, you should 
be able to take the same domain model and implement it using a Visual Basic 
rich - client, two - tier architecture or a C# (or Java, for that matter) n - tier 
distributed web application.  

Summary 
Now that you have  analyzed the domain model of an OOP application, you are ready to transform 
the design into an actual implementation. The next part of this book will introduce you to the C# 
language. You will look at the .NET Framework and see how C# applications are bui lt on top of 
the framework. You will be introduced to working in the Visual Studio IDE and become familiar 
with the syntax of the C# language. The next section will also demonstrate the process of 
implementing OOP constructs such as class structures, objec t instantiation, inheritance, and 
polymorphism in C#. You will revisit the case study introduced in this chapter in Chapter 14, at 
which time you will look at transforming the application design into actual implementation code.



77  

 

C H A P T E R 5 

Introducing the .NET 
Framework and Visual Studio 

Business application programming has evolved from a two - tier, tightly coupled model into a 
multitiered, loosely coupled model, often involving data transfer over the Internet or a corporate 
intranet. In an effort to allow programmers to be more productive and deal with the complexities 
of this type of model, Microsoft developed the .NET Framework. To effectively program in C#, 
you need to understand this underlying framework upon which it is built.  

After reading this chapter, you should be familiar with the following:  

 ̋ The .NET Framework.  

 ̋ The features of the Common Language Runtime (CLR).  

 ̋ How the just - in- time (JIT) compiler works.  

 ̋ The .NET Framework base class library.  

 ̋ Namespaces and assemblies.  

 ̋ The features of the Visual Studio integrated development environment.  

Introducing the .NET Framework 
The .NET Framework is a collection of fundamental classes designed to provide the common 
services needed to run applications. Let's look at the goals of the .NET Framework and  then 
review its components.  

Goals of the .NET Framework  

Microsoft designed the .NET Framework with certain goals in mind. The following sections 
examine these goals and how the .NET Framework achieves them.  

Support of Industry Standards 

Microsoft wanted the .NET Framework to be based on industry standards and practices. As a 
result, the framework relies heavily on industry standards such as the Extensible Markup 
Language (XML) and  
Simple Object Access Protocol (SOAP). Microsoft has also submitted a Common  Language 
Infrastructure (CLI) Working Document to the European Computer Manufacturers Association 
(ECMA), which oversees many of the common standards in the computer industry.  

The CLI is a set of specifications needed to create compilers that conform to t he .NET 
Framework. Third - party vendors can use these specifications to create .NET - compliant language 
compilers; for example, Interactive Software Engineering (ISE) has created a .NET compiler for 



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

78  

 

 

Eifle. Third - party vendors can also create a CLR that will allow .NET - compliant languages to run 
on different platforms. One example, Mono is an open source, cross platform implementation of the 
CLR that gives C# applications the ability to run on the Linux platform.  

Extensibility 
To create a highly productive environment in which to program, Microsoft realized the .NET 
Framework had to be extensible. As a result, Microsoft has exposed the framework class hierarchy 
to developers. Through inheritance and interfaces, you can easily access and extend the 
functional ity of these classes. For example, you could create a button control class that not only 
inherits its base functionality from the button class exposed by the .NET Framework, but also 
extends the base functionality in a unique way required by your applicati on. 

Microsoft has also made it much easier to work with the underlying operating system. By 
repackaging and implementing the Windows operating system application programming interface 
(API) functions in a class - based hierarchy, Microsoft has made it more i ntuitive and easier for OOP 
programmers to work with the functionality exposed by the underlying operating system.  

Unified Programming Models 
Another important goal Microsoft incorporated into the .NET Framework was cross - language 
independence and integrat ion. To achieve this goal, all languages that support the Common 
Language Specification (CLS) compile into the same intermediate language, support the same set of 
basic data types, and expose the same set of code - accessibility methods. As a result, not onl y can 
classes developed in the different CLS - compliant languages communicate seamlessly with one 
another, but you can also implement OOP constructs across languages. For example, you could 
develop a class written in C# that inherits from a class written us ing Visual Basic (VB). Microsoft 
has developed several languages that support the .NET Framework. Along with C#, the languages 
are VB, managed C++,  JScript, and F#. In addition to these languages, many third - party vendors 
have developed versions of other p opular languages designed to run under the .NET Framework, 
such as Pascal and Python.  

Easier Deployment 
Microsoft needed a way to simplify application deployment. Before the development of the .NET 
Framework, when components were deployed, component inform ation had to be recorded in the 
system registry. Many of these components, especially system components, were used by several 
different client applications. When a client application made a call to the component, the registry 
was searched to determine the metadata needed to work with the component. If a newer version of 
the component was deployed, it replaced the registry information of the old component. Often, the 
new components were incompatible with the old version and caused existing clients to fail. Y ou 
have probably experienced this problem after installing a service pack that ended up causing more 
problems than it fixed!  

The .NET Framework combats this problem by storing the metadata for working with the 
component in a manifest, which is packaged in the assembly containing the component code. An 
assembly is a package containing the code, resources, and metadata needed to run an 
application. By default, an assembly is marked as private and placed in the same directory as the 
client assembly. This ensur es that the component assembly is not inadvertently replaced or 
modified and also allows for a simpler deployment because there is no need to work with the 
registry. If a component needs to be shared, its assembly is deployed to a special directory 
referre d to as the Global Assembly Cache (GAC). The manifest of the assembly contains 
versioning information, so newer versions of the component can be deployed side by side with 
the older versions in the GAC. By default, client assemblies continue to request and  use the 
versions of the components they were intended to use. Older client assemblies will no longer fail 
when newer versions of the component are installed.  



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

79  

 

 

Improved Memory Management 

A common problem of programs developed for the Windows platform has been memory 
management. Often, these programs have caused memory leaks. A memory leak occurs when a 
program allocates memory from the operating system but fails to release the memory after it is 
finished working with the memory. This problem is compounded when the program is intended to 
run for a long time, such as a service that runs in the background. To combat this problem, the 
.NET Framework uses nondeterministic finalization. Instead of relying on the applications to 
deallocate the unused memory, the f ramework uses a garbage collection object. The garbage 
collector periodically scans for unused memory blocks and returns them to the operating system.  

Improved Security Model 

Implementing security in today's highly distributed, Internet - based applications is an extremely 
important issue. In the past, security has focused on the user of the application. Security 
identities were checked when users logged in to an application, and their identities were passed 
along as the application made calls to remote serve rs and databases. This type of security model 
has proven to be inefficient and complicated to implement for today's enterprise - level, loosely 
coupled systems. In an effort to make security easier to implement and more robust, the .NET 
Framework uses the co ncept of code identity and code access.  

When an assembly is created, it is given a unique identity. When a server assembly is 
created, you can grant access permissions and rights. When a client assembly calls a server 
assembly, the runtime will check the p ermissions and rights of the client, and then grant or deny 
access to the server code accordingly. Because each assembly has an identity, you can also 
restrict access to the assembly through the operating system. If a user downloads a component 
from the We b, for example, you can restrict the component's ability to read and write files on the 
user's system.  

Components of the .NET Framework 
Now that you have seen some of the major goals of the .NET Framework, let's take a look at the 
components it comprises.  

Common Language Runtime 
The fundamental component of the .NET Framework is the CLR. The CLR manages the code 
being executed and provides for a layer of abstraction between the code and the operating 
system. Built into the CLR are mechanisms for the following:  

 ̋ Loading code into memory and preparing it for execution.  

 ̋ Converting the code from the intermediate language to native code.  

 ̋ Managing code execution.  

 ̋ Managing code and user - level security.  

 ̋ Automating deallocation and release of memory.  

 ̋ Debugging and tracing code execution.  

 ̋ Providing structured exception handling.  

Framework Base Class Library 
Built on top of the CLR is the .NET Framework base class library. Included in this class 
library are reference types and value types that encapsulate access to the system 
functionality. Types  are data structures. A reference type is a complex type ˿for exam ple, 
classes and interfaces. A value type is simple type ˿for example, integer or Boolean. 
Programmers use these base classes and interfaces as the foundation on which they build 
applications, components, and controls. The base class library includes types that 



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

80  

 

 

encapsulate data structures, perform basic input/output operations, invoke security 
management, manage network communication, and perform many other functions.  

Data Classes 
Built on top of the base classes are classes that support data management. This set of classes is 
commonly referred to as ADO.NET. Using the ADO.NET object model, programmers can access 
and manage data stored in a variety of data storage structures through managed providers. 
Microsoft has written and tuned the ADO.NET classes and  object model to work efficiently in a 
loosely coupled, disconnected, multitiered environment. ADO.NET not only exposes the data from 
the database, but also exposes the metadata associated with the data. Data is exposed as a sort 
of mini - relational databas e. 
This means that you can get the data and work with it while disconnected from the data source, 
and later synchronize the data with the data source.  

Microsoft has provided support for several data providers. Data stored in Microsoft SQL 
Server can be acc essed through the native SQL data provider. OLEDB and Open Database 
Connectivity (ODBC) managed providers are two generic providers for systems currently 
exposed through the OLEDB or ODBC standard APIs. Because these managed data providers do 
not interface  directly with the database engine but rather talk to the unmanaged provider, which 
then talks to the database engine, using nonnative data providers is less efficient and robust than 
using a native provider. Because of the extensibility of the .NET Framew ork and Microsoft's 
commitment to open - based standards, many data storage vendors now supply native data 
providers for their systems.  

Built on top of the ADO.NET provider model is the ADO.NET Entity Framework. The Entity 
Framework bridges the gap between t he relation data structure of the database and the object 
oriented structure of the programming language. It provides an Object/Relational Mapping (ORM) 
framework  
that eliminates the need for programmers to write most of the plumbing code for data access. The 
framework provides services such as change tracking, identity resolution, and query translation. 
Programmers retrieve data using Language Integrated Query (LINQ) and manipulate data as 
strongly typed objects. Chapter 10 takes a detailed look at ADO.NET  and data access.  

Windows Applications 

Prior to the .NET Framework, developing Windows GUIs was dramatically different depending 
on whether you were developing using C++ or Visual Basic. Although developing GUIs in VB was 
easy and could be accomplished very quickly, VB developers were isolated and not fully exposed 
to the underlying features of the Windows API. On the other hand, although exposed to the full 
features of the Windows API, developing GUIs in C++ was very tedious and time consuming. With 
the  .NET Framework Microsoft has incorporated a set of base classes exposing advanced Windows 
GUI functionality equally among the .NET - compliant languages. This has allowed Windows GUI 
development to become consistent across the various .NET - enabled programmi ng languages, 
combining the ease of development with the full features of the API.  

Along with Windows forms and controls, .NET Framework includes a set of classes collectively 
referred to as the Windows Presentation Foundation (WPF). WPF integrates a rende ring engine 
that is built to take advantage of modern graphics hardware. It also includes application 
development features such as controls, data binding, layout, graphics, and animation. With the WPF 
set of classes, programmers can create applications tha t provide an extremely rich user 
experience. You will look more closely at building WPF based applications in Chapter 11.  

Web Applications 

The .NET Framework exposes a base set of classes that can be used on a web server to create 
user interfaces and servi ces exposed to web - enabled clients. These classes are collectively 
referred to as ASP.NET. Using ASP.NET, you can develop one user interface that can dynamically 
respond to the type of client device making the request. At runtime, the .NET Framework takes 
care of discovering the type of client making the request (browser type and version) and exposing 



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

81  

 

 

an appropriate interface. The GUIs for web applications running on a Windows client have become 
more robust because the .NET Framework exposes much of the API  functionality that previously 
had been exposed only to traditional Windows Forms - based C++ and VB applications. Another 
improvement in web application development using the .NET Framework is that server - side code 
can be written in any .NET - compliant langu age. Prior to .NET, server - side code had to be written 
in a scripting language such as VBScript or JScript.  

In order to provide users with web - based applications that rival the feature - rich Windows -
based GUI applications, Microsoft has developed Silverligh t. Silverlight includes a subset of the 
WPF technology, which greatly extends the elements in the browser for creating UI. Silverlight 
includes support for graphics, animation, media, advanced data integration, and multithreading. 
Chapter 12 covers develop ing web applications with Silverlight.  

Application Services 

Included in the .NET Framework are base class and interface support for exposing services 
that can be consumed by other applications. Previous to the .NET Framework, applications 
developed in C++ and VB used COM technology. Because COM was based on binary standards, 
application - to- application communication through firewalls and across the Internet was not easy to 
implement. The proprietary  
nature of the COM also limited the types of clients that co uld effectively use and 
interact with applications exposing services through COM.  

Microsoft has addressed these limitations by exposing services through Internet standards.  
Included in the .NET Framework is a set of classes collectively referred to as the Windows 
Communication Foundation (WCF). Using WCF, you can send data as messages from one 
application to another. The message transport and content can be easily changed depending on 
the consumer and environment. For example, if the service is exposed over  the Web, a text -
based message over HTTP can be used. On the other hand, if the client is on the same 
corporate network, a binary message over TCP can be used. Chapter 13 covers exposing and 
consuming application services using WCF.  

Working with the .NET Framework 
To work with the .NET Framework, you should understand how it is structured and how 
managed code is compiled and executed. .NET applications are organized and packaged into 
assemblies. All code executed by the .NET runtime must be contained in an assembly.  

Understanding Assemblies and Manifests 
The assembly contains the code, resources, and a manifest (metadata about the assembly) 
needed to run the application. Assemblies can be organized into a single file where all this 
information is incorporate d into a single dynamic link library (DLL) file or executable (EXE) file, 
or multiple files where the information is incorporated into separate DLL files, graphics files, 
and a manifest file. One of the main functions of an assembly is to form a boundary f or types, 
references, and security. Another important function of the assembly is to form a unit for 
deployment.  

One of the most crucial portions of an assembly is the manifest; in fact, every assembly 
must contain a manifest. The purpose of the manifest i s to describe the assembly. It contains 
such things as the identity of the assembly, a description of the classes and other data types the 
assembly exposes to clients, any other assemblies this assembly needs to reference, and 
security details needed to ru n the assembly.  

By default, when an assembly is created, it is marked as private. A copy of the assembly 
must be placed in the same directory or a bin subdirectory of any client assembly that uses it. If 
the assembly must be shared among multiple client assemblies, it is placed in the GAC, a special 
Windows folder. To convert a private assembly into a shared assembly, you must run a utility 
program to create encryption keys, and you must sign the assembly with the keys. After signing 
the assembly, you must use another util ity to add the shared assembly into the GAC. By 
mandating such stringent requirements for creating and exposing shared assemblies, Microsoft 
is trying to ensure that naming collisions and malicious tampering of shared assemblies will not 



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

82  

 

 

occur.  

Referencing Assemblies and Namespaces 
To make the .NET Framework more manageable, Microsoft has given it a hierarchical structure. 
This hierarchical structure is organized into what are referred to as namespaces. By organizing 
the framework into namespaces, the chanc es of naming collisions are greatly reduced. 
Organizing related functionality of the framework into namespaces also greatly enhances its 
usability for developers. For example, if you want to build a window's GUI, it is a pretty good 
bet the functionality y ou need exists in the System.Windows namespace.  

All of the .NET Framework classes reside in the System namespace. The System 
namespace is further subdivided by functionality. The functionality required to work with a 
database is contained in  
the System.Dat a namespace. Some namespaces run several levels deep; for example, the 
functionality used to connect to a SQL Server database is contained in the System.Data.SqlClient 
namespace.  

An assembly may be organized into a single namespace or multiple namespaces. Several 
assemblies may also be organized into the same namespace.  

To gain access to the classes in the .NET Framework, you need to reference the assembly that 
contains the namespace in your code. Then you can access classes in the assembly by providing 
the ir fully qualified names. For example, if you want to add a text box to a form, you create an 
instance of the System.Windows.Controls.TextBox class, like so:  

private System.Windows.Controls.TextBox newTextBox;  

Fortunately, in C#, you can use the using statement at the top of the code file so that you do 
not need to continually reference the fully qualified name in the code:  

using System.Windows.Controls; private TextBox newTextBox;  

Compiling and Executing Managed Code 
When .NET code is compiled, it is c onverted into a .NET portable executable (PE) file. The 

compiler translates the source code into Microsoft intermediate language (MSIL) format. MSIL is 
CPU-  independent code, which means it needs to be further converted into native code before 
executing.  

Along with the MSIL code, the PE file includes the metadata information contained within the 
manifest. The incorporation of the metadata in the PE file makes the code self - describing. There is 
no need for additional type library or Interface Definition Lang uage (IDL) files.  

Because the source code for the various .NET - compliant languages is compiled into the same 
MSIL and metadata format based on a common type system, the .NET platform supports language 
integration. This is a step beyond Microsoft's COM comp onents, where, for example, client code 
written in VB could instantiate and use the methods of a component written in C++.  With .NET 
language integration, you could write a .NET class in VB that inherits from a class written in C# and 
then overrides some o f its methods.  

Before the MSIL code in the PE file is executed, a .NET Framework just - in- time (JIT) compiler 
converts it into CPU - specific native code. To improve efficiency, the JIT compiler does not convert 
all the MSIL code into native code at the same time. MSIL code is converted on an as - needed basis. 
When a method is executed, the compiler checks to see if the code has already been converted and 
placed in cache. If it has, the compiled version is used; otherwise, the MSIL code is converted and 
stored in the cache for future calls.  

Because JIT compilers are written to target different CPUs and operating systems, developers 
are freed from needing to rewrite their applications to target various platforms. It is conceivable 
that the programs you write for a Windows server platform will also run on a UNIX server. All that 
is needed is a JIT compiler for the UNIX architecture.  

Using the Visual Studio Integrated Development Environment 
You can write C# code using a simple text editor and compile it with a command - line compiler. You 



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

83  

 

 

will find, however, that programming enterprise - level applications using a text editor can be 
frustrating and inefficient. Most programmers who code for a liv ing find an integrated development 
environment (IDE) invaluable in terms of ease of use and increased productivity. Microsoft has 
developed an exceptional  
IDE in Visual Studio (VS). Integrated into VS are many features that make programming for the 
.NET Fr amework more intuitive, easier, and more productive. Some of Visual Studio's useful 
features are:  

 ̋ Editor features such as automatic syntax checking, auto completion, and 
color highlighting.  

 ̋ One IDE for all .NET languages.  

 ̋ Extensive debugging support, inclu ding the ability to set breakpoints, step 
through code, and view and modify variables.  

 ̋ Integrated help documentation.  

 ̋ Drag - and- drop GUI development.  

 ̋ XML and HTML editing.  

 ̋ Automated deployment tools that integrate with Windows Installer.  

 ̋ The ability to view  and manage servers from within the IDE.  

 ̋ A fully customizable and extensible interface.  

The following activities will introduce you to some of the many features available in the 
VS IDE. As you work through these steps, don't worry about the coding details.  Just concentrate 
on getting used to working within the VS IDE. You'll learn more about the code in upcoming 
chapters.  

ͮNote If you do not have Visual Studio 2010 installed, refer to Appendix C for installation 
instruction.  

ACTIVITY 5-1. TOURING VISUAL STUDIO 

In this activity, you will become familiar with the following:  

 ̋ Customizing the IDE.  

 ̋ Creating a .NET project and setting project properties.  

 ̋ Using the various editor windows in the VS IDE.  

 ̋ Using the auto syntax check and auto completion features of t he VS IDE.  

 ̋ Compiling assemblies with the VS IDE.  

Customizing the IDE 
To customize the IDE, follow these steps:  

1. ±ÆÚÓÈÍd»¸dÇÞdØÊÑÊÈÙÎÓÌd¸ÙÆ×Ùdͼdµ×ÔÌ×ÆÒØdͼd²ÎÈ×ÔØÔËÙd»ÎØÚÆÑd
Studio 2010.   



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

84  

 

 

d Environment 

General 

Add-in/Macros Security 

Auto Recover 

Documents 

Extension Manager 

Find and Replace 

Fonts and Colors 

Import and Export Settings 

International Settings 

Keyboard 

Startup 

Task List 

Web Browser 

> Projects and Solutions 

> Source Control 

> Text Editor 

> Debugging 

ɆО 0ÅÒÆÏÒÍÁÎÃÅ 4ÏÏÌÓ ___________________  

ͮNote If this is the first time you have launched VS, you will be asked to choose a default 

development setting. Choose the Visual C# Development Settings.  

2. You will be presented with the Start Page. The Start Page contains 
several panes, including one that has links to useful documentation 
posted on the MSDN (Microsoft Develop er Network) web site. 
Clicking one of these links will launch a browser window hosted 
inside VS, which will open the documentation on the MSDN site. 
Take some time to investigate the information and the various links 
exposed to you on the Start Page.  

3. Microsoft has taken considerable effort to make VS a customizable 
design environment. You can customize just about every aspect of 
the layout, from the various windows and menus down to the color 
coding used in the ÈÔÉÊdÊÉÎÙÔ×rd¸ÊÑÊÈÙd¹ÔÔÑØd£ͮd´ÕÙÎÔÓØdÙÔdÔÕÊÓdÙÍÊd
Options dialog box, shown in Figure 5 - 1, that allows you to 

customize many aspects of the IDE.  

Recent files 10 items shown in Window menu 

10 items shown in recently used lists Visual experience 

0 Automatical ly adjust visual experience based on client performance 

0 Enable rich client visual experience 

fy] Use hardware graphics acceleration if available 

Visual Studio is currently using hardware-accelerated rendering. The visual experience settings automatically change based on system 

capabilities. 

[ |˨  Show status bar 

[yl  Close button affects active tool window only ˘  sAuto Hide button affects active tool window only 

Restore File Associations 

OK | [ Cancel 

Figure 5- 1. VS Options dialog box  

4. Click Projects and 
Solutions in the category list on the left 
side of the dialog box. You are presented 
with options to change the default location 
of projects and what happens when you 

build and run a project.  
Select the Always Show Solution the Show Output Window When 
Buil d Starts option.  

5. Investigate some of the other customizable options available. Close 
the Options dialog box when you are finished by clicking the OK 
button.   



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

85  

 

 

4. Click the Windows Application template. Change the name of the 
application to DemoChapter5 an d click the OK button.  

Creating a New Project 
To create a new project, follow these steps:  

1. On the Start Page, click the Create Project link, which launches the New Project 
dialog box. (You can also choose File £  ͮ³ÊÜd£ͮdµ×ÔÏÊÈÙdÙÔdÔÕÊÓdÙÍÎØdÉÎÆÑÔÌd
box.)  

2. The New Project dialog box allows you to create various projects using built - in 
templates. Th ere are templates for creating Windows projects, Web projects, 
WCF projects, as well as many others, depending on what options you chose 
when installing VS.  

3. In the Installed Templates pane, expand the Visual C# node and select the 
Windows node, as shown in Figure 5 - 2. Observe the various C# project 
templates. There are templates for creating various types of Windows 
applications, includi ng Windows Forms - based applications, class libraries, and 
console applications.  

 

 

Figure 5 - 2. VS New Project dialog box  



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

86  

 

 

When the project opens, you will be presented with a form designer for a default form 
(named Forml) that has been added to the project. To the right of this window, you should 
see the Solution Explorer.  

Investigating the Solution Explorer and Class View 

The Solution Explorer displays the projects and files that are part of the current solution, as 
shown in Figure 5 - 3. By default, when you create a project, a solution is created with the same 
name as the project. The solution contains some global information, project - linking information, 
and customization settings, such as a task list and debugging information. A solution may contain 
more th an one related project.  

 

<jy Program.cs 

Figure 5 - 3. Solution Explorer  

Under the solution node is the project node. The project node organizes the various files 
and settings related to a project. The project file organizes this information in an XML 
document, which contains references to the class files that are part of the project, any 
external references needed by the pro ject, and compilation options that have been set. 
Under the Project node is a Properties node, References node, a class file for the Form1 
class, and a Program class file.  

To practice using the Solution Explorer and some VS features and views, follow these  steps:  

1. In the Solution Explorer window, right - click the Properties node 
and select Open. This launches the Project Properties window. 
Along the left side of the window are several tabs you can use to 
explore and set various application settings.  

2. Select the Application tab, as shown in Figure 5 - 4. Notice that, by 
default, the assembly name and default namespace are set to the 
name of the project.

Solution Explorer  * i f x  

ë u J  J ]  ç 

Q -  

1  

Solution 
'DemoChaf  

)ter5' [1 project]  

DemoChapter5  

[> |^] Properties References j Forml.cs 



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

87  

 

 

Application  

Build 

Build Events 

Debug 

Resources 

Services 

Settings 

Reference 

Paths Signing 

 

Resources 

Specify how application resources will be managed:

 

Figure 5 - 4. Project 

Properties Window 3 
Explore some of the other tabs in the Project Properties window. 
Close the window when you are finished by clicking on the x in 
the tab of the window.  

4. In the Solution Explorer window, expand the References node. 
Under the node are the external assemblies referenced by the 
application. Notice that several references have been included by 
default. The default references depend on the type of pr oject. For 
example, since this is a Windows Application project, a reference 
to the System.Windows.Forms namespace is included by default.  

5. The Form1 class file under the Solution Explorer's project node 
has a .cs extension to indicate it is written in C# c ode. By default, 
the name of the file has been set to the same name as the form. 
Double - click the file in the Solution Explorer window. The form is 
shown in Design View. Click the View Code button in the toolbar at 
the top of the Solution Explorer, and the  code editor for the Form1 
class will open.  

6. ¸ÊÑÊÈÙd»ÎÊÜd£ͮd´ÙÍÊ×d¼ÎÓÉÔÜØd£ͮd¨ÑÆØØd»ÎÊÜdÙÔdÑÆÚÓÈÍdÙÍÊd¨ÑÆØØd
View window. The top part of the Class View window organizes 
the project files in terms of the namespace hierarchy. Expanding 
the DemoChap5 root node  reveals three sub nodes: a References 
node, the DemoChap5 namespace node, and DemoChap5 
properties node. A namespace node is designated by the {} symbol 
to the left of the node name.  

7. Listed under the DemoChap5 namespace node are the classes 
that belong to the namespace. Expanding the Form1 node reveals 
a Base Types folder. Expanding Base Types shows the classes 
and interfaces inherited and implemented by the Forml class, as 
shown in Figure 5 - 5. You can further expand the nodes to show  

Assembly name: Default namespace:  

[ǙǗǤǭǴǴ DemoChapter5  

Target framework: Output type:   

 w Windows Application  ,1 
 "1 

Configuration: N/A  Platform: N/A  

Startup object:  

(Not set)  Assembly Information...  



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

88  

 

 

the classes and interfaces inherited and implemented by the 
Form base class.



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

89  

 

 

 

 

 

 

 

J .jjJ DemoChapterS  

[> Project References J ǣ 

DemoChapter5  ̔Forml 

J ȷ Base Types ː
 

: ContainerCcmtrol 

IContainerControl 

ScrollableControl t> ^ 

Control |> ^ IComponent 

--0 IDisposable
 

ƴ -ʕ 

ActivateQ 

ɽ ActivateMdiChild[System.Windows.Fcirnns.Form) V Ad d 

Own ed Form (System ,Wi n d ows. Fo rm s. Form] 

AdjustFormScrollbars(bciol) 

ApplvAutcScalincifl  

* CenterToParentQ 

* CenterToScreenQ 

ƴCi n~.ɂn ________________  
I ˘̆  ̆ I ______________  

Class View 
Solution Explorer HffTeam Explorer  

Figure 5 - 5. Expanded nodes in the Class View  

8. The bottom section of the Class View window is a listing of the 
class's methods, properties, and events. Select the Form node in 
the top section of the Class View window. Notice the considerable 
number of methods, properties, and events listed in the bottom 
section o f the window.  

9. Right - ÈÑÎÈÐdÙÍÊd©ÊÒÔ¨ÍÆÕydÕ×ÔÏÊÈÙdÓÔÉÊdÆÓÉdØÊÑÊÈÙd¦ÉÉd£ͮd¨ÑÆØØrd
Name the class DemoClassl and click the Add button. If the class 
code is not visible in the code editor, double - click the DemoClassl 
node in the Class View window to display it. Wrap the class 
definition code in a namespace declaration as follows:

ƹ ^ X 

lJ A 

Class View 

fj I Ãdͮ J-  

< Search>  



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

90  

 

 

namespace DemoChapter5 {  
namespace 
MyDemoNamespace {  

class 
DemoClassl {  
}  

}  
}  

10. From the Build menu, chose Build Solution. Notice the updated 
hierarchy in the Class View. DemoClass1 now belongs to the 
MyDemoNamespace, which belongs to the DemoChapter5 
namespace. The fully qualified name of DemoClassl is now 
DemoChapter5.MyDemoNamespace.DemoClass1.  

11. Add the following code to the DemoClass1 definition. As you add 
the cod e, notice the auto selection drop - down list provided (see 
Figure 5 - 6). Pressing the Tab key will select the current item on 
the list.  

class DemoClassl: 
System.Collections.CaselnsensitiveComparer {  
}  

System,Collections  

 

Figure 5 - 6. Code selection drop - down list  

12. From the Build menu, chose Build Solution. Notice  the updated 
hierarchy in the Class View. Expand the Base Types node under 
the DemoClass1 node, and you will see the base 
CaseInsensitiveComparer class node. Select this node and you 
will see the methods and properties of the 
CaselnsensitiveComparer class in the lower section of the Class 
View window.

13. Right - click the Compare method of the CaselnsensitiveComparer 
class node and choose Browse Definition. The Object Browser 

ArrayLi:t   

CaselnsensitiveComparer   

^ ȷ a seln sen siti veH a sh ȷ ɔ d eP ro vi d er   

CollectionBase   --   

{} Concurrent   

Dictionar/Ba:e   

{} Generic   

Ha:htable   

ICollection  ˬ  ˥



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

91  

 

 

window is opened as a tab in the main window and information 
about the Compare method i s displayed. Notice it takes two object 
arguments, compares them, and returns an integer value based on 
the result (see Figure 5 - 7).  

 

Figure 5 - 7. Object Browser  

14. The Object Browser enables you to explore the object hierarchies 
and to view information about items and methods within the 
hierarchy. Take some time to explore the Object Browser. When 
you are finished, close the Object Browser and close the Class 
View window.  

Exploring the Toolbox and Properties Window 
To explore the VS Toolbox and Propertie s window, follow these steps:  

1. In the Solution Explorer window, double - click the Forml.cs node. This brings up 
the Forml design tab in the main editing window. Locate the Toolbox tab to the 

Ȁ {} System.Collections  ʟ CaseIn5ensitiveComparer(System.Globalization.Culturelnfo)   

> ArrayList   V CaselnsensitiveComparerO   

> BitArray   _:V Compare(object, object)   

> ̂  CaselnsensitiveCompan   ^ Default   

> CaselnsensitiveHashCoc  _  Defaultlnvariant   

> ̂  CollectionBase     

> ^ Comparer  
> ^ DictionaryBase  

> Dictionary Entry  

J public int Compareiobiect a. object Ɂ 
Member of Svstem.Collections.CaselnsensitiveComparer 

ȱ- 

0 ̂  Hashtable > Ƶ'òÁ ICollection   Summary: 
Performs a case - insensitive comparison of two objects of the same type and  

 

> ^ IComparer   returns a value indicating whether one is less than, equal to, or greater than the   

> *"Q  IDictionary   Other.   

>  ƴ'ñÁ IDictionaryEnumerator  
>  IEnumerable  
>  IEnumerator  

>  ƴ'ñÁ IEqualityComparer  

 
Parameters: 
a\  The first object to compare. b\  The second object to compare.  

 

> IHashCodeProvider iList   Returns:  

t> IStructuralComparable  
>  IStructuralEquatable  
>  óty Queue  

>  ^  ReadOnlyCollectionBasi  

 
A signed integer that indicates the relative values of a and b, as shown in the following 

table.Value Meaning Less than zero a is less than b, with casing ignored. Zero a equals b, 

with casing ignored. Greater than zero a is greater than b, with casing ignored.  

ð 

*  1  ---   rrr 1 Ʒ  ^   



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

92  

 

 

left of the main editing window. Hover the cursor over the tab, and  the Toolbox 
window should expand, as shown in Figure 5 - 8. In the upper - right corner of the 
Toolbox, you should see the Auto Hide icon, which looks like a thumbtack. Click 
the icon to turn off the auto hide feature.  

 

Figure 5 - 8. VS Toolbox  

2. Under the All Windows Forms node of the Toolbox are controls that you can 
drag and drop onto your form to build the GUI. There are also other nodes that 
contain nongraphical components that help make some common programming 
tasks easier to create and manage. For example, the Data node contai ns 
controls for accessing and managing data stores. Scroll down the Toolbox 
window and observe the various controls exposed by the designer.  

3. Under the All Windows Forms node, select the Label control. Move the cursor 
over the form; it should change to a cr osshairs pointer. Draw a label on the 
form by clicking, dragging, and then releasing the mouse. In a similar fashion, 
draw a TextBox control and a Button control on the form. Figure 5 - 9 shows 
how the form should look.  

 Toolbox T f X 

 [> All Windows Forms 

0 Common Controls 

[> Containers 

[> Menus Si Toolbars 

t> Data 

[> Components 

o Printing 

[;Ƶ Dialogs 

[> WPF Interoperability 

[> Reporting 

0 Visual Basic PowerPacks 

t> General 

 



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

93  

 

 

 

Figure 5 - 9. Sample form layout  

4. Turn the auto hide feature of the Toolbox back on by clicking the Auto Hide 
(thumbtack) icon in the upper - right corner of the Toolbox window.  

5. Locate the Properties tab to the right of the main editing  window, or select View 
£ͮdµ×ÔÕÊ×ÙÎÊØd¼ÎÓÉÔÜdÙÔdÔÕÊÓdÙÍÊdµ×ÔÕÊ×ÙÎÊØdÜÎÓÉÔÜrd¹ÍÊdµ×ÔÕÊ×ÙÎÊØdÜÎÓÉÔÜd
displays the properties of the currently selected object in the Design View. You 
can also edit many of the object's properties through this window.  

6. In the Forml design window, click Labell. The Labell control should be selected 
in the drop - down list at the top of the Properties window (see Figure 5 - l0). 
±ÔÈÆÙÊdÙÍÊd¹ÊÝÙdÕ×ÔÕÊ×ÙÞdÆÓÉdÈÍÆÓÌÊdÎÙdÙÔd̆ªÓÙÊ×dÞÔÚ×dÕÆØØÜÔ×É~̇dlÒÎÓÚØdÙÍe 
quotes).

f   

"j 1 Forml  1 I=I | El || -çw- |  

labell    

 button 
1 

 

 



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

94  

 

 

 

ͮNote You may need to resize the label on the form to see all the text.  

7. Set the PasswordChar property of TextBoxl to *. Change the 
Text property of Button1 to OK.  (Click the control on the form or 
use the drop - down list at the top of the Properties window to see 
the control's properties.)  

8. Save the project by choosing File £  ͮSave All.  

Building and Executing the Assembly 
To build and execute the assembly, follow these steps:  

1. In the Solution Explorer, click Forml. At the top of the Solution 
Explorer, click the View Designer toolbar button.  

2. In the form designer double click the Buttonl control. The code 
editor for Forml will be displayed in the main editing window. A 
method that handles the button click event is added to the code 
editor.  

3. Add the following code to the method. This code will display the 
password entered in TextBoxl on the title bar of the form.   

Properties   ͽdÃdX 

1 labell 
System.Windows  

Form s. Label    

::  ɹ| in 

ͮd²ÆÝÎÒÚÒ¸ÎßÊ 0,0   

[> MinimumSize  0,0   

Modifiers  Private    

[> Padding 0, 0 , 0, 0   

RightToLeft  No   

[> Size 35,13    

Tablndex  0  : 

Tag   ͯ

Text  labell    

T . , T -  1 Hi ______    

1 Text     

1 The text associated with the control.    

Figure 5 - 10. VS Properties window  



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

95  

 

 

" ^ X  

$ ^ -I-  Si 

 Julld 

private void button1_Click(object sender, EventArgs e)  
{  

this.Text = "Your password is " + textBox1.Text;  
}  

4. ¸ÊÑÊÈÙd §ÚÎÑÉd ͼd §ÚÎÑÉd ¸ÔÑÚÙÎÔÓrd ¹ÍÊd ´ÚÙÕÚÙd ÜÎÓÉÔÜd ØÍÔÜØd ÙÍÊd
progress of compiling the assembly (see Figure 5 - 11). Once the 
assembly has been compiled, it is ready for execution. (If you can't 

locate the Output window, select View 
ÒÊÓÚdͼd´ÚÙÕÚÙrm 

Output  

Show output from:  

 ......   Build started: Project: DemoChapterS, 

Configuration: Debug xS6  

DemoChapterS - > C:\ Users \ Dan\ Documents\ Visual Studio 2919 \ Projects 

\ DemoChapter5\ DemoChapter5\ bin \ Debug\ DenioChapter5 . ɗɝɗ ========== Build: 1 

succeeded or up - to - date., 9 failed, 0 skipped ===== 

Figure 5 - 11. Progress of build displayed in the Output window  

5. ¸ÊÑÊÈÙd©ÊÇÚÌdͼd¸ÙÆ×Ùd©ÊÇÚÌÌÎÓÌrd¹ÍÎØd×ÚÓØdÙÍÊdÆØØÊÒÇÑÞdÎÓdÉÊÇÚÌd
mode. Once the form loads, enter a password and click the OK 
button. You should see the message containing the password in the 
form's title bar. Close the form by clicking the x in the upper right 
corner.  

6. ¸ÊÑÊÈÙd«ÎÑÊdͼd¸ÆÛÊd¦ÑÑpdÆÓÉdÙÍÊÓdÊÝÎÙd»¸dÇÞdØÊÑÊÈÙÎÓÌd«ÎÑÊdͼdªÝÎÙr 

ACTIVITY 5-2. USING THE DEBUGGING FEATURES OF VS 

In this activity, you will become familiar with the following:  

 ̋ Setting breakpoints and stepping through the code.  

 ̋ Using the various debugging windows in the VS IDE.  

 ̋ Locating and fixing build errors using the Error List window.  

Stepping Through Code 
To step through your code, follow these steps:  

1. ¸ÙÆ×Ùd»¸rd¸ÊÑÊÈÙd«ÎÑÊdͼd³ÊÜdͼdµ×ÔÏÊÈÙr  



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

96  

 

 

4. 

2. Under the C# Windows templates, select the Console Application. 
Rename the project Activity5_2.  

3. You will see a Program class file open in the code editor. The 
class file has a Main method that gets executed first when the 
application runs. Add the following code to the program class. 
This code contains a method that loads a list of numbers and 
displays the contents  of the list in the console window.  

class Program {  
static List<int> numList = new List<int>(); 
static void Main(string[] args)  
{  

LoadList(10);  
foreach (int i in numList)  
{  

System.Console.WriteLine(i);  
}  
Console.ReadLine();  

}  
static void LoadList(int iMax)  
{  

for (int i = 1; i <= 10; i++)  
{  

numList.Add(i);  
}  

}  
}  

To set a breakpoint, place the cursor on the declaration line of the Main 
method, right - ÈÑÎÈÐpdÆÓÉdÈÍÔÔØÊd§×ÊÆÐÕÔÎÓÙd£ͮd®ÓØÊ×Ùd§×ÊÆÐÕÔÎÓÙrd¦d×ÊÉdÉÔÙdÜÎÑÑd
appear in the left margin to indicate that a breakpoint has been set (see Figure 5 -
l2).  

static List<int:> numList = new List<int ¤ͮd() static void 

Main(string[ ] args)  
{ " ' 
LoadList( 10);  

foreach (int i in numList)  

Figure 5 - 12. Setting a breakpoint in the code editor  

5. ¸ÊÑÊÈÙd©ÊÇÚÌd£ͮd¸ÙÆ×Ùd©ÊÇÚÌÌing. Program execution will pause 
at the breakpoint. A yellow arrow indicates the next line of code 
that will be executed.   



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

97  

 

 

6. Select View > ͮd¹ÔÔÑÇÆ×ØdÆÓÉdÈÑÎÈÐdÙÍÊd©ÊÇÚÌdÙÔÔÑÇÆ×rdl¦dÈÍÊÈÐdÓÊÝÙd
to the toolbar name indicates it is visible.) To step through the code 
one line at a time, select the Step Into button on the Debug toolbar 
(see Figure 513).  (You can also press the F11 key.) Continue 
stepping through the code until you get to the LoadList.  

 

7. Step through the code until the for loop has looped a couple of times. 
At this point, you are probably satisfied that this code is working and 
you want to step  out of this method. On the Debug toolbar, click the 
Step Out button. You should return to the Main method.  

8. Continue stepping through the code until the for - each loop has 
looped a couple of times. At this point, you may want to return to 
runtime mode. To d o this, click the Continue button on the Debug 
toolbar. When the Console window appears, hit the enter key to 
close the window.  

9. Start the application in debug mode again. Step through the code 
until you get to the method call LoadList(10);.  

10. On the Debug toolbar, choose the Step Over button. This will execute 
the method and reenter break mode after execution returns to the 
calling code. After stepping over the method, continue stepping 
through the code for several lines, and then choose the Stop button 
on the Debug toolbar. Click the red dot in the left margin to remove 
the breakpoint.  

Setting Conditional Breakpoints 
To set conditional breakpoints, follow these steps:  

1. In the Program.cs file locate the LoadList method. Set a breakpoint 
on the following line of code:  

numList.Add(i);  

2. ´ÕÊÓdÙÍÊd§×ÊÆÐÕÔÎÓÙØdÜÎÓÉÔÜdÇÞdØÊÑÊÈÙÎÓÌd©ÊÇÚÌd£ͮd¼ÎÓÉÔÜØd£ͮd
Breakpoints. You should see the breakpoint you just set listed in the 
Breakpoints window (see Figure 5 - 14).

 

Figure 5 - 13. Using the Debug toolbar  



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

98  

 

 

 

3. Right - click the breakpoint in the Breakpoints window and select  
Condition. You will see the Breakpoint Condition dialog box. Enter i 
== 3 as the condition expression and click the OK button (see 
Figure 5 - l5).  

 

4. ¸ÊÑÊÈÙd©ÊÇÚÌd£ͮd¸ÙÆ×Ùrd¼ÍÊÓdÙÍÊdËÔ×ÒdÆÕÕÊÆ×ØpdÈÑÎÈÐdÙÍÊd±ÔÆÉdList 
button. Program execution will pause, and you will see a yellow 
arrow indicating the next line that will be executed.  

5. ¸ÊÑÊÈÙd©ÊÇÚÌd£ͮd¼ÎÓÉÔÜØd£ͮd±ÔÈÆÑØrd¹ÍÊd±ÔÈÆÑØdÜÎÓÉÔÜdÎØd
displayed at the bottom of the screen (see Figure 5 - l6). The value 
of i is displayed in the Locals window. Verify that it is 3. Step 
through the code using the Debug toolbar and watch the value of i 
change in the Locals window. Click the Stop Debugging button in 
the Debug toolbar.

Breakpoints  

New -  x | PS I ^ o I m  ʾ ¨ÔÑÚÒÓØ̃nkd¸ÊÆ×ÈÍ~ V  

̋ -ʾ  
Name 

Labels Condition  Hit Count    

 .. 0^ iProgram.c:, line 24 character 
17!  

[no condition]  break always    

J _ 1 Breakpoint; 

Figure 5 - 14. Breakpoints window  

 

Figure 5 - 15. Breakpoint Condition dialog box  



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

99  

 

 

 

Figure 5 - 16. Locals window  

6. Locate the Output window at the bottom of your screen and click the 
Breakpoints tab. Right - click the breakpoint in the Breakpoints window 
and select Condition. Clear the current condition by clearing the 
Condition check box, and then click the OK button.  

7. Right - click the breakpoint in the Breakpoints window and select Hit 
Count. Set the breakpoint to break when the hit count equals 4, and then 
click OK.  

8. ¸ÊÑÊÈÙd©ÊÇÚÌd£ͮd¸ÙÆ×Ùrdµ×ÔÌ×ÆÒdÊÝÊÈÚÙÎÔÓdÜÎÑÑdpause and the yellow 
arrow indicates the next line of code that will execute.  

9. Right - click the numList statement and select Add Watch. A Watch 
window will be displayed with numList in it. Notice that numList is a 
System.Collections.Generics.List type. Click  the plus sign next to 
numList. Verify that the list contains three items (see Figure 5 - 17). Step 
through the code and watch the array fill with items. Click the Stop 
button in the Debug toolbar.  

 

Locating and Fixing Build Errors 
To locate and fix build errors, follow these steps:

1. In the Program class,  locate the following line of code and 
comment it out by placing a two slashes in front of it, as shown 
here:  

Locals T ^  
Name Value  Type  

3 iMax  10 int  

ʹdi 5 int  

Watch 1   -  é 

Name Value  Type  

ʧd̂ numList  Count = 3 Sy stem.  ʁ  ˓11 ecti on s. G en eri .̟ Li st< 
int>  

ʹd[0]  1 int  

ʹd[1]  2 int  

ïd[2.1  3 int  

ͯd$ Raw Vi ew   

   

 

Locals   

Figure 5 - 17. The Watch window  



CHAPTER 5 ƴ INTRODUCING THE .NET FRAMEWORK AND VISUAL STUDIO 

100  

 

 

//static List<int> numList = new List<int>();  

2. Notice the red squiggly lines under the numList in the code. This 
indicates a build error that must be fixed before the application 
can run. Hovering over the line reveals more information about 
the error.  

3. Select Build £  ͮBuild Solution. The Error List window will appear 
at the bottom of the screen, indicating a build error (see Figure 
5- 18).  

 

4. Double - click the line containing the build error in the Error List 
window. The corresponding code will become visible in the code 
editor.  

5. Uncomment the line you commented in step 1 by deleting the 
ØÑÆØÍÊØrd¸ÊÑÊÈÙd§ÚÎÑÉd£ͮd§ÚÎÑÉd¸ÔÑÚÙÎÔÓrd¹ÍÎØdÙÎÒÊpdÙÍÊd´ÚÙÕÚÙd
window is displayed at the bottom of the screen, indicating that 
there were no build errors.  

6. Save the project and exit VS.  

Summary 
This chapter introduced you to the fundamentals of the .NE T Framework. You reviewed some of 
the underlying goals of the .NET Framework. You also looked at how the .NET Framework is 
structured and how code is compiled and executed by the CLR. These concepts are relevant and 
consistent across all .NET - compliant pro gramming languages. In addition, you explored some of 
the features of the Visual Studio integrated development environment.  

The next chapter is the first in a series that looks at how the OOP concepts ˿such as class 
structure, inheritance, and polymorphism ˿are implemented in C# code.   

 

Figure 5 - 18. Locating build errors with the Error List window  



101  

 

 

6 C H A P T E R 

Creating Classes 

In the previous chapter, you looked at how the .NET Framework was developed and how 
programs execute under the framework. That chapter introduced you to the Visual Studio IDE, 
and you gained some familiarity with working in it. You are now ready to start coding! This 
chapter is the first of a series that will introduce you to how classes are created and used in C#. 
It covers the basics of creating and using classes. You will creat e classes, add attributes and 
methods, and instantiate object instances of the classes in client code.  

After reading this chapter, you should be familiar with the following:  

 ̋ How objects used in OOP depend on class definition files.  

 ̋ The important role encapsulation plays in OOP.  

 ̋ How to define the properties and methods of a class.  

 ̋ The purpose of class constructors.  

 ̋ How to use instances of classes in client code.  

 ̋ The process of overloading class constructors and methods.  

 ̋ How to create and test class defi nition files with Visual Studio.  

Introducing Objects and Classes 
In OOP, you use objects in your programs to encapsulate the data associated with the entities 
with which the program is working. For example, a human resources application needs to work 
with employees. Employees have attributes associated with them that need to be tracked. You 
may be interested in such things as the employee names, addresses, departments, and so on. 
Although you track the same attributes for all employees, each employee has un ique values for 
these attributes. In the human resources application, an Employee object obtains and modifies 
the attributes associated with an employee. In OOP, the attributes of an object are referred to as 
properties.  

Along with the properties of the employees, the human resource application also needs an 
established set of behaviors exposed by the Employee object. For example, one employee 
behavior of interest to the human resources department is the ability to request time off. In OOP, 
objects expose  behaviors through methods. The Employee object contains a RequestTimeOff 
method that encapsulates the implementation code.  

The properties and methods of the objects used in OOP are defined through classes. A 
class is a blueprint that defines the attributes and behaviors of the objects that are created 
as instances of the class. If you have completed the proper analysis and design of the 
application, you should be able to



CHAPTER 6 ƴ CREATING CLASSES 

102  

} 

 

 

refer to the UML design documentation to determine which cla sses need to be constructed and 
what properties and methods these classes will contain. The UML class diagram contains the 
initial information you need to construct the classes of the system.  

To demonstrate the construction of a class using C#, you will lo ok at the code for a simple 
Employee class. The Employee class will have properties and methods that encapsulate and 
work with employee data as part of a fictitious human resources application.  

Defining Classes 
Let's walk through the source code needed to create a class definition. The first line of code 
defines the code block as a class definition using the keyword Class followed by the name of 
the class. The body of the class definition is enclosed by an open and closing curly bracket. 
The code block is s tructured like this:  

class Employee {  
}  

Creating Class Properties 
After defining the starting and ending point of the class code block, the next step is to define the 
instance variables (often referred to as fields) contained in the class. These variables hold the 
data that an instance of your class will manipulate. The Private keyword ensures that these 
instance variables can be manipulated only by the code inside the class. Here are the instance 
variable definitions:  

private int _empID; private 
string _lo ginName; private 
string _password; private 
string _department; 
private string _name;  

When a user of the class (client code) needs to query or set the value of these instance 
variables, public properties are exposed to them. Inside the property block of cod e are a Get 
block and a Set block. The Get block returns the value of the private instance variable to the user 
of the class. This code provides a readable property. The Set block provides a write - enabled 
property; it passes a value sent in by the client c ode to the corresponding private instance 
variable. Here is an example of a property block:  

public string Name {  
get { return _name; } set { 
_name = value; }  

}  
There may be times when you want to restrict access to a property so that client code can 

read the property value but not change it. By eliminating the Set block inside the Property 
block, you create a read - only property. The following code shows how to make the 
EmployeeID property read - only:  

public int EmployeeID {  
get { return _empID; }  

ͮNote The private and public keywords affect the scope of the code. For more information 

about scoping, see Appendix A.  

Newcomers to OOP often ask why it's necessary to go through so much work to get and 
set properties. Couldn't you just create public instance varia bles that the user could read and 
write to directly? The answer lies in one of the fundamental tenets of OOP: data encapsulation. 
Data encapsulation means that the client code does not have direct access to the data. When 
working with the data, the client code must use clearly defined properties and methods 
accessed through an instance of the class. The following are some of the benefits of 
encapsulating the data in this way:  



CHAPTER 6 ƴ CREATING CLASSES 

103  

 

 

 ̋ Preventing unauthorized access to the data.  

 ̋ Ensuring data integrity through error checking.  

 ̋ Creating read - only or write - only properties.  

 ̋ Isolating users of the class from changes in the implementation code.  

For example, you could check to make sure the password is at least six characters long via 
the following code:  
public string Passwo rd {  

get { return _password; } set {  
if (value.Length >= 6)  
{  

_password = value;  
}  
else  
{  

throw new Exception("Password must be at least 6 characters");  
}  

}  
}  

Creating Class Methods 
Class methods define the behaviors of the class. For example, the following defines a method 
for the Employee class that verifies employee logins:  
public void Login(string loginName, string password)  
{  

if (loginName == "Jones" & password == "mj")  
{  

_empID = 1;  
Department = "HR";  
Name = "Mary Jones";  

}  
else if (loginName == "Smith" & password == "js")  
{  

_empID = 2;  
Department = "IS";  
Name = "Jerry Smith";  

}  
else  
{  

throw new Exception("Login incorrect.");  
}  

}  

When client code calls the Login method of the class, the login name and password are 
passed into the method (these are called input parameters). The parameters are checked. If 
they match a current employee, the instance of the class is populated with attributes of the 
employee. If the login name and password do not match a current employee, an exception is 
passed back to the client code.  

ͮNote Exception handling is an important part of application processing. For more 

information about exceptions, see Appendix B.  

In the previous method, a value is not returned to the client code. This is indicated by the 
void keyword. S ometimes the method returns a value back to the client calling code (called an 
output parameter). The following AddEmployee method is another method of the Employee 
class. It's called when an employee needs to be added to the database, and it returns the n ewly 
assigned employee ID to the client. The method also populates the object instance of the 



CHAPTER 6 ƴ CREATING CLASSES 

104 

 

 

Employee class with the attributes of the newly added employee.  

public int AddEmployee(string loginName, string password, string department, string name)  
{  

//Data  normally saved to database.  
_empID = 3;  
LoginName = loginName;  
Password = password;  
Department = department;  
Name = name; 
return 
EmployeeID;  

}  

ACTIVITY 6-1. CREATING THE EMPLOYEE CLASS 

In this activity, you will become familiar with the following:  

 ̋ Creating a C# class definition file using Visual Studio.  

 ̋ Creating and using an instance of the class from client code.  

ͮNote If you have not already done so, download the starter files from the source code area of 

the Apress web site ( www.apress.co m). 

Defining the Employee Class 

To create the Employee class, follow these steps:  

1. Start Visual Studio. Select File > Open > Project.  

2. Navigate to the Activity6_1Starter folder, click the Act6_1. sln file, 
and click Open. When the project opens, it will contain a login form. 
You will use this form later to test the Employee class you create.  

3. ¸ÊÑÊÈÙdµ×ÔÏÊÈÙd£ͮd¦ÉÉd¨ÑÆØØrd®ÓdÙÍÊd¦ÉÉd³ÊÜd®ÙÊÒdÉÎÆÑÔÌdÇÔÝpd
rename the class file to Employee.cs, and then click Open. Visual 
Studio adds the Employee.cs file to the project and adds the 
following class definition code to the file:  

class Employee 
{  
}  

4. Enter the following code between the opening and closing brackets 
to add the private instance variables to the class body in the 
definition fil e: 

private int _empID; private 
string _loginName; private 
string _password; private 
int _securityLevel;  

5. Next, add the following public properties to access the private 
instance variables defined in step 4:  

public int EmployeeID {  
get { return _empID; }  

}  
public string LoginName {  

get { return _loginName; } 
set { _loginName = value; }  

http://www.apress.com/


CHAPTER 6 ƴ CREATING CLASSES 

105  

 

 

}  
public string Password {  

get { return _password; } set 
{ _password = value; }  

}  
public int SecurityLevel {  

get { return _securityLevel; }  
}  

6. After the properties, add the following Login method to the class definition:  
public void Login(string loginName, string password)  
{  

LoginName = loginName;  
Password = password;  
//Data nomally retrieved from database.  
//Hard coded for demo only.  
if (loginName == "Smith" & password == "j s")  
{  

_empID = 1;  
_securityLevel = 2;  

}  
else if (loginName == "Jones" & password == "mj")  
{  

_empID = 2;  
_securityLevel = 4;  

}  
else  
{  

throw new Exception("Login incorrect.");  
}  

}  

7. Select Build £  ͮBuild Solution. Make sure there are no build errors in the Error List 
window. If there are, fix them, and then rebuild.

Testing the Employee Class 

To test the Employee class, follow these steps:  

1. Open frmLogin in the code editor and locate the btnLogin cli ck event code.  

Tͮip Double - clicking the Login button in the form designer will also bring up the event code in the 
code editor.  

2. In the body of the btnLogin click event, declare and instantiate a variable of 
type Employee called oEmployee:  

Employee oEmployee = new Employee();  

3. Next, call the Login method of the oEmployee object, passing in the values 
of the login name and the password from the text boxes on the form:  

oEmployee.Login(txtName.Text,txtPassword.Text);  

4. After calling the Login method, show a message box stating the user's 
security level, which is retrieved by reading the SecurityLevel property 
of the oEmployee object:  

MessageBox.Show("Your security level is " + oEmployee.SecurityLevel);  

5. Select Build £  ͮBuild Solution. Make sure there are no build errors in the 



CHAPTER 6 ƴ CREATING CLASSES 

106 

 

 

Error List window. If there are, fix them, and then rebuild.  

6. ¸ÊÑÊÈÙd©ÊÇÚÌd£ͮd¸ÙÆ×ÙdÙÔd×ÚÓdÙÍÊdÕ×ÔÏÊÈÙrd¹ÊØÙdÙÍÊdÑÔÌÎÓdËÔ×ÒdÇÞdÊÓÙÊ×ÎÓÌdÆd
login name of Smith and a password of js. You should get a message 
indicating a security level of 2. Try entering your name and a password of 
pass. You should get a message indicating the login failed.  

7. After testing the login procedure, close the form; this will stop the debugger.  

Using Constructors 
In OOP, you use constructors to perform any processing that needs to occur when an object 
instance of the class becomes instantiated. For example, you could initialize properties of the 
object instance or establish a database connection. The class constructor method is named the 
same as the class. W hen an object instance of a class is instantiated by client code, the 
constructor method is executed. The following constructor is used in the Employee class to 
initialize the properties of an object instance of the Employee class. An employee ID is passed  
in to the constructor to retrieve the values from data storage, like so:  

public Employee(int empID)  
{  

//Retrieval of data hardcoded for demo if (empID == 1)  
{  

_empID = 1;  
LoginName = "Smith";  
Password = "js";  
Department = "IT";  
Name = "Jerry Smith";  

}  
else if (empID == 2)  
{  

_empID = 2;  
LoginName = "Jones";  
Password = "mj";  
Department = "HR";  
Name = "Mary Jones";  

}  
else  
{  

throw new Exception("Invalid EmployeeID");  
}  

}  

Overloading Methods 
The ability to overload methods is a useful feature of OOP languages. You overload methods in a 
class by defining multiple methods that have the same name but contain different signatures. A 
method signature is a combination of the name of the method and its parameter type list. If you 
change the parameter type li st, you create a different method signature. For example, the 
parameter type lists can contain a different number of parameters or different parameter types. 
The compiler will determine which method to execute by examining the parameter type list 
passed in  by the client.  



CHAPTER 6 ƴ CREATING CLASSES 

107  

} 

 

 

ͮNote Changing how a parameter is passed (in other words, from byVal to byRef) does not 

change the method signature. Altering the return type of the method also does not create a 

unique method signature. For a more detailed discussion of me thod signatures and passing 

arguments, refer to Appendix A.  

Suppose you want to provide two methods of the Employee class that will allow you to add 
an employee to the database. The first method assigns a username and password to the 
employee when the employee is added. The second method adds the employee information but 
defers the assignment of username and password until later. You can easily accomplish this by 
overloading the AddEmployee method of the Employee class, as the following code 
demonstrate s: 

public int AddEmployee(string loginName, string password, string department, string name)  
{  

//Data normally saved to database.  
_empID = 3;  
LoginName = loginName;  
Password = password;  
Department = department;  
Name = name; return 
EmployeeID;  

}  

public int AddEmployee(string department, string name)  
{  

//Data normally saved to database.  
_empID = 3;  
Department = department;  
Name = name; return 
EmployeeID;  

}  

Because the parameter type list of the first method (string, string) differs from the 
parameter type lis t of the second method (string, string, string, string), the compiler can 
determine which method to invoke. A common technique in OOP is to overload the constructor 
of the class. For example, when an instance of the Employee class is created, one construct or 
could be used for new employees and another could be used for current employees by passing 
in the employee ID when the class instance is instantiated by the client. The following code 
shows the overloading of a class constructor:  

public Employee()  
{  

_empID = - 1; 
}  

public Employee(int empID)  
{  

//Retrieval of data hard coded for demo 
if (empID == 1)  
{  

_empID = 1;  
LoginName = "Smith";  
Password = "js";  
Department = "IT";  
Name = "Jerry Smith";  

}  
else if (empID == 2)  
{  

_empID = 2;  
LoginName = "Jones";  



CHAPTER 6 ƴ CREATING CLASSES 

108 

 

 

Password = "mj";  
Department = "HR";  
Name = "Mary Jones";  

}  
else  
{  

throw new Exception("Invalid EmployeeID");  
}



CHAPTER 6 ƴ CREATING CLASSES 

} 

109  

 

 

ACTIVITY 6-2. CREATING CONSTRUCTORS AND OVERLOADING METHODS 

In this activity, you will become familiar with the following:  

 ̋ Creating and overloading the class constructor method.  

 ̋ Using overloaded constructors of a class from client code.  

 ̋ Overloading a method of a class.  

 ̋ Using overloaded methods of a class from client code.  

Creating and Overloading Class Constructors 
To create and overload class constructors, follow these steps:  

1. Start Visual Studio. Select File ^ Open ^ Project.  

2. Navigate to the Activity6_2Starter folder, click the Act6_2 .sln file, and then click Open. 
When the project opens, it will contain a frmEmployeelnfo form that you will use to test 
the Employee class. The project also includes the Employee. cs file, which contains the 
Employee class definition code.  

3. Open Employee. cs in the code editor and examine the code. The class contains several 
properties pertaining to employees that need to be mai ntained.  

4. After the property declaration code, add the following private method to the class. This 
method simulates the generation of a new employee ID.  

private int GetNextID()  
{  

//simulates the retrieval of next 
//available id from database return 
100;  

}  

5. Create a default class constructor, and add code that calls the GetNextID method and 
assigns the return value to the private instance variable _empID:  

public Employee()  
{  

_empID = GetNextID();  
}  

6. Overload the default constructor method by adding a second constructor method that 
takes an integer parameter of empID, like so:  

public Employee(int empID)  
{  

//Constructor for existing employee  
7. Add the following code to the overloaded constructor, which simulates extracting the 

employee data from a database and as signs the data to the instance properties of the 
class:  

//Simulates retrieval from database if (empID 
== 1)  
{  

_empID = empID;  
LoginName = "smith";  
PassWord = "js";  
SSN = 123456789;  
Department = "iS";  

}  



CHAPTER 6 ƴ CREATING CLASSES 

110 

 

 

else if (empID == 2)  
{  

_empID = empID;  
LoginName = "jones";  
PassWord = "mj";  
SSN = 987654321;  
Department = "HR";  

}  
else  
{  

throw new Exception("Invalid Employee ID");  
}  

8. Select Build £  ͮBuild Solution. Make sure there are no build errors in the Error List 
window. If there are, fix them, and then rebuild.  

Testing the Employee Class Constructors 
To test the Employee class constructors, follow these steps:  

1. Open the EmployeeInfoForm in the form editor and double click the 
New Employee button to bring up the click event code in the code 
editor.  

2. In the Click Eve nt method body, declare and instantiate a variable of 
type Employee called oEmployee:  

Employee oEmployee = new Employee();  

3. Next, update the EmployeeID text box with the employee ID, disable 
the EmployeeID text box, and clear the remaining textboxes:  

Employee oEmployee = new Employee();  
txtEmplD.Text = oEmployee.EmpID.ToString();  
txtEmpID.Enabled = false;  
txtLoginName.Text = "";  
txtPassword.Text = "";  
txtSSN.Text = "";  
txtDepartment.Text = "";  

4. ¸ÊÑÊÈÙd§ÚÎÑÉdͼd§ÚÎÑÉd¸ÔÑÚÙÎÔÓrd²ÆÐÊdØÚ×ÊdÙÍÊ×ÊdÆ×ÊdÓÔdÇÚÎÑÉ errors in the 
Error List window. If there are, fix them, and then rebuild.  

5. Open the EmployeeInfoForm in the form editor and double click the Existing Employee 
button to bring up the click event code in the code editor.  

6. In the Click Event method body, declare and instantiate a variable of type Employee 
called oEmployee. Retrieve the employee ID from the txtEmpID text box and pass it as 
an argument in the constructor. The int.Parse method converts the text to an integer 
data type:  

Employee oEmployee = ne w Employee(int.Parse(txtEmpID.Text));  

7. Next, disable the Employee ID textbox and fill in the remaining text boxes with the 
values of the Employee object's properties:  

txtEmplD.Enabled = false; txtLoginName.Text = 
oEmployee.LoginName; txtPassword.Text = 
oEmployee.PassWord; txtSSN.Text = 
oEmployee.SSN.ToString(); txtDepartment.Text = 
oEmployee.Department;  

8. ¸ÊÑÊÈÙd§ÚÎÑÉdͼd§ÚÎÑÉd¸ÔÑÚÙÎÔÓrd²ÆÐÊdØÚ×ÊdÙÍÊ×ÊdÆ×ÊdÓÔdÇÚÎÑÉdÊ××Ô×ØdÎÓdÙÍÊdª××Ô×d±ÎØÙd
window. If there are, fix them, and then rebuild.  



CHAPTER 6 ƴ CREATING CLASSES 

111  

 

 

9. ¸ÊÑÊÈÙd©ÊÇÚÌd£ͮd¸ÙÆ×Ùdto run the project and test the code.  

10. When the EmployeeInfo form is displayed, click the New Employee button. You should 
see that a new employee ID has been generated in the Employee ID textbox.  

11. Click the Reset button to clear and enable the Employee ID te xt box.  

12. Enter a value of 1 for the employee ID and click the Get Existing Employee button. The 
information for the employee is displayed on the form.  

13. After testing the constructors, close the form, which will stop the debugger.  

Overloading a Class Method 

To overload a class method, follow these steps:  

1. Open the Employee.cs code in the code editor.  

2. Add the following Update method to the Employee class. This method simulates the 
updating of the employee security information to a database:  

public string Update (string loginName, string password)  
{  

LoginName = loginName;  
PassWord = password;  
return "Security info updated.";  

}  

3. Add a second Update method to simulate the updating of the employee human resources 
data to a database:  

public string Update(int ssNumber, string department)  
{



CHAPTER 6 ƴ CREATING CLASSES 

112  

 

 

SSN = ssNumber;  
Department = department; return 
"HR info updated.";  

}  

4. ¸ÊÑÊÈÙd§ÚÎÑÉdͼd§ÚÎÑÉd¸ÔÑÚÙÎÔÓrd²ÆÐÊdØÚ×ÊdÙÍÊ×ÊdÆ×ÊdÓÔdÇÚÎÑÉdÊ××Ô×ØdÎÓdÙÍÊdª××Ô×d
List window. If there are, fix them, and then rebuild.  

Testing the Overloaded Update Method 
To test the overloaded Update method, follow these steps:  

1. Open the Employeelnfo Form in the Form editor and double click the Update SI 
button. You are presented with the click event code in the Code Editor window.  

2. In the Click Event method, declare and instantiate a variable of type Employee 
called oEmployee. Retrieve the employee ID from the txtEmpID text box and pass 
it as an argument in the constructor:  

Employee oEmployee = new Employee(int.Parse(txtEmpID.Text));  

3. Next, call the Update method, passing the values of the login name and password 
from the text boxes. Show the method return message to the user in a message 
box:  

MessageBox.Show(oEmployee.Update(txtLoginName.Text, txtPassword.Text));  

4. Update the login name and password text boxes with the property values of the 
Employee object:  

txtLoginName.Text = oEmployee.LoginName; txtPassword.Text = oEmployee.PassWord;  

5. Repeat this process to add similar code to the Update HR button Click Event 
method to simulate updating the human resources information. Add the following 
code to the Click Event method:  

Employee oEmployee = new Employee(int.Parse(txtEmpID.Text)); 
MessageBox.Show(oEmployee.Update(int.Parse(txtSSN.Text), txtDepartment.Text)); 
txtSSN.Text = oEmployee.SSN.ToString(); txtDepartment.Text = 
oEmployee.Department;  

6. SÊÑÊÈÙd§ÚÎÑÉdͼd§ÚÎÑÉd¸ÔÑÚÙÎÔÓrd²ÆÐÊdØÚ×ÊdÙÍÊ×ÊdÆ×ÊdÓÔdÇÚÎÑÉdÊ××Ô×ØdÎÓdÙÍÊdª××Ô×d
List window. If there are, fix them, and then rebuild.  

7. ¸ÊÑÊÈÙd©ÊÇÚÌdͼd¸ÙÆ×ÙdÙÔd×ÚÓdÙÍÊdÕ×ÔÏÊÈÙdÆÓÉdÙÊØÙdÙÍÊdÈÔÉÊr 

8. Enter a value of 1 for the employee ID and click the Get Existi ng Employee 
button.  

9. Change the values for the security information and click the Update button.  

10. Change the values for the human resources information and click the Update 
button.  

11. You should see that the correct Update method is called in accordance 
with the parameters passed in to it. After testing the Update method, close 
the form.  

Summary 
This chapter gave you a firm foundation in creating and using classes in C# code. Now that you 
are comfortable constructing and using classes, you are ready to look at implementing some of 
the more advanced features of OOP. In th e next chapter, you will concentrate on how inheritance 
and polymorphism are implemented in C# code. As an object - oriented programmer, it is 
important for you to become familiar with these concepts and learn how to implement them in 



113  

 

 

your programs.



CHAPTER 6 ƴ CREATING CLASSES 

114 

 

 

7 

C H A P T E R 

Creating Class Hierarchies 

In the previous chapter, you learned how to create classes, add attributes and methods, and 
instantiate object instances of the classes in client code. This chapter introduces the concepts of 
inheritance and polymorphi sm. 

Inheritance  is one of the most powerful and fundamental features of any OOP language. Using 
inheritance, you create base classes that encapsulate common functionality. Other classes can be 
derived from these base classes. The derived classes inherit the properties an d methods of the 
base classes and extend the functionality as needed.  

A second fundamental OOP feature is polymorphism. Polymorphism  lets a base class define 
methods that must be implemented by any derived classes. The base class defines the message 
signat ure that derived classes must adhere to, but the implementation code of the method is left 
up to the derived class. The power of polymorphism lies in the fact that clients know they can 
implement methods of classes of the base type in the same fashion. Eve n though the internal 
processing of the method may be different, the client knows the inputs and outputs of the 
methods will be the same.  

After reading this chapter, you will learn the following:  

 ̋ How to create and use base classes.  

 ̋ How to create and use de rived classes.  

 ̋ How access modifiers control inheritance.  

 ̋ How to override base class methods.  

 ̋ How to implement interfaces.  

 ̋ How to implement polymorphism through inheritance and through interfaces.  

Understanding Inheritance 
One of the  most powerful features of any OOP language is inheritance. Inheritance is the ability to 
create a base class with properties and methods that can be used in classes derived from the base 
class.



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

} 

115  

 

 

Creating Base and Derived Classes 
The purpose of inheritance is to create a base class that encapsulates properties and methods 
that can be used by derived classes of the same type. For example, you could create a base 
class Account. A GetBalance method is defined in the Account class. You can then create two 
separa te classes: SavingsAccount and CheckingAccount. Because the SavingsAccount class and 
the CheckingAccount class use the same logic to retrieve balance information, they inherit the 
GetBalance method from the base class Account. This enables you to create on e common code 
base that is easier to maintain and manage.  

Derived classes are not limited to the properties and methods of the base class, however. 
The derived classes may require additional methods and properties that are unique to their 
needs. For exampl e, the business rules for withdrawing money from a checking account may 
require that a minimum balance be maintained. A minimum balance, however, may not be 
required for withdrawals from a savings account. In this scenario, the derived CheckingAccount 
and SavingsAccount classes would each need their own unique definition for a Withdraw 
method.  

To create a derived class in C#, you enter the name of the class, followed by a colon (:) and 
the name of the base class. The following code demonstrates how to creat e a CheckingAccount 
class that derives from an Account base class:  

class Account {  

long _accountNumber; public long AccountNumber {  

get { return _accountNumber; } 
set { _accountNumber = value; 
}  

}  
public double GetBalance()  
{  

//code to retrieve account balance from database 
return (double)10000;  

}  
}  

class CheckingAccount : Account {  

double _minBalance; public double MinBalance {  

get { return _minBalance; } set { _minBalance = 
value; }  

}  
public void Withdraw(double amount)  
{  

//code to withdraw from account  
}  
The following code could be implemented by a client creating an object instance of 

CheckingAccount. Notice that the client perceives no distinction between the call to the 
GetBalance method and the call to the Withdraw method. In this case, the c lient has no 
knowledge of the Account class; instead, both methods appear to have been defined by 
CheckingAccount.  

CheckingAccount oCheckingAccount = new 
CheckingAccount(); double balance;  
oCheckingAccount.AccountNumber = 
1000; balance = 
oCheckingAccount.G etBalance(); 
oCheckingAccount.Withdraw(500);  

Creating a Sealed Class 
By default, any C# class can be inherited. When creating classes that can be inherited, you 
must take care that they are not modified in such a way that derived classes no longer function 
as intended. If you are not careful, you can create complex inherita nce chains that are hard to 



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

116  

 

 

manage and debug. For example, suppose you create a derived CheckingAccount class based 
on the Account class. Another programmer can come along and create a derived class based 
on the CheckingAccount and use it in ways you never  intended. (This could easily occur in 
large programming teams with poor communication and design.)  

By using the sealed modifier, you can create classes that you know will not be derived from. 
This type of class is often referred to as a sealed or final  class. By making a class not inheritable, 
you avoid the complexity and overhead associated with altering the code of base classes. The 
following code demonstrates the use of the sealed modifier when constructing a class definition:  

sealed class CheckingAccou nt : Account  

Creating an Abstract Class 
At this point in the example, a client can access the GetBalance method through an instance of 
the derived CheckingAccount class or directly through an instance of the base Account class. 
Sometimes, you may want to h ave a base class that can't be instantiated by client code. Access 
to the methods and properties of the class must be through a derived class. In this case, you 
construct the base class using the abstract modifier. The following code shows the Account clas s 
definition with the abstract modifier:  

abstract class Account  

This makes the Account class an abstract class. For clients to gain access to the GetBalance 
method, they must instantiate an instance of the derived CheckingAccount class.  

Using Access Modifiers in Base Classes 
When setting up class hierarchies using inheritance, you must manage how the properties and 
methods of your classes are accessed. Two access modifiers you have looked at so far are 
public and private. If a method or property of the base  class is exposed as public, it is accessible 
by both the derived class and any client of the derived class. If you expose the property or 
method of the base class as private, it is not accessible directly by the derived class or the 
client.  

You may want t o expose a property or method of the base class to a derived class, but not to 
a client of the derived class. In this case, you use the protected access modifier. The following 
code demonstrates the use of the protected access modifier:  
protected double Ge tBalance()  
{  

//code to retrieve account balance from database return (double)10000;  
}  

By defining the GetBalance method as protected, it becomes accessible to the derived class 
CheckingAccount, but not to the client code accessing an instance of the Checki ngAccount class.  

ACTIVITY 7-1. IMPLEMENTING INHERITANCE USING BASE AND DERIVED CLASSES 

In this activity, you will become familiar with the following:  

 ̋ Creating a base class and derived classes that inherit its methods.  

 ̋ Using the protected access modifier to  restrict use of base class methods.  

 ̋ Creating an abstract base class.  

Creating a Base Class and Derived Classes 
To create the Account class, follow these steps:  

1. Start Visual Studio. Select File > Open > Project.  

2. Navigate to the Activity7_1Starter folder, c lick the Activity7_1.sln 



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

117  

 

 

file, and then click Open. When the project opens, it will contain a 

teller form. You will use this form later to test the classes you 

create.  

3. In the Solution Explorer window, right click the Project node and 

select Add > Class.  

4. In the Add New Item dialog box, rename the class file as Account.cs 

and click Open. The Account.cs file is added to the project, and the 

Account class definition code is added to the file.  

5. Add the following code to the class definition file to create the 

pri vate instance variable (private is the default modifier for instance 

variables):  
int _accountNumber;  

6. Add the following GetBalance method to the class definition:  

public double GetBalance(int accountNumber)  
{  

_accountNumber = accountNumber;  
//Data normally retrieved from database. if (_accountNumber == 1)  
{  

return 1000;  
}  
else if (_accountNumber == 2)  
{  

return 2000;  
}  
else  
{  

throw new Exception("Account number is incorrect");  
}  

}  

7. After the Account class, add the following code to create the CheckingAccount and 

SavingsAccount derived classes:  
class CheckingAccount : Account {  
}  
class SavingsAccount : Account {  
}  

8. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them, and then rebuild.  

Testing the Classes 

To test the classes, follow these steps:  

1. Open the Teller form in the code editor and locate the btnGetBalance click event 

code.  

2. Inside the event procedure, prior to the Try block, declare and instantiate a 

variable of type CheckingAccount called oC heckingAccount, a variable of type 

SavingsAccount called oSavingsAccount, and a variable of type Account called 

oAccount:  
CheckingAccount oCheckingAccount = new CheckingAccount();  
SavingsAccount oSavingsAccount = new SavingsAccount();  
Account oAccount = ne w Account();  

3. Depending on which radio button is selected, call the GetBalance method of 

the appropriate object and pass the account number value from the Account 

Number text box. Show the return value in the Balance text box. Place the 

following code in the Try block prior to the Catch statement:  
if (rdbChecking.Checked)  
{  



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

118  

 

 

txtBalance.Text =  
oCheckingAccount.GetBalance(int.Parse(txtAccountNumber.Text)).ToString();  

}  
else if (rdbSavings.Checked)  
{  

txtBalance.Text =  
oSavingsAccount.GetBalance(int.Parse(txtAc countNumber.Text)).ToString();  

}  
else if (rdbGeneral.Checked)  
{  

txtBalance.Text =  
oAccount.GetBalance(int.Parse(txtAccountNumber.Text)).ToString();  

}  

4. Select Build > Build Solution. Make sure there are no build errors in the Error 

List window. If there are, fix them, and then rebuild.  

5. Select Debug > Start to run the project. Enter an account number of 1 and 

click the Get Balance button for the Checking Account type. Y ou should get a 

balance of 1,000. Test the other account types. You should get the same 

result, since all classes are using the same GetBalance function defined in the 

base class.  
6. After testing, close the form, which will stop the debugger.  

Restricting Use of a Base Class Method to Its Derived Classes 

At this point, the GetBalance method of the base class is public, which means that it can be 

ÆÈÈÊØØÊÉdÇÞdÉÊ×ÎÛÊÉdÈÑÆØØÊØdÆÓÉdÙÍÊÎ×dÈÑÎÊÓÙØrd±ÊÙ̃ØdÆÑÙÊ×dÙÍÎØdØÔdÙÍÆÙdÙÍÊd¬ÊÙ§ÆÑÆÓÈÊdÒÊÙÍÔÉdÈÆÓd

be accessed only b y the derived classes alone, and not by their clients. To protect the 

GetBalance method in this way, follow these steps:  
1. Locate the GetBalance method of the Account class.  

2. Change the access modifier of the GetBalance method from public to protected.  

3. Switch  to the frmTeller code editor and locate the btnGetBalance click event code.  

4. Hover the cursor over the call to the GetBalance method of the 

oCheckingAccount object. You will see a warning stating that it is a protected 

function and is not accessible in thi s context.  
5. Comment out the code between the Try and the Catch statements.  

6. Switch to the Account.cs code editor.  
7. Add the following code to create the following private instance variable to the 

SavingsAccount class definition file:  
double _dblBalance;  

8. Add the following Withdraw method to the SavingsAccount class. This function 

calls the protected method of the Account base class:  
public double Withdraw(int accountNumber, double amount)  
{  

_dblBalance = GetBalance(accountNumber); if 
(_dblBalance >= amount)  
{  

_dblBalance - = amount;  
return _dblBalance;  

}  
else  
{  

throw new Exception("Not enough funds.");  
}  

}  

9. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them, and then rebuild.  



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

119  

 

 

Testing the Protected Base Class Method 

To test the Withdraw method, follow these steps:  

1. Open the frmTeller form in the code editor and locate the btnWithdraw click event 

code.  

2. Inside the event procedure, prior to the Try block, declare and instantiate a 

variable of type SavingsAccount called oSavingsAccount.  
SavingsAccount oSavingsAccount = new SavingsAccount();  

3. Call the Withdraw method of the oSavingsAccount. Pass the account number value 

from the Account Number text box and the withdrawal amount from the Amount text 

box . Show the return value in the Balance text box. Place the following code in the 

Try block prior to the Catch statement:  
txtBalance.Text = oSavingsAccount.Withdraw  
(int.Parse(txtAccountNumber.Text),double.Parse(txtAmount.Text)).ToString();  

4. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them and then rebuild.  

5. Select Debug > Start to run the project.  

6. Test the Withdraw method of the SavingsAccount class by entering an account 

number of 1 and a withdrawal amount of 200. Click the Withdraw button. You 

should get a resulting balance of 800.

7. Enter an account number of 1 and a withdrawal amount of 2000. 

Click the Withdraw button. You should get an insufficient funds 

message.  

8. After testing the W ithdraw method, close the form, which will stop the 

debugger. Restricting Use of All Members of a Base Class to its Derived Classes 

Because the Account base class is public, it can be instantiated by clients of the derived 

classes. You can alter this by making the Account base class an abstract class. An 

ÆÇØÙ×ÆÈÙdÈÑÆØØdÈÆÓdÇÊdÆÈÈÊØØÊÉdÔÓÑÞdÇÞdÎÙØdÉÊ×ÎÛÊÉdÈÑÆØØÊØdÆÓÉdÈÆÓ̃ÙdÇÊdÎÓØÙÆÓÙÎÆÙÊÉdÆÓÉd

accessed by their clients. To create and test the accessibility of the abstract class, follow 

these steps: 1.  Locat e the Account class definition in the Account.cs code.  

2. Add the abstract keyword to the class definition code, like so:  

abstract class Account  

3. Select Build > Build Solution. You should receive a build error in the Error 

List window. Find the line of code ca using the error.  

Account oAccount = new Account();  

4. Comment out the line of code, and select Build > Build Solution again. It 

should now build without any errors.  

5. Save and close the project.  

Overriding the Methods of a Base Class 
When a derived class inherits a method from a base class, it inherits the implementation of that 
method . As the designer of the base class, you may want to let a derived class implement the 
method in its own unique way. This is known as overriding the base class method.  

By de fault, a derived class can't override the implementation code of its base class. To allow 
a base class method to be overridden, you must include the keyword virtual in the method 



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

120  

 

 

definition. In the derived class, you define a method with the same method si gnature and indicate 
it is overriding a base class method with the override keyword. The following code demonstrates 
the creation of an overridable Deposit method in the Account base class:  

public virtual void Deposit(double amount)  

{  
//Base class implementation  

}  

To override the Deposit method in the derived CheckingAccount class, use the following code: 

public override void Deposit(double amount)  
{  

//Derived class implementation  
One scenario to watch for is when a derived class inherits from the base class and a 

second derived class inherits from the first derived class. When a method overrides a method 
in the base class, it becomes overridable by default. To limit an overriding method from being 
overridden further up the inheritance chain, you mu st include the sealed keyword in front of 
the override keyword in the method definition of the derived class. The following code in the 
CheckingAccount class prevents the overriding of the Deposit method if the CheckingAccount 
class is derived from:  
public  sealed override void Deposit(double amount)  
{  

//Derived class implementation  
}  

When you indicate that a base class method is overridable, derived classes have the option 
of overriding the method or using the implementation provided by the base class. In some 
cases, you may want to use a base class method as a template for the derived  classes. The 
base class has no implementation code, but is used to define the method signatures used in the 
derived classes. This type of class is referred to as an abstract base class.  You define the class 
and the methods with the abstract keyword. The f ollowing code is used to create an abstract 
Account base class with an abstract Deposit method:  

public abstract class Account {  
public abstract void Deposit(double amount);  

}  

Note that because there is no implementation code defined in the base class for t he Deposit 
method, the body of the method is omitted.  

Calling a Derived Class Method from a Base Class 
A situation may arise in which you are calling an overridable method in the base class 
from another method of the base class, and the derived class overrides the method of the 
base class. When a call is made to the base class method from an instance of the derived 
class, the base class will call the overridden method of the derived class. The following 
code shows an example of this situation. A Checki ngAccount base class contains an 
overridable GetMinBalance method. The InterestBearingCheckingAccount class, inheriting 
from the CheckingAccount class, overrides the GetMinBalance method.  
class CheckingAccount {  

private double _balance = 

2000; public doubl e Balance {  

get { return _balance; }  
}  
public virtual double GetMinBalance()  
{  

return 200;  



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

121  

 

 

}  
public virtual void Withdraw(double amount)



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

} 

122  

 

 

{  
double minBalance = 
GetMinBalance(); if (minBalance < 
(Balance -  amount))  
{  

_balance - = amount;  
}  
else  
{  

throw new Exception(''Minimum balance error.");  
}  

}  
}  
class InterestBearingCheckingAccount : CheckingAccount {  

public override double GetMinBalance()  
{  

return 1000;  
}  

}  

A client instantiates an object instance of the InterestBearingCheckingAccount class and 
calls the Withdraw method. In this case, the overridden GetMinimumBalance method of the 
InterestBearingCheckingAccount class is executed, and a minimum balance of 1,000 is used.  

InterestBearingCheckingAccount oAccount = new 
InterestBearingCheckingAccount(); oAccount.Withdraw(500);  

When the call was made to the Withdraw method, you could have prefaced it with the this 
qualifier:  

double minBalance = this.GetMinBalance();  

Because the this qualifier is the default qualifier if none is used, the code would execute  
the same way as previously demonstrated. The most derived class implementation (that has 
been instantiated) of the method is executed. In other words, if a client instantiates an instance 
of the InterestBearingCheckingAccount class, as was demonstrated pr eviously, the base class's 
call to GetMinimumBalance is made to the derived class's implementation. On the other hand, if 
a client instantiates an instance of the CheckingAccount class, the base class's call to 
GetMinimumBalance is made to its own implemen tation.  

Calling a Base Class Method from a Derived Class 
In some cases, you may want to develop a derived class method that still uses the 
implementation code in the base class but also augments it with its own implementation code. In 
this case, you create  an overriding method in the derived class and call the code in the base 
class using the base qualifier. The following code demonstrates the use of the base qualifier:  

public override void Deposit(double amount)  
{  

base.Deposit(amount);  
//Derived class implementation.  

Overloading Methods of a Base Class 
Methods inherited by the derived class can be overloaded. The method signature of the 
overloaded class must use the same name as the overloaded method, but the parameter lists 
must differ. This is the sam e as when you overload methods of the same class. The following 
code demonstrates the overloading of a derived method:  

class 
CheckingAccount {  

public void Withdraw(double amount)  
{  
}  



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

123  

 

 

}  
class InterestBearingCheckingAccount : 
CheckingAccount {  

public void Withdraw(double amount, double minBalance)  
{  
}  

}  

Client code instantiating an instance of the InterestBearingCheckingAccount has access to 
both Withdraw methods.  

InterestBearingCheckingAccount oAccount = new InterestBearingCheckingAccount();  
oAccount.Withd raw(500);  
oAccount.Withdraw(500, 200);  

Hiding Base Class Methods 
If a method in a derived class has the same method signature as that of the base class method 
but it is not marked with the override key word, it effectively hides the method of the base 
class. Although this may be the intended behavior, sometimes it can occur inadvertently. 
Although the code will still compile, the IDE will issue a warning asking if this is the intended 
behavior. If you intend to hide a base class method, you should expli citly use the new keyword 
in the definition of the method of the derived class. Using the new keyword will indicate to the 
IDE this is the intended behavior and dismiss the warning. The following code demonstrates 
hiding a base class method:  

class 
Checking Account {  

public virtual void Withdraw(double amount)  
{  
}  

}  

class InterestBearingCheckingAccount : 
CheckingAccount {  

public new void Withdraw(double amount)  
{  
}  
public void Withdraw(double amount, double minBalance)  
{  

}  
}  

ACTIVITY 7-2. OVERRIDING BASE CLASS METHODS 

In this activity, you will become familiar with the following:  

 ̋ Overriding methods of a base class.  

 ̋ Using the base qualifier in a derived classes.  

Overriding Base Class Methods 
To override the Account class, follow these steps:  

1. Start VS. Select File > Open > Project.  

2. Navigate to the Activity7_2Starter folder, click the Act7_2.sln file, and then click 

Open. When the project opens, it will contain a teller form. You will use this form 

later to test the classes you will create. The project also contains a BankClasses.cs 

file. This file contains code for the Account base class and the derived classes 



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

124  

 

 

SavingsAccount and CheckingAccount.  

3. Examine the Withdraw method defined in the base class Account. This method 

checks to see whether there are sufficient funds in the account a nd, if there are, 

updates the balance. You will override this method in the CheckingAccount class to 

ensure that a minimum balance is maintained.  

4. Change the Withdraw method definition in the Account class to indicate it is 

overridable, like so:  
public virtual double Withdraw(double amount)  

5. Add the following GetMinimumBalance method to the CheckingAccount class 

definition:  
public double GetMinimumBalance()  
{  
return 200;  
}  

6. Add the following overriding Withdraw method to the CheckingAccount class 

definitio n. This method adds a check to see that the minimum balance is maintained 

after a withdrawal.  
public override double Withdraw(double amount)  
{  
if (Balance >= amount + GetMinimumBalance())  
{  

_balance - = amount;  
return Balance;  

}  
else  
{  

throw new ApplicationException("Not enough funds.");  
}  

}  

7. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them and then rebuild.  

Testing the Overwritten Methods 

To test the modified Withdraw methods you have created, follow these steps:  

1. Open the frmTeller form in the code editor and locate the btnWithdraw click event 

code.  

2. Depending on which radio button is selected, call the Withdraw method of the 

appropriate object and pass the value of the txtAmoun t text box. Add the following code 

in the try block to show the return value in the txtBalance text box:  
if (rdbChecking.Checked)  
{  

oCheckingAccount.AccountNumber = int.Parse(txtAccountNumber.Text); 
txtBalance.Text = 
oCheckingAccount.Withdraw(double.Parse( txtAmount.Text)).ToString();  
}  
else if (rdbSavings.Checked)  
{  

oSavingsAccount.AccountNumber = int.Parse(txtAccountNumber.Text); 
txtBalance.Text = 
oSavingsAccount.Withdraw(double.Parse(txtAmount.Text)).ToString();  
}  

3. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them, and then rebuild.  

4. Select Debug > Start to run the project.  



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

125  

 

 

5. Enter an account number of 1, choose the Checking option button, and click the Get 

Balance but ton.You should get a balance of 1000.  

6. Enter a withdrawal amount of 200 and click the Withdraw button. You should get a 

resulting balance of 800.  

7. Enter a withdrawal amount of 700 and click the Withdraw button. You should get an 

insufficient funds message because the resulting balance would be less than the 

minimum balance of 200.  

8. Enter an account number of 1, choose the Savings option button, and click the Get 

Balance button. You should get a balance of 1000.

9. Enter a withdrawal amount of 600 and click the Withdraw button. You should 

get a resulting balance of 400.  

10. Enter a withdrawal amount of 400 and click the Withdraw button. You should 

get a resulting balance of 0 because there is no minimum balance for the 

savings account that uses the Account base class ̃Ød¼ÎÙÍÉ×ÆÜdÒÊÙÍÔÉr 
11. After testing, close the form, which will stop the debugger.  

Using the Base Qualifier to Call a Base Class Method 

¦ÙdÙÍÎØdÕÔÎÓÙpdÙÍÊd¼ÎÙÍÉ×ÆÜdÒÊÙÍÔÉdÔËdÙÍÊd¨ÍÊÈÐÎÓÌ¦ÈÈÔÚÓÙdÈÑÆØØdÔÛÊ××ÎÉÊØdÙÍÊd¦ÈÈÔÚÓÙdÈÑÆØØ̃Ød

Withdraw method. None of the  ÈÔÉÊdÎÓdÙÍÊdÇÆØÊdÈÑÆØØ̃ØdÒÊÙÍÔÉdÎØdÊÝÊÈÚÙÊÉrd¾ÔÚdÜÎÑÑdÓÔÜdÆÑÙÊ×d

ÙÍÊdÈÔÉÊdØÔdÙÍÆÙdÜÍÊÓdÙÍÊd¨ÍÊÈÐÎÓÌ¦ÈÈÔÚÓÙdÈÑÆØØ̃ØdÈÔÉÊdÎØdÊÝÊÈÚÙÊÉpdÎÙdÆÑØÔdÊÝÊÈÚÙÊØdÙÍÊdÇÆØÊd

ÈÑÆØØ̃Ød¼ÎÙÍÉ×ÆÜdÒÊÙÍÔÉdrd«ÔÑÑÔÜdÙÍÊØÊdØÙÊÕØ~ 
1. Locate the Withdraw method of the Account class.  

2. Change the implementation code so that it decrements the balance by the 

amount passed to it.  
public virtual double Withdraw(double amount)  
{  
_balance - = amount; return Balance;  
}  

3. Change the Withdraw method of the CheckingAccount class so that after it 

checks  for sufficient funds, it calls the Withdraw method of the Account 

base class.  
public override double Withdraw(double amount)  
{  
if (Balance >= amount + GetMinimumBalance())  
{  

return base.Withdraw(amount);  
}  
else  
{  

throw new ApplicationException("Not enough  funds.");  
}  
}  

4. Add a Withdraw method to the SavingsAccount class that is similar to the 

Withdraw method of the CheckingAccount class but does not check for a 

minimum balance.  
public override double Withdraw(double amount)  
{  
if (Balance >= amount)  
{  

return base.Withdraw(amount);  
}  
else  
{  

throw new ApplicationException("Not enough funds.");  



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

126  

 

 

}  
}  

5. Select Build > Build Solution. Make sure there are no build errors in 

the Error List window. If there are, fix them, and then rebuild.  

Testing the Use of the Base Modifier 

To test the Withdraw method, follow these steps:  

1. Select Debug > Start.  

2. Enter an account number of 1, choose the Checking option button, and 

click the Get Balance button. You should get a balance of 1000.  

3. Enter a withdrawal amount of 600 and click the Withdraw button. You 

should get a resulting balance of 400.  

4. Enter a withdrawal amount of 300 and click the Withdraw button. You 

should get an insufficient funds message because the resulting 

balance would be less than the 200 minimum.  

5. Enter an account number of 1, choose the Savings option button, and 

click the Get Balance button. You should get a balance of 1000.  

6. Enter a withdrawal amount of 600 and click the Withdraw button. You 

should get a resulting balance of 400.  

7. Enter a withdrawal amount of 300 and click the Withdraw button. You 

should get a resulting balance of 100, because there is no minimum 

ÇÆÑÆÓÈÊdËÔ×dÙÍÊdØÆÛÎÓÌØdÆÈÈÔÚÓÙdÙÍÆÙdÚØÊØdÙÍÊd¦ÈÈÔÚÓÙdÇÆØÊdÈÑÆØØ̃Ød

Withdraw method.  

8. After testing, close the form, which will stop the debugger.  

Implementing Interfaces 
As you saw earlier, you can create an abstract base class that does not contain any 
implementation code but defines the method signatures that must be used by any class that 
inherits from the base class. When you use an abstract class, class es that derive from it must 
implement its inherited methods. You could use another technique to accomplish a similar 
result. In this case, instead of defining an abstract class, you define an interface that defines the 
method signatures.  

Classes that implement an interface are contractually required to implement the interface 
signature definition and can't alter it. This technique is useful to ensure that client code using 
the classes know which methods are avail able, how they should be called, and the return values 
to expect. The following



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

} 

127  

 

 

code shows how you declare an interface 

definition: public interface IAccount {  
string GetAccountInfo(int accountNumber);  

}  

A class implements the interface by using a semicolon followed by the name of the interface 
after the class name. When a class implements an interface, it must provide implementation code 
for all methods defined by the interface. The following code demonstrates how a 
CheckingAccount implements the I Account interface:  
public class CheckingAccount : 
IAccount {  

public string GetAccountInfo(int accountNumber)  
{  

return "Printing checking account info";  
}  

}  

Because implementing an interface and inheriting from an abstract base class are similar, 
you might ask why you should bother using an interface. One advantage of using interfaces is 
that a class can implement multiple interfaces. The .NET Framework does not support 
inheritance from more than one class. As a workaround to multiple inheritance, the abilit y to 
implement multiple interfaces was included. Interfaces are also useful to enforce common 
functionality across disparate types of classes.  

Understanding Polymorphism 
Polymorphism is the ability of derived classes inheriting from the same base class to respond to 
the same method call in their own unique way. This simplifies client code because the client 
code does not need to worry about which class type it is referencing, as long as the class types 
implement the same method interfaces.  

For example, supp ose you want all account classes in a banking application to contain a 
GetAccountlnfo method with the same interface definition but different implementations based 
on account type. Client code could loop through a collection of account - type classes, and th e 
compiler would determine at runtime which specific account - type implementation needs to be 
executed. If you later added a new account type that implements the GetAccountInfo method, 
you would not need to alter existing client code.  

You can achieve polymo rphism either by using inheritance or by implementing interfaces. 
The following code demonstrates the use of inheritance. First, you define the base and derived 
classes.  
public abstract class Account {  

public abstract string GetAccountInfo();  
}  

public clas s CheckingAccount : Account {  
public override string GetAccountInfo()  
{  

return "Printing checking account info";  
}  
public class SavingsAccount : Account {  

public override string GetAccountInfo()  
{  

return "Printing savings account info";  
}  

}  

You then create  a list of type Account and add a CheckingAccount and a SavingsAccount.  

List<Account> AccountList = new List<Account>();  
CheckingAccount oCheckingAccount = new CheckingAccount();  
SavingsAccount oSavingsAccount = new SavingsAccount();  



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

128  

 

 

AccountList.Add(oCheck ingAccount);  
AccountList.Add(oSavingsAccount);  

You then loop through the List and call the GetAccountInfo method of each Account. Each 
Account type will implement its own implementation of the GetAccountInfo.  

foreach (Account a in AccountList)  
{  

MessageBox .Show(a.GetAccountInfo());  
}  

You can also achieve a similar result by using interfaces. Instead of inheriting from the base 
class Account, you define and implement an IAccount interface.  

public interface IAccount {  
string GetAccountInfo();  

}  

public class CheckingAccount : IAccount {  
public string GetAccountInfo()  
{  

return "Printing checking account info";  
}  

}  
public class SavingsAccount : IAccount {  

public string GetAccountInfo()  
{  

return "Printing savings account info";  
}  

}  

You then create a list of type IAccount and add a CheckingAccount and a SavingsAccount.  

List<IAccount> AccountList = new List<IAccount>();  
CheckingAccount oCheckingAccount = new CheckingAccount();  
SavingsAccount oSavingsAccount = new SavingsAccount();  
AccountList.Add(oCheckingAccount);  
AccountList.Add(oSavingsAccount);  

You then loop through the List and call the GetAccountInfo method of each Account. Each 
Account type will implement its own implementation of the GetAccountInfo.  
foreach (IAccount a in AccountList)  
{  

MessageBox.Show(a.GetA ccountInfo());  
}  

ACTIVITY 7-3. IMPLEMENTING POLYMORPHISM 

In this activity, you will become familiar with the following:  

 ̋ Creating polymorphism through inheritance.  

 ̋ Creating polymorphism through interfaces.  

Implementing Polymorphism Using Inheritance 
To implement polymorphism using inheritance, follow these steps:  

1. Start Visual Studio. Select File > New > Project.  

2. Select the Console Application template under the C# templates. Name 

the project Activity7_3.  

3. The project includes a Program.cs file. This file contains a Main 



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

129  

 

 

method that launches a Windows Console application. Right click 

the project node in the Solution Explorer Window and select Add 

> class. Name the file Account.cs.  

4. In the Account.cs file alte r the code to an abstract base Account class. 

Include an accountNumber property and an abstract method 

GetAccountInfo that takes no parameters and returns a string.  
public abstract class Account {  

private int _accountNumber; public int AccountNumber {  

get { return _accountNumber; } 
set { _accountNumber = value; }  

}  

public abstract string GetAccountInfo();  
}  

5. Add the following code to create two derived classes: 

CheckingAccount and SavingsAccount. These classes will override 

the GetAccountInfo method of the base class.



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

130  

 

 

public class CheckingAccount : Account {  
public override string GetAccountInfo()  
{  

return "Printing checking account info for account number "  
+ AccountNumber.ToString();  

}  
}  
public class SavingsAccount : Account {  

public override string GetAccountInfo()  
{  

return "Printing savings account info for account number "  
+ AccountNumber.ToString();  

}  
}  

6. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them, and then rebuild.  

Testing the Polymorphic Inheritance Method 

To test the polymorphic method, follow these steps: 1.  Open the Program.cs file in the 

code editor and locate the Main method.  

2. Instantiate an instance of a list of Account types.  
List<Account> AccountList = new List<Account> ();  

3. Instantiate an instance of the CheckingAccount and SavingsAccount.  

CheckingAccount oCheckingAccount = new CheckingAccount(); 
oCheckingAccount.AccountNumber = 100;  
SavingsAccount oSavingsAccount = new SavingsAccount(); 
oSavingsAccount.AccountNumber = 200;  

4. Add the oCheckingAccount and oSavingsAccount to the list using the Add method of 

the list.  
AccountList.Add(oCheckingAccount);  
AccountList.Add(oSavingsAccount);  

5. Loop through the list and call the GetAccountInfo method of each Account type in the 

list a nd show the results in a console window.  
foreach (Account a in AccountList)  
{  

Console.WriteLine(a.GetAccountInfo());  
}  
Console.ReadLine();  

6. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them, and then rebuild.  

7. Select Debug > Start to run the project. You should see a console window with the 

return string for the GetAccountInfo method of each o bject in the list.  

8. After testing the polymorphism, hit the enter key to close the console window, which 

will stop the debugger.  

Implementing Polymorphism Using an Interface 

To implement polymorphism using an interface, follow these steps:  

1. View the code for  the Account.cs file in the code editor.  

2. Comment out the code for the Account, CheckingAccount, and SavingsAccount 

classes.  



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

131  

 

 

3. Define an interface IAccount that contains the GetAccountInfo method.  

public interface IAccount {  
string GetAccountInfo();  
}  

4. Add the  following code to create two classes: CheckingAccount and SavingsAccount. 

These classes will implement the IAccount interface.  
public class CheckingAccount : IAccount {  

private int _accountNumber; public int AccountNumber {  

get { return _accountNumber; } set { _accountNumber = value; }  
}  
public string GetAccountInfo()  
{  

return "Printing checking account info for account number "  
+ AccountNumber.ToString();  

}  
}  
public class SavingsAccount : IAccount {  

private int _accountNumber; public int AccountNumber {  

get { return _accountNumber; } set { _accountNumber = value; }  
}  
public string GetAccountInfo()  
{  

return "Printing savings account info for account number "  
+ AccountNumber.ToString();

}  
}  

5. Select Build > Build Solution. Make sure there are no build errors in 

the Error List window. If there are, fix them, and then rebuild.  

Testing the Polymorphic Interface Method 

To test the polymorphic method, follow these steps:  

1. Open the Program.cs file in the code edito r and locate the Main method.  

2. Change the code to instantiate an instance of a list of IAccount types.  
List<IAccount> AccountList = new List<IAccount>();  

3. Change the for each loop to loop through the list and call the 

GetAccountInfo() method of each IAccount  type in the list.  
foreach (IAccount a in AccountList)  
{  
Console.WriteLine(a.GetAccountInfo());  
}  
Console.ReadLine();  

4. Select Build > Build Solution. Make sure there are no build errors in 

the Error List window. If there are, fix them, and then rebuild.  

5. Select Debug > Start to run the project. You should see a console 

window with the return string for the GetAccountInfo method of each 

object in the list.  

6. After testing the polymorphism, hit the enter key to close the console 

window, which will stop the debugger.  



CHAPTER 7 ƴ CREATING CLASS HIERARCHIES 

132  

 

 

Summary 
This chapter introduced you to two of OOP's most powerful features: inheritance and 
polymorphism. Knowing how to implement these features is fundamental to becoming a 
successful object - oriented programmer, regardless of the language you u se. 

In the next chapter, you will take a closer look at how the objects in your applications 
collaborate. The topics covered include how objects pass messages to one another, how events 
drive your programs, how data is shared among instances of a class, and how exceptions are 
handled.



137  

 

 

C H A P T E R 8 

Implementing Object Collaboration 

In the previous chapter, you learned how to create and use class hierarchies in C#. That chapter 
also introduced the concepts of inheritance, polymorphi sm, and interfaces. In this chapter, you'll 
learn how to get the objects of an application to work together to perform tasks. You will see 
how objects communicate through messaging and how events initiate application processing. 
You'll also learn how the o bjects respond and communicate exceptions that may occur as they 
carry out their assigned tasks.  

After reading this chapter, you should be familiar with the following:  

 ̋ The process of object communication through messaging.  

 ̋ The different types of messaging that can occur.  

 ̋ How to use delegation in C# applications.  

 ̋ How objects can respond to events and publish their own events.  

 ̋ The process of issuing and responding to exceptions.  

 ̋ How to create shared data and procedures among several instances of the 
same clas s. 

 ̋ How to issue message calls asynchronously.  

Communicating Through Messaging 
One of the advantages of OOP is that OOP applications function in much the same way that 
people do in the real world. You can think of your application as a large company. In large 
companies, the employees perform specialized functions. For example, one person is in charge 
of accounts payable processing, and another is responsible for the accounts receivable 
operations. When an employee needs to request a service ˿paid time off (PTO), for example ˿
the employee (the client) sends a message to her manager (the server). This client/server 
request can involve just two objects, or it can be a complex chain of client/server requests. For 
example, the employee requests the PTO from her m anager, who, in turn, checks with the 
human resources (HR) department to see if the employee has enough accumulated time. In this 
case, the manager is both a server to the employee and a client to the HR department.  

Defining Method Signatures 
When a messag e passes between a client and server, the client may or may not expect a 
response. For example, when an employee requests PTO, she expects a response indicating 
approval or denial.  
However, when the accounting department issues paychecks, the staff members  do not expect 
everyone in the company to issue a response e - mail thanking them!  

A common requirement when a message is issued is to include the information necessary to 



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

} 

138  

 

 

carry out the request. When an employee requests PTO, her manager expects her to provi de 
him with the dates she is requesting off. In OOP terminology, you refer to the name of the 
method (requested service) and the input parameters (client - supplied information) as the 
method signature.  

The following code demonstrates how methods are defined  in C#. The access modifier is 
first followed by the return type (void is used if no return value is returned) and then the name 
of the method. Parameter types and names are listed in parenthesis separated by commas. The 
body of the method is contained in opening and closing curly brackets.  

public int AddEmployee(string firstName,string lastName)  
{  

//Code to save data to database  
}  
public void LogMessage(string message)  
{  

//Code to write to log file.  
}  

Passing Parameters 
When you define a method in the class, you also must indicate how the parameters are passed. 
Parameters may be passed by value or by reference.  

If you choose to pass the parameters by value, a copy of the parameter data is passed from 
the client to the server. The server works with the copy and, if changes are made to the data, 
the server must pass the copy back to the client so that the client can choose to discard the 
changes or replicate them. Returning to the company analogy, think about the process of 
updating your employee file. Th e HR department does not give you direct access to the file; 
instead, it sends you a copy of the values in the file. You make changes to the copy, and then 
you send it back to the HR department. The HR department then decides whether to replicate 
these cha nges to the actual employee file. In C#, passing parameters by value is the default, so 
no keyword is used. In the following method, the parameter is passed by value:  

public int AddEmployee(string firstName)  
{  

//Code to save data to database  
}  

Another way you can pass parameters is by reference. In this case, the client does not pass 
in a copy of the data but instead passes a reference to where the data is located. Using the 
previous example, instead of sending you a copy of the data in your employee file w hen you 
want to make updates, the HR department informs you where the file is located, and tells you to 
go to it to make the changes. In this case, clearly it would be better to pass the parameters by 
reference. In C# code, when passing parameters by refer ence the ref keyword is used. The 
following code shows how you define the method to pass values by reference:  

public int AddEmployee(ref string firstName)  
{  

//Code to save data to database



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

139  

 

 

In highly distributed applications, it is advantageous to pass parameters by value instead of 
by reference. Passing parameters by reference can cause increased overhead, because when 
the server object must work with parameter information, it needs to make calls across 
processing boundaries and the network. Passing values by reference is also less secure when 
maintaining data integrity. The client is opening a channel for the data to be manipulated without 
the client's knowledge or control.  

On the other hand, passing values by reference may be the better choice when the client 
and server a re in the same process space (they occupy the same cubicle, so to speak) and have 
a clearly established trust relationship. In this situation, allowing direct access to the memory 
storage location and passing the parameters by reference may offer a perform ance advantage 
over passing the parameters by value.  

The other situation where passing parameters by reference may be advantageous is if the 
object is a complex data type, such as another object. In this case, the overhead of copying the 
data structure and  passing it across process and network boundaries outweighs the overhead of 
making repeated calls across the network.  

ƵNote The .NET Framework addresses the problem of complex data types by allowing you to 

efficiently copy and pass those types by serializi ng and deserializing them in an XML structure.  

Understanding Event-Driven Programming 
So far, you have been looking at messaging between the objects in which the client initiates the 
message interaction. If you think about how you interact with objects in real life, you often 
receive messages in response to an event that has occurred. For example, when the sandwich 
vendor comes into the building, a message is issued over the intercom informing employees that 
the lunch has arrived. This type of messaging is referred to as broadcast messaging. The server 
issues the message, and the clients decide to ignore or respond to the message.  

Another way this event message could be issued is by the receptionist sending an e - mail to 
a list of interested employees when th e sandwich vendor shows up. In this case, the interested 
employees would subscribe to receive the event message with the receptionist. This type of 
messaging is often referred to as subscription - based messaging.  

Applications built with the .NET Framework are object - oriented, event - driven programs. If 
you trace the client/server processing chains that occur in your applications, you can identify 
the event that kicked off the processing. In the case of Windows applications, the user 
interacting with a GUI us ually initiates the event. For example, a user might initiate the process 
of saving data to a database by clicking a button. Classes in applications can also initiate events. 
A security class could broadcast an event message when an invalid login is detect ed. You can 
also subscribe to external events. You could create a web service that would issue an event 
notification when a change occurs in a stock you are tracking in the stock market. You could 
write an application that subscribes to the service and res ponds to the event notification.  

Understanding Delegation 
In order to implement event - based programming in C#, you must first understand 
delegation. Delegation is when you request a service from a server by making a method 
call. The server then reroutes th is service request to another method, which services the 
request. The delegate class can  
examine the service request and dynamically determines at runtime where to route the request. 
Returning to the company analogy, when a manager receives a service reque st, she often 
delegates it to a member of her department. (In fact, many would argue that a common trait 
among successful managers is the ability to know when and how to delegate responsibilities.)  

When you create a delegated method, you first define the d elegated method's signature. 
Because the delegate method does not actually service the request, it does not contain any 



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

140  

 

 

implementation code. The following code shows a delegated method used to compare integer 
values:  

public delegate Boolean CompareInt(int I1, int I2);  

Once the delegated method's signature is defined, you can then create the methods that will 
be delegated to. These methods must have the same parameters and return types as the 
delegated method. The following code shows two methods that the de legated method will 
delegate to:  

private Boolean AscendOrder(int I1, int I2)  

{  
if (I1 < I2)  
{ return true;} 
else  
{ return false; }  

}  
private Boolean DescendOrder(int I1, int I2)  

{  
if (I1 > I2)  
{ return true; } 
else  
{ return false; }  

}  

Once the delegate and  its delegating methods have been defined, you are ready to use the 
delegate. The following code shows a portion of a sorting routine that determines which 
delegated method to call depending on a SortType passed in as a parameter:  

public void SortIntegers( SortType sortDirection, int[] intArray)  

{  
CompareInt CheckOrder; if (sortDirection 
== SortType.Ascending)  

{ CheckOrder = new CompareInt(AscendOrder); }  
else  

{ CheckOrder = new CompareInt(DescendOrder); }  
// Code continues ...  

}  

Implementing Events 
In C#, when you want to issue event messages, first you declare a delegate type for the event. 
The delegate type defines the set of arguments that will be passed to the method that handles 
the event.  

public delegate void DataUpdateEventHandler(string msg);  

Once t he delegate is declared an event of the delegate type is declared.  

public event DataUpdateEventHandler DataUpdate;  

When you want to raise the event, you call the event passing in the appropriate 

arguments. public void SaveInfo()  
{  

try  
{  

DataUpdate("Data has been updated");  
}  
catch  
{  

DataUpdate("Data could not be updated");  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

141  

 

 

}  
}  

Responding To Events 
To consume an event in client code, an event handling method is declared that executes program 
logic in response to the event. This event handler must have the same method signature as the 
event delegate declared in the class issuing the event.  

void odata_DataUpdate(string msg)  
{  

MessageBox.Show(msg);  
}  

This event handler is registered with the event source using the += operator. This process is 
referred to as event wiring. The following code wires up the event handler for the DataUpdate 
event declared previously:  

Data odata = new Data();  
odata.DataUpdate += new 
DataUpdateEventHandler(odata_DataUpdate); odata.SaveInfo();  

Windows Control Event Handling 
Windows Forms also implement event handlers by using the += operator to wire up the event 
handler to the event. The following code wires up a button to a click event and a textbox to a 
mouse down event:  
this.button1.Click += new System.EventHandler(this.button1_Cl ick); 
this.textBox1.MouseDown += new  
System.Windows.Forms.MouseEventHandler(this.textBox1_MouseDown);  

The event handler methods for control events take two parameters: the first parameter, 
sender, provides a reference to the object that raised the event. T he second parameter passes an 
object containing information specific to the event that is being handled. The following code shows 
an event handler method for a button click event and an event handler for the textbox mouse down 
event. Notice how e is used t o determine if the left button was clicked.  
private void button1_Click(object sender, EventArgs e)  
{  

}  
private void textBox1_MouseDown(object sender, MouseEventArgs e) {  

if (e.Button == System.Windows.Forms.MouseButtons.Left)  
{  

//code goes here.  
}  

}  

ACTIVITY 8-1. ISSUING AND RESPONDING TO EVENT MESSAGES 

In this activity, you will learn to do the following:  

 ̋ Create and raise events from a server class.  

 ̋ Handle events from client classes.  

 ̋ Handle GUI events.  

Adding and Raising Event Messaging in the Class Definition 

To add and raise event messaging in a class definition file, follow these steps:  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

142  

 

 

1. Start Visual Studio. Select File > New > Project.  

2. Choose a Windows Application project. Name the project Act 8_1. 

3. A default form is included in the project. Add cont rols to the form and 

change the property values, as listed in Table 8 - 1. Your completed form 

should look similar to Figure 8 - 1. 

 

 

Table 8 - 1. Login Form and Control Properties  
Object Property Value 

Form1  Name frmLogin  

 Text  Login  

Label 1  Name lblName  

 Text  Name:  

Label2  Name lblPassword  

 Text  Password:  

(continued)  
Table 8 - 1. (continued)  

Object Property Value 

Textbox1  Name txtName  

 Text  (empty)  

Textbox2  Name txtPassword  

 Text  (empty)  

 PasswordChar  *  

Button 1  Name btnLogin  

 Text  Login  

Button2  Name btnClose  

 Text  Close  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

143  

 

 

 

Figure 8 - 1. The completed login form  

4. Select Project > Add Class. Name the class Employee. Open the Employee class 

code in the code editor.  

5. Above the class declaration, add the following line of code to define the 

Login event  handler delegate. You will use this event to track employee 

logins to your application.  

public delegate void LoginEventHandler(string loginName, Boolean status);  

6. Inside the class declaration, add the following line of code to define the 

LoginEvent as the delegate type:

 



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

144  

 

 

public event LoginEventHandler LoginEvent;  

7. Add the following Login method to the class, which will raise the LoginEvent:  

public void Login(string loginName, string password)  
{  

//Data normally retrieved from database. if (loginName == 
"Smith" && password == "js")  
{  

LoginEvent(loginName, true);  
}  
else 
{  

LoginEvent(loginName, false);  
}  

}  

8. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them, and then rebuild.  

Receiving Events in the Client Class 

To receive events in the client class, follow these steps:  

1. Open the frmLogin in the design window.  

2. Double - click the Login button to view the Login button click event handler.  

3. ¦ÉÉdÙÍÊdËÔÑÑÔÜÎÓÌdÈÔÉÊdÙÔdÜÎ×ÊdÚÕdÙÍÊdªÒÕÑÔÞÊÊdÈÑÆØØ̃Ød±ÔÌÎÓªÛÊÓÙdÜÎÙÍdÆÓdÊÛÊÓÙd

handler in the form class:  
private void btnLogin_Click(object sender, EventArgs e)  
{  

Employee oEmployee = new Employee();  
oEmployee.LoginEvent += new LoginEventHandler(oEmployee_LoginEvent); 
oEmployee.Login(txtName.Text, txtPassword.Text);  

}  

4. Add the following event handler method to the form that gets called when the 

Employee class issues a LoginEvent:  
void oEmployee_LoginEvent(string loginName, bool status)  
{  

MessageBox.Show("Login status :" + status);  
}  

5. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them, and then rebuild.  

6. Select Debug > Start to run the project.  

7. To test to make sure the Login event is raised, enter a login name of Smith and a 

password of js. This should trigger a login status of true.  
8. After testing the Login event, close the form, which will stop the debugger.  

Handling Multiple Events with One Method 

To handle multiple events with one method, follow these steps:  

1. Open frmLogin in the form d esigner by right - clicking the frmLogin node in the 

Solution Explorer and choosing View Designer.  

2. «×ÔÒdÙÍÊd¹ÔÔÑÇÔÝpdÆÉÉdÆd²ÊÓÚ¸Ù×ÎÕdÈÔÓÙ×ÔÑdÙÔdÙÍÊdËÔ×Òrd¨ÑÎÈÐdÜÍÊ×ÊdÎÙdØÆÞØd̆¹ÞÕÊd

­Ê×Ê̇dÆÓÉdÊÓÙÊ×d«ÎÑÊdËÔ×dÙÍÊdÙÔÕ- level menu and Exit for its submenu, as shown  in 

Figure 8 - 2. 



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

145  

 

 

 

3. Add the following method to handle the click event of the menu and the Close 

button:  
private void FormClose(object sender, EventArgs e)  
{  

this.Close();  
}  

4. Open the frmLogin in the designer window. In the properties window, select the 

exitToolStripMenuItem. Select the event button at the top of the properties window 

to show the events of the control. In the click event drop - down, select the 

FormClose method (see Figure 8 - 3).

 

Figure 8 - 2. Adding the MenuStrip control  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

146  

 

 

FormC lose  

Properties ȇ ^ X  

exitToolStripMeruItem System .Windows. Form s.Tool Strip ii 1 10 

S== A I 
s=: z +  

BackColorChanged 

CheckedChanged 

CheckStateChanged 

Click 

DisplayStyleChanged 

DoubleClick 

DropDownClosed 

DropDownltem Ǧ licked 

DropDownOpened  

DropDownOpening  

EnabledChanged 
Click 

Occurs when the item is clicked.  

Figure 8 - 3. Wiring up an event handler  

5. Repeat step 4 to wire up the btnClose button click event to the FormClose 
method.  

6. Expand the frmLogin node in the Solution window. Right 

click on the frmLogin.Designer.cs node and select View 

Code. 

7. In the code editor, expand the Windows Form Designer generated 

code region. Search for the following code:  
this.btnClose.Click += new System.EventHandler(this.FormClose); 
this.exitToolStripMenuItem.Click += new 
System.EventHandler(this.FormClose);  

8. This code was generated by the form designer to wire up the events 

to the FormClose method.  

9. Select Build > Build Solution. Make sure there are no build errors in 

the Error List window. If there are, fix them, and then rebuild.  

10. Select Debug > Start to run the project. Test the Exit menu and the Close 
button.  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

147  

 

 

11. After testing, save the project,  and then exit Visual Studio.



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

} 

148  

 

 

Handling Exceptions in the .NET Framework 
When objects collaborate, things can go wrong. Exceptions are things that you do not expect to 
occur during normal processing. For example, you may be trying to save data to a database  
over the network when the connection fails, or you may be trying to save to a drive without a 
disk in the drive. Your applications should be able to gracefully handle any exceptions that 
occur during application processing.  

The .NET Framework uses a structured exception handling mechanism. The following 
are some of the benefits of this structured exception handling:  

 ̋ Common support and structure across all .NET languages.  

 ̋ Support for the creation of protected blocks of code.  

 ̋ The ability to filter exceptions to create efficient robust error handling.  

 ̋ Support of termination handlers to guarantee that cleanup tasks are completed, 
regardless of any exceptions that may be encountered.  

The .NET Framework also provides an extensive number of exception cla sses used to 
handle common exceptions that might occur. For example, the FileNotFoundException class 
encapsulates information such as the file name, error message, and the source for an exception 
that is thrown when there is an attempt to access a file tha t does not exist. In addition, the 
.NET Framework allows the creation of application - specific exception classes you can write to 
handle common exceptions that are unique to your application.  

Using the Try-Catch Block 
When creating code that could end up causing an exception, you should place it in a Try block. 
Code placed inside the Try block is considered protected. If an exception occurs while the 
protected code is executing, code processing is transferred to the Catch block, where it is 
handled. The fo llowing code shows a method of a class that tries to read from a file that does 
not exist. When the exception is thrown, it is caught in the Catch block.  

public string ReadText(string filePath)  
{  

StreamReader sr; try 
{  

sr = File.OpenText(filePath); 
string fileText = sr.ReadToEnd(); 
sr.Close(); return fileText;  

}  
catch(Exception ex)  
{  

return ex.Message;  
}  

All Try blocks require at least one nested Catch block. You can use the Catch block to catch 
all exceptions that may occur in the Try block, or you can use  it to filter exceptions based on 
the type of exception. This enables you to dynamically respond to different exceptions based on 
the exception type. The following code demonstrates filtering exceptions based on the different 
exceptions that could occur wh en trying to read a text file from disk:  

public string ReadText(string filePath)  
{  

StreamReader sr; try {  
sr = File.OpenText(filePath); 
string fileText = sr.ReadToEnd(); 
sr.Close(); return fileText;  

catch (DirectoryNotFoundException 
ex) {  

return ex.Message ; 
}  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

149  

 

 

catch (FileNotFoundException ex)  
{  

return ex.Message;  
}  
catch(Exception ex)  
{  

return ex.Message;  
}  

}  

Adding a Finally Block 
Additionally, you can nest a Finally block at the end of the Try block. Unlike the Catch block, the 
use of the Finally block is optional. The Finally block is for any cleanup code that needs to 
occur, even if an exception is encountered. For example, you may need to close a database 
connection or release a file. When the code of the Try block is executed and an exception 
occurs, pr ocessing will jump to the appropriate Catch block. After the Catch block executes, the 
Finally block will execute. If the Try block executes and no exception is encountered, the Catch 
blocks don't execute, but the Finally block will still get processed. Th e following code shows a 
Finally block being used to close and dispose a StreamReader:  

public string ReadText(string filePath)  
{  

StreamReader sr = null; try {  
sr = File.OpenText(filePath); 
string fileText = sr.ReadToEnd(); 
return fileText;  

}  
catch (DirectoryNotFoundException ex)  
{  

return ex.Message;  
}  
catch (FileNotFoundException 
ex) {  

return ex.Message;  
}  
catch (Exception ex)  
{  

return ex.Message;  
}  
finally  
{  

if (sr != null)  
{  

sr.Close();  
sr.Dispose();  

}  
}  

}  

Throwing Exceptions 
During code execution, when an exception occurs that does not fit into one of the predefined 
system exception classes, you can throw your own exception. You normally throw your own 
exception when the error will not cause problems with execution but rather with the pro cessing 
of your business rules. For example, you could look for an order date that is in the future and 
throw an ApplicationException. The ApplicationException class inherits from the 
System.Exception class. The following code shows an example of throwing an 
ApplicationException:  

public void LogOrder(long orderNumber, DateTime orderDate)  
{  

try  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

150  

 

 

{  
if (orderDate > DateTime.Now)  
{  

throw new ApplicationException("Order date can not be in the future.");  
}  
//Processing code...  

}  
catch(Exception ex)  
{  

//Exception handler code...  
}  

}  
}  

Nesting Exception Handling 
In some cases, you may be able to correct an exception that occurred and continue processing 
the rest of the code in the Try block. For example, a division - by- zero error may occur, and it 
would be acceptable to



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

151  

} 

 

 

assign the result a value of zero and continue processing. In this case, a Try - Catch block could 
be nested around the line of code that would cause the exception. After the exception is 
handled, processing would return to the line of code in the outer Try - Catch block immediately 
after the nested Try block. The following code demonstrates nesting one Try block within 
another:  

try  
{  

try  
{  

Y = X1 / X2;  
}  
catch (DivideByZeroException ex)  
{  

Y = 0;  
}  
//Rest of processing code.  

}  
catch (Exception ex)  
{  

//Outer exception processing  
}  

ƵNote For more information about handling exceptions and the .NET Framework exception 

classes, refer to Appendix B.  

Static Properties and Methods 
When you declare an object instance of a class, the object instantiates its own instances of the 
properties and methods of the class it implements. For example, if you were to write a counting 
routine that increments a counter, then instantiated two object instances of the class, the 
counters of each object  would be independent of each other; when you incremented one 
counter, the other would not be affected. Normally, this object independence is the behavior you 
want. However, sometimes you may want different object instances of a class to access the 
same, shared variables. For example, you might want to build in a counter that logs how many 
of the object instances have been instantiated. In this case, you would create a static property 
value in the class definition. The following code demonstrates how you cr eate a static TaxRate 
property in a class definition:  

public class AccountingUtilities {  

private static double _taxRate = 0.06; 

public static double TaxRate {  

get { return _taxRate; }  
}  

To access the static property, you don't create an object instance of the class; instead, you 
refer to the class directly. The following code shows a client accessing the static TaxRate 
property defined previously:  

public class Purchase  
{  

public double CalculateTax(double purchasePrice)  
{  

return purchasePrice * AccountingUtilities.TaxRate;  
}  

}  

Static methods are useful if you have utility functions that clients need to access, but you 
don't want the overhead of creating an object instance of a class to gain access to the method. 
Note that static methods can acces s only static properties. The following code shows a static 



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

152  

 

 

method used to count the number of users currently logged in to an application:  

public class UserLog  
{  

private static int _userCount; public static void 
IncrementUserCount()  
{  

_userCount += 1;  
}  
public static void DecrementUserCount()  
{  

_userCount - = 1;  
}  

}  

When client code accesses a static method, it does so by referencing the class directly. The 
following code demonstrates accessing the static method defined previously:  

public class User  
{  

//ot her code ...  
public void Login(string userName, string password)  
{  

//code to check credentials  
//if successful  
UserLog.IncrementUserCount();  

}  
}  

Although you may not use static properties and methods often when creating the classes in 
your applications, they are useful when creating base class libraries and are used throughout 
the .NET Framework system classes. The following code demonstrates the use of the Compare 
method of the System.String class. This is a static method that compares two strings 
alphabetically. It returns a positive value if the first string is greater, a negative value if the 
second string is greater, or zero if the strings are equal.  

public Boolean CheckStringOrder(string string1, string string2)  
{  

if (string.Compare(string1, string2)  >= 0)   



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

153  

 

 

{  

}  
else 
{  

}  

return true;  

return false;  

}  

ACTIVITY 8-2. IMPLEMENTING EXCEPTION HANDLING AND STATIC METHODS 

In this activity, you will learn how to do the following:  

 ̋ Create and call static methods of a class.  

 ̋ Use structured exception handling.  

Creating Static Methods 

To create the static methods, follow these steps:  

1. Start Visual Studio. Select File > New > Project.  

2. Choose a Windows Application project. Name the project Act8_2.  

3. »ÎØÚÆÑd¸ÙÚÉÎÔdÈ×ÊÆÙÊØdÆdÉÊËÆÚÑÙdËÔ×ÒdËÔ×dÙÍÊdÕ×ÔÏÊÈÙdÜÍÎÈÍdÞÔÚ̃ÑÑd

use to create a login form named Logger. Add controls to the form 

and change the property values, as listed in Table 8 - 2. Your 

completed form should look similar to Figure 8 - 4. 

  

 

Figure 8 - 4. The completed logger form  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

154  

 

 

  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

155  

 

 

 

4. Select Project > Add Class. Name the class Logger.  

5. Because you will be using the System.IO class within the Logger 

class, add a using statement to the top of the file:  
using System.IO;  

6. Add as static LogWrite method to the class. This method will write 

information to a log  file. To open the file, create a FileStream object. 

Then create a StreamWriter object to write the information to the file.  
public static string LogWrite(string logPath, string logInfo)  
{  

FileStream oFileStream = new FileStream(logPath, FileMode.Open, Fil eAccess.Write);  
StreamWriter oStreamWriter = new StreamWriter(oFileStream);  
oFileStream.Seek(0, SeekOrigin.End);  
oStreamWriter.WriteLine(DateTime.Now);  
oStreamWriter.WriteLine(logInfo);  
oStreamWriter.WriteLine();  
oStreamWriter.Close();  
return "Info Logged" ; 

}  

7. Open frmLogger in the visual design editor. Double click the 

btnLogInfo button to bring up the btnLogInfo_Click event method in 

the code editor. Add the following code, which runs the LogWrite 

method of the Logger class and displays the results in the ËÔ×Ò̃ØdÙÊÝÙd

property. Note that because you designated the LogWrite method as 

static (in step 6), the client does not need to create an object instance 

of the Logger class. Static methods are accessed directly through a 

class reference.  
private void btnLog Info_Click(object sender, EventArgs e)  
{  

this.Text = Logger.LogWrite(txtLogPath.Text, txtLogInfo.Text);  
}  

8. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them, and then rebuild.  

9. Select Debug > Run. When the form launches, click the Log Info button. You should get an 

unhandled exception message of type System.IO.FileNotFoundException. Stop the 

Table 8 - 2. Logger Form and Control Pro perties  
Object Property Value 

Form1  Name frmLogger  

 Text  Logger  

Textbox1  Name txtLogPath  

 Text  c: \ Test \ LogTest.
txt  

Textbox2  Name txtLogInfo  

 Text  Test Message  

Button1  Name btnLogInfo  

 Text  Log Info  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

156  

 

 

debugger.  

Creating the Structured Exception Handler 

To create the structured exception handler, follow these steps:  

1. Open the Logger class code in the code editor.  

2. Locate the LogWrite method and add a Try - Catch block around the current code. In the 
Catch block, return a string stating the logging failed.  

try  
{  

FileStream oFileStream =  
new FileStream(logPath,  FileMode.Open, FileAccess.Write);  

StreamWriter oStreamWriter = new StreamWriter(oFileStream);  
oFileStream.Seek(0, SeekOrigin.End);  
oStreamWriter.WriteLine(DateTime.Now);  
oStreamWriter.WriteLine(logInfo);  
oStreamWriter.WriteLine();  
oStreamWriter.Close();  
return "Info Logged";  

}  
catch  
{  

return "Logging Failed";  
}  

3. Select Build > Build Solution. Make sure there are no build errors in the Error List window. 

If there are, fix them, and then rebuild.  

4. Select Debug > Run. When the form launches, click the Log Info button. This time, you 

should not get the exception message because it was handled by the LogWrite method. 

¾ÔÚdØÍÔÚÑÉdØÊÊdÙÍÊdÒÊØØÆÌÊd̆±ÔÌÌÎÓÌd«ÆÎÑÊÉ̇dÎÓdÙÍÊdËÔ×Ò̃ØdÈÆÕÙÎÔÓrd¨ÑÔØÊdÙÍÊdËÔ×Òr 

Filtering Exceptions 

To filter exceptions, follow these steps:  

1. Alter the Catch block to return different messages depending on which exception is 

thrown.

catch (FileNotFoundException 

ex) return ex.Message; catch 

(IOException ex) return 

ex.Me ssage; catch  

return "Logging Failed";  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

157  

 

 

2. Select Build > Build Solution. Make sure there are no build errors in 

the Error List window. If there are, fix them, and then rebuild.  

3. Select Debug > Start to run the project. Test the 

FileNotFoundException catch by clicking the Log Info button. Test the 

IOException by changing the file path to the A drive and clicking the 

Log Info button. These errors should be caught and the appropriate 

message prese ÓÙÊÉdÎÓdÙÍÊdËÔ×Ò̃ØdÈÆÕÙÎÔÓr 

4. After testing, close the form.  

5. Using Notepad, create the LogTest.txt file in a Test folder on the C 

drive and close the file. Make sure the file and folder are not marked 

as read only.  

6. Select Debug > Start to run the project. Test the WriteLog method by 

ÈÑÎÈÐÎÓÌdÙÍÊd±ÔÌd®ÓËÔdÇÚÙÙÔÓrd¹ÍÎØdÙÎÒÊpdÙÍÊdËÔ×Ò̃ØdÈÆÕÙÎÔÓdØÍÔÚÑÉd

indicate that the log write was successful.  

7. Stop the debugger.  

8. Open the LogTest.txt file using Notepad and verify that the information  was logged.  

9. Save the project, and then exit Visual Studio.  

Using Asynchronous Messaging 
When objects interact by passing messages back and forth, they can pass the message 
synchronously or asynchronously.  

When a client object makes a synchronous message call to a server object, the client 
suspends processing and waits for a response back from the server before continuing. 
Synchronous messaging is the easiest to implement and is the default type of messaging 
implemented in the .NET Framework. However, some times this is an inefficient way of passing 
messages. For example, the synchronous messaging model is not well suited for long - running 
file reading and writing, making service calls across slow networks, or message queuing in 
disconnected client scenarios.  To more effectively handle these types of situations, the .NET 
Framework provides the plumbing needed to pass messages between objects asynchronously.  

When a client object passes a message asynchronously, the client can continue processing. 
After the serv er completes the message request, the response information will be sent back to 
the client.  

If you think about it, you interact with objects in the real world both synchronously and 
asynchronously. A good example of synchronous messaging is when you are in  the checkout line 
at the grocery store. When the clerk can't determine the price of one of the items, he calls the 
manager for a price check and suspends the checkout process until a result is returned. An 
example of an asynchronous message call is when t he clerk notices that he is running low on 
change. He alerts the manager that he will need change soon, but he can continue to process his 
customer's items until the change arrives.  

In the .NET Framework, when you want to call a method of the server object  
asynchronously, you first need to create a delegate. Instead of making the call directly to the 



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

158  

 

 

server, the call is passed to the delegate. When a delegate is created, the compiler also creates 
two methods you can use to interact with a server class async hronously. These methods are 
called BeginInvoke and EndInvoke.  

The BeginInvoke method takes the parameters defined by the delegate plus an 
AsyncCallback delegate. The delegate is used to pass a callback method that the server will call 
to return informatio n to the client when the asynchronous method completes. Another parameter 
that can be sent in the BeginInvoke method is a context object that the client can use to keep 
track of the context of the asynchronous call. When the client calls the BeginInvoke me thod, it 
returns a reference to an object that implements the IAsynchResult interface. The BeginInvoke 
method also starts the execution of the asynchronous method call on a different thread from the 
main thread used by the client when initiating the call.  

The EndInvoke method takes the parameters and the IAsyncResult object returned by the 
BeginInvoke method and blocks the thread used by the BeginInvoke method until a result is 
returned. When the results are returned by the asynchronous method, the EndInvok e method 
intercepts the results and passes them back to the client thread that initiated the call.  

ƵNote The method of the server class is not altered to enable a client to call its methods 

asynchronously. It is up to the client to decide whether to call the server asynchronously and 

implement the functionality required to make the call.  

The following code demonstrates the process to make a call to a server method 
asynchronously. In this example, the client code is making a call to a server method over a s low 
connection to read log information. The first step is to define a delegate type that will be used 
to make the call.  

private delegate string AsyncReadLog(string filePath);  

The next step is to declare a variable of the delegate type and instantiate it, passing in the 
method you are calling asynchronously.  

private AsyncReadLog LogReader = new AsyncReadLog(Logger.LogRead);  

ƵNote Because the LogRead method of the Logger class is a static method, you call it directly.  

You then declare a variable of type Asyn cCallback and instantiate it, passing in the method 
that you have set up to process the results of the asynchronous call.  

AsyncCallback aCallBack = new AsyncCallback(LogReadCallBack);  
You are now ready to call the server method asynchronously by implementi ng the 

BeginInvoke method of the delegate type. You need to declare a variable of type 
IAsyncResult to capture the return value and pass the parameters required by the server 
method and a reference to the AsyncCallback object declared previously.  

IAsyncResult aResult = LogReader.BeginInvoke(txtLogPath.Text, aCallBack,null);  

You can now implement the callback method in the client, which needs to accept an input 
parameter of type IAsyncCallback that will be passed to it. Inside this method, you will make a 
call to the delegate's EndInvoke method. This method takes the IAsyncCallback object type 
returned by the BeginInvoke method. The following code displays the results of the call in a 
message box:  

public void LogReadCallBack(IAsyncResult asyncResult)  

{  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

159  

 

 

MessageBox.Show(LogReader.EndInvoke(asyncResult));  

}  

ƵNote You can also use the BackgroundWorker component to call methods using a thread 

separate from the UI thread. For more information about using the BackgroundWorker thread, 

consult the Visual Studi o help files.  

ACTIVITY 8-3. CALLING METHODS ASYNCHRONOUSLY 

®ÓdÙÍÎØdÆÈÙÎÛÎÙÞpdÞÔÚdÜÎÑÑdÑÊÆ×ÓdÍÔÜdÙÔdÉÔdÙÍÊdËÔÑÑÔÜÎÓÌ~d̋ Call methods synchronously.  

 ̋ Call methods asynchronously.  

Creating a Method and Calling It Synchronously 

To create the method and call it synchronously, follow these steps: 1.  Start Visual 

Studio. Select File > Open > Project.  

2. Open the solution file you completed in Act8_2.  

3. Add the buttons shown in Table 8 - 3 to the frmLogger form. Figure 

8- 5 shows the completed form.   



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

160  

 

 

Logger 

Ǧ :\ Test\ Log Test .txt Test Message 

Log Info  

Figure 8 - 5. The completed logger form for synchronous and 

asynchronous reading Table 8 - 3. Additional Buttons for the Logger Form  

 

4. Open the Logger class in the code editor.  

5. Recall that because you are using the System.IO namespace within the Logger 

class, you added a using statement to the top of the file. You are also going to  use 

System.Threading namespace, so add a using statement to include this 

namespace.  
using System.Threading;  

6. Add a static LogRead function to the class. This function will read information 

from a log file. To open the file, create a FileStream object. Then  create 

StreamReader object to read the information from the file. You are also using the 

Thread class to suspend processing for five seconds to simulate a long call 

across a slow network.  
public static string LogRead(string filePath)  
{  

StreamReader oStrea mReader; string 
fileText;   

Object Property Value 

Button 1  Name btnSyncRead  

 Text  Sync Read  

Button2  Name btnAsyncRead  

 Text  Async Read  

Button3  Name btnMessage  

 Text  Message  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

161  

 

 

try  
{  

oStreamReader = File.OpenText(filePath); fileText = 
oStreamReader.ReadToEnd(); oStreamReader.Close();  
Thread.Sleep(5000); return fileText;  

}  
catch (FileNotFoundException ex)  
{  

return ex.Message;  
}  
catch (IOException ex)  
{  

return ex.Message;  
}  
catch  
{  

return "Logging Failed";  
}  

}  

7. Open frmLogger in the visual design editor. Double click the btnMessage button to bring up 

the btnMessage_Click event method in the code editor. Add code to display a message 

box.  
private void btnMessage_Click(object sender, EventArgs e)  
{  

MessageBox.Show("Hello");  
}  

8. Open frmLogger in the visual design editor. Double - click the btnSyncRead button to bring 

up the btnSyncRead_Click event method in the code editor. Add code that calls the 

LogRead me thod of the Logger class and displays the results in a message box.  
private void btnSyncRead_Click(object sender, EventArgs e)  
{  

MessageBox.Show(Logger.LogRead(txtLogPath.Text));  
}  

9. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them, and then rebuild.  

10. Select Debug > Run. When the form launches, click the Sync Read button. After clicking 

the Sync Read button, try clicking the Message b utton. You should not get a response 

when clicking the Message button because you called the ReadLog method synchronously. 

After the ReadLog method returns a result, the Message button will respond when clicked.  

11. When you have finished testing, close the fo rm.  
Calling a Method Asynchronously 

To call a method asynchronously, follow these steps:  

1. Open the frmLogger class code in the code editor.  

2. After the class definition statement at the beginning of the class file, add code to 

create a delegate definition that will be used to make the asynchronous call. On the 

next line, declare a LogReader variable of the delegate type and instantiate it, passing 

the LogRead method of the Logger class.  
public partial class frmLogger : Form {  



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

162  

 

 

private delegate string AsyncRe adLog(string filePath);  
private AsyncReadLog LogReader = new AsyncReadLog(Logger.LogRead);  

3. Create a callback method that will be used to retrieve the results of the 

asynchronous message call. This method needs to accept a parameter of type 

IAsyncResult.  
public void LogReadCallBack(IAsyncResult asyncResult)  
{  
}  

4. Open frmLogger in the visual design editor. Double - click the btnAsyncRead button 

to bring up the btnAsyncRead_Click event method in the code editor. Add code that 

declares a variable of type AsyncCallback and instantiate it, passing in the 

LogReadCallBack method you created. On the next line of code, call the BeginInvoke 

method of the LogReader delegate, passing in the file path and the AsyncCallback 

variable. Capture the return value in a var iable of type IAsyncResult.  
private void btnAsyncRead_Click(object sender, EventArgs e)  
{  

AsyncCallback aCallBack = new AsyncCallback(LogReadCallBack);  
IAsyncResult aResult = LogReader.BeginInvoke(txtLogPath.Text, 

aCallBack,null);  
}  

5. Add code to the LogReadCallBack method that calls the EndInvoke method of the 

LogReader delegate, passing in the file path and the IAsyncResult parameter. Display 

the results in a message box.  
public void LogReadCallBack(IAsyncResult asyncResult)  
{  

MessageBox.Show(LogReader.EndInvoke(asyncResult));  
}  

6. Select Build > Build Solution. Make sure there are no build errors in the Error List 

window. If there are, fix them, and then rebuild.  

7. Select Debug > Run. When the form launches, click the Async Read button. After 

clicking the Async Read button, click the Message button. This time, you should get

a response because you called the ReadLog method 

asynchronously. After five seconds you should see a message box 

containing the results of the Logger.LogRead method. 8.  When 

you have finished testing, close the form.  

9. Save the project, and then exit Visual Studio.  

Summary 
This chapter described how the objects in your applications collaborate. You saw how objects 
pass messages to one another, how events drive your programs, how instances of a class share 
data, and how to han dle exceptions.  

In the next chapter, you will look at collections and arrays. Collections and arrays organize 
similar objects into a group. Working with collections is one of the most common programming 
constructs you will need to app ly in your applications. You will examine some of the basic types 



CHAPTER 8 ƴ IMPLEMENTING OBJECT COLLABORATION 

163  

 

 

of collections available in the NET Framework and learn how to employ collections in your 
code.





163  

 

 

9 
C H A P T E R 

Working with Collections 

In the previous chapter, you looked at how objects  collaborate and communicate in object -
oriented programs. That chapter introduced the concepts of messaging, events, delegation, 
exception handling, and asynchronous programming. In this chapter, you will look at how 
collections of objects are organized an d processed. The .NET Framework contains an extensive 
set of classes and interfaces for creating and managing collections of objects. You will look at 
the various types of collection structures .NET provides and learn what they are designed for 
and when to  use each. You will also look at how to use generics to create highly reusable, 
efficient collections.  

In this chapter, you will learn the following:  

 ̋ The various types of collections exposed by the .NET Framework.  

 ̋ How to work with arrays and array lists.  

 ̋ How to create generic collections.  

 ̋ How to implement queues and stacks.  

Introducing the .NET Framework Collection Types 
Programmers frequently need to work with collections of types. For example, if you are working 
with employee time records in a payroll system, you need to group the records by employee, loop 
through the records, and add up the hours for each.  

All collections need a basic set of functionality, such as adding objects, removing objects, 
and iterating through their objects. In addition to the  basic set, some collections need additional 
specialized functionality. For example, a collection of help desk e - mail requests needs to 
implement a first - in, first -  out functionality when adding and removing items from the collection.  

The .NET Framework pr ovides a variety of basic and specialized collection classes for you to 
use. 
The System.Collections namespace contains interfaces and classes that define various types of 
collections, such as lists, queues, hash tables, and dictionaries. Table 9 - 1 lists an d describes some 
of the commonly used collection classes. If you do not find a collection class with the functionality 
you need, you can extend a .NET Framework class to create your own.   



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

164 

 

 

 

In this chapter, you will work with some of the commonly used collection classes, beginning 
with the Array and ArrayList classes.  

Working with Arrays and Array Lists 
An array is one of the most common data structures in computer programming. An array holds 
data elements of the same  data type. For example, you can create an array of integers, strings, 

Table 9 - 1. Commonly Used Collection Classes  
Class Description 

Array  Provides the base class for language implementations that support strongly 
typed arrays.  

ArrayList  Represents a weakly typed list of objects using an array whose size is 
dynamically increased as required.  

SortedList  Represents a collection of key/value pairs that are sorted by the keys and are 
accessible by key and by index.  

Queue Represents a first - in, first - out (FIFO) collection of objects.  

Stack  Represents a simple last - in, first - out (LIFO), nongeneric collection of objects.  

Hashtable  Represents a collection of key/value pairs that are organized based on the 
hash code of the key.  

CollectionBase  Provides the abstract base class for a strongly typed collection.  

DictionaryBase  Provides the abstract base class for a strongly typed collection of key/value 
pairs.  

Table 9 - 2 describes some of the interfaces implemented by these collection classes.  

Table 9 - 2. Collection Class Interfaces  

Interface Description 

ICollection  Defines size, enumerators, and synchronization methods for all 
nongeneric collections.  

IComparer  Exposes a method that compares two objects.  

IDictionary  Represents a nongeneric collection of key/value pairs.  

IDictionaryEnumerator Enumerates the elements of a nongeneric dictionary.  

IEnumerable  Exposes the enumerator, which supports a simple iteration over a 
nongeneric collection.  

IEnumerator  Supports a simple iteration over a nongeneric collection.  

IList  Represents a nongeneric collection of objects that can be 
individually accessed by index.  



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

165  

 

 

or dates. Arrays are often used to pass values to methods as parameters. For example, when you 
use a Console application, it's common to provide command line switches. The following DOS  
command is used to copy a file on your computer:  

copy win.ini c: \ windows /y  

The source file, destination path, and overwrite indicator are passed into the copy program as an 
array of strings.  

You access the elements of an array through its index. The index is an integer representing 
the position of the element in the array. For example, an array of strings representing the days 
of the week has the following index values:  

 

This days - of - the- week example is a one - dimensional array, which means the index is 
represented by a single integer. Arrays can also be multidimensional. The index of an element of 
a multidimensional array is a set of integers equal to the number  of dimensions. Figure 9 - 1 
shows a seating chart that represents a two - dimensional array where the student's name (value) 
is referenced by the ordered pair of row number, seat number (index).   

Index Value 

0 Sunday 

1 Monday  

2 Tuesday  

3 Wednesday  

4 Thursday  

5 Friday  

6 Saturday  



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

166 

 

 

Cindy 

(2,1) 

Greg 

(2,2) 
Seat 2 

Row 0 Row 1 Row 2 

 

 

 

 

 

 

 

 

Figure 9 - 1. A two - dimensional array  

You implement array functionality when you declare its type. The common types 
implemented as arrays are numeric types such as integers or double types, as well as the 
character and string types.  
When declaring a type as an array, you use square brackets ([]) after the type, followed by the 
name of the array. The elements of the array are designated by a comma separated list 
enclosed by curly brackets ({}). For example, the following code declares an array of type 
Integer and fills it with five values:  

int[] intArray = { 1, 2, 3, 4, 5 };  

Once a type is declared as an array, the properties and methods of the Array class are 
exposed. Some of the functionality includes querying for the upper and lower bounds of the 
array, updating the elements of the array, and copying the elements of the array. The Array 
class contains many static methods used to work with arrays, such as methods for clearing, 
reversing, and sorting its elements.

 ----------------  -------------------    ----------------  -------------------    ----------    ---------   
Mary  Jim  Jane 

(0,0) 

 ---------  * ----------   

 (1,0) 

 ------------ x -----------------  

 (2,0) 

 ---------------- ʣ -----------------  

 ----------   -----------     ----------   ----------   

Bob  Noah 

(0,1) 

 ----------  *  ---------   

C J  (1,1) 

 -------  x -------   

 ---------    --------     ---------   -----------   
Amy  Morgan 

(0,2) 

 ---------  x ---------   

 (1,2) 

 ---------  x ----------   



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

167  

 

 

The following code demonstrates declaring and working with an array of integers. It also 
uses several static methods exposed by the Array class. Notice the foreach loop used to list the 
values of the array. The foreach loop provides a way to iterate through the elements of the 
array. Figure 9 - 2 shows the output of this code in the Console window . 

int[] intArray = { 1, 2, 3, 4, 5 };  
Console.WriteLine("Upper Bound");  
Console.WriteLine(intArray.GetUpperBound(0));  
Console.WriteLine("Array elements"); foreach 
(int item in intArray)  
{  

Console.WriteLine(item);  
}  
Array.Reverse(intArray);  
Console.WriteLine("Array reversed"); foreach 
(int item in intArray)  
{  

Console.WriteLine(item);  
}  
Array.Clear(intArray, 2, 2);  
Console.WriteLine("Elements 2 and 3 cleared"); 
foreach (int item in intArray)  
{  

Console.WriteLine(item);  
}  
intArray[4] = 9;  
Console.WriteLine("Element 4 reset"); foreach 
(int item in intArray)  
{  

Console.WriteLine(item);  
}  
Console.ReadLine();  



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

168 

 

 

 

Figure 9 - 2. One- dimensional array output  

Although one - dimensional arrays are the most common type you will run into, you should 
understand how to work with the occasional multidimensional array. Two - dimensional arrays 
are used to store (in active memory) and process data that fits in the rows and columns of a 
table. For example, you may need to process a series of measurements (temperature or 
radiation level) taken at hourly intervals over several  days. To create a multidimensional array, 
you place one or more commas inside the square brackets to indicate the number of dimensions. 
One comma indicates two dimensions; two commas indicate three dimensions, and so forth. 
When filling a multidemensional  array, curly brackets within curly brackets define the elements. 
The following code declares and fills a two - dimensional array:  

int[,] twoDArray = { { 1, 2 }, { 3, 4 }, { 5, 6 } };  
//Print the index and value of the elements  
for (int i = 0; i <= twoDArray .GetUpperBound(0); i++)  
{  

for (int x = 0; x <= twoDArray.GetUpperBound(1); x++)  
{  

Console.WriteLine("Index = [{0},{1}] Value = {2}", i, x, twoDArray[i, x]);  
}  

}  

Figure 9 - 3 shows the output of this code in the Console window.  

fi I e:///C:/U se rs/Dan/Doc u... 
Array elements  A- 

1  

 j= 
   
  

5  

Array reversed   

5  

  

  

  

1  

Elements 2 and 3 cleared   

5  

  

  

  

1  

Element 4 reset   

  

  

  

  

 w 

< ̆ ˘˘ j J 



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

169  

 

 

 

I _____________ I 

Figure 9 - 3. Two - dimensional array output  

When you work with collections, you often do not know the number of items it contains until  
runtime. This is where the ArrayList class fits in. The capacity of an array list automatically 
expands as required, with the memory reallocation and copying of elements performed 
automatically. The ArrayList class also provides methods and properties for  working with the 
array elements that the Array class does not provide. The following code demonstrates some of 
these properties and methods. Notice that the capacity of the list expands dynamically as more 
names are added.  

ArrayList nameList = new ArrayLi st(); 
nameList.Add("Bob"); 
nameList.Add("Dan"); 
nameList.Add("Wendy");  
Console.WriteLine("Original Capacity");  
Console.WriteLine(nameList.Capacity);  
Console.WriteLine("Original Values"); 
foreach (object name in nameList)  
{  

Console.WriteLine(name);  
}  

nameList.Insert(nameList.IndexOf("Dan"), "Cindy"); 
nameList.Insert(nameList.IndexOf("Wendy"), 
"Jim");  
Console.WriteLine("New Capacity");  
Console.WriteLine(nameList.Capacity);  
Console.WriteLine("New Values"); foreach (object 
name in nameList)  
{  

Console.Writ eLine(name);  
}  

Figure 9 - 4 shows the output in the Console window.  

Index =  [0,0]  Ualue  = 1  
Index = [0,1]  Ualue  = 2  
Index =  [1,0]  Ualue  = 3  
Index =  [1,1]  Ualue  = 4  
Index =  [2,0]  Ualue  = 5  
Index =  [2,1]  Ualue  = 6  



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

170 

 

 

 

Figure 9 - 4. The ArrayList output  

Although it's often easier to work with an ArrayList than with an Array, an ArrayList can 
have only one dimension. Also, an Array of a specific type offers better performance than an 
ArrayList, because the elements of ArrayList are of type Object. When types are added to the 
ArrayList, they are cast to a generic Object type. When the items are retrieved from the list, 
they must be cast once again to the specific type.  

ACTIVITY 9-1. WORKING WITH ARRAYS AND ARRAYLISTS 

In this activity, you will become familiar with the following:  

 ̋ Creating and using arrays.  

 ̋ Working with multidimensional arrays.  

 ̋ Working with array lists.  

Creating and Using Arrays 

To create and populate an array, follow these steps:  

1. Start Visual Studio. Select File > New > Project.  

2. Choose a Console application project. Name the project Act9_1. The 

Console application contains a class called Program with a Main 

method. The Main method is the first method that is accessed when 

the appli cation is launched.  

3. Notice that the Main method accepts an input parameter of a string 

array called args. The args array contains any command line args 

passed in when the Console   

f file:///C:/Users/D ,. 
Original Capacity  J*- 

4 1ð1 

Original Ualues  1 1 
Bob  

Dan  

Uendy   

New Capacity   

S  

Hew Ualues   

Bob  

Cindy   

Dan  

Jim   

Uendy  ɾ- 

< 1 ȩȩȩ J  Ʒ 

file:///C:/Users/D


CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

171  

 

 

6. Select Debug > Start to run the project. The Console window should launch with 

the output shown in Figure 9 - 6. After viewing the output, stop the debugger.  

application is launched. The members of the args array are 

separated by a space when passed in.  
static void Main(string[] args)  
{  
}  

4. Add the following code to the Main method to display the 

command line arguments passed in:  

Console.WriteLine("parameter count = {0}", 

args.Length); for (int i = 0; i < args.Length; i++)  

{  
Console.WriteLine("Arg[{0}] = [{1}]", i, args[i]);  

}  
Console.ReadLine();  

5. In Solution Explorer,  right - click the project node and choose 

Project. In the project properties window, select the Debug tab. In 

ÙÍÊdÈÔÒÒÆÓÉdÑÎÓÊdÆ×ÌÚÒÊÓÙØdËÎÊÑÉpdÊÓÙÊ×d̆¨gdÈÔÉÎÓÌdÎØdËÚÓ̇dlØÊÊd

Figure 9 - 5).  

  

 

Figure 9 - 5. Adding comand line arguments  



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

172 

 

 

  



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

173  

 

 

 

Figure 9 - 6. The Console output for the array  

7. Add the following code before the Console.ReadLine() method in the Main method. 

This code clears the value of the array at index 1 and sets the value at index 3 to 

̆Ì×ÊÆÙ̇r 
Array.Clear(args, 1, 1); args[3] = "great";  
for (int i = 0; i < args.Length; i++)  
{  

Console.WriteLine("Arg[{0}] = [{1}]", i, args[i]);  
}  

8. Select Debug > Start to run the project. The Console window should launch with the 

additional output shown in Figure 9 - 7. After viewing the output, stop the debugger.  

ͮdfile:///c;/users/dan ... ^  

 

Figure 9 - 7. The Console output for the updated array
Working with Multidimensional Arrays 

To create and populate a multidimensional array, follow these steps:  

1. Comment out the code in the Main method.  

2. Add the following code to the Main method to create and populate a 

two dimensional array:  
string[,] seatingChart = new 
str ing[2,2]; seatingChart[0, 0] = 
"Mary"; seatingChart[0, 1] = 
"Jim"; seatingChart[1, 0] = 
"Bob"; seatingChart[1, 1] = 

ƴ file:/ˉ;/Lisers/dan/.., - 0 - 
parameter  count = 4   ː

ʮˈˉÀtÂd= [ctt : 
 

flrgti] =  [coding]  J 
Arg[2 ] =  [is ]   

flrg[3] =  [fun]   

V rrr  !  

parameter  count = 4  A- 

Arg[0] =  [Ctt]   

ftrg[i] =  [coding]   J 
f)rg[2 ] 
= 

[is]    

flrjy] = [fun]    

ArjJlfo] 
= 

[Ctt]   

flrg[i] =  []    

Arg[2] =  [is]    

flrg[3] =  [great]   T"  

4 ɻɻɻ j \ 
 

/c;/users/dan


CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

174 

 

 

"Jane";  

3. Add the following code to loop through the array and print the names 

to the Console window:  
for (int row = 0; row < 2; row++)  
{  

for (int seat = 0; seat < 2; seat++)  
{  

Console.WriteLine("Row: {0} Seat: {1} Student: {2}",  
(row + 1),(seat + 1),seatingChart[row, seat]);  

}  
}  
Console.ReadLine();  

4. Select Debug > Start to run the project. The Console window should launch 

with the output that shows the seating chart of the students (see Figure 9 -

8).  

 

5. After viewing the output, stop the debugger.  

Working with ArrayLists 

Although the two dimensional array you just created works, it may be more intuitive to store 

ÙÍÊdÎÓËÔ×ÒÆÙÎÔÓdÆÇÔÚÙdÊÆÈÍdØÙÚÉÊÓÙ̃ØdØÊÆÙÎÓÌdÆØØÎÌÓÒÊÓÙdÎÓdÆdØÊÆÙÎÓÌdÆØØÎÌÓÒÊÓÙdÈÑÆØØdÆÓÉd

then to organize these objects into an ArrayList structur e. To create and populate an array 

list of seating assignments, follow these steps:  
1. Add a class file to the project named SeatingAssignment.cs.  

2. Add the following code to create the SeatingAssignment class. This class 

contains a Row, Seat, and Student property. It also contains an overloaded 

constructor to set these properties.  
public class SeatingAssignment {  

int _row; int _seat; string 
_student; public int Row {  

get { return _row; } set { 
_row = value; }  

}  
public int Seat {  

get { return _seat; } set {  
_seat = value; }  

}  
public string Student {  

 

Figure 9 - 8. The Console output for the two - dimensional array  



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

175  

 

 

get { return _student; } set { 
_student = value; }  

}  
public SeatingAssignment(int row, int seat, string student)  
{  

this.Row = row; 
this.Seat = seat; 
this.Student = student;  

}  
}  

3. In the Main method of the Program class, comment out the previous code.  

4. Add the following code to create an ArrayList of SeatingAssignments:  

ArrayList seatingChart = new ArrayList(); 
seatingChart.Add(new SeatingAssignment(0, 0, "Mary")); 
seatingChart.Add(new SeatingAssignment(0, 1, "Jim")) ; 
seatingChart.Add(new SeatingAssignment(1, 0, "Bob")); 
seatingChart.Add(new SeatingAssignment(1, 1, "Jane"));  
After the ArrayList is populated, add the following code to write the SeatingAssignment  
information to the console window.  
foreach (SeatingAssign ment sa in seatingChart)  
{  

Console.WriteLine("Row: {0} Seat: {1} Student: {2}",  
(sa.Row + 1), (sa.Seat + 1), sa.Student);  

}  
Console.ReadLine();  

5. Select Debug > Start to run the project. The Console window should 

launch with the same output as shown in Figure 9 - 8 (the seating 

chart of the students).  

6. One of the advantages of the ArrayList class is the ability to add and 

remove items dynamically. Add the following code after the code in 

step 4 to add two more students to the seating chart:  

seatingChart.Add(new SeatingAssignment(2, 0, "Bill")); 
seatingChart.Add(new SeatingAssignment(2, 1, "Judy"));  

7. Select Debug > Start to run the project. The Console window should 

launch with the output showing the new students.  

8. When finished, stop the debugger, and close Visual Studio.  

Using Generic Collections 
Working with collections is a common requirement of application progr amming. Most of the data 
we work with needs to be organized in a collection. For example, you may need to retrieve 
customers from a database and load them into a drop - down list in the UI (User Interface). The 
customer information is represented by a custom er class, and the customers are organized into a 
customer collection. The collection can then be sorted, filtered, and looped through for 
processing.  

With the exception of a few of the specialized collections strongly typed to hold strings, the 



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

176 

 

 

collections  provided by the .NET Framework are weakly typed. The items held by the collections 
are of type Object, and so they can be of any type, since all types derive from the Object type.  

Weakly typed collections can cause performance and maintenance problems for  your 
application. One problem is there are no inherent safeguards for limiting the types of objects 
stored in the collection. The same collection can hold any type of item, including dates, integers, 
or a custom type such as an employee object. If you bui ld and expose a collection of integers, 
and that collection inadvertently gets passed a date, the chances are high that the code will fail 
at some point.  

Fortunately, C# supports generics, and the .NET Framework provides generic - based 
collections in the Sy stem.Collections.Generic namespace. Generics let you define a class without 
specifying its type. The type is specified when the class is instantiated. Using a generic 
collection provides the advantages of type safety and the performance of a strongly typed  
collection while also providing the code reuse associated with weakly typed collections.  

The following code shows how to create a strongly typed collection of Customers using the 
Generic.List class. The list type (in this case, Customer) is placed between  the angle brackets 
(<>). Customer objects are added to the collection, and then the Customers in the collection are 
retrieved, and the Customer information is written out to the Console. (You will look at binding 
collections to UI controls in Chapter 11.)  

List<Customer> customerList = new 
List<Customer>(); customerList.Add(new Customer  

("WHITC", "White Clover Markets", "Karl Jablonski")); customerList.Add(new 
Customer("RANCH", "Rancho grande", "Sergio Gutierrez")); customerList.Add(new 
Customer("ALFKI","Alfreds Futterkiste","Maria Anders")); customerList.Add  

(new Customer("FRANR", "France restauration", "Carine Schmitt"));   



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

177  

 

 

_ n x 
ƴAH 

foreach (Customer c in customerList)  
{  

Console.WriteLine("Id: {0} Company: {1} Contact: {2}",  
c.CompanyId, c.Compan yName, c.ContactName);  

}  

There may be times when you need to extend the functionality of the collection provided by 
the .NET Framework. For example, you may need the ability to sort the collection of Customers 
by either the CompanyId or the CompanyName. To  implement sorting, you need to define a 
sorting class that implements the IComparer interface. The IComparer interface ensures the 
sorting class implements a Compare method with the appropriate signature. (Interfaces were 
covered in Chapter 7.) The Custom erSorter class shown next sorts a list of Customer by 
CompanyName. Note that since the CompanyName property is a string, you can use the String 
Comparer to sort them.  

public class CustomerSorter : IComparer<Customer>  
{  

public int Compare(Customer customer1 , Customer customer2)  
{  

return customer1.CompanyName.CompareTo(customer2.CompanyName);  
}  

}  

Now you can sort the Customers by CompanyName and then display them. 

customerList.Sort(new CustomerSorter());  

The output is shown in Figure  9- 9.

 

 

file:///C:/Documents and Settings/drclark/my doc untents/visual studio 2
 

Id:  ALFKI  Company:  Alfreds Futterkiste Contact: Maria  Anders  
Id:  FRANK Company:  France restauration Contact: Carine Schmitt  
Id:  RANCH Company:  Rancho grande Contact: Sergio Gutierrez  
Id:  UHITC Company:  Uhite Clouer Markets Contact: Karl Jablonski  

Figure 9 - 9. The Console output for the sorted list of Customer

file:///C:/Documents


CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

178 

 

 

ACTIVITY 9-2. IMPLEMENTING AND EXTENDING GENERIC COLLECTIONS 

In this activity, you will become familiar with the following:  

 ̋ Implementing a generic collection.  

 ̋ Extending a generic collection to implement sorting.  

To create and popula te a generic list, follow these steps:  

1. Start Visual Studio. Select File > New > Project.  

2. Choose a Console Application project. Name the project Act9_2.  

3. Select Project > Add Class. Name the class Request.  

4. Add the following properties to the Request class: 

public class Request  
{  

string _requestor; int _priority;  
DateTime _date;  
public string Requestor  
{  

get { return _requestor; } 
set { _requestor = value; }  

}  
public int Priority {  

get { return _priority; } 
set { _priority = value; }  

}  
public DateTime Date {  

get { return _date; } 
set { _date = value; }  

}  

5. Overload the constructor of the Request class to set the 

properties in the constructor.  
public Request(string requestor, int priority, DateTime date)  
{  

this.Requestor = 
requestor; this.Priority = 
priority; this.Date = date;  

}  

6. Add a method to override the ToString() method of the base Object 

class. This will return the request information as a string when the 

method is called.  
public override string ToString()



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

179 

 

 

return String.Format("{0} , {1}, {2}",this.Requestor, 
this.Priority.ToString(), this.Date);  

}  

7. Open the Program class in the code editor and add the following code to the 

Main method. This code populates a generic list of type Request and displays 

the values in the Console window.  
static void Main(string[] args)  
{  

List<Request> reqList = new List<Request>(); reqList.Add(new 
Request("Dan",2 ,new DateTime(2011,4,2))); reqList.Add(new 
Request("Alice", 5, new DateTime(2011, 2, 5))); reqList.Add(new 
Request("Bill", 3, new DateTime(2011, 6, 19))); foreach (Request req in 
reqList)  
{  

Console.WriteLine(req.ToString());  
}  
Console.ReadLine();  

}  

8. Select Debug > Start to run the project. The Console window should launch 

with the request items listed in the order they were added to the reqList.  

9. Select Project > Add Class. Name the class DateSorter.  

10. Add the following code to the DateSorter class. This class implements 

the IComparer interface and is used to enable sorting Requests by 

date.  
public class DateSorter:IComparer<Request>  
{  

public int Com pare(Request R1, Request R2)  
{  

return R1.Date.CompareTo(R2.Date);  
}  

}  

11. Add the following code in the Main method of the Program class prior to 

the. Console.WriteLine method. This code sorts the reqList by date and 

displays the values in the Console window.  
Console.WriteLine("Sorted by date."); 
reqList.Sort(new DateSorter()); foreach 
(Request req in reqList)  
{  

Console.WriteLine(req.ToString());  
}  
Console.ReadLine();  

12. Select Debug > Start to run the project. The Console window should launch 

with the output shown in Figure 9 - 10. After viewing the output, stop the 

debugger and exit Visual Studio.
Alice, 5, 2/5/2011 12:00:00 AM 
Bill, 3, 6/19/2011 12:00:00 AM 
Sorted by date.  
Alice, 5, 2/ 5/2011 12:00:00 AM 
Dan, 2, 4/2/2011 12:00:00 AM Bill, 
3, 6/19/2011 12:00:00 AM  



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

180  

 

 

4 I .  ǘǘǘ |   ˨

Figure 9 - 10. Generic collection unsorted and sorted by date  

Programming with Stacks and Queues 
Two special types of collections often used in programming are the stack and the queue. A stack 
is a last -  in, first - out collection of objects. A queue represents a first - in, first - out collection of 
objects.  

A stack is a good way to maintain a list of moves made in a chess game. When a user wants 
to undo his moves , he be gins with his most recent move, which is the last one added to the list 
and also the first one retrieved . Another example of using a stack occurs when a program 
executes a series of method calls. A stack maintains the addresses of the methods, and executi on 
returns to the methods in the reverse order in which they were called. When placing items in a 
stack, you use the push method. The pop method removes items from the stack. The peek 
method returns the object at the top of the stack without removing it. T he following code 
demonstrates adding and removing items from a stack. In this case, you're using generics to 
implement a stack of ChessMove objects. The RecordMove method adds the most recent move to 
the stack. The GetLastMove method returns the most rece nt move on the stack.  

Stack<ChessMove> moveStack = new 
Stack<ChessMove>(); void RecordMove(ChessMove 
move)  
{  

moveStack.Push(move);  
}  
ChessMove GetLastMove()  
{  

return moveStack.Pop();  
}  

An application that services help desk requests is a good example of when to use a queue. A 
collection maintains a list of help desk requests sent to the application. When requests are 
retrieved from the collection for processing, the first ones in should be the first ones retrieved. 
The Queue class uses the enqueue and deq ueue methods to add and remove items. It also 
implements the peek method to return the item at the beginning of the queue without removing 
the item. The following code demonstrates adding and removing items from a PaymentRequest 
queue. The AddRequest metho d adds a request to the queue and the GetNextRequest method 
removes a request from the queue.  

Oueue<PaymentRequest> payRequest = new 
Oueue<PaymentRequest>(); void AddRequest(PaymentRequest 
request)  
{  

payRequest.Enqueue(request);  
}  
PaymentRequest GetNextReq uest()  
{  

return payRequest.Dequeue();  
}  

Summary 
In this chapter, you examined the various types of collections exposed by the .NET Framework. 
You learned how to work with arrays, array lists, queues, stacks, and generic collections.  

This chapter is the final one in a series that introduced you to the various OOP constructs 
such as classes, inheritance, and polymorphism. You should have a firm understanding of how 
class structures, object collaboration, and collections are implemented in C#. You have been 
introduced to the Visual Studio IDE and you've practiced using it. You are now ready to put the 



CHAPTER 9 ƴ WORKING WITH COLLECTIONS 

181  

 

 

pieces together and develop a working application.  
The next chapter is the first in a series in which you will de velop .NET applications. In the 

process, you will investigate data access using ADO.NET, create a Windows - based GUI using the 
Widows Presentation Framework, create a web - based GUI using Silverlight, and create web 
services using the Windows Communication F ramework.



182  

 

 

C H A P T E R 1 0 

Implementing the Data Access 
Layer 

In the past several chapters, you have looked at the various object - oriented programming 
constructs such as classes, inheritance, and polymorphism as they are implemented in C# 
code. You have b een introduced to and practiced using the Visual Studio integrated 
development environment. You should also have a firm understanding of how class structures 
and object collaboration are implemented.  

You are now ready to put the pieces together and develop  a working application. Because 
most business applications involve working with and updating data in a back - end relational 
database, you will look at how the .NET Framework provides the functionality to work with 
relational data.  

After reading this chapter , you will understand the following:  

 ̋ How to establish a connection to a database using the Connection object.  

 ̋ How to use a Command object to execute SQL queries.  

 ̋ How to use a Command object to execute stored procedures.  

 ̋ How to retrieve records with the DataReader object.  

 ̋ How to populate DataTables and DataSets.  

 ̋ How to establish relationships between tables in a DataSet.  

 ̋ How to edit and update data in a DataSet.  

 ̋ How to create an Entity Data Model.  

 ̋ How to use LINQ to EF to query data.  

 ̋ How to use the Entity  Framework to update data.  

Introducing ADO.NET 
A majority of applications developed for businesses need to interact with a data storage 
device. Data storage can occur in many different forms: for example, in a flat file system, as is 
the case with many traditional mainframe systems, or in a relational database management 
system, such as SQL Server, Oracle, or Sybase. You can also maintain data in a hierarchical 
textual file structure, as is the case with XML. To access and work with data in a consistent 
way across these various data stores, the .NET  
Framework provides a set of classes organized into the System.Data namespace. This collection of 
classes is known as ADO.NET.  

Looking at the history of Microsoft's data access technologies reveals an evolution  from a 
connected model to a disconnected one. When developing the traditional two - tier client - server 



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

183  

 

 

applications prevalent in the 1980s and early 1990s, it was often more efficient to open a connection 
with the database, work with the data implementing s erver - side cursors, and close the connection 
when finished working with the data. The problem with this approach became apparent in the late 
1990s as companies tried to evolve their data - driven applications from traditional two - tier client -
server applicati ons to multitier web - based models: opening and holding a connection open until 
processing was complete is not scalable. Scalability is the ability of an application to handle an 
increasing number of simultaneous clients without a noticeable degradation of performance. 
Microsoft has designed ADO.NET to be highly scalable. To achieve scalability, Microsoft has 
designed ADO.NET around a disconnected model. A connection is made to the database, the data and 
metadata are retrieved and cached locally, and the con nection is closed.  

Another problem with the traditional data access technologies developed during this time was 
the lack of interoperability. Systems with a high degree of interoperability can easily exchange data 
back and forth between each other regardle ss of the implementation technologies of the various 
systems. Traditional data access technologies rely on proprietary methods of data exchange. Using 
these techniques, it is hard for a system built using Microsoft technologies such as ADO (pre - .NET) 
and DCOM to exchange data with a system built using Java technologies such as JDBC and CORBA. 
The industry as a whole realized it was in the best interest of all parties to develop open standards 
for exchanging data between disparate systems. Microsoft has embr aced these standards and has 
incorporated support of the standards into the .NET Framework.  

Working with Data Providers 
To establish a connection to a data source, such as a SQL Server database, and work with its data, 
you must use the appropriate .NET pro vider classes. The SQL Server provider classes are located in 
the System.Data.SQLClient namespace. Other data providers exist, such as the OLEDB data provider 
for Oracle classes located in the System.Data.OLEDB namespace. Each of these providers 
implements  a similar class structure, which you can use to interact with its intended data source. 
Table 10 - 1 summarizes the main classes of the System.Data.SQLClient provider namespace.  

Table 10 - 1. Classes in the System.Data.SqlClient Namespace  

Class Responsibility 

SqlConnection  Establishes a connection and a unique session with a database.  

SqlCommand Represents a Transact - SQL statement or stored procedure to execute at the  
database.  

SqlDataReader  Provides a means of reading a forward - only stream of rows from the da tabase.  

SqlDataAdapter Fills a DataSet and updates changes back to the database.  

SqlParameter  Represents a parameter used to pass information to and from stored procedures.  

 

A similar set of classes exists in the System.Data.OLEDB provider namespace. For 
example, instead of the SqlConnection class, you have an OleDbConnection class.  

Class Responsibility 

SqlTransaction  Represents a Transact - SQL transaction to be made in the database.  

SqlError  Collects information relevant to a warning or error returned by the database 
server.  

SqlException  Defines the exception that is thrown when a warning or error is returned by 
the database server.  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

184  

 

 

Establishing a Connection 
The first step to retrieving data from a database is to establish a connection, which is done 
using a Connection object based on the type of provider being used. To establish a connection 
to SQL Server, you instantiate a Connection object of type SqlConnection. You also need to 
provide the Connection object with a ConnectionString. The ConnectionSt ring consists of a 
series of semicolon - delineated name - value pairs that provide information needed to connect to 
the database server. Some of the information commonly passed by the ConnectionString is the 
name of the target server, the name of the database , and security information. The following 
code demonstrates a ConnectionString used to connect to a SQL Server database:  

"Data Source=TestServer;Initial Catalog=Pubs;User ID=Dan;Password=training"  

The attributes you need to provide through the ConnectionSt ring are dependent on the 
data provider you are using. The following code demonstrates a ConnectionString used to 
connect to an Access database using the OLEDB provider for Access:  

"Provider=Microsoft.Jet.OleDb.4.0;Data Source=D: \ Data\ Northwind.mdb"  

The ne xt step is to invoke the Open method of the Connection object. This will result in 
the Connection object loading the appropriate driver and opening a connection to the data 
source. Once the connection is open, you can work with the data. After you are done  
interacting with the database, it is important you invoke the Close method of the Connection 
object, because when a Connection object falls out of scope or is garbage collected, the 
connection is not implicitly released. The following code demonstrates th e process of opening 
a connection to the Pubs database in SQL Server, working with the data, and closing the 
connection:  

SqlConnection pubConnection = new SqlConnection(); string connString; try {  
connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";  
pubConnection.ConnectionString = connString;  
pubConnection.Open();  
//work with data  

}  
catch (SqlException ex) {  

throw ex;  
}  
finally  
{  

if (pubConnection != null) {  
pubConnection.Close();  

}  
}  

Executing a Command 
Once your application has established and opened a connection to a database, you can execute SQL 
statements against it. A Command object stores and executes command statements against the 
database. You can use the Command object to execute any valid SQL stateme nt understood by the 
data store. In the case of SQL Server, these can be Data Manipulation Language statements 
(Select, Insert, Update, and Delete), Data Definition Language statements (Create, Alter, and Drop), 
or Data Control Language statements (Grant, Deny, and Revoke). The CommandText property of 
the Command object holds the SQL statement that will be submitted. The Command object contains 
three methods for submitting the CommandText to the database depending on what is returned. If 
records are returne d, as is the case when a Select statement is executed, then you can use the 
ExecuteReader. If a single value is returned ˿for example, the results of a Select Count aggregate 
function ˿you should use the ExecuteScalar method. When no records are returned fro m a query ˿
for example, from an Insert statement ˿you should use the ExecuteNonQuery method. The 
following code demonstrates using a Command object to execute a SQL statement against the Pubs 
database that returns the number of employees:  
SqlConnection pubCo nnection = new SqlConnection(); string connString;  
SqlCommand pubCommand; try {  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

185  

 

 

connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";  
pubConnection.ConnectionString = connString;  
pubConnection.Open();  
pubCommand = new SqlCommand();  
pubCommand.Connection = pubConnection;  
pubCommand.CommandText = "Select Count(emp_id) from employee"; return 
(int)pubCommand.ExecuteScalar();  

}  
catch (SqlException ex)  
{  

throw ex;  
}  
finally  
{  

if (pubConnection != null)  
{  

pubConnection.Close();  
}  

}  

Using Stored Procedures 
In many application designs, instead of executing a SQL statement directly, clients must execute 
stored procedures. Stored procedures are an excellent way to encapsulate the database logic, 
increase scalab ility, and enhance the security of multitiered applications. To execute a stored 
procedure, you use a Command object, setting its CommandType property to StoredProcedure 
and its CommandText property to the name of the stored procedure. The following code e xecutes 
a stored procedure that returns the number of employees in the Pubs database:  

SqlConnection pubConnection = new SqlConnection(); string connString;  
SqlCommand pubCommand; try {  

connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";  
pubConnection.ConnectionString = connString;  
pubConnection.Open();  
pubCommand = new SqlCommand();  
pubCommand.Connection = pubConnection;  
pubCommand.CommandText = "GetEmployeeCount";  
pubCommand.CommandType = CommandType.StoredProcedure;  
retu rn (int)pubCommand.ExecuteScalar();  

}  
catch (SqlException ex)  
{  

throw ex;  
}  
finally  
{  

if (pubConnection != null)  
{  

pubConnection.Close();  
}  

}  

When executing a stored procedure, you often must supply input parameters. You may also 
need to retrieve the results of the stored procedure through output parameters. To work with 
parameters, you need to instantiate a parameter object of type SqlParameter, and then add it to 
the Parameters collection of the Command object. When constructing the parameter, you su pply 
the name of the parameter and the SQL Server data type. For some data types, you also supply 
the size. If the parameter is an output, input - output, or return parameter, then you must indicate 
the parameter direction. The following example calls a stor ed procedure that accepts an input 
parameter of a letter. The procedure passes back a count of the employees whose last name 
starts with the letter. The count is returned in the form of an output parameter.  

SqlConnection pubConnection = new SqlConnection() ; string connString;  
SqlCommand pubCommand;  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

186  

 

 

try  
{  

connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";  
pubConnection.ConnectionString = connString;  
pubConnection.Open();  
pubCommand = new SqlCommand();  
pubCommand.Connection = pubConnection;  
pubCommand.CommandText = "GetEmployeeCountByLastInitial";  
SqlParameter inputParameter = pubCommand.Parameters.Add ("@LastInitial", 
SqlDbType.NChar, 1); inputParameter.Value = lastInitial.ToCharArray()[0];  
SqlParameter outputParameter = pubCo mmand.Parameters.Add ("@EmployeeCount", 
SqlDbType.Int); outputParameter.Direction = ParameterDirection.Output; 
pubCommand.CommandType = CommandType.StoredProcedure; 
pubCommand.ExecuteNonQuery(); return (int)outputParameter.Value;  

}  
catch (SqlException ex)  
{  

throw ex;  
}  
finally  
{  

if (pubConnection != null)  
{  

pubConnection.Close();  
}  

}  

Using the DataReader Object to Retrieve Data 
A DataReader object accesses data through a forward - only, read - only stream. Oftentimes you 
will want to loop through a set of records and process the results sequentially without the 
overhead of maintaining the data in a cache. A good example of this would be loading a list or 
array with the values returned from the database. After declaring an object of type 
SqlDataReader, you i nstantiate it by invoking the ExecuteReader method of a Command object. 
The Read method of the DataReader object accesses the records returned. The Close method of 
the DataReader object is called after the records have been processed. The following code 
demonstrates the use of a DataReader object to retrieve a list of names from a SQL Server 
database and return it to the client:  

public ArrayList ListNames()  
{  

SqlConnection pubConnection = new SqlConnection(); string connString;  
SqlCommand pubCommand;  
ArrayList nameArray;  
SqlDataReader employeeDataReader; try {



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

187  

 

 

connString = "Data Source=drcsrv01;" +  
"Initial Catalog=pubs;Integrated Security=True"; 

pubConnection.ConnectionString = connString; 
pubConnection.Open(); pubCommand = new 
SqlCommand(); pubCommand.Connection = 
pubConnection; pubCommand.CommandText =  

"Select lname from employee"; employeeDataReader 
= pubCommand.ExecuteReader(); nameArray = new 
ArrayList(); while (employeeDataReader.Read())  
{  

nameArray.Add(employeeDataReader["lname"]);  
}  
return nameArray;  

}  
catch (SqlException ex)  
{  

throw ex;  
}  
finally  
{  

if (pubConnection != null)  
{  

pubConnection.Close();  
}  

}  
}  

Using the DataAdapter to Retrieve Data 
In many cases, you need to retrieve a set of data from the database, work with the data, and 
return any updates to the data back to the database. In that case, you use a DataAdapter as a 
bridge between the data source and the in - memory cache of the data. This in - memory cache of 
data is contained in a DataSet, which is a major component of the ADO.NET architecture.  

ƵNote ¹ÍÊd©ÆÙÆ¸ÊÙdÔÇÏÊÈÙdÎØdÉÎØÈÚØØÊÉdÎÓdÌ×ÊÆÙÊ×dÉÊÙÆÎÑdÎÓdÙÍÊd̆¼Ô×ÐÎÓÌdÜÎÙÍd©ÆÙÆ¹ÆÇÑÊØdÆÓÉd

©ÆÙÆ¸ÊÙØ̇dØÊÈÙÎÔÓr 

To retrieve a set of data from a database, you instantiate a DataAdapter object. You set the 
SelectCommand property of the DataAdapter to an existing  Command object. You then execute 
the Fill method, passing the name of a DataSet object to fill. Here you see how to use a 
DataAdapter to fill a DataSet and pass the DataSet back to the client:  

SqlConnection pubConnection = new SqlConnection(); string conn String;  
SqlCommand pubCommand;  
SqlDataAdapter employeeAdapter;  
DataSet employeeDataSet; try {  

connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";  
pubConnection.ConnectionString = connString;  
pubConnection.Open();  
pubCommand =  new SqlCommand();  
pubCommand.Connection = pubConnection;  
pubCommand.CommandText = "Select emp_id, lname, Hire_Date from employee";  
employeeAdapter = new SqlDataAdapter();  
employeeAdapter.SelectCommand = pubCommand;  
employeeDataSet = new DataSet();  
employe eAdapter.Fill(employeeDataSet);  
return employeeDataSet;  

}  
catch (SqlException ex)  
{  

throw ex;  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

188  

 

 

}  
finally  
{  

if (pubConnection != null)  
{  

pubConnection.Close();  
}  

}  
You may find that you need to retrieve a set of data by executing a stored procedure as 

opposed to passing in a SQL statement. The following code demonstrates executing a stored 
procedure that accepts an input parameter and returns a set of records. The records are loaded 
into a DataSet object and returned to the client.  

SqlConnection pubConn ection = new 
SqlConnection(); string connString;  
SqlCommand pubCommand;  
SqlDataAdapter employeeAdapter;  
DataSet employeeDataSet; try {  

connString = "Data Source=drcsrv01;Initial Catalog=pubs;Integrated Security=True";  
pubConnection.ConnectionString = connString;  
pubConnection.Open();  
pubCommand = new SqlCommand();  
pubCommand.Connection = pubConnection;  
pubCommand.CommandText = "GetEmployeeCountByLastInitial";  
SqlParameter inputParameter = pubCommand.Parameters.Add ("@LastInitial", 
SqlDbType.NChar, 1); inputParameter.Value = lastInitial.ToCharArray()[0]; 
pubCommand.CommandType = CommandType.StoredProcedure; employeeAdapter = new 
SqlDataAdapter(); employeeAdapter.SelectCommand = pubCommand; employeeDataSet = new 
DataSet();  
employeeAdapter.Fill(employeeDat aSet); return employeeDataSet;  

}  
catch (SqlException ex)  
{  

throw ex;  
}  
finally  
{  

if (pubConnection != null)  
{  

pubConnection.Close();  
}  

}  

ACTIVITY 10-1. RETRIEVING DATA FROM A SQL SERVER DATABASE 

In this activity, you will become familiar with the following:  

 ̋ Establishing a connection to a SQL Server database.  

 ̋ Executing queries through a Command object.  

 ̋ Retrieving data with a DataReader object.  

 ̋ Executing a stored procedure using a Command object.  

ƵNote For the activities in this chapter to work, you must have access to a SQL Server 2005 or 

higher database server with the sample Microsoft Pubs and Northwind databases installed. You 

must be logged on under a Windows account that has been given the appropri ate rights to these 

databases. You may have to alter the ConnectionString depending on your settings. For more 



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

189  

 

 

ÎÓËÔ×ÒÆÙÎÔÓpd×ÊËÊ×dÙÔdÙÍÊd̆¸ÔËÙÜÆ×Êd·ÊÖÚÎ×ÊÒÊÓÙØ̇dØÊÈÙÎÔÓdÎÓdÙÍÊd®ÓÙ×ÔÉÚÈÙÎÔÓdÆÓÉd¦ÕÕÊÓÉÎÝd¨r 

Creating a Connection and Executing SQL Queries 

To create a connection and execute SQL queries, follow these steps:  

1. Start Visual Studio. Select File > New > Project.  

2. Choose a Console Application project. Name the project Acti0_i.  

3. After the project opens, add a new class to the project named Author.  

4. Open the Author class code in the code editor. Add the following using 

statements at the top of the file:



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

190  

 

 

n 

using System.Data;  
using System.Data.SqlClient;  

5. Add this code to declare a private class - level variable of type SQLConnection:  

public class Author {  
SqlConnection _pubConnection; string _connString;  

6. Create a class constructor that instantiates the Pubs Connection object and sets up the 

ConnectionString property.  
public Author()  
{  

_connString =  
"Data Source=localhost;Initial Catalog=pubs;Integrated Security=True"; _pubConnection = 

new SqlConnection();  
_pubConnection. ConnectionString = _connString;  

}  

7. Add a method to the class that will use a Command object to execute a query to count the 

number of authors in the Authors table. Because you are only returning a single value, 

you will use the ExecuteScalar method of the Command object.  
public int CountAuthors()  
{  

try  
{  

SqlCommand pubCommand = new SqlCommand(); pubCommand.Connection = _pubConnection;  
pubCommand.CommandText = "Select Count(au_id) from authors";  

_pubConnection.Open();  
return (int)pubCommand.ExecuteScalar();  
}  
catch (SqlException ex)  
{  

throw ex;  
}  
finally  
{  

if (_pubConnection != null)  
{  

_pubConnection.Close();  
}  

}  
}  

8. Add the following code to the Main Method of the Program class, which will execute the 

GetAuthorCount method defined in the Author class:  
static void Main(string[] args)  
{  

try   



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

191  

 

 

u 

{  
Author author = new Author();  

Console.WriteLine(author.CountAuthors());  
Console.ReadLine();  

}  
catch (Exception ex)  
{  

Console.WriteLine(ex.Message);  
Console.ReadLine();  

}  
}  

9. Select Debug > Start to run the project. The Console window should launch with the 

number of authors displayed. After viewing the output, stop the debugger.  

Using the DataReader Object to Retrieve Records 

To use the DataReader object to retrieve records, follow these st eps: 1.  Open the Author class code 
in the code editor.  

2. Add a public method to the class definition called GetAuthorList that returns an generic 

List of strings:  
public List<string> GetAuthorList()  
{  
}  

3. Add the following code, which executes a SQL Select ØÙÆÙÊÒÊÓÙdÙÔd×ÊÙ×ÎÊÛÊdÙÍÊdÆÚÙÍÔ×Ø̃d

last names. A DataReader object then loops through the records and creates a list of 

names that gets returned to the client.  
SqlCommand authorsCommand = new SqlCommand();  
SqlDataReader authorDataReader;  
List<string> nameL ist = new List<string>(); try {  

authorsCommand.Connection = _pubConnection; authorsCommand.CommandText = "Select 
au_lname from authors"; _pubConnection.Open();  
authorDataReader = authorsCommand.ExecuteReader(); while (authorDataReader.Read() == 
true)  
{  

nameList.Add(authorDataReader.GetString(0));  
}  
return nameList;  

}  
catch (SqlException ex)  
{  

throw ex;  
}  
finally   



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

192  

 

 

{  
if (_pubConnection != null)  
{  

_pubConnection.Close();  
}  

}  

4. Change the code in the Main Method of the Program class to show the list of names in 

the console window.  
static void Main(string[] args)  
{  

try  
{  

Author author = new Author();  
foreach (string name in author.GetAuthorList())  
{  

Console.WriteLine(name);  
}  
Console.ReadLine();  

}  
catch (Exception ex)  
{  

Console.WriteLine(ex.Message);  
Console.ReadLine();  

}  
}  

5. Select Debug > Start to run the project. The Console window should launch with the 

names of the authors displayed. After viewing the output, stop the debugger.  

Executing a Stored Procedure Using a Command Object 

To execute a stored procedure using a Command object, follow these steps: 1.
 Open the Author class code in the code editor.  

2. Add a public method that overloads the GetAuthorList method by accepting an integer 

parameter named Royalty. This function will call the stored procedure by royalty in the 

Pubs database. The procedure takes an integer input of royalty percentage and returns a 

list of author IDs with the percentage.  
public List<string> GetAuthorList(int royalty)  
{  

SqlCommand authorsCommand = new SqlCommand();  
SqlDataReader authorDataReader;  
List<string> nameList = new List<string>();  
SqlParameter inputParameter = new SqlParameter(); try {  

authorsCommand.Connection = _pubConnection; 
authorsCommand.CommandType = CommandType.StoredProcedure; 
authorsCommand.CommandText = "byroyalty";
inputParameter.ParameterName = "@percentage"; 
inputParameter.Direction = ParameterDirection.Input; 
inputParameter.SqlDbType = SqlDbType.Int; 
inputParameter.Value = royalty; 
authorsCommand.Parameters.Add(inputParameter);  
_pubConnection.Open();  
authorDataReader = 
authorsCommand.ExecuteReader(); while 
(authorDataReader.Read() == true)  
{  

nameList.Add(authorDataReader.GetString(0));  
}  
return nameList;  

}  
catch (SqlException ex)  
{  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

193  

 

 

throw ex;  
}  
finally  
{  

if (_pubConnection != null)  
{  

_pubConnection.Close();  
}  

}  

}  

3. In the Main method of the Program class, supply an input parameter 

of 25 to the GetAuthorList method.  
foreach (string name in author.GetAuthorList(25))  

4. Select Debug > Start to run the project. The Console window should 

launch with the IDs of the authors displayed. After viewing the output, 

stop the debugger.  
5. When finished testing, exit Visual Studio.  

Working with DataTables and DataSets 
DataSets and DataTables are in - memory caches of data that provide a consistent relational 
programming model for working with data regardless of the data source. A DataTable represents 
one table of relational data and consists of columns, rows, and constraints. You can think of a 
DataSet as a minirelational database, which includes the data tables and the relational integrity 
constraints between them. If you are retrieving data from a single table, you can populate and 
use the DataTable directly without the overhead of creating a DataSet f irst. There are several 
ways to create a DataTable or DataSet. The most obvious method is to populate a DataTable or 
DataSet from an existing relational database management system (RDBMS) such as a SQL Server 
database. As mentioned previously, a DataAdapte r object provides the bridge between the 
RDBMS and the DataTable or DataSet. By using a DataAdapter object, the DataTable or DataSet 
is totally independent from the data source. Although you need to use a  
specific set of provider classes to load either typ e of object, you use the same set of .NET 
Framework classes to work with a DataTable or DataSet, regardless of how it was created and 
populated. The System.Data namespace contains the framework classes for working with 
DataTable or DataSet objects. Table 1 0- 2 lists some of the main classes contained in the 
System.Data namespace.  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

194  

 

 

 

Populating a DataTable from a SQL Server Database 
To retrieve data from a database, you set up a connection with the database using a 
Connection object. After a connection is established, you create a Command object to retrieve 
the data from the database. As stated earlier, if you are retrieving data from a single table or 
result set, you can populate and work with a DataTable directly without creating a DataSet 
object. The Load method of the DataTable fills the table with the contents of a DataReader 
object. The following code fills a DataTable with data fro m the publishers table of the Pubs 
database:  

SqlConnection pubConnection = new SqlConnection(); string connString;  
SqlCommand pubCommand;  
SqlDataReader pubDataReader;  
DataTable pubTable; try {  

connString = "Data Source=drcsrv01;" +  
"Initial Catalog=pubs;Integrated Security=True"; 

pubConnection.ConnectionString = connString;  
pubCommand = new SqlCommand(); 
pubCommand.Connection = pubConnection; 
pubCommand.CommandText =  

"Select pub_id, pub_name, city from publishers"; 
pubConnection.Open();  
pubDataReader = 
pubCommand.ExecuteReader(); pubTable = 
new DataTable(); 
pubTable.Load(pubDataReader); return 

Table 10 - 2. The Main Members of the System.Data Namespace  
Class Description 

DataSet  Represents a collection of DataTable and DataRelation objects. 
Organizes an in - memory cache of relational data.  

DataTable  Represents a collection of DataColumn, DataRow, and Constraint 
objects. Organizes records and fields related to a data entity.  

DataColumn  Represents the schema of a column in a DataTable.  

DataRow Represents a row of data in a DataTable.  

Constraint  Represents a constraint that can be enforced on DataColumn objects.  

ForeignKeyConstraint  Enforces referential integrity of a parent/child relationship between 
two DataTable objects.  

UniqueConstraint  Enforces uniqueness of a DataColumn or set of DataColumns. This is 
required to enforce referential integrity in a parent/child relationship.  

DataRelation  Represents a parent/child relation between two DataTable objects.  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

195  

 

 

pubTable;  
}  
catch (SqlException ex)  
{  

throw ex;  
}  
finally  
{  

if (pubConnection != null)  
{  

pubConnection.Close();  
}  

}  

Populating a DataSet from a SQL Server Database 
When you need to load data into multiple tables and maintain the referential integrity between the 
tables, you need to use the DataSet object as a container for the DataTables. To retrieve data from 
a database and fill the DataSet, you set  up a connection with the database using a Connection 
object. After a connection is established, you create a Command object to retrieve the data from 
the database, and then create a DataAdapter to fill the DataSet, setting the previously created 
Command o bject to the SelectCommand property of the DataAdapter. Create a separate 
DataAdapter for each DataTable. The final step is to fill the DataSet with the data by executing the 
Fill method of the DataAdapter. The following code demonstrates filling a DataSet  with data from 
the publishers table and the titles table of the Pubs database:  

SqlConnection pubConnection = new SqlConnection(); string connString;  
SqlCommand pubCommand;  
SqlCommand titleCommand;  
SqlDataAdapter pubDataAdapter;  
SqlDataAdapter titleDataAda pter;  
DataSet bookInfoDataSet; try {  

connString = "Data Source=drcsrv01;" +  
"Initial Catalog=pubs;Integrated Security=True"; 

pubConnection.ConnectionString = connString;  
//Create pub table command pubCommand = 
new SqlCommand(); pubCommand.Connection 
= pubConnection; pubCommand.CommandText 
= 

"Select pub_id, pub_name, city from publishers"; 
pubDataAdapter = new SqlDataAdapter(); 
pubDataAdapter.SelectCommand = pubCommand;  
//Create title table command titleCommand 
= new SqlCommand(); 
titleCommand.Connection  = pubConnection; 
titleCommand.CommandText =  

"Select pub_id, title, city, ytd_sales from titles"; 
titleDataAdapter = new SqlDataAdapter(); 
titleDataAdapter.SelectCommand = titleCommand;  
//Create and fill dataset bookInfoDataSet = new 
DataSet(); pubDataAdap ter.Fill(bookInfoDataSet, 
"Publishers"); titleDataAdapter.Fill(bookInfoDataSet, 
"Titles"); return bookInfoDataSet;  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

196  

 

 

}  
catch (SqlException ex)  
{  

throw ex;  
}  
finally  
{  

if (pubConnection != null)  
{  

pubConnection.Close();  
}  

}  

Establishing Relationships between Tables in a DataSet 
In an RDBMS system, referential integrity between tables is enforced through a primary key and 
foreign key relationship. Using a DataRelation object, you can enforce data referential integrity 
between the tables in the DataSet. This object contains an array of DataColumn objects that define 
the common field(s) between the parent table and the child table used to establish the relation. 
Essentially, the field identified in the parent table is the primary key, and the field identified i n the 
child table is the foreign key. When establishing a relationship, create two DataColumn objects for 
the common column in each table. Next, create a DataRelation object, pass a name for the 
DataRelation, and pass the DataColumn objects to the construc tor of the DataRelation object. The 
final step is to add the DataRelation to the Relations collection of the DataSet object. The following 
code establishes a relationship between the publishers and the titles tables of the bookInfoDataSet 
created in the pr evious section:  
//Create relationahip between tables DataRelation Pub_TitleRelation;  
DataColumn Pub_PubIdColumn;  
DataColumn Title_PubIdColumn;  
Pub_PubIdColumn = bookInfoDataSet.Tables["Publishers"].Columns["pub_id"];  
Title_PubIdColumn = bookInfoDataSet.Tab les["Titles"].Columns["pub_id"];  
Pub_TitleRelation = new DataRelation("PubsToTitles", Pub_PubIdColumn, Title_PubIdColumn);  
bookInfoDataSet.Relations.Add(Pub_TitleRelation);  
return bookInfoDataSet;  

Editing Data in the DataSet 
Clients often need to be able t o update a DataSet. They may need to add records, delete records, 
or update an existing record. Because DataSet objects are disconnected by design, the changes 
made to the DataSet are not automatically propagated back to the database. They are held locally  
until the client is ready to replicate the changes back to the database. To replicate the changes, 
you invoke the Update method of the DataAdapter, which determines what changes have been 
made to the records and implements the appropriate SQL command (Upd ate, Insert, or Delete) 
that has been defined to replicate the changes back to the database.  

To demonstrate the process of updating a DataSet, the following code constructs an Author 
class that will pass a DataSet containing author information to a client when the GetData method 
is invoked. The Author class will accept a DataSet containing changes made to the author 
information and replicate the changes back to the Pubs database when its UpdateData method is 
invoked. The first step is to define the class an d include a using statement for the referenced 
namespaces, like so:  

using System.Data;  

using System.Data.SqlClient;  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

197  

 

 

Define class - level variables for SQLConnection, SQLDataAdapter, and DataSet objects: public 

class Author {  
private SqlConnection _pubConnect ion; private SqlDataAdapter _authorsDataAdapter; private 
DataSet _pubsDataSet;  

In the class constructor, initialize a Connection object, like so: public Author()  
{  

SqlCommand selectCommand;  
SqlCommand updateCommand;  
string connectionString = "Integrated Se curity=True;Data Source=LocalHost;" +  

"Initial Catalog=Pubs";  
_pubConnection = new SqlConnection(connectionString);  

Then create a Select Command object, like so:  

string selectSQL = "Select au_id, au_lname, au_fname from authors"; 
selectCommand = new SqlCommand(selectSQL,_pubConnection); 
selectCommand.CommandType = CommandType.Text;  

Next you create an Update Command. The command text references parameters in the 
command's Parameters collection that will be created next.  

string updateSQL = "Update autho rs set au_lname = @au_lname," +  
" au_fname = @au_fname where au_id = @au_id"; 

updateCommand = new SqlCommand(updateSQL, 
_pubConnection); updateCommand.CommandType = 
CommandType.Text;  

A Parameter object is added to the Command object's Parameter collection for each 
Parameter in the Update statement. The Add method of the Parameters collection is passed 
information on the name of the Parameter, the SQL data type, size, and the source column of the 
DataSet, like so:  
updateCommand.Parameters.Add("@au_id", SqlDb Type.VarChar, 11, "au_id"); 
updateCommand.Parameters.Add("@au_lname", SqlDbType.VarChar, 40, 
"au_lname"); updateCommand.Parameters.Add("@au_fname", SqlDbType.VarChar, 
40, "au_fname");  

The final step is to create and set up the DataAdapter object. Set the S electCommand 
and UpdateCommand properties to the appropriate SQLCommand objects, like so:  

_authorsDataAdapter = new SqlDataAdapter();  
_authorsDataAdapter.SelectCommand = selectCommand;  
_authorsDataAdapter.UpdateCommand = updateCommand;  

}  

Now that the SQLDataAdapter has been set up and created in the class constructor, the 
GetData and UpdateData methods will use the DataAdapter to get and update the data from the 
database, like so:  
public DataSet GetData()  
{  

_pubsDataSet = new DataSet();  
_authorsDataAda pter.Fill(_pubsDataSet, "Authors"); return _pubsDataSet;  

}  
public void SaveData(DataSet authorChanges)  
{  

_authorsDataAdapter.Update(authorChanges, "Authors");  
}  

In a similar fashion, you could implement the InsertCommand and the DeleteCommand 



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

198  

 

 

properties of  the DataAdapter to allow clients to insert new records or delete records in the 
database.  

ƵNote For simple updates to a single table in the data source, the .NET Framework provides a 

CommandBuilder class to automate the creation of the InsertCommand, Upda teCommand, and 

DeleteCommand properties of the DataAdapter.  

ACTIVITY 10-2. WORKING WITH DATASET OBJECTS 

®ÓdÙÍÎØdÆÈÙÎÛÎÙÞpdÞÔÚdÜÎÑÑdÇÊÈÔÒÊdËÆÒÎÑÎÆ×dÜÎÙÍdÙÍÊdËÔÑÑÔÜÎÓÌ~d̋ Populating a DataSet from a SQL 
Server database.  

 ̋ Editing data in a DataSet.  

 ̋ Updating ch anges from the DataSet to the database.  

 ̋ Establishing relationships between tables in a DataSet.  

Populating a DataSet from a SQL Server Database 

To populate a DataSet from a SQL Server database, follow these steps: 1.  Start Visual Studio. Select 
File > New > Project.  

2. Choose Windows Application. Rename the project to Act10_2 and click the OK button.  

3. After the project opens, add a new class to the project named Author.  

4. Open the Author class code in the code editor. Add the following using statements at 

the top  of the file:  
using System.Data;  
using System.Data.SqlClient;  

5. Add the following code to declare private class level variables of type SQLConnection, 

SqlDataAdapter, and DataSet:  
public class Author {  

SqlConnection _pubConnection; string _connString;  
SqlDataAdapter _pubDataAdapter;  
DataSet authorDataSet;  

6. Create a class constructor that instantiates the Pubs Connection object, sets up the 

ConnectionString property and creates a select command.  
public Author()  
{  

_connString =  
"Data Source=localhost;Initial Catalog=pubs;Integrated Security=True"; _pubConnection 

= new SqlConnection();  
_pubConnection.ConnectionString = _connString;  

SqlCommand selectCommand =  
new SqlCommand("Select au_id, au_lname,au_fname from authors", _pubConnection);  

_pubDataAdapter = new SqlDataAdapter();  
_pubDataAdapter.SelectCommand = selectCommand;  

}  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

199  

 

 

7. Create a method of the Author class called GetData that will use the DataAdapter 

object to fill the DataSet and return it to the client.  
public DataSet GetData()  
{  

try  
{  

authorDataSet = new DataSet();  
_pubDataAdapter.Fill(authorDataSet, "Author"); return authorDataSet;  

}  
catch (Exception ex)  
{  

throw ex;  
}  

}  

8. Build the project and fix any errors.  

9. Add the controls listed in Table 10 - 3 to Form1 and set the properties as shown.  

 

10. Open the Form1 class code file in the code editor. Declare a class - level DataSet 

object after the class declaration.  
public partial class Form1 : Form {  

private DataSet _pubDataSet;  

11. Open Form1 in the Form Designer. Double - click on the Get Data button to open the 

button click event method in the code editor.  

12. Add the following code to the btnGetData click event procedure, which will 

execute the GetData method defined in the Author class. This dataset is then 

loaded into the grid using the DataSource property.  
private void btnGetData_Click(object sender, EventArgs e)  
{  

Author author = new Author();  

Table 10 - 3. Form1 Controls  
Control Property Value 

DataGridView  Name dgvAuthors  

 AllowUserToAddRows  False  

 AllowUserToDeleteRows  False  

 ReadOnly False  

Button  Name btnGetData  

 Text  Get Data  

Button  Name btnUpdate  

 Text  Update  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

200  

 

 

_pubDataSet = author.GetData();  
dgvAuthors.DataSource = _pubDataSet.Tables["Authors"];  

}  
13. Build the project and fix any errors. Once the project builds, run the project in debug 

mode and test the GetData method. You should see the grid filled with author 

information. After testing, stop the debugger.  

Editing and Updating Data in a DataSet 

To edit and update data in a DataSet, follow these steps:  

1. Open the Author class code in the code editor.  

2. At the end of the class constructor, add code to set up a SqlCommand object that will 

execute an Update query. Create the update parameters in the Parameters collection 

ÆÓÉdØÊÙdÙÍÊd©ÆÙÆ¦ÉÆÕÙÊ×dÔÇÏÊÈÙ̃ØdºÕÉÆÙÊd¨ÔÒÒÆÓÉdÕ×ÔÕÊ×ÙÞdÙÔdÙÍÊd¸ÖÑ¨ÔÒÒÆÓÉ object.  

SqlCommand updateCommand = new SqlCommand  
("Update authors set au_lname = @au_lname," +  
"au_fname = @au_fname where au_id = @au_id",  
_pubConnection);  

updateCommand.Parameters.Add("@au_id", SqlDbType.VarChar, 11, "au_id"); 
updateCommand.Parameters. Add("@au_lname", SqlDbType.VarChar, 40, "au_lname"); 
updateCommand.Parameters.Add("@au_fname", SqlDbType.VarChar, 40, "au_fname"); 
_pubDataAdapter.UpdateCommand = updateCommand;  

3. Create a method of the Author class called UpdateData that will use the Update  method 

of the DataAdapter object to pass updates made to the DataSet to the Pubs database.  

public void UpdateData(DataSet changedData)  
{  

try  
{  
_pubDataAdapter.Update(changedData, "Authors");  
}  
catch (Exception ex)  
{  
throw ex;  
}  

}  

4. Build the project and fix  any errors.  

5. Open Form1 in the Form Designer. Double - click on the Update Data button to open the 

button click event method in the code editor.  

6. Add the following code to the btnUpdate click event procedure, which will execute the 

UpdateData method defined i n the Author class. By using the GetChanges method of the 

DataSet object, only data that has changed is passed for updating.  

private void btnUpdate_Click(object sender, EventArgs e)  
{  

Author author = new Author();  
author.UpdateData(_pubDataSet.GetChanges() );  

}  

7. Build the project and fix any errors. Once the project builds, run the project in debug 

mode and test the Update method. First, click the Get Data button. Change the last 



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

201  

 

 

name of several authors and click the Update button. Click the Get Data button again to 

retrieve the changed values back from the database. After testing, stop the debugger.  

Establishing Relationships between Tables in a DataSet 

To establish relationships between tables in a DataSet, follow these steps:  

1. Add a new class named StoreSal es to the project.  

2. Open the StoreSales class code in the code editor. Add the following using statements 
at the top of the file:  

using System.Data;  
using System.Data.SqlClient;  

3. Add the following code to declare private class level variables of type SQLConnection, 

SqlDataAdapter, and DataSet:  
class StoreSales {  

SqlConnection _pubConnection; string _connString;  
SqlDataAdapter _storeDataAdapter = new SqlDataAdapter();  
SqlDataAdapter _salesDataAdapter = new SqlDataAdapter();  
DataSet storeSalesDataSet;  

4. Create a class constructor that instantiates the Pubs Connection object and sets up the 
ConnectionString property.  

public StoreSales()  
{  

_connString =  
"Data Source=localhost;Initial Catalog=pubs;Integrated Security=True"; _pubConnection 

= new SqlConnection ();  
_pubConnection.ConnectionString = _connString;  

}  

5. Create a method of the StoreSales class called GetData that will use the select store 

information and sales information and establish a relationship between them. This 

information is used to fill a DataSet and return it to the client.  
public DataSet GetData()  
{  

try  
{  

//Get Store Info  
string selectStoresSQL = "SELECT [stor_id] ,[stor_name]," +

"[city],[state] FROM [stores]";  
SqlCommand selectStoresCommand =  

new SqlCommand(selectStoresSQL, 
_pubConnection); selectStoresCommand.CommandType 
= CommandType.Text; 
_storeDataAdapter.SelectCommand = 
selectStoresCommand;  
//Get Sales Info  
string selectSalesSQL = "SELECT [stor_id],[ord_num]," +  

"[ord_date],[qty] FROM [sales]" ; 
SqlCommand selectSalesCommand =  

new SqlCommand(selectSalesSQL, 
_pubConnection); selectSalesCommand.CommandType 
= CommandType.Text; 



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

202  

 

 

_salesDataAdapter.SelectCommand = 
selectSalesCommand;  
//Get data and fill DataSet storeSalesDataSet = new 
DataSet();  
_store DataAdapter.Fill(storeSalesDataSet, "Stores"); 
_salesDataAdapter.Fill(storeSalesDataSet, "Sales");  
//Create relationahip between tables DataColumn 
Store_StoreIdColumn =  

storeSalesDataSet.Tables["Stores"].Columns["stor_id"];  
DataColumn Sales_StoreIdColumn =  

storeSalesDataSet.Tables["Sales"].Columns["stor_id"];  
DataRelation StoreSalesRelation =  

new DataRelation("StoresToSales", Store_StoreIdColumn, Sales_StoreIdColumn); 
storeSalesDataSet.Relations.Add(StoreSalesRelation);  

return storeSalesDataSet;  
}  
catch (Exception ex)  
{  

throw ex;  
}  

}  

6. Build the project and fix any errors.  

7. Add a second form to the project. Add the controls listed in Table 

10- 4 to Form2 and set the properties as shown.  

 

8. Open the Form2 class code file in the code editor. Declare a class -

level DataSet object after the class declaration.  
public partial class Form2 : Form {  

DataSet StoreSalesDataSet;  

9. Open Form2 in the Form Designer. Double - click on the Get Data 

button to open the button click event method in the code editor.  

10. Add the following code to the btnGetData click event procedure, 

which will execute the GetData method defined in the StoreSales 

class. This Stores table is then loaded into the Stores grid using 

the DataSource property. Setting the DataMember property of the 

Sales grid loads it with the sales data of the store selected in the 

Stores grid.  
private void btnGetData_C lick(object sender, EventArgs e)  
{  

Table 10 - 4. Form2 Controls  
Control Property Value 

DataGridView  Name dgvStores  

DataGridView  Name dgvSales  

Button  Name btnGetData  

 Text  Get Data  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

203  

 

 

StoreSales storeSales = new StoreSales();  
StoreSalesDataSet = storeSales.GetData(); 
dgvStores.DataSource = 
StoreSalesDataSet.Tables["Stores"]; 
dgvSales.DataSource 
=StoreSalesDataSet.Tables["Stores"]; 
dgvSales.DataMember =  "StoreSales";  

}  

11. Open the Program class in the code editor. Change the code to 

launch Form2 when the form loads.  
Application.Run(new Form2());  

12. When the form loads, click the Get Data button to load the grids. 

Selecting a new row in the Stores grid should u pdate the Sales grid 

ÙÔdØÍÔÜdÙÍÊdØÙÔ×ỄØdØÆÑÊØrd¼ÍÊÓdÞÔÚdÆ×ÊdËÎÓÎØÍÊÉdÙÊØÙÎÓÌdØÙÔÕdÙÍÊd

debugger and exit Visual Studio.  

Working with the Entity Framework 
The Entity Framework (EF) is an Object - Relational Mapping (ORM) technology built into 
ADO.NET. EF tries to eliminate the mismatch between the objected - oriented programming 
constructs of the .NET language and the relational data constructs of the database system. For 
example, to load and work with a customer object, a developer has to send a SQL string to the 
database engine. The developer must be familiar with the relational schema of the data and this 
information is hardcoded into the application. A big disadvantage of this approach is the 
application is not shielded from changes in the underlying sche ma. Another disadvantage is that 
since the application sends the SQL statements as a string to the database engine for processing, 
Visual Studio can't implement syntax checking and issue warnings and build errors to the help the 
programmer.  

The Entity Fram ework provides the mapping schema that allows programmers to work at a 
higher level of abstraction. They can write code using object - oriented constructs to query and 

load the entities  
(objects defined by classes). The mapping schema translates the queries against the entities 
into the required database specific language needed to perform CRUD (create, read, update, and 
delete) operations against the data.  

In order to use the Entity Framework in your application, you must first add an ADO.NET 
Entity Data Mod el to your application. This step launches the Entity Data Model Wizard, which 
allows you to develop your model from scratch or generate it from an existing database. 
Choosing to generate it from an existing database allows you to create a connection to th e 
database and select the tables views and stored procedures you want to include in the model. 
The .edmx file generated by the wizard is an XML -  based file that has three sections. The first 
consists of store schema definition language (SSDL); this describ es the tables and relationships 
where the data is stored. The following code shows a portion of the SSDL for a data model 
generated from the Pubs database:  

<EntityContainer Name="pubsModelStoreContainer">  
<EntitySet Name="sales" EntityType="pubsModel.Store .sales" store:Type="Tables" 

Schema="dbo" />  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

204  

 

 

<EntitySet Name="stores" EntityType="pubsModel.Store.stores" store:Type="Tables" 
Schema="dbo" />  

<AssociationSet Name="FK  _____ sales  ___ stor_id  1273C1CD"  
Association="pubsModel.Store.FK  sales  _ stor_id  _ 1273C1CD">  

<End Role="stores" EntitySet="stores" />  
<End Role="sales" EntitySet="sales" />  
</AssociationSet>  
</EntityContainer>  
<EntityType Name="sales">  
<Key>  
<PropertyRef Name="stor_id" />  
<PropertyRef Name="ord_num" />  
<PropertyRef Name="title_id" />  
</Key>  
<Proper ty Name="stor_id" Type="char" Nullable="false" MaxLength="4" />  
<Property Name="ord_num" Type="varchar" Nullable="false" MaxLength="20" />  
<Property Name="ord_date" Type="datetime" Nullable="false" />  
<Property Name="qty" Type="smallint" Nullable="false" /> 
<Property Name="payterms" Type="varchar" Nullable="false" 
MaxLength="12" /> <Property Name="title_id" Type="varchar" 
Nullable="false" MaxLength="6" /> </EntityType>  

The second section consists of conceptual schema definition language (CSDL); it specifies  
the entities and relationships between them. These entities are used by the application to work 
with data in the application. The following code comes from the CDSL section of a data model 
generated from the Pubs database:  

<EntityContainer Name="pubsEntit ies" annotation:LazyLoadingEnabled="true">  
<EntitySet Name="sales" EntityType="pubsModel.sale" />  
<EntitySet Name="stores" EntityType="pubsModel.store" />  
<AssociationSet Name="FK__sales__stor_id__1273C1CD"  

Association="pubsModel.FK  sales  _ stor_id  _ 1273C1CD" > 
<End Role="stores" EntitySet="stores" />  
<End Role="sales" EntitySet="sales" />  
</AssociationSet>  
</EntityContainer>  
<EntityType Name="sale">  
<Key>  
<PropertyRef Name="stor_id" />  
<PropertyRef Name="ord_num" />  
<PropertyRef Name="title_id" />  
</Key>  
<Property Name="stor_id" Type="String" Nullable="false"  

MaxLength="4" Unicode="false" FixedLength="true" />  
<Property Name="ord_num" Type="String" Nullable="false"  

MaxLength="20" Unicode="false" FixedLength="false" />  
<Property Name="ord_date" Type="DateTime" Nullable="false" />  
<Property Name="qty" Type="Int16" Nullable="false" />  
<Property Name="payterms" Type="String" Nullable="false"  

MaxLength="12" Unicode="false" FixedLength="false" />  
<Property Name="title_id" Type ="String" Nullable="false"  

MaxLength="6" Unicode="false" FixedLength="false" />  
<NavigationProperty Name="store"  

Relationship="pubsModel.FK  sales  _ stor_id  _ 1273C1CD"  
FromRole="sales" ToRole="stores" />  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

205  

 

 

</EntityType>  

The final section of the .edmx file consists of code written in the mapping specification 
language (MSL). The MSL maps the conceptual model to the storage model. The following code 
shows a portion of the MSL section of a data model generated from the Pubs database:  

<EntityContainerMapping St orageEntityContainer="pubsModelStoreContainer"  
CdmEntityContainer="pubsEntities">  

<EntitySetMapping Name="sales"><EntityTypeMapping 
TypeName="pubsModel.sale"> <MappingFragment StoreEntitySet="sales">  
<ScalarProperty Name="stor_id" ColumnName="stor_id" />  
<ScalarProperty Name="ord_num" ColumnName="ord_num" />  
<ScalarProperty Name="ord_date" ColumnName="ord_date" />  
<ScalarProperty Name="qty" ColumnName="qty" />  
<ScalarProperty Name="payterms" ColumnName="payterms" />  
<ScalarProperty Name="title_id" ColumnName="title_id" /> 
</MappingFragment></EntityTypeMapping></EntitySetMapping>  

Querying Entities with LINQ to EF 
When creating the ADO.NET entity data model using the Entity Data Model Wizard, an 
ObjectContext class is created that represents the entit y container defined in the model. The 
ObjectContext class supports CRUD - based queries against the entity model. Queries written 
against the ObjectContext class are written using LINQ to EF. LINQ stands for Language -
Integrated Query. LINQ allows developers to write queries in C# syntax, which, when executed, 
are converted to the query syntax of the data provider. Once the query is executed and data is 
returned, the Entity Framework converts the results back to the entity object model.  

The following code uses  the Select method to return all the rows from the Stores table and 
return the results as a list of Store entities. The Store names are then written to the console 
window.  

var context = new pubsEntities(); var query = from s in context.stores select s; var  stores = 
query.ToList();  
foreach (store s in stores)  

{  
Console.WriteLine(s.stor_name);  

}  
Console.ReadLine();  

LINQ to EF provides a rich set of query operations including filtering, ordering, and 
grouping operations. The following code demonstrates filtering stores by state:  

var context = new pubsEntities(); var query = from s in context.stores 
where s.state == "WA" select s; var stores = query.ToList();  

The following code selects sales entities that have ordered more than 25 objects and then 
orders them by descending date:  

var context = new pubsEntities(); var query = from s in context.sales where 
s.qty > 25 orderby s.ord_date descending select s; var sales = 
query.ToList();  

Since the Entity Framework includes navigation properties between entities, you can easily 
build complex queries based on related entities. The following query selects stores with more 
than five sales orders:  

var context = new pubsEntities(); var query = from s in context.stores 
where s.sales.Count > 5 select s; var stores = query .ToList();  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

206  

 

 

ƵNote For more information on the LINQ query language, refer to the MSDN library at  
http://msdn.microsoft.com.  

Updating Entities with the Entity Framework 
The Entity Framework tracks changes made to the entity types represented in the Context 
object. You can add, update or delete entity objects. When you are ready to persist the changes 
back to the database, you call the SaveChanges method of the context object. The EF creates 
and executes the insert, upd ate, or delete statements against the database. You can also 
explicitly map stored procedures to implement the database commands. The following code 
selects a store using the store ID, updates the store name, and sends it back to the database:   

http://msdn.microsoft.com/


CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

207  

 

 

u 

var context  = new pubsEntities(); var store = 
(from s in context.stores where s.stor_id == 
storeId select s).First(); store.stor_name = 
"DRC Books"; context.SaveChanges();  

ACTIVITY 10-3. RETRIEVING DATA WITH THE ENTITY FRAMEWORK 

In this activity, you will become fami liar with the following:  

 ̋ Creating an Entity Data Model.  

 ̋ Executing queries using LINQ to EF.  

Creating an Entity Data Model 

To create an entity data model, follow these steps:  

1. Start Visual Studio. Select File > New > Project.  

2. Choose Console Application. Rename the project to Act10_3 and click the OK button.  

3. Right click on the project node in solution explorer and select Add > New Item.  

4. Under the Data node in the Add New Item window, select an ADO.NET Entity Data 

Model. Name the model Pubs.emdx and click A dd. 

5. In the Choose Model Contents screen, select the Generate from database and click 

Next.  

6. ®ÓdÙÍÊd̆¨ÍÔÔØÊd¾ÔÚ×d©ÆÙÆd¨ÔÓÓÊÈÙÎÔÓ̇dØÈ×ÊÊÓpdÈ×ÊÆÙÊdÆdÈÔÓÓÊÈÙÎÔÓdÙÔdÙÍÊdµÚÇØd

database and choose Next. (See Figure 10 - 1)



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

208  

 

 

 

7. ®ÓdÙÍÊd̆¨ÍÔÔØÊd¾ÔÚ×d©ÆÙÆÇÆØÊd´ÇÏÊÈÙØ̇dØÈ×ÊÊÓpdÊÝÕÆÓÉdÙÍÊd¹ÆÇÑÊØd

node and select the Sales, Stores, and Titles tables, as shown in 

Figure 10 - 2. Click Finish.  

 

Figure 10 - 1. Creating a database connection with the Entity Data Model Wizard  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

209  

 

 

 

8. You are presented with the Entity Model Designer containing the 

sales, store, and title entities, as shown in Figure 10 - 3.

 

Figure 10 - 2. Selecting database objects for an Entity Data Model  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

210  

 

 

í titfe  

-  Properties  

tjSftitlejd  

gftitlel 

l^type |Tf 

pubjd 

1ȯȶ price 

]fj* 

advance 

royalty 

2§*ytd_s

ales Hfj* 

notes 

Hfj* 

pubdate  

Navigation Properties  

sales  

 

 

 

 

 

Figure 10 - 3. Entity Model Designer  

9. In the Entity Model Designer right click on the title entity and 

select rename. Rename it to book. In the book entity, rename the 

title1 property to title.  

Querying an Entity Data Model 

To query this entity data model using LINQ, follow these steps:  

1. Open the Program.cs file in the Code Editor Window.  

2. Add the following method to select the book entities and write 

their titles to the Console window:  
private static void GetTitles()  
{  

var context = new pubsEntities();  
var query = from b in context.books select b;  
var books = query.ToList();  
foreach (book b in books)  
{  

Console.WriteLine(b.title);  
}  
Console.ReadLine();  

}  

3. Call the GetTitles method from the Main method.

ƴ store   safe  

= Properties   = Properties  

storjd   storjd  

2^ stor_name   ord_num  

^fr* stor_address  
>

 -------------  

0 

]lj* ord_date  

a'cfty  1 *  ifqly  
ȼ=ȩ* state   payternns  
^z,p   ^title_id  

3  Navigation Properties   -  Navigation Properties  

sales   store  

V J 
 ^ title  

 

^  -------------------------------  J 



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

211  

 

 

static void Main(string[] args)  
{  

GetTitles();  
}  

4. Run the program in debug mode. You should see the titles listed in the 

Console window. When you are done testing, stop the debugger.  

5. Add the following method that gets books in the 10 to 20 dollar range 

and orders them by price:  
private static void GetTitlesByPrice()  
{  

var context = new pubsEntities(); var query = from b in context.books  
where b.price >= (decimal)10.00  

&& b.price <= (decimal)20.00 
orderby b.price select b; var books = 
query.ToList(); foreach (book b in books)  
{  

Console.WriteLine(b.price + " --  " + b.title);  
}  
Console.ReadLine();  

}  

6. Call the GetTitlesByPrice method from the Main method.  

static void Main(string[] args)  
{  

//GetTitles();  
GetT itlesByPrice();  

}  

7. Run the program in debug mode. You should see the titles and prices 

listed in the Console window. When you are done testing, stop the 

debugger.  

8. Add the following method to list the book titles and the sum of their 

sales amount. Notice that this query gets the sales amount by adding 

ÚÕdÙÍÊdÇÔÔÐ̃Ød×ÊÑÆÙÊÉdØÆÑÊØdÊÓÙÎÙÎÊØr 
private static void GetBooksSold()  
{  

var context = new pubsEntities(); 
var query = from  b in 
context.books select new {  

BookID = b.title_id,  
TotalSold = b.sales.Sum(s =>(int?) s.qty)  

};  
foreach (var item in query)  
{  

Console.WriteLine(item.BookID + " --  " + item.TotalSold);
}  
Console.ReadLine();  

}  

9. Call the GetBooksSold method from the Main method.  

static void Main(string[] args)  
{  

//GetTitles();  



CHAPTER 10 ƴ IMPLEMENTING THE DATA ACCESS LAYER 

212  

 

 

//GetTitlesByPrice();  
GetBooksSold();  

}  

10. Run the program in debug mode. You should see the book IDs and 

amount sold listed in the Console window. When you are done 

testing, stop the debugger and exit Visual Studio.  

Summary 
This chapter is the first in a series that will show you how to build the various tiers of an OOP 
application. To implement an application's data access layer, you learned about ADO.NET and 
the classes used to w ork with relational data sources. You looked at the various classes that 
make up the System.Data.SqlClient namespace; these classes retrieve and update data stored in 
a SQL Server database. You also examined the System.Data namespace classes that work with  
disconnected data. In addition, you were exposed to the Entity Framework and LINQ and saw 
how they allow you to query the data using OOP constructs. You wrote queries in terms of 
entities and the framework translated the queries into the query syntax of t he datasource, 
retrieved the data, and loaded the entities.  

In the next chapter, you will look at implementing the user interface (UI) tier of a 
Windows application. Along the way, you will take a closer look at the classes and 
namespaces of the .NET Framework used to create rich Windows - based user interfaces.

C H A P T E R 1 1 



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

216  

 

 

Developing Windows Applications 

In the previous chapter, you learned how to build the data access layer of an application. To 
implement its logic, you used the classes of the System.Data namespace. These classes retrieve 
and work with relational data, which is a common requirement of many business applications. 
You are now ready to look at how users will interact with your application. Users interact wit h 
an application through the user interface layer. This layer, in turn, interacts with the business 
logic layer, which, in turn, interacts with the data access layer. In this chapter, you will learn 
how to build a user interface layer with the .NET Windows  Presentation Foundation (WPF). WPF 
takes advantage of modern graphics hardware and uses a vector - based rendering engine to 
display its output. It consists of a comprehensive set of application -  development features that 
include Extensible Application Mark up Language (XAML), controls, data binding, and layout.  

After reading this chapter, you will be comfortable performing the following tasks:  

 ̋ Using XAML markup to design a user interface.  

 ̋ Working with layout controls.  

 ̋ Working with display controls.  

 ̋ Respondin g to control events.  

 ̋ Using data binding controls.  

 ̋ Creating and using control templates.  

Windows Fundamentals 
Windows are objects with a visual interface that are painted on the screen to provide users a 
way to interact with programs. Like most objects you work with in object - oriented languages, 
.NET windows expose properties, methods, and events. A window's properties define its 
appearance. Its Background property, for example, determines its color. The methods of a 
window define its behaviors. For example,  calling its Hide method hides it from the user. A 
window's events define interactions with the user (or other objects). You can use the 
MouseDown event, for example, to initiate an action when the user clicks the right mouse 
button on the window.  

Controls  are components with visual interfaces that give users a way to interact with the 
program. A window is a special type of control, called a container control, that hosts other 
controls. You can place many different types of controls on windows. Some common controls 
used on windows are TextBoxes, Labels, OptionButtons, ListBoxes, and CheckBoxes. In 
addition to the controls provided by the .NET Framework, you can also create your own custom 
controls or purchase controls from third - party vendors.  

Introducing XAML 
WPF user interfaces are built using a declarative markup language called XAML. XAML 
declares the controls that will make up the interface. An opening angle bracket (<) followed 
by the name of the control type and a closing bracket defines the control. F or example, the 
following markup defines a button control inside a Grid.  

<Grid>  
<Button/>  

</Grid>  

Notice the Grid needs a formal closing tag because it contains the Button control. Since the 



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

217  

 

 

Button control does not contain any other controls, you can use a forward slash (/) in front of 
the end bracket to close it.  

The next step is to define the properties of the controls. For example, you may want to set 
the background color of the button to r ed and write some text on it. The properties of the 
control are set by using attribute syntax, which consists of the property name followed by an 
equal sign and the attribute value in quotation marks. The following markup shows the Button 
control with some  attributes added:  

<Grid>  
<Button Content="Click Me" Background="Red"/>  

</Grid>  

For some properties of an object element, attribute syntax is not possible. For these cases, 
a different syntax known as property element syntax can be used. The syntax for the  property 
element start tag is <typeName.propertyName>. For example, you can create rows and columns 
in the layout grid to control placement of controls in the grid, as shown:  

<Grid.ColumnDefinitions>  
<ColumnDefinition Width="100" />  
<ColumnDefinition Widt h="*" />  

</Grid.ColumnDefinitions>  
<Grid.RowDefinitions>  

<RowDefinition Height="25" />  
<RowDefinition Height="25" />  
<RowDefinition Height="25" />  

</Grid.RowDefinitions>  

Controls are positioned in the grid by including a Grid.Row and Grid.Column attribute,  as 
shown:  

<Label Grid.Column="0" Grid.Row="0" Content="Name:" />  
<Label Grid.Column="0" Grid.Row="1" Content="Password:" />  
<Button Grid.Column="1" Grid.Row="3"  

Content="Click Me" HorizontalAlignment="Right"  
MinWidth="80" Background="Red"/>  

Figure 11 - 1 shows the window with two textboxes created by the previous XAML code.  

 

Using Layout Controls 
Although you can use fixed positioning to place controls on a WPF window, it's not recommended. 
Using fixed positioning usually works well for a fixed resolution size but it doesn't scale well to 
different resolutions and devices. To overcome the limitations of fixed positioning, WPF offers 
severa l layout controls. A layout control allows you to position other controls within it using a 
relative positioning format. One of the main layout controls for positioning other controls is the 
Grid. As seen previously, a Grid control contains columns and row s to control the placement of 
its child controls. The height and width of the columns and rows can be set to a fixed value, auto, 
or *. The auto setting takes up as much space as needed by the contained control. The * setting 
takes up as much space as is a vailable. The Grid control is often used to lay out data entry forms. 
The following code lays out a simple data entry form used to collect user information. The 
resulting form is shown in Figure 11 - 2. 

 ƴ Login   1=1    ͮ
 ͮ

       

 Name:    

 Password:    

    Clicc Me  

      J 
Figure 11 - 1. A window created with XAML  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

218  

 

 

<Grid>  
<Grid.RowDefinitions>  

<RowDefinition Height="Aut o" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="28" />  
<RowDefinition Height="*" />  

</Grid.RowDefinitions>  
<Grid.ColumnDefinitions>  

<ColumnDefinition Width="Auto" />  
<ColumnDefinition Width="200" />  
<ColumnDefinition Width="*" />  

</Grid.ColumnDefinitions>  
<Label Grid.Row="0" Grid.Column="0" Content="Name:"/>  
<Label Grid.Row="1" Grid.Column="0" Content="Old Password:"/>  
<Label Grid.Row="2" Grid.Column="0" Content="New Password:"/>  
<Label Grid.Row="3" Grid.Column="0" Content="Confirm Password:"/>  
<TextBox Grid.Column="1" Grid.Row="0" Margin="3" />  
<TextBox Grid.Column="1" Grid.Row="1" Margin="3" />  
<TextBox Grid.Column="1" Grid.Row="2" Margin="3" />  
<TextBox Grid.Column= "1" Grid.Row="3" Margin="3" />  
<Button Grid.Column="1" Grid.Row="4" HorizontalAlignment="Right"  

MinWidth="80" Margin="0,0,0,8" Content="Submit" />  
</Grid>  

 

Figure 11 - 2. Input form window  

Another useful layout control is the StackPanel. It lays out child controls either vertically or 
horizontally depending on the orientation setting. The following code shows two buttons in a 
StackPanel control:  

<StackPanel Grid.Column="1" Grid.Row="4" Orientation="Horizontal" >  
<Button MinWidth="80" Margin="0,0,0,8" Content="Submit" />  
<Button MinWidth="80" Margin="0,0,0,8" Content="Cancel" />  

</StackPanel>  

Some other layout controls available are the DockPanel, WrapPanel, and Canvas. The 
DockPanel is used to provide docking of elements to the left, right, top, bottom, or center of the 
panel. The WrapPanel acts like a StackPanel but will wrap child controls to a new line if no  room 
is left. The Canvas control is used to lay out its child elements with absolute positioning relative 
to one of its sides. It is typically used for graphics elements and not to lay out user interface 
controls.  

Reset Password   

l!  
i 
ͼ 
2
' 
ʻ
' 
ͼ 

,rnjla T ilC ʷʨk "I  
Name    

Old Password:     

New Password:     

Confirm 
Password  

   

 Submit    

    

     



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

219  

 

 

Adding Display Controls 
The goal of most business applications is to present data to their users, allow them to update 
the data and save it back to a database. Some common controls used to facilitate this process 
are the Textbox, ListBox, ComboBox, Checkbox, DatePicker, and DataGrid. You have alr eady 
seen the TextBox used on a window; the following code shows how to add a ListBox and 
ComboBox to a window. Figure 11 - 3 shows how the window is rendered.  

<Grid>  
<Grid.ColumnDefinitions>  

<ColumnDefinition Width="*" />  
<ColumnDefinition Width="*" />  

</Grid.ColumnDefinitions>  
<ListBox Margin="20" Grid.Column="0">  

<ListBoxItem>Red</ListBoxItem>  
<ListBoxItem>Blue</ListBoxItem> <ListBoxItem>Green</ListBoxItem>  
<ListBoxItem>Yellow</ListBoxItem>  

</ListBox>  
<ComboBox Grid.Column="1" 

VerticalAlignment="Top"> 
<ComboBoxItem>Small</ComboBo
xItem> 
<ComboBoxItem>Medium</Combo
BoxItem> 
<ComboBoxItem>Large</ComboB
oxItem> <ComboBoxItem>X -
Large</ComboBoxItem> 
</ComboBox>  

</Grid>  

 

Figure 11 - 3. Window containing a ListBox and ComboBox  

Although you can code the items displayed in these controls directly in the XAML markup, 
it is more likely you will use data binding to display their values. You'll look at data binding 
shortly.  

 ɽ Window2   1 - 1 0   

  ɿ   

  R e d   Small  

  Blue  Medium   

  Green  Large  

  Yellow  X-Large  

1     

4   J 



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

220  

 

 

Using the Visual Studio Designer 
Even though it's quite possible to create your window entirely through code using a text editor, 
you will probably find this process quite tedious and not a very productive use of your time. 
Thankfully, the Visual Studio IDE includes an excellent designer for creating your WPF 
windows. Using the designer, you can drag and drop controls from the Toolbox to the Visual 
Studio designer, set its properties using the Visual Studio Properties window, and get the 
benefits o f auto completion and syntax checking as you enter code using the XAML editor. 
Figure 11 - 4 shows a window in the Visual Studio designer.  

 

Handling Control Events 
Windows graphical user interface (GUI) programs are event - driven. Events are actions initiated 
by either a user or the system, whenever a user clicks a button, for example, or a SqlConnection 
object issues a StateChange event. Event - driven applications respond to the various events that 
occur b y executing code that you specify. To respond to an event, you define the event handler 
to execute when a particular event occurs. As you saw in Chapter 8, the .NET Framework uses 
delegation to bind an event, with the event handler procedures written to re spond to the event. A 
delegation object maintains an invocation list of methods that have subscribed to receive 
notification when the event occurs. When an event occurs ˿for example, a button is clicked ˿the 
control will raise the event by invoking the deleg ate for the event, which in turn will call the 
event handler methods that have subscribed to receive the event notification. Although this 
sounds complicated, the framework classes do most of the work for you.  

In Visual Studio, you can add an event to a WPF control either by writing XAML code or by 
selecting it in the control's Properties window. Figure 11 - 5 shows wiring up an event handler in 
the XAML Editor window; Figure 11 - 6 shows wiring up an event handler using the Events tab of 
the Properties window. Note that when working with  controls in code, you need to give them a 
unique name using the Name attribute.

 

Figure 11 - 4. Designing a window in Visual Studio  





CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

221  

 

 

 

 

 

 

 

 

 

 

 

Figure 11 - 5. Wiring up an event handler in theXAML editor Properties  

 

Regardless of how you wire up an event handler, the Visual Studio code editor inserts 
an empty event handler method in the codebehind file. The following code shows the event 
handler method inserted for the button click event:  
private void btnCancel_Click(object sender, RoutedEventArgs e)  
{  
}  

By convention, the name of the event handler method begins with the name of the 
object issuing the event followed by an underscore (_) and the name of the event. The 
actual name of the event handler, however, is unimportant. The Click attribute in the XAML 
code adds this met hod to the invocation list of the event's delegation object.  

All event handlers must provide two parameters, which are passed to the method when the 
event is fired. The first parameter is the sender, which represents the object that initiated the 
event. The second parameter, of type System.Windows.RoutedEventArgs, is an object used to 
pass any information specific to the particular event.  

Because the .NET Framework uses delegates for event notification, you can use the same 
method to  handle more than one event, provided the events have the same signature. For 
example, you could handle a button click event and a menu click event with the same event 
handler, but not a button KeyPress event, because it has a different signature. The foll owing 
code demonstrates how to handle the

 

Figure 11 - 6. Wiring up an event handler in the Properties window  

BorderThickne:: {} 

ButtonBa:e ^f 1 CacheMode 

{} Calendar 

-/ Click l\  
V 

ClickMode 

Clip 

I 

mfirm  Password 

ʨds£ 

ʨds£ 

ʨd/> 

 ̍/> 

:ation="Horizon 

ÉÔÅÎÔˮƦʏŸÕÂÍÉÔʎʎ Cl />  
"ɜ1  Ȱɑ/ 

itent=''Cancel'' / >  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

222  

 

 

button click event of two buttons that use the same handler method. The sender parameter is 
cast as a Button type and interrogated to determine which button fired the event.  
private void Button_Click(object sender,  RoutedEventArgs e)  
{  

Button btn = (Button)sender; if 
(btn.Name == "btnCancel")  

//Cancel code goes here  

else if (btn.Name == "btnSubmit")  

//Submit code goes here  

}  
}  

In the following activity, you will work with forms and controls to construct a simple memo 
viewer application that will allow users to load and view memo documents.  

ACTIVITY 11-1. WORKING WITH WINDOWS AND CONTROLS 

In this activity, you will become familiar with the 
ËÔÑÑÔÜÎÓÌ~d̋ Creating a Windows Form - based 

GUI application.  

 ̋ Working with Men u, StatusStrip, and Dialog controls.  

 ̋ Working with Control events.  

Creating the Memo Viewer Interface 
To create the memo viewer interface, follow these steps: 1.  Start Visual Studio. Select 

File > New > Project.  

2. Choose a WPF Application under the C# Projects folder. Rename 

the project to Act11_1 and click the OK button.  

3. The project contains a MainWindow.xaml file. This file is where 

you design the user interface. The project also contains a 

MainWindow.xaml.cs file. This is the codebehind file and it i s 

where you will add the code to respond to the events.  

4. In the Window tag in the XAML Editor Window, add a Name 

ÆÙÙ×ÎÇÚÙÊdÜÎÙÍdÆdÛÆÑÚÊdÔËd̆²ÊÒÔ»ÎÊÜÊ×̇rd¨ÍÆÓÌÊdÙÍÊd¹ÎÙÑÊdÆÙÙ×ÎÇÚÙÊd

ÙÔd̆²ÊÒÔd»ÎÊÜÊ×̇r 
<Window x:Class="Act11_1.MainWindow"  
xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
xmlns:x=" http://schemas.microsoft.com/winfx/2006/xaml"  
Name="Mem oViewer" Title="Memo Viewer" Height="350" 
Width="525">  

5. Add a DockPanel control in the Grid control.  

<Grid>  
<DockPanel LastChildFill="True"> </DockPanel>  

</Grid>  

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

223  

 

 

6. Add a Menu control inside the DockPanel and dock it to the top using the following 
XAML:  

<DockPanel LastChildFill="True">  
<Menu DockPanel.Dock="Top">  

<MenuItem Header="_File">  
<MenuItem Name="mnuNew" Header="_New..." />  
<Separator />  
<MenuItem Name="mnuOpen" Header="_Open... " />  
<Separator />  
<MenuItem Name="mnuSave" Header="_Save" />  
<MenuItem Name="mnuSaveAs" Header="_Save As... " />  
<Separator />  
<MenuItem Name="mnuExit" Header="_Exit" />  

</MenuItem>  
<MenuItem Header="_Edit">  

<MenuItem Header="_Cut..." />  
<MenuItem Header="_Copy... " />  
<MenuItem Header="_Paste" />  

</MenuItem>  
</Menu>  

</DockPanel>  

7. Add a StatusBar control by inserting the following code between the ending Menu tag 

and the ending DockPanel tag. Note that you are using a Grid control inside the StatusBar 
control to layout the items in the StatusBar.  

<StatusBar DockPanel.D ock="Bottom">  
<Grid>  

<Grid.RowDefinitions>  
<RowDefinition Height="*"/>  

</Grid.RowDefinitions>  
<Grid.ColumnDefinitions>  

<ColumnDefinition Width="4*"/>  
<ColumnDefinition Width="*"/>  

</Grid.ColumnDefinitions>  
</Grid>  
<StatusBarItem Grid.Column="0" HorizontalAlignment="Left">  

<TextBlock Name="sbTextbox1">File Name</TextBlock> 
</StatusBarItem>  
<StatusBarItem Grid.Column="1" HorizontalAlignment="Right">  

<T extBlock Name="sbTextbox2">Date</TextBlock>  
</StatusBarItem>  

</StatusBar>

8. Add a RichTextBox control after the StatusBar end tag and before the 

DockPanel end tag.  
</StatusBar>  
<RichTextBox Name="rtbMemo" />  

</DockPanel>  

9. Note that as you add the XAML, the Visual Designer updates the 

appearance of the window. The MemoEditor window should look 



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

224  

 

 

similar to the one shown Figure 11 - 7. 

 

10. Build the solution. If there are any errors, fix them and rebuild.  

Coding the Control Events 

To code the control events, follow these steps:  

1. In the XAML Editor window, add the Loaded event attribute to the 

Window, as shown:  
<Window x:Class="Act11_1.MainWindow"  

xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
xmlns:x=" http://schemas.microsoft.com/winfx/2006/xaml"  
Name="MemoViewer" Title="Memo Viewer" Height="350" Width="525" 
Loaded="MemoViewer_Loaded">  

2. Open the codebehind file by right - clicking the XA ML code editor and 

selecting View Code. Add the following code to the MemoViewer_Loaded 

event handler.  

When the window loads, it should show the message on the left side of the 

StatusPanel and the date on the right.  
private void MemoViewer_Loaded(object se nder, RoutedEventArgs e)  
{  

sbTextbox1.Text = "Ready to load file"; sbTextbox2.Text = 
DateTime.Today.ToShortDateString();  

 

Figure 11 - 7. The completed MemoEditor window  

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

225  

 

 

}  

3. In the XAML editor, add the Click event to the mnuOpen control.  

<MenuItem Name="mnuOpen" Header="_Open..."  
Click="mnuOpen_Click"/>  

4. In the Code Editor window of the codebehind file, add the following code to 

the menu click event. This code configures and launches an Open File 

Dialog box, which returns the file path. The file path is then passed to a 

FileStream object, which loads the fil e into the RichTextBox. The file path is 

also loaded into the StatusBar TextBox.  
private void mnuOpen_Click(object sender, RoutedEventArgs e)  
{  

// Configure open file dialog box  
Microsoft.Win32.OpenFileDialog dlg = new Microsoft.Win32.OpenFileDialog(); 
dlg.FileName = "Document"; // Default file name dlg.DefaultExt = ".txt"; // Default 
file extension  
dlg.Filter = "Text documents (.txt)|*.txt"; // Filter files by extension // Show o pen 
file dialog box Nullable<bool> result = dlg.ShowDialog();  
// Process open file dialog box results if (result == true)  
{  

// Open document and load RichTextBox string fileName = dlg.FileName;  
TextRange range;  
System.IO.FileStream fStream; if (System.IO.F ile.Exists(fileName))  
{  

range = new TextRange(rtbMemo.Document.ContentStart, 
rtbMemo.Document.ContentEnd); fStream = new 
System.IO.FileStream(fileName, 
System.IO.FileMode.OpenOrCreate); range.Load(fStream, 
System.Windows.DataFormats.Text ); fStream.Close() ; 

}  
sbTextbox1.Text = fileName;  
}
5. Add a click event for the mnuExit control with the following code 

to close the window:  
private void mnuExit_Click(object sender, RoutedEventArgs e)  
{  

this.Close();  
}  

6. Build the solution and fix any errors.  

7. Create a Memos folder on the C drive. Using Notepad, create a text 

file containing a test message. Save the file as Test.txt.  

8. Select Debug > Start. Test the application by loading the Test.txt file. 

After viewing the file, close the window by clicking the Exit menu.  
9. After testing the application, exit Visual Studio.  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

226  

 

 

Creating and Using Dialog Boxes 
Dialog boxes are special  windows often used in Windows - based GUI applications to display or 
retrieve information from users. The difference between a normal window and a dialog box is 
that a dialog box is displayed modally. A modal window prevents the user from performing 
other t asks within the application until the dialog box has been dismissed. When you start a new 
project in Visual Studio, you are presented with a New Project dialog box, as shown in Figure 
11- 8. You can also use dialog boxes to present the user with critical in formation and query 
them for a response. For example, if you try to run an application in debug mode and a build 
error is encountered, the Visual Studio IDE presents you with a dialog box asking whether you 
want to continue (see Figure 11 - 9).



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

227  

 

 

 

 

Figure 11 - 9. Displaying critical information using a dialog box  

Presenting a MessageBox to the User 
The dialog box shown in Figure 11 - 9 is a special predefined type called a MessageBox. The 
MessageBox class is part of the System.Windows namespace. The MessageBox class can display 
a standard Windows  
message dialog box. To display a MessageBox to the user, you call the static Show 
method of the M essageBox, like so:  

New Project 
Recent Templates .NET Framework4 Ƹ Sort by: Default  * [111! (=ii|| Search Installed Tem P | 

Installed Templates 

ɑ Visual C# 

 -  -  =H ð

<  

Windows Forms Applicatio n Visual C#  Type: Visual C# 
Windows Presentation Foundation client 

Windows 
Web 

  1®  WPF Application Visual C# =  application 

l> Office   
1 

CjZ
M 

    

Cloud  =   Console Application Visual C#   

Reporting        

Silverlight 
Test 

  lal  ASP.NET Web Application Visual C#   

WCF  L
U 

 Class Library Visual C#   

Workflow         

Other Languages  ~
w 

45Cr  ASP.NET MVC 2 Web Applica...Visual C#   

Online Templates ʨʷw
1 

  -  

Name: WpfApplicationl      

Location: c:\users\dan\documents\visual studio 2010\Projects - 1  [  Browse... 

Solution: | Create new solution  1   

Solution name: WpfApplicationl    [71 Create directory for solution 
      Add to source control 

OK 
Cancel 

Figure 11 - 8. The New Project dialog box  

 



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

228  

 

 

MessageBox.Show("File Saved");  

The Show method is overloaded so that you can optionally show a MessageBox icon, show a 
title, change the buttons displayed, and set the default button. The only required setting is the 
text message to be displayed on the form. Figure 11 - 10 shows the MessageBox displayed by the 
previous code.  

 

The following code calls the Show method using some of the other parameters. Figure 11 -
11 shows the resulting MessageBox that gets displayed. For more information on the various 
parameters and settings available, look up the MessageBox class in the Visual Studio help file.  

MessageBox.Show("Are you sure you want to quit?",  
"Closing Application",MessageBoxButton.OKCancel,  
MessageBoxImage.Question);  

 

You will often use a MessageBox to query for a user response to a question. The user 
responds by clicking a button. The result is passed back as the return value of the 
MessageBox.Show method in the  
form of a MessageBoxResult enumeration. The following code captures the dialog box result 
entered by a user and closes the window (or not) depending on the result:  

MessageBoxResult result = MessageBox.Show("Are you sure you want to quit?",  
"Closing 

Application",MessageBoxButton.OKCancel, 

 

Figure 11 - 10. A basic MessageBox  

 

Figure 11 - 11. A more complex Messagebox  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

229  

 

 

MessageBoxImage.Question); if (result == MessageBoxResult.OK)  
{  

this.Close();  
}  

Creating a Custom Dialog Box 
One of the most exciting features about the .NET Framework is its extensibility. Although there 
are ÒÆÓÞdÙÞÕÊØdÔËdÉÎÆÑÔÌdÇÔÝÊØpdÞÔÚdÈÆÓdÚØÊd̆×ÎÌÍÙ- out - of - the- ÇÔÝ̇dÔÓÊØdËÔ×dØÚÈÍdÙÆØÐØdÆØd
printing, saving files, and loading files. You can also build your own custom dialog boxes. The 
first step in creating a custom dialog box is to add a new window to the a pplication. Next, add 
any controls needed to interact with the user. Figure 11 - 12 shows a dialog box you might use 
to verily a user's identity.  

 

Setting the IsCancel property of the Cancel button to true associates it to  the keyboard 
shortcut of the ESC key. Setting the isDefault property of the Login button to true associates it 
with the keyboard Enter key. This is shown in the following XAML code:  

<StackPanel Grid.Column="1" Grid.Row="3" Orientation="Horizontal">  
<Butto n Name="loginButton" IsDefault="True">Login</Button>  
<Button Name="cancelButton" IsCancel="True">Cancel</Button>  

</StackPanel>  

When the Login button is clicked, the click event of the button is responsible for validating 
the user input and setting the DialogResult property to either true or false. This value is 
returned to the window that called the Show method of the DialogWindow for further 
processing. The following code shows the LoginDialog window called and the DialogResult 
property being interroga ted. Notice that the calling window has access to the objects defined on 
the DialogWindow. In this case, it is interrogating the UserName textbox's Text property.  

LoginDialog dlg = new 
LoginDialog(); dlg.Owner = this; 
dlg.ShowDialog();  
if (dlg.DialogResult  == false)  
{  

string user = dlg.UserName.Text;  
MessageBox.Show("Invalid login for " + user, "Warning",  

MessageBoxButton.OK, 
MessageBoxImage.Exclamation); this.Close();  

}  

 

Figure 11 - 12. A custom dialog box  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

230  

 

 

Data Binding in Windows-Based GUIs 
Once you have retrieved the data from the business logic tier, you must present it to the user. 
The user may need to read through the data, edit the data, add records, or delete records. 
Many of the controls you'll want to add to a window can display data. The choice of what 
control to use often depends on  the type of data you want to display, the ways you want to 
manipulate it, and the design you have in mind for your interface. Among the controls .NET 
developers commonly use to present data are the TextBox, DataGrid, Label, ListBox, 
CheckBox, and Calendar . When different fields of a data source are presented to the user in 
separate controls (for example, a first name TextBox and last name TextBox), it is important 
that the controls remain synchronized to show the same record.  

The .NET Framework encapsulate s much of the complexity of synchronizing controls to a 
data source through a process called data binding. When you create a binding between a 
control and some data, you are binding a binding target to a binding source. A binding object 
handles the interac tion between the binding source and the binding target. OneWay binding 
causes changes to the source property to automatically update the target property, but changes 
to the target property are not propagated back to the source property. This is useful for read -
only scenarios. TwoWay binding causes changes to either the source property or the target 
property to automatically update the other. This is useful for full data updating scenarios.  

Binding Controls Using a DataContext 
To bind a control to data, you need a data source object. The DataContext of a container 
control allows child controls to inherit information from their parent controls about the data 
source that is used for binding. The following code sets the DataContext property of the top 
level Wind ow control. It uses a DataSet and a TableAdapter to fill a Table object and set it to 
the DataContext of the Window.  

private void Window_Loaded(object sender, RoutedEventArgs e)  
{  

pubsDataSet dsPubs = new pubsDataSet(); pubsDataSetTableAdapters.storesTableAdapter 
taStores = new pubsDataSetTableAdapters.storesTableAdapter(); taStores.Fill(dsPubs.stores); 
this.DataContext = dsPubs.stores.DefaultView;  
}  

The following XAML code binds the DataGrid columns to the Store table co lumns using the 
µÆÙÍdÆÙÙ×ÎÇÚÙÊrdºØÎÓÌd§ÎÓÉÎÓÌdËÔ×dÙÍÊdØÔÚ×ÈÊdÒÊÆÓØd̆ÑÔÔÐdÚÕdÙÍÊdÈÔÓÙÆÎÓÊ×dÍÎÊ×Æ×ÈÍÞdÚÓÙÎÑdÆd
©ÆÙÆ¨ÔÓÙÊÝÙdÎØdËÔÚÓÉṙd®ÓdÙÍÎØdÈÆØÊpdÎÙkØdÙÍÊd©ÆÙÆ¨ÔÓÙÊÝÙdÔËdÙÍÊd¼ÎÓÉÔÜdÈÔÓÙÆÎÓÊ×r 
<DataGrid AutoGenerateColumns="False" ItemsSource="{Binding}">  

<DataGrid.Columns>  
<DataGridTextColumn x:Name="stor_idColumn"  

Binding="{Binding Path=stor_id}" Header="Id" />  
<DataGridTextColumn x:Name="stor_nameColumn"  

Binding="{Binding Path=stor_name}" Header="Name" />  
<DataGridTextColumn x:Name="stateColumn"Binding="{Binding 

Path=state}" Header="State" />  
<DataGridTextColumn x:Name="zipColumn"  

Binding="{Binding Path=zip}" Header="Zip" />  
</DataGrid.Columns>  

</DataGrid>  

The resulting DataGrid loaded with store data is sho wn in Figure 11 - 13. 



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

231  

 

 

ɖ Stor  

 

Figure 11 - 13. Displaying stored data with a DataGrid  

In the following activity, you will bind a DataGrid control to a DataTable containing data from 
Pubs database. You will also use a DataAdapter to update data changes made in the DataGrid 
control back to the Pubs database.  

ACTIVITY 10-2. WORKING WITH DATA BOUND CONTROLS 

In this activity, you will become familiar with the following:  

Binding a DataGrid to a DataTable. Updating data using the 

DataAdapter.  

Binding a DataGrid to a DataTable 

To bind a DataGrid to a DataTable object, follow these steps:  

Create a DataSet 

1. Start Visual Studio. Select File > New > Project.  

2. Choose WPF Application. Rename the project to Act11_2 and click the OK button.  

3. After the project loads, locate the Data Sources window. Click on the Add New Data 

Source link.  

4. In the Data Source Configuration wizard, choose a data source type of Database.  

5. In the Choose a Database Model window, select the Dataset.  

6. In the Choose your Data Connection window, select or create a connection to th e 

Pubs database.  

7. On the next screen, save the connection to the application configuration file.  

8. ®ÓdÙÍÊd¨ÍÔÔØÊd¾ÔÚ×d©ÆÙÆÇÆØÊd´ÇÏÊÈÙØdÜÎÓÉÔÜpdÊÝÕÆÓÉdÙÍÊdÙÆÇÑÊØ̃dÓÔÉÊdÆÓÉdØÊÑÊÈÙd

the authors table. Click the Finish button.  

Id Name State Zip 

63 
SO 

Eric the Read Books WA 98056  

7066 DRC Books CA 927B9  

7067 News Si Brews CA 96745  

7131 Doc-U-Mat: Quality Laundry and Books WA 98014  

7Ã96 Fricative Bookshoo CA 90019  

8042 Bookbeat OR 89076  

     



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

232  

 

 

9. Note in the Solutions Explorer window  a pubsDataSet.xsd file has been added to the 

file. This file represents a strongly typed dataset object based on the pubs database. 

Double - click the file node in Solution Explorer to launch the dataset visual editor.  

10. The visual editor contains an authors table. Select the authorsTableAdapter, as 

shown in Figure 11 - 14. In the Properties window, notice that the select, insert, 

update, and delete commands have been generated for you (see Figure 11 - 15).

 

ȩɉ= authors  || 
$ aujd  

aujname  

au_fname  

phone   

address  

city  

state  

zip  

contract   

authorsTableAdapter  ʐ 

1®} FiUGetDataQ ǐ 



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

233  

 

 

 

Create the Window Layout 

1. Open the MainWindow in the XAML Editor window. Change the title of 

ÙÍÊd¼ÎÓÉÔÜdÙÔd̆µÍÔÓÊd±ÎØÙ̇r 

2. Inside the Grid tags, add a DockPanel control. Inside the DockPanel, 

add a StackPanel.  

<Grid>  
<DockPanel>  

<StackPanel DockPanel.Dock="Top" Orientation="Horizontal">  

</StackPanel>  
</DockPanel>  
</Grid>  

3. Inside the StackPanel, add two buttons ˿one for getting data and one 

for updating data. Add a Click event handler for each button.  

<StackPanel DockPanel.Dock="Top" Orientation="Horizontal">  
<Button Name="btnGetData" Content="Get Data"  

Click="btnGetData_Click" />  
<Button Name="btnSaveData" Content="Save Data" 

Click="btnSaveData_Click" />  
</StackPanel>  

Figure 11 - 14. Selecting authorsTableAdapter  
Properties ɿ ^ X 

authorsTableAdapter TableAdapter - 

[j:: | 

CommandText INSERT INTO [dbo].[authors] ([au_id;  >  

CommandType Text  

Parameters (Collection)  

 ̔SelectCommand (S elertCom ma n d)   

CommandText SELECT au_id, aujname. au_fname, f  

CommandType Text  

Parameters [Collection]   

 ̔UpdateCommand  [U pdateCom ma nd)   

CommandText UPDATE [dbo].[authors] SET [au_id]  

CommandType Test  

Parameters (Collection) Ŗ
1   

U pdateCom m a n d    

SQL command to update data  n a database  

Figure 11 - 15. Viewing the generated command text  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

234  

 

 

4. Outside the StackPanel but inside the DockPanel, add a DataGrid.  

<DataGrid Name="dgAuthors" 
AutoGenerateColumns="True" 
DockPanel.Dock="Bottom" />  

</DockPanel>  
</Grid>  

5. Build the solution and make sure there are no build errors.  

Load the DataGrid 

1. Open the MainWindow.xaml.cs file in the Code Editor window.  

2. Add three class level variables of type pubsDataset, 

authorsTableAdapter, and authorsDataTable.  

public partial class MainWindow : Window {  
pubsDataSet _dsPubs;  
pubsDataSetTableAdapters.authorsTableAdapter _taAuthors; 
pubsDataSet.authorsDataTable _dtAuthors;  

3. In the btnGetD ata_Click event, add code to fill the _taAuthors table 

and set it equal to the DataContext of the gdAuthors grid.  

private void btnGetData_Click(object sender, RoutedEventArgs e)  
{  

_dsPubs = new pubsDataSet();
_taAuthors = new 
pubsDataSetTableAdapters.authorsTableAdapter(); _dtAuthors = 
new pubsDataSet.authorsDataTable(); _taAuthors.Fill(_dtAuthors); 
this.dgAuthors.DataContext = _dtAuthors;  

}  

4. Add the ItemSource binding to the DataGrids XAML code. This will bind 

it to the DataCon text.  

<DataGrid Name="dgAuthors" AutoGenerateColumns="True"  
DockPanel.Dock="Bottom" ItemsSource="{Binding}" />  

5. Select Debug > Start. Test the application by loading Get Data button. 

¹ÍÊd©ÆÙÆ¬×ÎÉdÜÎÑÑdÑÔÆÉdÜÎÙÍdÙÍÊd¦ÚÙÍÔ×Ø̃dÉÆÙÆdlØÊÊd«ÎÌÚ×Êduu- 16). 

Notice that since the AutoGenerateColumns property of the DataGrid is 

set to true, the grid loads with all the columns in the table. The 

ÍÊÆÉÊ×ØdÔËdÙÍÊdÌ×ÎÉdÈÔÑÚÒÓØdÆ×ÊdÆÑØÔdÙÍÊdØÆÒÊdÓÆÒÊdÆØdÙÍÊdÆÚÙÍÔ×̃Ød

table columns.  

6. After viewing the window, stop the debugger.  

IT Phone LTst  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

235  

 

 

 

Figure 11 - 16. ¹ÍÊdÆÚÙÍÔ×̃Ød©ÆÙÆ¬×ÎÉ
Updating Data 

1. Open the MainWindow.xaml.cs file in the Code Editor window. 

Add the following code to update the data in the btnSaveData_Click 

ÊÛÊÓÙdÍÆÓÉÑÊ×rd¹ÍÎØdÈÔÉÊdÚØÊØdÙÍÊdÙÆÇÑÊdÆÉÆÕÙÊ×̃ØdÚÕÉÆÙÊdÈÔÒÒÆÓÉdÙÔd

send the changes back to the database.  

private void btnSaveData_Click(object sender, RoutedEventArgs e)  
{  

try  
{  

_taAuthors.Update (_dtAuthors);  
MessageBox.Show("Data Saved.",  

"Information", 
MessageBoxButton.OK, 
MessageBoxImage.Information);  

}  
catch (Exception ex)  
{  

MessageBox.Show("Could not save 
data!", 

"Warning",MessageBoxButton.OK,  

Get Data Save Data 

 aujd aujname au_fname phone address city 

 172-32-1176 Whits Johnson 408496-7223 10932 Bigge Rd. Me~lo Pai * 

213-46-5915 Green Marjorie 415 986-7020 309 63 rc St, #411 Oakland  

238-95-7766 Carson Cheryl 415 548-7723 589 Darwir Ln. Berkeley 

267-41-2394 O'Leary Michael 408 286-2428 22 Cleveland Av. -M- San Jose 

274-80-9391 Straight Dean 415 834-2919 5420 College Av. Oakland 

341-22-1782 Snr't-õ Meander 913 843-0462 10 M'ss'ssippi Dr. Lawrence 

409-56-7000 Bennet A1 415 658-9932 6223 Eatema- St. Berkeley 

427-17-2319 Dull Ann 415 836-7128 3410 Blonde St. Palo Alto  

472-27-2349 Gringlesby Burt 707 938-6445 PC Box 792 Ccvelo 

486-29-1786 Locksley Charlene 415 585-4620 18 Broadway Av, San Franc 

527-72-3246 Greene Mornhgstar 615 297-2723 22 Graybar House Rd. Kashville 

648-92-1872 Blotch et-halls Reggy 503 745-6402 55 Hillsdale B. Corvallis 

672-71-3249 Yocomotc Akiko 415 935--22 8 3 Si ver Ct. Walnut Cr 

* I ɼɼɼ  _______________________________________________________________ 1 Ƹ  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

236  

 

 

MessageBoxImage.Warning);  
}  

}  

2. ºÕÉÆÙÊdÙÍÊd¬×ÎÉ̃ØdXAML code to only show the first name, last 

name, and phone columns.  

<DataGrid Name="dgAuthors" AutoGenerateColumns="False"  
DockPanel.Dock="Bottom" ItemsSource="{Binding}">  

<DataGrid.Columns>  
<DataGridTextColumn Header="Last Name" Binding="{Binding 

Path='au_lname'}  
" />  

<DataGridTextColumn Header="First Name" Binding="{Binding 
Path='au_fname'} " />  

<DataGridTextColumn Header="Phone" Binding="{Binding Path='phone'}" 
/> </DataGrid.Columns>  

</DataGrid>  

3. Select Debug > Start. Test the application by loading the Get Data 

button. Update some of the Names. Click the Save Data button and 

then click the Get Data button to verify the names were saved to the 

database.  

4. After testing, stop the debugger and exit Visual Studio.

Creating and Using Control and Data Templates 
In WPF, every control has a template that manages its visual appearance. If you don't explicitly 
set its Style property, then it uses a default template. Creating a custom template and assig ning 
it to the Style property is an excellent way to alter the look and feel of your applications. 
Figure 11 - 17 shows a standard button as well as a rounded button created by using a control 
template.  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

237  

 

 

 

The following XAML is the markup that defines the custom template used to create the 
rounded button in Figure 11 - 17. 

<Window.Resources>  
<Style x:Key="RoundedButtonStyle" TargetType="Button">  

<Setter Property="Template">  
<Setter.Value>  

<ControlTemplate TargetType="{x:Type Button}">  
<Grid>  

<Ellipse Fill="{TemplateBinding 
Background}" Stroke="{TemplateBinding 
BorderBrush}"/>  
<ContentPresenter 

HorizontalAlignment="Center" 
VerticalAlignment="Center"/>  

</Grid>  
</ControlTemplate>  

</Setter.Value > 
</Setter>  

</Style>  
</Window.Resources>  

The following XAML code is used to bind the custom style to a button using the button's 
Style property:  

<Button Content="Rounded Button" Style="{StaticResource RoundedButtonStyle}"  

Along with control style templates, you can also create data templates. Data templates let 
you customize how your business objects will look when you bind them in your UI. A good 
example of when you need to use a custom data template is the list box. By default, it renders 
data as  a single line of text. When you try to bind it to a list of employee objects, it calls the 
ToString() method and writes it out to the display. As you can see in Figure 11 - 18, this is 
clearly not what you want.  

 

Figure 11 - 17. Creating a rounded button with a custom  template  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

238  

 

 

 

By adding a DataTemplate to the ListBox control, you can not only get the employee data to 
display, but you can also control how it gets displayed. The following XAML adds a DataTemplate 
to the ListBox, and Figure 11 - 19 shows the result:  

<ListBox ItemsSource="{Binding}" >  
<ListBox.ItemTemplate>  

<DataTemplate>  
<StackPanel Orientation="Horizontal">  

<TextBlock FontWeight="Bold" Text="{Binding Path='lname'}" />  
<TextBlock Text=", " />  
<TextBlock Text="{Binding Path='fname'}" />  
<TextBlock Text= " " />  
<TextBlock Text="{Binding Path = 'minit'}" />  

</StackPanel>  
</DataTemplate>  

</ListBox.ItemTemplate>  
</ListBox>  

 

Figure 11 - 18. ListBox using the default Dat aTemplate  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

239  

 

 

 

In the following activity, you will bind a ListBox control to an entity created from the Pubs 
database using an entity data model. You will also create a master detail view by synchronizing a 
ListBox control and a DataGrid control.  

ACTIVITY 10-3. WORKING WITH DATA TEMPLATES 

In this activity, you will become familiar with the following:  

 ̋ Binding a ListBox to an Entity.  

 ̋ Creating a DataTemplate.  

 ̋ Creating a Master Detail View.  

Binding a ListBox to an Entity 

To bind a Listbox to an entity object, follow these steps:  

1. Start Visual Studio. Select File > New > Project.  

2. Choose WPF Application. Rename the project to Act11_3 and click the OK button.  

3. After the project loads locate the Data Sources window. Click on the 
Add New Data Source link.  

4. In the Data Source Configuration wizard, choose a data source type of Database.  

 

Figure 11 - 19. ListBox using a custom DataTemplate  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

240  

 

 

5. In the Choose a Database Model wi ndow, select the Entity Data Model.  

6. In the Choose Model Contents window, select the Generate from database option.  

7. In the Choose your Data Connection window, select or create a connection to the 

Pubs database.  

8. On the next screen, save the connection to the  application configuration file.  

9. ®ÓdÙÍÊd¨ÍÔÔØÊd¾ÔÚ×d©ÆÙÆÇÆØÊd´ÇÏÊÈÙØdÜÎÓÉÔÜpdÊÝÕÆÓÉdÙÍÊdÙÆÇÑÊØ̃dÓÔÉÊdÆÓÉdØÊÑÊÈÙd

the stores and sales tables. Click the Finish button.  

10. Notice in the Solutions Explorer window a Model1.edmx file has been added to the 

file. Thi s file contains the relational mapping between the entities and the tables in 

the pubs database.  

Creating the Data Template 

1. Add a DockPanel and a ListBox control in the XAML Editor window.  

<Grid Name="StoresGrid">  
<DockPanel>  

<ListBox Name="StoresList" DockPanel.Dock="Left" ItemsSource="{Binding}">  

</ListBox>  
</DockPanel>  
</Grid>  

2. Add a Window_Loaded event handler in the code file that sets the DataContext of 

the ListBox to the stores entities.  

private void Window_Loaded(object sender, RoutedEventArgs e)  
{  
pubsEntities db = new pubsEntities(); 
this.StoresGrid.DataContext = db.stores;  
}  

3. Add a DataTemplate to display the store name in a TextBox control.  

<ListBox Name="StoresList" DockPanel.Dock="Left"  
ItemsSource="{Binding}">  

<ListBox.ItemTemplate>  
<DataTemplate>  

<TextBlock FontWeight="Bold" Text="{Binding Path='stor_name'}" /> 
</DataTemplate>  

</ListBox.ItemTemplate>  
</ListBox>  

4. Select Debug > Start. Make sure the ListBox shows the store names. When 

ÞÔÚ̃×ÊdÉÔÓÊdÛÎÊÜÎÓÌdÙÍÊd±ÎØÙ§ÔÝpdØÙÔÕdÙÍÊdÉÊÇÚÌÌÊ×r 

5. To implement a master/detail data view, add a DataGrid control to the DockPanel 

control after the ListBox control. The Binding of the grid is set to the same as 

the list box, which is the store entity, but the binding path is set to the sales 

entity.  



CHAPTER 11 ƴ DEVELOPING WINDOWS APPLICATIONS 

241  

 

 

This will cause the data grid to show the sales items of the store selected in the 

list box.  

<DataGrid Name="SalesGrid" DockPanel.Dock="Right"  
ItemsSource="{Binding Path='sales'}" AutoGenerateColumns="False"> 

<DataGrid.Columns>  
<DataGridTextColumn Header="Order  Number" Binding="{Binding^ 

Path='ord_num'}"/>  
<DataGridTextColumn Header="Order Date" Binding="{Binding^ 

Path='ord_date'}"/>  
</DataGrid.Columns>  

</DataGrid>  

6. Add the following property to the ListBox control in the XAML code. This will ensure 

that the List Box control and DataGrid control will remain in sync.  

IsSynchronizedWithCurrentItem="True"  

7. Launch the application in the debugger. Your window should look similar to Figure 

11- 20. Click on different stores in the list box. You should see the data grid upda te 

ÜÎÙÍdÙÍÊdØÙÔ×ỄØdØÆÑÊØdÉÆÙÆrd¦ËÙÊ×dÙÊØÙÎÓÌpdØÙÔÕdÙÍÊdÉÊÇÚÌÌÊ×dÆÓÉdÈÑÔØÊd»ÎØÚÆÑd¸ÙÚÉÎÔr 

 

Summary 
In this chapter, you looked at implementing the interface tier of an application. You implemented 
the user interface through a WPF - based application front end. Along the way, you took a closer 
look at the classes and namespaces of the .NET Framework used to implement rich Windows -
based user interfaces. You saw how to use XA ML syntax to define the controls and layout of the 
interface. You also saw how easy it is to bind the controls to the data and present it to the users.  

In the next chapter, you will revisit the UI tier of a .NET application, but ins tead of 
implementing the GUI using WPF, you will implement the GUI as a web - based application using 
Silverlight. Along the way, you will take a closer look at the namespaces available for creating 
web- based GUI applications and the techniques involved in i mplementing the classes contained in 
these namespaces.

r 
* MainWindow 

I 1=1 0 £3 1 

 

Eric the Read Books DRC Books News & Brews 

Doc-U-Mat: Quality Laundry and Books Fricative 

Bookshop 

Order Mumber Order Date 

QQ2299 10/28/1993 12:00:00 AM 

TQ456 12/12/1993 12:00:00 AM 

X999 2/21/1993 12:00:00 AM 

Bookbeat   

* |_ 1ɼ  __________________________________ | ʣ 

Figure 11 - 20. Viewing master/detail data  



242  

 

 

C H A P T E R 1 2 

Developing Web Applications 

In the previous chapter, you learned how to build a simple Windows - based graphical user 
interface (GUI) using C# and WPF. Although WPF gives programmers the ability to easily build 
extremely rich user interfaces, it is not always practical to assume users will access your 
programs through a traditional Windows - based PC. With the proliferation of intranets, web 
applications, and mobile devices, applications  now need to allow users the ability to access the 
interface through a variety of browsers and devices. This chapter shows you how to build a web -
based user interface using Silverlight. If you experience a sense of deja vu while reading this 
chapter, it is  by design. Silverlight interface design and programming uses an object model that is 
remarkably similar to the one used to design and program a WPF interface. As a matter of fact, 
prior to the release of Silverlight 1.0, it was referred to as Windows Pres entation 
Foundation/Everywhere (WPF/E).  

In this chapter, you will be performing the following tasks with Silverlight:  

 ̋ U sing XAML markup to design the user interface.  

 ̋ Working with layout controls.  

 ̋ Working with display controls.  

 ̋ Responding to control events . 

 ̋ Working with data binding controls.  

 ̋ How to perform data validation and conversion.  

What Is Silverlight? 
Although you can build extremely rich and sophisticated UI for your applications using WPF, it is 
limited to running on a computer that is running a Windows operating system. More and more 
users are demanding Rich Internet - based Applications (RIA) that run on a variety of devices and a 
variety of browsers. This demand is not limited to traditional web - based applications; business 
users no longer want t o be tied to client applications running on their desktop PCs in the office. 
They want to access the applications on laptops via wireless hotspots or through their Internet -
capable cell phones. In response to these demands, Microsoft developed Silverlight.  

Silverlight is what is known as a cross - browser, cross - platform technology. It runs in all 
popular web browsers, including Microsoft Internet Explorer, Mozilla Firefox, Apple Safari, Google 
Chrome, and on Microsoft Windows and Apple Mac OS X. Running Silv erlight requires a free plug -
in that automatically installs (with permission) if users don't have it. The download is small and 
installs quickly. Application code is compiled and runs on the client; it only needs to contact the 
server for resources such as  data and media.  

Silverlight is based on a subset of the Windows Presentation Foundation (WPF) technology 
and the .NET Framework. As a result, Silverlight greatly extends the elements and classes 



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

243  

 

 

available for creating rich UI running in the browser. Silverlight applications are created using 
any .NET Framework -  supported language (including Visual Basic, C#, and JavaScript). Like WPF 
windows, pages in a Silverlight application are created using XAML. XAML is similar to HTML in 
that it uses a declarati ve syntax; however, XAML provides significantly more powerful elements.  

Creating a Silverlight Application 
You can develop a Silverlight application in Visual Studio much as you would a WPF application. 
As a matter of fact, if you look at Figure 12 - 1, you can see that the layout of the designer is 
almost identical. There is a Visual Design window, XAML Code Editor window, Toolbox, 
Properties window, and Solution Explorer.  

 

One of the major differences betwee n a WPF application and a Silverlight application is that 
the Silverlight solution requires two projects. One project is the Silverlight application and the 
other is a web site to host it. When you build a Silverlight application, the code is compiled and 
compressed into a XAP file. A link to the XAP file is then hosted in a web page control. When a 
user loads the web page, the XAP file is downloaded and the code is decompressed and hosted in 
the browser using the Silverlight plug - in. If the plug - in is not installed, its absence is detected 
and the user is shown a link where a copy can be found for download. The following markup 
shows the link to the XAP in an HTML web page:  
<object data="data:application/x - silverlight - 2,"  

type="application/x - silverlight - 2" width="100%" height="100%"> 
<param name="source" value="ClientBin/Chap12Demo1.xap"/>  
<param name="onError" value="onSilverlightError" />  
<param name="background" value="white" />  
<param name="minRuntimeVersion" value="4.0.50826.0" />  
<param name="autoUpgrade" value="true" />  
<a 

href=" http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.

 

Figure 12 - 1. Visual Studio Silverlight designer  

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0


CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

244  

 

 

0" style="text - decoration:none">  
<img src=" http://go.microsoft.com/fwlink/?LinkId=161376"  

alt="Get Microsoft Silverlight" style="border - style:none"/>  
</a>  

</object>  

Using Layout Controls 
The main container for a Silverlight control is the Page element. Inside the Page element, a main 
layout control must be declared. This can be a Grid, Canvas, or StackPanel. By default, the 
Visual Studio designer uses the Grid control. The following XAML is the default XAML inserted 
when you add a new page. Notice that the page ele ment is actually a UserControl hosted by a 
web page.  

<UserControl x:Class="Chap12Demo1.MainPage"  
xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
xmlns:x=" http://schemas.microsoft.com/winfx/2006/xaml"  
xmlns:d=" http://schemas.microsoft.com/expression/blend/2008"  
xmlns:mc=" http://schemas.openxmlformats.org/markup - compatibility/2006"  
mc:Ignorable="d"  
d:DesignHeight="300" d:DesignWidth="400">  
<Grid x:Name="LayoutRoot" Background="White">  

</Grid>  
</UserControl>  

Just as in WPF, fixed positioning to place controls on a page it is not recommended. Fixed 
positioning does not scale well to different resolutions and devices. The following code lays out 
a Silverlight login page used to capture a user's nam e and password. The resulting form is 
shown in Figure 12 - 2. 

<Grid x:Name="LayoutRoot" Background="White" Margin="10" >  
<Grid.RowDefinitions>  

<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  

</Grid.RowDefinitio ns> 
<Grid.ColumnDefinitions>  

<ColumnDefinition Width="Auto" />  
<ColumnDefinition Width="Auto" />  

</Grid.ColumnDefinitions>  
<sdk:Label Grid.Row="0" Grid.Column="0" Content="Name:"/>  
<sdk:Label Grid.Row="1" Grid.Column="0" Content="Password:"/>  
<TextBox Grid.Column="1" Grid.Row="0" Margin="3" MinWidth="150"/>  
<TextBox Grid.Column="1" Grid.Row="1" Margin="3" 
MinWidth="150"/> <Button Grid.Column="1" Grid.Row="4" 
HorizontalAlignment="Right" MinWidth="80" Margin="0,0,0,8" 
Content="Submit" />  

</Grid>  

Name 

Pass word  

Submit  

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0
http://go.microsoft.com/fwlink/?LinkId=161376
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

245  

 

 

Figure 12 - 2. Input page  

You often use layout controls inside other controls. To add a Cancel button to the form and 
lay it out horizontally alongside the Submit button, you would use a StackPanel inside the Grid 
control, as shown in the following markup:  

<StackPanel Grid.Column="1" Grid.Row="4" Orientation="Horizontal" >  
<Button MinWidth="80" Margin="0,0,0,8" Content="Submit" />  
<Button MinWidth="80" Margin="0,0,0,8" Content="Cancel" />  

</StackPanel>  

Adding Display Controls 
Silverlight pages can host many of the same controls as a WPF window. Most business 
applications are designed to present and capture data from the users. Some common controls 
used to facilitate this process are the Textbox, ListBox, ComboBox, Checkbox, DatePicker, and  
DataGrid. The following code shows how to add a DatePicker and CheckBoxes to a Silverlight 
page. The sdk designation in front of the DataPicker control signifies that it's part of the 
libraries in the Silverlight Software Development Kit (SDK) and is avai lable when you install the 
SDK. Figure 12 - 3 shows how the page is displayed to the user.  

<Grid>  
<Grid.ColumnDefinitions>  

<ColumnDefinition Width="Auto" />  
<ColumnDefinition Width="Auto" />  

</Grid.ColumnDefinitions>  
<sdk:DatePicker Grid.Column="0" VerticalAlignment="Top" MinWidth="175" />  
<StackPanel Grid.Column="1" >  

<CheckBox Content="Morning" />  
<CheckBox Content="Afternoon" />  
<CheckBox Content="Evening" />  

</StackPanel>  
</Grid>



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

246  

 

 

Morning  
A^ernoon  

nmg 

4

Ž 
 

 

 

Figure 12 - 3. Page containing a DatePicker and Checkboxes  

Handling Control Events 
Silverlight follows an event - driven programming model similar to WPF. Events are messages 
sent by an object to signal the occurrence of an action. This can be an action initiated by a user, 
such as a ButtonClick, or an action initia ted by the program, such as a LayoutUpdated event.  

To add events, you typically wire up an event handler to a control using XAML code. When 
working with controls in code, you need to give them each a unique name using the Name 
attribute. The following mark up shows how to add a click event to a button:  

<Button Name="btnSave" Click="btnSave_Click" Grid.Column="2" MinWidth="80"  
Height="20" Content="Save" VerticalAlignment="Top"/>  

When an event handler is assigned to an event in the XAML, the code editor inserts an 
event handler method in the codebehind file. All event handlers include two parameters: the 
sender parameter contains a reference to the object that initiated the event and the event args 
passes data specific for a certain kind of event. For exa mple, mouse events may pass 
information pertaining to the position of the cursor when the event occurred. The following 
code shows the event handler method inserted for the button click event:  

private void btnSave_Click(object sender, RoutedEventArgs e)  
{  
}  

Remember that by convention, the name of the event handler method is the name of the 

 

4  March, 2011  Ƹ 

Su Ma Tu We Th Fr γ ̉

27  28 1 2 3 4 D  
S 1  ̌ 9 10 11 12 

13 14 15 IE 17 18 19 

20 21  22  23  24  25  26  

27 28  29  30 31 1 2 

3 4 5 6 7 Ȩ 9 

=M/d/yyy
y =  

_l 
Eve 



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

247  

 

 

object issuing the event followed by an underscore character (_) and the name of the event. The 
actual name of the event handler, however, is unimportant. The Click attr ibute in the XAML 
code adds this method to the invocation list of the event's delegation object.  

In the following activity, you'll build a Silverlight page, add some common controls, and 
respond to control events.



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

248  

 

 

ACTIVITY 12-1. WORKING WITH SILVERLIGHT CONTROLS 

In this activity, you will become familiar with the following:  

 ̋ Creating a Silverlight application.  

 ̋ Adding and working with various controls on a page.  

 ̋ Implementing control events.  

ƵNote In order to complete the activities in this chapter, you need to install the Silverlight Tools 

for Visual Studio 2010. Refer to Appendix C for instructions.  

Creating a Silverlight Application and Adding Controls 

To create the Silverlight application, follow these steps:  

1. Start Visual Studio. Select File > New > Project.  

2. Choose a Silverlight Application under the C# Projects folder. Rename 

the project to Act12_1 and click the OK button.  

3. The next screen asks if you want to host the Silverlight application in a 

new web site. It also asks you what version of Silverlight you want to 

use. Accept the defaults shown in Figure 12 - 4 and click OK.  
New Silverlight Application  

Click the checkbox below to host this Silverlight application in a Web site. Otherwise, a test page will be 

gen erated during build.  

[/] Host the Silverlight application in a new Web site  

New Web project name:  

Actl2_l.Web  

New Web project type:  

ASP.NET Web Application Project  Ƹ 

Options  

Silverlight Version:  

Silverlight 4  Ƹ 

' Enable WCF RIA Services  

 

Figure 12 - 4. Setting application options  

 



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

249  

 

 

4. The project contains a MainPage.xaml file. This file is where you design the 

user interface. The project also contains a MainPage.xaml.cs file. This is the 

ÈÔÉÊÇÊÍÎÓÉdËÎÑÊdÆÓÉdÎÙ̃ØdÜÍÊ×ÊdÞÔÚdÜÎÑÑdÆÉÉdÙÍÊdÈÔÉÊdÙÔd×ÊØÕÔÓÉdÙÔdÙÍÊdÊvents.  

5. Add a StackPanel inside the main Layout Grid control. Inside the StackPanel, add 

a TextBox and ComboBox, as shown:  
<Grid x:Name="LayoutRoot" Background="White" >  

<StackPanel Orientation="Vertical" HorizontalAlignment="Center"> <TextBox 
Name="txtColor" Text="Color Me!" FontSize="18"/> <ComboBox 
Name="cboColors">  

<ComboBoxItem Name="Item1" Content="Red"/>  
<ComboBoxItem Name="Item2" Content="Blue"/>  

<ComboBoxItem Name="Item3" Content="Green"/>  
</ComboBox>  

</StackPanel>  
</Grid>  

6. Add a SelectionChanged event handler to the ComboBox.  

<ComboBox Name="cboColors" SelectionChanged="cboColors_SelectionChanged">  

7. In the codebehind file, add the following code to interrogate the 

¨ÔÒÇÔ§ÔÝ®ÙÊÒ̃Ød¨ÔÓÙÊÓÙdÆÓÉdÈÍÆÓÌÊdÙÍÊdËÔÓÙdcolor of the TextBox depending 

on what was



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

250  

 

 

selected. The SelectionChangedEventArgs parameter (e) passes in a 

list of selected items. In this case, there is only one item in the list.  
private void cboColors_SelectionChanged(object sender, SelectionChangedEv entArgs e) {  

ComboBoxItem l = (ComboBoxItem) e.AddedItems[0]; if 
(l.Content.ToString() == "Red")  
{  

SolidColorBrush brush = new SolidColorBrush(Colors.Red); 
txtColor.Foreground = brush;  

}  
if (l.Content.ToString() == "Blue")  
{  

SolidColorBrush brush = new SolidColorBrush(Colors.Blue); 
txtColor.Foreground = brush;  

}  
if (l.Content.ToString() == "Green")  
{  

SolidColorBrush brush = new SolidColorBrush(Colors.Green); 
txtColor.Foreground = brush;  

}  
}  

8. Run the application in the debugger. You should see a page with the TextBox 

and a ComboBox. Test the application by selecting different colors in the 

ComboBox and verify the text color of the Textbox changes. After testing, 

stop the debugger.  

Adding Event Handling to Silverlight Controls 

1. In the XAML Editor below the ComboBox, add a Canvas and a Textbox 

control. Note that an event handler for the Canvas's MouseEnter and 

MouseLeave events has been added.  
<Canvas Width="150" Height="150" Background="Aqua"  

MouseEnter="Canvas_MouseEnter" MouseLeave="Canvas_MouseLeave">  
<Te xtBox Name="txtMessage" FontSize="18" Visibility="Collapsed"  

Canvas.Left="35" Canvas.Top="46" Background="Aqua" />  
</Canvas>  

2. Open the codebehind file by right - clicking the XAML Editor and selecting 

View Code. Add the following code to the Canvas_MouseEnter  event 

handler:  
private void Canvas_MouseEnter(object sender, MouseEventArgs e)  
{  

txtMessage.Visibility = Visibility.Visible; txtMessage.Text = "Hello";  
}  

3. Add the following code to the Canvas_MouseLeave event handler:  

private void Canvas_MouseLeave(object sender, MouseEventArgs e)  
{  

txtMessage.Text = "Goodbye";  

}  

4. Run the application in the debugger. You should see the Canvas 

control on the page. Test the application by moving the mouse 



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

251  

 

 

cursor in and out of the Canvas control. Verify that the Textbox 

shows the Hello and Goodbye messages. After testing, stop the 

debugger.  

5. In the XAML Editor, after the Canvas control, add a ProgressBar and 

Æd§ÚÙÙÔÓdÈÔÓÙ×ÔÑrd³ÔÙÊdÙÍÆÙdÆÓdÊÛÊÓÙdÍÆÓÉÑÊ×dËÔ×dÙÍÊd§ÚÙÙÔÓ̃Ød¨ÑÎÈÐd

event has been added.  

<ProgressBar Name="pbProgress" F oreground="Aqua" Background="Gray"  
Value="10" Maximum="100" Width="200" Height="20" Margin="20"/>  

<Button Name="btnAdvance" Height="20" Width="60" 
Content="Advance" Click="btnAdvance_Click"/>  

6. Add the following code to the btnAdvance_Click event handler:  

private void btnAdvance_Click(object sender, RoutedEventArgs e)  

{  
if (pbProgress.Value < pbProgress.Maximum)  

{  
pbProgress.Value+=20;  

}  

}  

7. Run the application in the debugger. You should see the progress 

bar and button on the page. Click on the Advance button. You should 

see the progress bar advancing. After testing, stop the debugger 

and exit Visual Studio.  

Data Binding in Silverlight 
Binding a Silverlight control to data is done in a way that is very similar to the way it's handled 
in WPF. When you do the binding with XAML, you use the Binding attribute available with each 
control. When you bind a control in code, you set its source with the DataContext property. 
When you set the DataContext for a parent element, such as a Grid control, the child elemen ts 
will use the same DataContext unless their DataContext is explicitly set.  

The .NET Framework encapsulates much of the complexity of synchronizing controls to a 
data source through the data binding process. The Mode property determines how the data 
bindi ng flows and reacts to data changes. OneWay binding causes changes to the source 
property to automatically update the target property, but changes to the target property are 
not propagated back to the source property. This is useful for read - only scenarios  and is the 
default binding. TwoWay binding causes changes to either the source property or the target 
property to automatically update the other. This is useful for full data updating scenarios.  

The following code shows the DataContext of a Grid control s et to a CollectionViewSource 
that contains a list of authors. The CollectionViewSource allows you to move through the list 
of authors.  
CollectionViewSource cvs = new 
CollectionViewSource(); cvs.Source = authorList; 
this.AuthorList.DataContext = cvs; 
cvs.Vi ew.MoveCurrentToFirst();  



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

252  

 

 

The following XAML code binds TextBox controls and a CheckBox control to the 
properties of the Authors class using the Path attribute. Using Binding to designate the source 
ÒÊÆÓØd̆ÑÔÔÐdÚÕdÙÍÊdÈÔÓÙÆÎÓÊ×dÍÎÊ×Æ×ÈÍÞdÚÓÙÎÑdÆd©ÆÙÆ¨ÔÓÙÊÝÙ ÎØdËÔÚÓÉṙd®ÓdÙÍÎØdÈÆØÊpdÙÍÊd
DataContext will be the one specified for the Grid container.  

<Grid Name="AuthorList" DataContext="{Binding}">  
<Grid.ColumnDefinitions>  

<ColumnDefinition Width="Auto" />  
<ColumnDefinition Width="Auto" />  

</Grid.ColumnDefinitions>  
<Grid.RowDefinitions>  

<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  

</Grid.RowDefinitions>  
<sdk:Label Content="First Name:" Grid.Column="0" Grid.Row= "0"  

HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" />  
<TextBox Grid.Column="1" Grid.Row="0" Height="23" HorizontalAlignment="Left"  

Margin="3" Name="txtFirstName" Text="{Binding Path=FirstName}" 
VerticalAlignment="Center" Width="120" />  

<sdk:Label Content="Last Name:" Grid.Column="0" Grid.Row="1"  
HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" />  

<TextBox Grid.Column="1" Grid.Row="1" Height="23" HorizontalAlignment="Left"  
Margin="3" Name="txtLastName" Text="{Binding Path=L astName}" 
VerticalAlignment="Center" Width="120" />  

<CheckBox Name="chkContract" Content="Under Contract"  
IsChecked="{Binding Path=UnderContract}"  
Grid.Row="2" Grid.ColumnSpan="2" FlowDirection="RightToLeft" />  

<StackPanel Grid.Column="1" Grid.Row="3" Grid.ColumnSpan="2" 
Orientation="Horizontal"> <Button Name="btnPrev" Content="Prev" MinWidth="50"/>  
<Button Name="btnNext" Content="Next" MinWidth="50"/>  

</StackPanel>  
</Grid>  

The resulting page loaded with author data is shown in Figure 12 - 5. 

 

While some controls can only bind to one record at a time, other controls, such as the 
DataGrid control, bind to and display the entire collection. The following code sets the 
ItemSource of a DataGrid to the list o f authors. In this case, it's not necessary to use a 
CollectionViewSource.  

 

Figure 12 - 5. Page displaying author data  



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

253  

 

 

this.AuthorDataGrid.ItemsSource = authorList;  

The following XAML creates the DataGrid and binds the columns of the grid. The resulting 
page is shown in Figure 12 - 6. 

<sdk:DataGrid Name="AuthorDataGrid" AutoGenerateColumns="False">  
<sdk:DataGrid.Columns>  

<sdk:DataGridTextColumn Header="First Name"  
Width="SizeToHeader" Binding="{Binding FirstName}" />  

<sdk:DataGridTextColumn Header="Last Name"  
Width="SizeToHeader" Binding="{Binding La stName}" />  

<sdk:DataGridCheckBoxColumn Header="Under Contract"  
Width="SizeToHeader" Binding="{Binding UnderContract}" 

/> </sdk:DataGrid.Columns>  
</sdk:DataGrid>  

 

In the following activity, you will build a page with controls bound to a collection of Author 
objects. You will also use TwoWay binding to update author data.  

ACTIVITY 12-2. WORKING WITH DATA BOUND CONTROLS 

In this activity, you will become familiar with the following:  

 ̋ Binding controls to a collection.  

 ̋ Updating data using TwoWay binding.  

Binding Controls to a Collection 

To bind controls to a collection, follow these steps:  

1. Start Visual Studio. Select File > New > Project.  

2. Choose a Silverlight Application. Rename the project to Act12_2 and 

click the OK button.  

3. The next screen asks if you want to host the Silverlight application 

in a new web site. It also asks you what version of Silverlight you 

^ Chapl2Demo2 

First Name Last Name Under Contract  

Clive ʊ ussier a  
 

S:eve Berry   

Kate Morton LJ  

Karma Wilson 0  
 

Figure 12 - 6. Page displaying author data in a DataGrid  



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

254  

 

 

want to use. Accept the defaults and click OK.  

4. Right - click on the Act12_2 project node in Solution Explorer and 

choose Add > Class. Name the class Author.  

5. At the top of the class file, add the following using statement:  

using System.ComponentModel;  

6. In the Author class, implement the INotifyPropertyChanged interface. 

This is needed to facilitate binding.  

public class Author  : INotifyPropertyChanged {  

public event PropertyChangedEventHandler PropertyChanged; void 

RaisePropertyChanged(string propertyName)  

{  
var handler = 
PropertyChanged; if (handler 
!= null)  
{  

handler(this, new PropertyChangedEventArgs(propertyName));  
}  

}  
}  

7. Add the following properties. Note that when the values are changed, 

the Proper tyChanged event is raised.
string _firstName; 
public string 
FirstName {  

get { return _firstName; } 
set {  

if (_firstName != value)  
{  

_firstName = value; 
RaisePropertyChanged("FirstNam
e");  

}  
}  

}  
string _lastName; 
public string 
LastName {  

get { return _lastName; } 
set {  

if (_lastName != value)  
{  

_lastName = value; 
RaisePropertyChanged("LastNam
e");  

}  
}  

}  



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

255  

 

 

Boolean _underContract; 
public Boolean UnderContract 
{  

get { return _underContract; } 
set {  

if (_underContract != value)  
{  

_underContract = value; 
RaisePropertyChanged("UnderContract
");  

}  
}  

}  
double _royalty; public double 
Royalty {  

get { return _royalty; } set {  
if (_royalty != value)  
{  

_royalty = value; 
RaisePropertyChanged("Royalty")
; 

}  
}  

}
8. Add the following constructor to the Author class:  

public Author(string firstName, string lastName,  
Boolean underContract, double royalty)  

{  
this.FirstName = firstName; this.LastName = 
lastName; this.UnderContract = underContract; 
this.Royalty = royalty;  

}  

9. Build the project and make sure there are no errors. If there are, fix 

them and rebuild.  

10. Add the following XAML markup to the MainPage.xaml file to create 

the user interface:  

<Grid x:Name="LayoutRoot" Background="White" >  
<Grid Name="AuthorList" DataContext="{Binding}" HorizontalAlignment="Center"> 

<Grid.ColumnDefinitions>  
<ColumnDefinition Width="Auto" />  
<ColumnDefinition Width="Auto" />  

</Grid.ColumnDefinitions>  
<Grid.RowDefinitions>  

<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height ="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  

</Grid.RowDefinitions>  
<sdk:Label Content="Author Info" Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="2" 



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

256  

 

 

HorizontalAlignment="Center"  
Margin="3" VerticalAlignment="Center" />  

<sdk:Label Content="First Name:" Grid.Column="0"  
Grid.Row="1" HorizontalAlignment="Left"  
Margin="3" VerticalAlignment="Center" />  

<TextBox Grid.Column="1" Grid.Row="1" Height="23" HorizontalAlignment="Left" 
Margin=" 3" Name="txtFirstName" Text="{Binding Path=FirstName}" 
VerticalAlignment="Center" Width="120" />  

<sdk:Label Content="Last Name:" Grid.Column="0" Grid.Row="2"  
HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" /> 

<TextBox Grid.Column="1" Grid.Row="2" Height="23" HorizontalAlignment="Left" 
Margin="3" Name="txtLastName" Text="{Binding Path=LastName}" 
VerticalAlignment="Center" Width="120" />  
<sdk:Label Content="Royalty:" Grid.Column="0" Grid.Row="3"  

HorizontalAlignment="Left" Margin="3" Vert icalAlignment="Center" /> 
<TextBox Grid.Column="1" Grid.Row="3" Height="23" HorizontalAlignment="Left" 
Margin="3" Name="txtRoyalty" Text="{Binding Path=Royalty}" 
VerticalAlignment="Center" Width="120" />  
<CheckBox Name="chkContract" Content="Under Contract " 

IsChecked="{Binding Path=UnderContract}"  
Grid.Row="4" Grid.ColumnSpan="2" FlowDirection="RightToLeft" />  

</Grid>  
</Grid>  

11. Launch the application in the debugger. You should see a page 
similar to the one shown in Figure 12 - 7. After testing, stop the 
debugger.  

A-:hor Info 

First Name 

Last NSTIS 

Rjoyalty:  

Under Contract  

Figure 12 - 7. Author info page  

Updating Data Using TwoWay Binding 

1. Inside the MainPage UserControl tag, add a Loaded event handler attribute.  

<UserControl 
xmlns:sdk=" http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"  
x:Class="Act12_2.MainPage"  
xmlns=" http://sc hemas.microsoft.com/winfx/2006/xaml/presentation"  
xmlns:x=" http://schemas.microsoft.com/winfx/2006/xaml"  

http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

257  

 

 

xmlns:d=" http://schemas.microsoft.com/expression/blend/2008"  
xmlns:mc=" http://schemas.openxmlformats.org/markup - compatibility/2006"  
mc:Ignorable="d"  
d:DesignHeight="300" d:DesignWidth="400"  Loaded="UserControl_Loaded">  

2. In the codebehind file MainPage.xaml.cs, add the following using 

statement to the top of the file:  
using System.Windows.Data;  

3. In the codebehind file, add the following code to the 

UserControl_Loaded event handler. This code cr eates a list of 

authors, adds it to a CollectionViewSource, and sets the 

DataContext of the AuthorList Grid control.  
CollectionViewSource cvs;  
private void UserControl_Loaded(object sender, RoutedEventArgs e)  
{  

List<Author> authorList = new List<Author>();  authorList.Add(new 
Author("Clive", "Cussler", true,.15)); authorList.Add(new Author("Steve", 
"Berry", false,.20)); authorList.Add(new Author("Kate", "Morton", 
false,.20));  

authorList.Add(new Author("Karma", "Wilson", true,.18)); cvs = 
new CollectionViewSource(); cvs.Source = authorList; 
this.AuthorList.DataContext = cvs; 
cvs.View.MoveCurrentToFirst();  

}  

4. Launch the application in the debugger. Make sure the page is loaded with the 

ËÎ×ØÙdÆÚÙÍÔ×̃ØdÎÓËÔrd¦ËÙÊ×dÙÊØÙÎÓÌpdØÙÔÕdÙÍÊdÉÊÇÚÌÌÊ×r 

5. To ena ble moving through the records, add the following XAML after the 
Checkbox control in the MainPage.xaml file:  

<StackPanel Grid.Column="1" Grid.Row="5" Grid.ColumnSpan="2" 
Orientation="Horizontal">  
<Button Name="btnPrev" Content="Prev" MinWidth="50"  

Click="btnPrev_Click"/>  
<Button Name="btnNext" Content="Next" MinWidth="50"  

Click="btnNext_Click" />  
</StackPanel>  

6. Add the following code to the btnPrev_Click event handler in the codebehind 

file. This code uses the CollectionViewSource to loop backward th rough the 

records.  
private void btnPrev_Click(object sender, RoutedEventArgs e)  
{  

cvs.View.MoveCurrentToPrevious(); if (cvs.View.IsCurrentBeforeFirst)  
{  

cvs.View.MoveCurrentToLast();  
}  

}  

7. Add the following code to the btnNext_Click event handler in the codebehind 

file. This code uses the CollectionViewSource to loop forward through the 

http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

258  

 

 

records.  
private void btnNext_Click(object sender, RoutedEventArgs e)  
{  

cvs.View.MoveCurrentToNext(); if ( cvs.View.IsCurrentAfterLast)  
{  

cvs.View.MoveCurrentToFirst();  
}  

}  

8. Launch the application in the debugger. Test the buttons to make sure you 

can move through the authors list. After testing, stop the debugger.  

9. Launch the application in the debugger. Update the royalty of the first author, 

move to the next author, and move back. You should see that your change 

was not kept. This is because the default binding mode is one way. Stop the 

debugger.
10. Update the txtRoyalty text bo Ý̃Ød½¦²±dÈÔÉÊdÒÆÐÊdÙÍÊdÇÎÓÉÎÓÌd¹ÜÔ¼ÆÞr 

<TextBox Grid.Column="1" Grid.Row="3" Height="23"  
HorizontalAlignment="Left" Margin="3"  
Name="txtRoyalty" Text="{Binding Path=Royalty, 
Mode=TwoWay}" VerticalAlignment="Center" Width="120" />  

11. Launch the application in the debugger. Update the royalty of the 

first author, move to the next author, and move back. You should 

now see that your change was kept. This is because the default 

binding mode is TwoWay.  

12. After testing, stop the debugger and exit Visual Studio.  

Validating and Converting Data 
When you allow users to update data, it is very important to validate the data before it is saved 
back to the data store. For example, you don't want to allow a customer to order a negative 
amount of an item or set a birth date that  occurs in the future. Silverlight supports error 
notification when exceptions are thrown by either the binding engine's type converter or the 
binding object's set accessor. If the ValidatesOnExceptions property and the NotifyOnExceptions 
property values a re set to true, Silverlight will provide visual feedback that an error has 
occurred and will display the error message passed by the binding object. In this case, the 
Author class will throw an error if you try to set the Royalty property to a value less t han zero. 
The following XAML markup shows the Binding setting of the textbox used to display the 
royalty. Figure 12 - 8 shows how the exception is displayed in the page.  

Text="{Binding Path=Royalty,Mode=TwoWay, 
NotifyOnValidationError=True, 
ValidatesOnExcept ions=True}"  



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

259  

 

 

 

A common scenario in business applications is to convert data from the format used to 
store it to a more user - friendly format for display. For example, you may want to change the 
date format or disp lay null values as user - friendly default values. Silverlight facilitates 
formatting string values using the  
StringFormat property. The TargetNuUValue property allows you to display a friendly 
default value instead of null values. You can also set a custom converter on the binding. 
You set the Converter property to a class that implements the IValueConverter interface.  

The following XAML sets the StringFormat property to show the royalties in percent 
and the TargetNullValue to NA. Figure 12 - 9 shows the resul ting display in the page.  
Text="{Binding Path=Royalty, Mode=TwoWay, 
NotifyOnValidationError=True, ValidatesOnExceptions=True, 
StringFormat=p, TargetNullValue=NA}"  

 

Figure 12 - 9. Displaying royalties as percentages  

In the following activity you will implement some of the data validation and conversion 
capabilities of Silverlight controls described in this section.  

 

Figure 12 - 8. Displaying a validation error  

^ Chapl2Demo2  

First Name: 

Last Nsne: 

Royalty:  

Clive   

ʶdussier  

15.00 % 

Under Contra;t  |Vj 

Pnev Next  



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

260  

 

 

ACTIVITY 12-3. VALIDATING AND CONVERTING DATA 

In this activity, you will become familiar with the 
ËÔÑÑÔÜÎÓÌ~d̋ Data validation  

 ̋ Data conversion To implement data validation, follow 
these steps: 1.  Start Visual Studio. Select File > Open > 
Project.  

2. Navigate to the Act12_2 solution file and click the Open button.  

3. Open the Author class file in the Code Editor and update the 

Royalty property to check to make sure it is not negative. If it is, 

throw an exception.  
public double Royalty 
{  

get { return _royalty; } set {



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

261  

 

 

if (_royalty != value)  
{  

if (value <= 0) throw new Exception  
("Amount must be greater than zero.");  

_royalty = value;  
RaisePropertyChanged("Royalty");  

}  
}  

}  

4. Right - click on the Act 12_2 project node in Solution Explorer and select Add 
> New Item. Add a Silverlight UserControl and name it Page2.xaml. 5.  Add 
ÙÍÊdËÔÑÑÔÜÎÓÌdÈÔÉÊdÙÔdÉÎØÕÑÆÞdÙÍÊdÆÚÙÍÔ×̃ØdÎÓËÔdÎÓdÆd©ÆÙÆ¬×ÎÉrd³ÔÙÊdÙÍÊdÇÎÓÉÎÓÌdÔËdÙÍÊd
Royalty column. The NotifyOnValidationError and ValidatesOnExceptions attributes 
are set to true.  

<Grid x:Name="LayoutRoot" Background="White">  
<sdk:DataGrid Name="AuthorDataGrid" AutoGenerateColumns="False" 

HorizontalAlignment="Center">  
<sdk:DataGrid.Columns>  

<sdk:DataGridTextColumn 
Header="First Name"  

Width="SizeToHeader"  
Binding="{Binding FirstName}" />  

<sdk:DataGridTextColumn 
Header="Last Name"  

Width="SizeToHeader"  
Binding="{Binding LastName}" />  

<sdk:DataGridTextColumn  
Header="Royalty"  

Width="SizeToHeader"  
Binding="{Binding Royalty,Mode=TwoWay, 

NotifyOnValidationError=True, 
ValidatesOnExceptions=True}" /> 
<sdk:DataGridCheckBoxColumn Header="Under 
Contract"  

Width="SizeToHeader"  
Binding="{Binding UnderContract}" />  

</sdk:DataGrid.Columns>  
</sdk:DataGrid>  

</Grid>  

6. Inside the MainPage UserControl tag, add a Loaded event handler attribute.  

<UserControl xmlns:sdk=" http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk"  
x:Class="Act12_2.Page2"  

xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
xmlns:x=" http://schemas.microsoft.com/winfx/2006/xaml"  
xmlns:d=" http ://schemas.microsoft.com/expression/blend/2008"  
xmlns:mc=" http://schemas.openxmlformats.org/markup - compatibility/2006"  
mc:Ignorable="d"  
d:DesignHeight="300" d:DesignWidth="400" Loa ded="UserControl_Loaded">  
7. In the UserControl_Loaded event handler, add the following code to load the 

author list and bind it to the DataGrid:  
private void UserControl_Loaded(object sender, RoutedEventArgs e)  
{  

http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

262  

 

 

List<Author> authorList = new List<Author>();  authorList.Add(new 
Author("Clive", "Cussler", true, .15)); authorList.Add(new 
Author("Steve", "Berry", false, .20)); authorList.Add(new 
Author("Kate", "Morton", false, . 20)); authorList.Add(new 
Author("Karma", "Wilson", true, .18)); 
this.AuthorDataGrid.It emsSource = authorList;  

}  

8. To make Page2 the startup page, open the App.xaml.cs code in the code 
editor. Change the Application_Startup event handler to use Page2.  

private void Application_Startup(object sender, StartupEventArgs e)  
{  

this.RootVisual = new P age2();  
}  

9. Launch the application in the debugger. You should see the grid showing the 

ÆÚÙÍÔ×̃ØdÎÓËÔr 

10. Change one of the royalties to a negative value and click on another row. 

When the value tries to update, the debugger will stop on the error. Select 

Continue under the Debug menu. You should see the grid with the error 

message stating the amount must be greater than zero.  

11. Stop the debugger.  

12. In the Page2.xaml, update the Royalty column XAML to include formatting to 

display it as a percentage and change null values to NA.  
<sdk:DataGridTextColumn  

Header="Royalty"  
Width="SizeToHeader"  
Binding="{Binding Royalty,Mode=TwoWay,  
NotifyOnValidationError=True,  
ValidatesOnExceptions=True,  
StringFormat=p, TargetNullValue=NA}" />  

13. Update the Royalty property in the Author class so it can be set to null. The 

double? makes it a nullable type.  
double? _royalty; public double? Royalty {  

get { return _royalty; } set {  
if (_royalty != value)  
{  

if (value <= 0) throw new Exception("Amount must be greater than zero.");
_royalty = value;  
RaisePropertyChanged("Royalty");  

}  
}  

}  

14. Update the Author class constructor to accept null values.  

public Author(string firstName, string lastName,  
Boolean underContract, double? royalty)  

{  
this.FirstName = firstName; 
this.LastName = lastName; 
this.UnderContract = underContract; 
this.Royalty = royalty;  



CHAPTER 12 ƴ DEVELOPING WEB APPLICATIONS 

263 

 

 

}  

15. In the UserControl_Loaded event handler, include some null royalty values.  

private void UserControl_Loaded(object sender, RoutedEventArgs e)  
{  

List<Author> authorList = new List<Author >(); 
authorList.Add(new Author("Clive", "Cussler", true, .15)); 
authorList.Add(new Author("Steve", "Berry", false, null)); 
authorList.Add(new Author("Kate", "Morton", false, null)); 
authorList.Add(new Author("Karma", "Wilson", true, .18)); 
this.AuthorDataG rid.ItemsSource = authorList;  

}  

16. Select Debug > Start. You should see the royalties as percentages 

ÆÓÉdÙÍÊdÓÚÑÑdÛÆÑÚÊØdÆØd³¦rd¼ÍÊÓdÞÔÚ̃×ÊdÉÔÓÊdÙÊØÙÎÓÌpdØÙÔÕdÙÍÊd

debugger and exit Visual Studio.  

Summary 
In this chapter, you took a second look at implementing  the interface tier of an application, this 
time using the web - based Silverlight framework. Along the way, you took a close look at how 
to implement rich web - based user interfaces. You saw how to use XAML syntax to define 
Silverlight controls and their lay out on a Silverlight page. You also saw how easy it is to bind 
the controls to the data and present it to the users. What's still missing from the story is 
information on how to retrieve data from a relational database on a server. In order to provide 
serv erside data to a Silverlight application, you need to utilize a web service.  

In the next chapter, you will look at creating web services using the Windows 
Communication Framework (WCF). You will also look at the fundamentals of impl ementing web 
services. As an exercise, you will create web services that will be consumed by a Silverlight 
application and databound to controls of the user interface.





265  

 

 

C H A P T E R 1 3 

Developing and Consuming WCF 
Services 

In the previous two chapters, yo u examined the steps required to create the graphical user 
interface of an application. Graphical user interfaces created with WPF and Silverlight provide 
users a way to interact with your applications and employ the services the application 
provides. This  chapter shows you how to build another type of interface, one that is 
implemented using the Windows Communication Foundation (WCF) and is meant to be 
consumed by an application. Such a WCF service provides an application with a programmatic 
interface with  which to access its functions, without the need for human interaction.  

After reading this chapter, you will have a clearer understanding of the following:  

 ̋ What WCF services are and how they came about.  

 ̋ How WCF processes service requests.  

 ̋ How to create a WCF service.  

 ̋ How to consume a WCF service.  

 ̋ How to use a WCF Data Services in a Silverlight Application.  

What Are Services? 
Microsoft first introduced the concept of services with its inclusion of web services support in 
.NET Framework 1.0. A web service provides a way for an application to request a service and 
receive a reply. This is essentially the same as a client object requesting a service (method) fr om 
a server object within the boundaries of your application. The difference is the location of the 
client objects and server objects. If they reside in the same application, then they can issue and 
receive binary messages and inherently understand each ot her because they are speaking the 
ØÆÒÊd̆ÑÆÓÌÚÆÌÊṙd¦ØdÙÍÊdÆÕÕÑÎÈÆÙÎÔÓØdÞÔÚdÇÚÎÑÉdÌ×ÔÜdÒÔ×ÊdÈÔÒÕÑÊÝpdÎÙdÎØdÈÔÒÒÔÓdÙÔdØÕÑÎÙdÙÍÊd
application up into distinct components. When you segment an application into components, each 
designed to perform a distinct spec ialized service, you greatly enhance code maintenance, 
reusability, and reliability. Additionally, separate servers can host the client components and 
server components for increased performance, better maintenance, and security.



CHAPTER 13 ƴ ODEVELOPING AND CONSUMING WCF SERVICES 

266  

 

 

Prior to the introduction of web services, the clients and servers of an application relied on 
distributed technologies such as DCOM and CORBA, which are based on proprietary standards. 
This is fine if the client and server applications utilize the same technologies, but when the c lient 
and server utilize disparate technologies, this becomes very problematic. The power of web 
services lies in the fact that they use a set of open XML - based messaging and HTTP - based 
transport protocols. This means that client and server components util izing different technologies 
can communicate in a standard way. For example, a Java - based application running on an Apache 
web server can request a service from a .NET -  based application running on an IIS server. In 
addition, since they communicate via HTT P, they can be located virtually anywhere in the world 
that has an Internet connection.  

With the release of the .NET Framework 3.0, Microsoft introduced a new way to create web 
services in the form of Windows Communication Foundation services (WCF). Before  WCF, 
Microsoft had a robust but confusing set of messaging technologies including ASP.NET Web 
services, MSMQ, Enterprise services, and .NET Remoting. Microsoft decided to roll all these 
technologies into a single framework for developing service - oriented applications. This made 
developing service - oriented applications more consistent and less confusing for developers.  

Creating a WCF Web Service 
A WCF service is made up of three parts: the service, an end point, and a hosting environment. 
The service is a class that contains methods you want to expose to clients of the service. An end 
point is a definition of how clients can communicate with the s ervice. It's worth noting that a 
service can have more than one endpoint defined. An endpoint consists of the base address  of the 
service, its binding information, and its contract  information (the three are often referred to as the 
ABCs of WCF). The hosti ng environment refers to the application hosting the service. For your 
purposes, this will be a web server, but there are other options that exist depending on the type of 
WCF service you implement.  

Creating and consuming WCF services using Visual Studio 2010 is a fairly easy process. If you 
use the templates Visual Studio provides, much of the plumbing work is done for you. Figure 13 - 1 
shows the available templates. To create a WCF web service, you use the WCF Service 
Appl ication template.



CHAPTER 13 ƴ DEVELOPING AND CONSUMING WCF SERVICES 

267  

 

 

ʡ 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 - 1. WCF templates provided by Visual Studio  

Selecting a template adds two important files to the project: one defines the service 
contract using an interface and one is a class file that contains the service implementation 
code. In Figure 13 - 2, the IService1.cs file defines the interface and the 
Service1.svc.cs contains the class implementation for the service.  

Solution Explorer 

HISBllE&Il t*  
3 Solution 'WcfDemoService' (1 project) 

- WcfDemoService

 

 

 

 

Figure 13 - 2. WCF interface and class files

Online T emplates 
Name: | WcfService2   

Location: [ c:\documents and settings\drdark\my documents\visual studio 2010\Projectf v [ Browse...  

Solution name: | WcfService2 fy^lCreate directory for solution  

  1 1 Add to source control  

  OK Cancel 

New Project  

Recent Templates 
4H|:.  v Sort by: Default .NET Framework 4 Search Installed Temple 

Installed Templates 

Q Visual C# 

Windows Web Cloud Reporting 

Silverlight Test WCF Workflow IS 

Other Languages IS Other Project 

Types IS Database IS Test Projects 

Type: Visual C# 

A project for creating WCF services WCF Service Library WCF Service Application WCF 

Workflow Service Application Visual C# 

Visual C# 

Visual C# 

Visual C# 

ɂ 

,~A Properties References _ 

App_Data IServicel.cs jtf) 

Servicel.svc - ̂  Servicel 

.svc.cs Web.config 

+  
+  

- 

+  



CHAPTER 13 ƴ ODEVELOPING AND CONSUMING WCF SERVICES 

268  

 

 

When you create a service, you need  to define the service contract. The contract is 
defined by an interface definition. The interface defines the methods exposed by the service, 
any input parameters expected by the methods, and any output parameters passed back by the 
methods. The following  code shows the interface code for a tax service. The interface is 
marked with the [ServiceContract] attribute and any exposed methods are marked with the 
[OperationContract].  

[ServiceContract] 
public interface ITax {  

[OperationContract]  
double GetSalesTax(string statecode);  

}  
Once the interface is defined, the next step is to define the class that implements the 

interface. The following code implements the ITax interface and provides the code to 
implement its exposed methods.  

public class Tax : ITax 
{  

public double GetSalesTax(string stateCode)  
{  

if (stateCode == "PA")  
{  

return .06;  
}  
else  
{  

return .05;  
}  

}  
}  

Once the interface and class are defined, compiling and running the application produce 
the web page shown in Figure 13 - 3. This page provides information on how you can create a 
test client for the service and a link to the WSDL file for the service. The WSDL (Web 
Services Description Language) file is an XML document that specifies the location of the 
service and the operations it expo ses. Figure 13 - 4 shows a portion of the Tax Service's 
WSDL file as it appears when displayed by a browser.  



CHAPTER 13 ƴ DEVELOPING AND CONSUMING WCF SERVICES 

269  

 

 

 

xmlns:wsa 10- ' http://www.w3.org/ 2005/08/ addressing " 

xmlns:wsx=" http://schemas.xmlsoap.org/ws/2004/09/mex " xmlns: wsam -

' http://www.w3.org/2007/05/addre ssing/metadata ">  

 

Figure 13 - 3. Output of the service file  

http://www.w3.org/2005/08/addressing
http://schemas.xmlsoap.org/ws/2004/09/mex
http://www.w3.org/2007/05/addressing/metadata


CHAPTER 13 ƴ ODEVELOPING AND CONSUMING WCF SERVICES 

{ 

270  

 

 

<wsdl:types>  
- <xsd:schema targetNamespace=" http://tempuri.org/Imports ">  

<xsd: import schemaLocation=" http://localhost:1934/Tax.svc?xsd=xsdO " 

namespace=" http://tempuri.org/ " />  

<xsd: import schemaLocation=" http://localhost:1934/Tax.svc?xsd=xsdl " 

namespace=" http://schemas.microsoft.com/2003/10/Serialization/ " /> 

</xsd:schema>  

</wsdl: types:=  

<wsdl:message name="ITax_GetSalesTax_InputMessage">  

<wsdl:part name="parameters" element="tns:GetSalesTax" />  

</wsdl:message>  

<wsdl:message name="JTax_GetSalesTax_OutputMessage">  

<wsdl:part name="parameters" element="tns:GetSalesTaxResponse" /> 

</wsdl:message>  

<wsdl:portType name - 'ITax">  

- <wsdl:operation name="GetSales Tax">  

<wsdl:input wsaw:Action=" http://tempuri.org/ITax/GetSalesTax " message 

="tns:Uax_GetSalesTax_InputMessage" />  

<wsdl:output  
wsaw:Action=" http://tempuri.org/rTax/GetSalesTaxResponse " message -

'tns:ITax_GetSalesTax_OutputMessage" />  

</wsdl: opera tion>  

</wsdl:portType>  

Figure 13 - 4. The WSDL file, as displayed in a browser  

Consuming a WCF Web Service 
To consume a WCF service in a .NET client, you must add a service reference to the project. 
When you add a service reference in Visual Studio 2010, you are presented with an Add 
Reference window (see Figure 13 - 5). This window allows you to discover the services 
available and the operations they exp ose. You can also change the namespace that you use to 
program against the service.   

http://tempuri.org/Imports
http://localhost:1934/Tax.svc?xsd=xsdO
http://tempuri.org/
http://localhost:1934/Tax.svc?xsd=xsdl
http://schemas.microsoft.com/2003/10/Serialization/
http://tempuri.org/ITax/GetSalesTax
http://tempuri.org/rTax/GetSalesTaxResponse


CHAPTER 13 ƴ DEVELOPING AND CONSUMING WCF SERVICES 

271  

 

 

mm 

Cancel O
K 

Add Service Reference 

To see a list of available services on a specific server, enter a service URL and click Go. TG browse for 

available services, click Discover. 

Address: 

 

 

Namespace: 
Tax5ervice

 

Advanced.

 

 

Figure 13 - 5. Adding a service reference  

Once the service reference is added to the project, Visual Studio updates the 
application configuration file with the information needed to call the service. This 
includes the endpoint configuration with the address, binding, and contract 
information.  

<endpoint address=" http://localhost:1934/Tax.svc " binding="basicHttpBinding" 
bindingConfiguration="BasicHttpBinding_ITax" 
contract="TaxServiceReference.ITax" 
name="BasicHttpBinding_ITax" />  

A client proxy is also added to the client application. The client application uses this proxy 
to interact with the service. The following code shows a client console application calling the 
service using the TaxClient proxy and writing the results out to the console window. Figure 13 -
6 show s the output in console window.

http://localhost : 1934/Taji^vc  v Go Discover - 

Services: Operations:   

0 ʊ Tax.svc VGetSalesTax 

- gj) Tax  

5° ITax  

1 service(s) found at address 'http://localhost: 1934/Tax.svc'. 

http://localhost:1934/Tax.svc
http://localhost/
http://localhost/


CHAPTER 13 ƴ ODEVELOPING AND CONSUMING WCF SERVICES 

{ 

272  

 

 

TaxServiceReference.TaxClient webService = new 
TaxServiceReference.TaxClient(); string state1 = "PA";  
double salesTax1 = webService.GetSalesTax(state1);  
Console.WriteLine("The sales tax for {0} is {1}", state1, salesTax1); s tring state2 
= "NJ";  
double salesTax2 = webService.GetSalesTax(state2);  
Console.WriteLine("The sales tax for {0} is {1}", state2, salesTax2); 
webService.Close();  
Console.ReadLine();  

cv file:///C:/Documents and Settings/dr 

The sales tax for PA is 0.06 The sales tax for NJ is 0.05  

 

Using Data Contracts 
In the previous example, the WCF web service used only simple types to pass data back and 
forth between the service and the client. Simple types such as integer, double, and string do not 
require any special encoding to pass them between the client and server. There are times when 
you want to pass complex types between the client and server. Complex types are co mprised of 
simple types. For example, you may have a service that takes an address type made up of 
street, city, state, and zip code and returns a location type made up of longitude and latitude. To 
facilitate the exchange of complex types, the WCF service  uses data contracts. You create your 
data class normally then mark it with the [DataContract] attribute. The properties of the class 
that you want exposed are marked with the [DataMember] attribute. The following code 
exposes the Location class to clients  of the service:  

[DataContract] public class Location {  
double _longitude; 
double _latitude;  
[DataMember]  
public double Latitude  

get { return _latitude; } set 
{ _latitude = value; }

 

Figure 13 - 6. Output from calling the TaxService  

file:///C:/Documents


CHAPTER 13 ƴ DEVELOPING AND CONSUMING WCF SERVICES 

273  

 

 

}  
[DataMember]  
public double Longitude  
{  

get { return _longitude; } set { _longitude = value; }  
}  

}  

By marking the classes with the [DataContract] and [DataMember] attributes, an XSD file is 
created describing the complex types. Clients use this file to determine what to supply the 
service and what to expect as a return type. Figure 13 - 7 shows the portion of the XSD file 
created for the Location type returned by the service.  

ocs:element min0ccurs="0" name-'Latitude" type="xs:double" {> ocs:element 

minGccurs="0" name="Longitude" type="xs:double" /> 

ƴocsielement name-'Location" nillable-'true" type-'tns:Location" /> 

Figure 13 - 7. XSD file defining the Location type, as displayed in a browser  

Let's put what you've learned so far to work by building a simple service that supplies a list 
of stores from th e Pubs database. The service will then be consumed in a Silverlight client to 
display a list of stores.  

ACTIVITY 13-1. CREATING AND CONSUMING A WCF SERVICE 

®ÓdÙÍÎØdÆÈÙÎÛÎÙÞpdÞÔÚdÜÎÑÑdÇÊÈÔÒÊdËÆÒÎÑÎÆ×dÜÎÙÍdÙÍÊdËÔÑÑÔÜÎÓÌ~d̋ Creating a WCF Service.  

 ̋ Consuming a  WCF Service in a Silverlight client.  

Creating a WCF Service 

To create the WCF Service, follow these steps: 1.  Start Visual Studio. Select File > New > 
Project.  
2. Choose a Silverlight Application under the C# Projects folder. 

Rename the project to Act13_1 and click the OK button.  

3. The next screen asks if you want to host the Silverlight application 

in a new web site. It also asks you what version of Silverlight you 

want to use. Accept the defaults and click OK.  

4. Right - click on the Act13_1 .Web project node in  the Solution 

Explorer window and select Add > New Item.  

5. In the Add New Item window, click on the Web node in the Installed 

Templates section. Select the WCF Service template, rename it to 

PubsService, and click the Add button (see Figure 13 - 8).  



CHAPTER 13 ƴ ODEVELOPING AND CONSUMING WCF SERVICES 

274  

 

 

 

6. Right - click the PubsService.svc node in the Solution Explorer and select View 

Code. After the PubsService class definition, add a Store class definition. Add the 

[DataContract] attribute to the Store class and the [Data Member] attributes to the 

ID and name properties.  
namespace Act13_1.Web {  

public class PubsService : IPubsService {  
//ubsService class code  

}  
[DataContract] public class Store {  

string _id;  
[DataMember] public string Id {  

get { return _id; } set { _id = value; }  
}  
string _name;  
[DataMember] public string Name {  

get { return _name; } set { _name = 
value; }  

}  
}  

}  

7. At the top of the file, add a using System.Data.SqlClient statement. In the body of 

the PubsService class, add a GetStores method that returns a list of stores. This 

method uses the SQLDataReader to retrieve the data from the Pubs database. 

(Using the SqlDataReader class was covered in Chapter 10.)  
public class PubsService : IPubsService {  

public List<Store> GetStores()  
{  

SqlConnection con = new Sq lConnection(@"Data Source=. \ SQLEXPRESS; 
Initial Catalog=pubs;Integrated Security=True");  

SqlCommand cmd = new  
SqlCommand("Select stor_id, stor_name from stores", con); List<Store> 

stores = new List<Store>(); con.Open();  

 

Figure 13 - 8. Adding the WCF Service  



CHAPTER 13 ƴ DEVELOPING AND CONSUMING WCF SERVICES 

{ 

275  

 

 

SqlDataReader dr = cmd.ExecuteReader(); while 
(dr.Read())  

Store store = new Store(); store.Id = 
(string)dr[0];  
store.Name = (string)dr[1]; 
stores.Add(store);  

}  
return stores;  

}  
}  

8. Open the IPubsService.cs file in the Code Editor window. Update the code to 

define the GetStores  method.  
[ServiceContract] public interface 
IPubsService {  

[OperationContract]  
List<Store> GetStores();  

}  

9. In the Solution Explorer, right - click on the Act13_1.Web node and select Build. If 

there are any errors, fix them, and then rebuild.  

Creating the Silverlight Client 

1. In the Solution Explorer, right - click the Act13_1 project node and select Add 

Service Reference. In the Add Service Reference dialog, click the Discover button. 

You should see the PubsService.svc as s hown in Figure 13 - 9. Click the OK button 

to add the reference.



CHAPTER 13 ƴ ODEVELOPING AND CONSUMING WCF SERVICES 

276  

 

 

 

ƵNote The port number of your service address may change when you develop it locally.  

2. Open the MainPage.xaml file in the XAML Editor. Add the 

following XAML markup to add a Label and a ListBox control:  
<Grid x:Name="LayoutRoot" Background="White">  

<Grid.RowDefinitions>  
<RowDefinition Height="Auto"/>  
<RowDefinition Height="Auto"/>  

</Grid.RowDefinitions>  
<sdk:Label Content="Stores:" HorizontalAlignment="Center"/>  
<ListBox Name="StoreList" Width="200" Height="200"  

HorizontalAlignment="Center" Grid.Row="1"/>  
</Grid>  

 

Figure 13 - 9. Adding the service reference  



CHAPTER 13 ƴ DEVELOPING AND CONSUMING WCF SERVICES 

277  

 

 

Add a Loaded event handler to the user control.  

<UserControl x:Class="Act13_1.MainPage"  
xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
xmlns:x=" http://schemas.microsoft.com/winfx/2006/xaml"  
xmlns:d=" http://schemas.microsoft.com/expression/blend/2008"  
xmlns:mc=" http://schemas.openxmlformats.org/markup - compatibil ity/2006"  
mc:Ignorable="d"  
d:DesignHeight="300" d:DesignWidth="400" Loaded="UserControl_Loaded">  

At the top of the MainPage.xaml.cs codebehind file, add a 

namespace reference to the service you added in Step 1.  

using Act13_1.ServiceReference1;  

In the UserC ontrol_Loaded event handler, call the service through the 

PubsServiceClient proxy. Since the Silverlight client calls the service 

asynchronously, you need to provide a callback event handler for when the 

call completes.  

private void UserControl_Loaded(object sender, RoutedEventArgs e)  
{  

PubsServiceClient context = new PubsServiceClient(); 
context.GetStoresCompleted += context_GetStoresCompleted; 
context.GetStoresAsync();  

}  

Add the following callback event handler. In the handler, load  the ListBox 

control with the store info returned by the service.  

private void context_GetStoresCompleted(object sender,  
GetStoresCompletedEventArgs e)  

{  
foreach (var store in e.Result)  
{  

this.StoreList.Items.Add(store.Id + ", " + store.Name);  
}  

}  

Run the application in the debugger. You should see a web page with the 

list of stores, as shown in Figure 13 - utrd¼ÍÊÓdÞÔÚ̃×ÊdØÆÙÎØËÎÊÉdÜÎÙÍdÞÔÚ×d

testing, stop the debugger and exit Visual Studio.

Sio-ȭÅÓȡ 

6380, Ere the Reac Eooks  

7066,  Barnun's  

7067,  News St Brews  

7131, Doc - U- Mat: Quality 

±¢̈fÉ×Þd7896, Fricatve 

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006


CHAPTER 13 ƴ ODEVELOPING AND CONSUMING WCF SERVICES 

278  

 

 

3Gokshop S04 2, Bcokbeat  

Figure 13 - 10. List of store information  

WCF Data Services 
Most business applications must work with data contained in a database. Clients need to be able 
to perform CRUD (create, read, update, and delete) operations on the data. While you can 
support these operations using the HTTP SOAP based WCF services discussed thus far, you 
need to write a lot of code to hook up the database layer and expose it through the operations 
exposed by the WCF service. This is where WCF Data Services can help. WCF  Data Services is 
a framework that enables you to easily create services to expose and consume data over the 
Web. 

WCF Data Services uses the Open Data (OData) protocol for addressing and updating 
resources. It exposes data in a text - based data exchange for mat an application can address with 
URIs. Data is accessed and changed by using the standard HTTP verbs GET, PUT, POST, and 
DELETE. WCF Data Services also includes a client library specifically for Silverlight - based 
applications that provides an object - based programming model to access an OData feed.  

Visual Studio 2010 provides the templates to easily create a WCF Data Service. First you 
create a web application to host the service. Once the web application is created, add an 
ADO.NET Entity Data Model. As e xplained in Chapter 10, the ADO.NET Entity Data Model 
creates an entity - to- relational mapping layer. This allows you to develop against the object -
oriented data model, which then gets converted into the relational model of the database for you. 
Once the en tity data model is created, add a WCF Data Service to the project. The Data Service 
class provides the functionality necessary to process request messages, interact with the entity 
data model, and generate response messages. This class inherits from a base  Data Service class 
of the data entity type defined by the Entity Data Model. The following code shows a WCF Data 
Service class set up to interact with an Entity Data Model created for the Pubs database:  

public class pubsDataService : DataService<PubsEntit ies >  

The DataServiceConfiguration class defines the behaviors of the data service. This class is 
supplied by the InitializeService method of the data service. It can be used to set behaviors such 
as access to the entities by clients of the service. The fo llowing code shows the PubsDataService 
class limiting the access to the entities of the data model:  
public static void InitializeService(DataServiceConfiguration config)  
{  

config.SetEntitySetAccessRule("stores", EntitySetRights.AllRead); 
config.SetEntitySetAccessRule("sales", EntitySetRights.None); 
config.SetEntitySetAccessRule("titles", EntitySetRights.All);  
// config.SetServiceOperationAccessRule("MyServiceOperation", 
ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion = 
DataServiceProtocolVersion.V2;  

}  



CHAPTER 13 ƴ DEVELOPING AND CONSUMING WCF SERVICES 

279  

 

 

To consume a WCF Data Service in a client application developed in Visual Studio 2010, you 
simply create a service reference to it using the Add Service Reference dialog. Usin g this dialog 
will request the service metadata document from the data service. By using this metadata 
document, client side proxies are created to interact with the data service. The WCF Data 
Services client library enables you to execute language integra ted querys (LINQ) against a data 
service. The client library translates a query into an HTTP GET request message.  

The following code shows how to instantiate an instance of the data service proxy and use it 
to execute a LINQ query to return all the records  from the titles table in the Pubs database. The 
result of the query can then be bound to the client UI controls.  

svcPubs = new pubsEntities (new 
Uri(" http://localhost:1396/pubsDataService.svc ")); v ar q = from t in svcPubs.titles 
select t;  

In the following activity, you'll create a WCF Data Service that supplies data from the Pubs 
database. After creating the service, you will use it to load a DataGrid with title (book) 
information.  

ACTIVITY 13-2. CREATING AND CONSUMING A WCF DATA SERVICE 

In this activity, you will become familiar with the 
ËÔÑÑÔÜÎÓÌ~d̋ Creating a WCF Data Service.  

 ̋ Consuming a WCF Data Service in a Silverlight client.  

Creating a WCF Data Service 
To create a WCF Data Service, follow t hese steps: 1.

 Start Visual Studio. Select File > New > 
Project.  

2. Choose a Silverlight Application. Rename the project to Act13_2 

and click the OK button.  

3. The next screen asks if you want to host the Silverlight 

application in a new web site. It also asks you what version of 

Silverlight you want to use. Accept the defaults and click OK.  

4. Right - click on the Act13_2.Web project node in the solution explorer window 

and select Add > New Item.  

5. Under the Data node in the Add New Item window, select an ADO.NET Enti ty 

Data Model. Name the model Pubs.emdx and click Add.  

6. In the Choose Model Contents screen, select the Generate from database option 

and click Next.  

7. In the Choose Your Data Connection screen, choose an existing connection or 

create a new connection to the Pubs database and choose Next.  

8. In the Choose Your Database Objects screen, expand the tables node; select the 
sales, stores, and titles tables; and then click Finish.  

9. Right - click on the Act13_2.Web project node in the Solution Explorer window 

http://localhost:1396/pubsDataService.svc


CHAPTER 13 ƴ ODEVELOPING AND CONSUMING WCF SERVICES 

280  

 

 

and select Ad d > New Item.  

10. In the Add New Item window, click on the web node in the Installed Templates. 

Select the WCF Data Service template, rename it to PubsDataService, and click 

the Add button.  

11. Open the PubsDataService.svc.cs file in the Code Editor. Update the co de so 

that the PubsDataService class implements a DataService of type pubEntities.  

public class PubsDataService : DataService< pubsEntities >  

{  

12. In the InitializeService method, update the code to set the entity access rules 

for the store, sale, and title entities created in the Entity Data Model.  

public static void InitializeService(DataServiceConfiguration config)  

{  
config.SetEntitySetAccessRule("stores", EntitySetRights.AllRead); 
config.SetEntitySetAccessRule("sales", EntitySetRights.All); 
config.SetEnti tySetAccessRule("titles", EntitySetRights.All);  
// config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All);  
config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;  

}  

13. In the Solution Explorer, right - click on the Act13_2.Web node and select Build.  
If there are any errors, fix them and rebuild.  

14. In the Solution Explorer, right - click on the PubsDataService.svc node and select 

View in Browser. You should see the entities listed as in Figure 13 - 11. Note the 

URI for setting the service reference later.  

<?xml version="1.0" encoding-ôutf-S" sta - ^service xml:base 

="http://localhost:l: xni Ins-'http://www.w3.org/2007/a 

<a to m: t i tl e >Def a ʠ It a to m: ti tl e > 

<a to m: ti tl e >s a I e s </ a to m: ti tl e > 

<a to m: ti tl e >s to r e s </a to m: ti tl e > 

Figure 13 - 11. Viewing the PubsDataService.svc in the browser  

http://www.w3.org/2007/a


CHAPTER 13 ƴ DEVELOPING AND CONSUMING WCF SERVICES 

281  

 

 

Consuming a WCF Data Service in a Silverlight Client 

To consume the WCF Data Service, follow these steps: 1.  Add the following XAML 

markup to the MainPage.xaml file to create the user interface. Note that you are using a cell 

editing template for the PubDate column. It will display a DatePicker control when edited.  

<Grid x:Name="LayoutRoot" Backgr ound="White" DataContext="{Binding}"> 
<Grid.RowDefinitions>  

<RowDefinition Height="Auto"/>  
<RowDefinition Height="Auto"/>  

</Grid.RowDefinitions>  
<Button Name="btnSave" Content="Save" Width="80" />  
<sdk:DataGrid AutoGenerateColumns="False" 

HorizontalAlignment="Center"  
ItemsSource="{Binding}" Name="titlesDataGrid" VerticalAlignment="Top" 

Grid.Row="1" > <sdk:DataGrid.Columns>  
<sdk:DataGridTemplateColumn x:Name="pubdateColumn" 

Header="Pubdate" Width="SizeToCells"> 
<sdk:DataGridTemplateColumn.Ce llEditingTemplate> <DataTemplate>  

<sdk:DatePicker  
SelectedDate="{Binding Path=pubdate, 

Mode=TwoWay,  
ValidatesOnExceptions=true,  

NotifyOnValidationError=true}" /> 
</DataTemplate> 
</sdk:DataGridTemplateColumn.CellEditingTemplate> 
<sdk:DataGridTemplateColumn.CellTemplate> 
<DataTemplate>  

<TextBlock Text="{Binding Path=pubdate, 
StringFormat= \ {0:d \ }}" />  

</DataTemplate>  
</sdk:DataGridTemplateColumn.CellTemplate>  

</sdk:DataGridTemplateColumn>  
<sdk:DataGridTextColumn x:Name="title_idColum n" 

Binding="{Binding Path=title_id}" 
Header="Title id"  
Width="SizeToCells" Visibility="Collapsed"/> 

<sdk:DataGridTextColumn x:Name="title1Column" 
Binding="{Binding Path=title1}" Header="Title" 
Width="SizeToCells" /> <sdk:DataGridTextColumn 
x:Name="typeColumn" Binding="{Binding Path=type}" 
Header="Type" Width="SizeToCells" /> 
<sdk:DataGridTextColumn x:Name="ytd_salesColumn" 
Binding="{Binding Path=ytd_sales, StringFormat=c}"  

Header="Ytd sales" Width="SizeToCells" /> 
</sdk:DataGrid.Columns>  

</s dk:DataGrid>  
</Grid>  



CHAPTER 13 ƴ ODEVELOPING AND CONSUMING WCF SERVICES 

282  

 

 

2. Inside the MainPage UserControl tag, add a Loaded event handler attribute.  

<UserControl xmlns:sdk=" http://schemas.microsoft.com/winfx/2006/xaml/presentation/ sdk"  
x:Class="Act13_2.MainPage"  
xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
xmlns:x=" http://schemas.microsoft.com/winfx/2006/xaml"  
xmlns:d=" http://schemas.microsoft.com/expression/blend/2008"  
xmlns:mc=" http://schemas.openxmlformats.org/markup - compatibility/2006"  
mc:Ignorable="d"  
d:DesignHeight="300" d:DesignWidth="400" Loaded="UserControl_Loaded">  

3. In the Solution Explorer window, r ight - click the Act13_2 project node and 

select Add Service Reference. In the Add Service Reference dialog, click 

the Discover button. You should see the PubsService.svc in the list, Click 

the OK button to add the service reference.  

4. In the MainPage.xaml.cs codebehind file, add the following using statements 

to the top of the file:  
using Act13_2.ServiceReference1;  
using System.Data.Services.Client;  

5. In the codebehind file, add the following class level variables:  

public partial class MainPage : UserControl  
{  

pubsEntities svcPubs;  
DataServiceCollection<title> dscTitles;  

6. In the codebehind file, add the following code to the UserControl_Loaded event 

handler. Use the URI noted in step 14 of the previous section. This code 

instantiates an instance of the data servi ce that svcPubs uses it to load data from 

a LINQ query. The DataServiceCollection (dscTitles) is loaded from the result of 

the query and is used as the DataContext for the LayoutRoot grid.  
private void UserControl_Loaded(object sender, RoutedEventArgs e)  

{  
//Do not load your data at design time.  

if (!System.ComponentModel.DesignerProperties.GetIsInDesignMode(this))  
{  

svcPubs = new pubsEntities  
(new Uri(" http://localhost:1396/pubsDataService.svc "));  

dscTitles = new DataServiceCollection<title>();  
var q = from t in svcPubs.titles select t;  

dscTitles.LoadAsync(q);  
this.LayoutRoot.DataContext = dscTitles;  

}  
}  

7. Launch the application in the debugger. Make sure the page is loaded with the 

title info loaded in the grid. After testing, stop the debugger.  

8. To enable updating records, add a Click event handler to the XAML of the Save 

button in the MainPage.xaml file.  
<Button Name="btnSave" Content="Save" Width="80" Click="btnSave_Click" />  

9. Add the following code to the btnSave_Click event handler in the codebehind file. 

This code uses the data service proxy to call the save changes method of the data 

http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://localhost:1396/pubsDataService.svc


CHAPTER 13 ƴ DEVELOPING AND CONSUMING WCF SERVICES 

283  

 

 

service. This is an asynchronous call so a callback method is passed in as well as 

a message to pass back indicatin g the changes saved.  
private void btnSave_Click(object sender, RoutedEventArgs e)  
{  

svcPubs.BeginSaveChanges(OnChangesSaved,"Data Saved");  
}  

10. Add the following call back event handler, which will fire when the data service 

completes the save changes method:
private void OnChangesSaved(IAsyncResult result)  
{  

MessageBox.Show((string)result.AsyncState);  
}  

11. Launch the application in the debugger. Test updating the data and 

saving the changes. Refresh the page after saving the data to 

verify it was saved back to the database. After testing, stop the 

debugger and exit Visual Studio.  

Summary 
In this chapter, you were introduced to the fundamentals of implementing web services. In 
particular, you saw how to create web services using the Windows Communication Framework 
(W CF). You also built a Silverlight client application that consumes the WCF service and 
updates data back to the database through the service.  

This was the final chapter in a series aimed at exposing you to the v arious technologies and 
.NET Framework classes used to build .NET applications. The goal of these chapters has been to 
give you the information necessary to start building .NET applications. These chapters only 
scratched the surface of these technologies. As you gain experience developing .NET 
applications, you will need to look more deeply into each of these technologies.  

Thus far in your journey you have studied UML design, object - oriented programming, the C# 
language, the .NET Frame work, creating graphical user interfaces, and developing WCF Services. 
You are now ready to put the pieces together and develop a working application. In the next 
chapter, you will revisit the UML models you developed for the case study introduced in Chapt er 
4. You will transform these models into a fully functional application.

C H A P T E R 1 4 



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

288  

 

 

Developing the OSO Application 

In the previous chapters, you looked at two ways to develop the graphical user interface of an 
application. Graphical user interface s created with WPF and Silverlight provide human users a 
way to interact with your applications and use the services they provide. You also saw how 
services create programmatic interfaces that other programs can call to use the services of the 
application without any user interaction.  

In this chapter you come full circle, back to the office supply ordering application (called 
OSO for short) that you designed in Chapter 4. This chapter is one big activity and a final exam 
of sorts. You will create a function al application incorporating the concepts you have learned in 
the previous chapters. As you work through creating the application, you should be able to 
identify these concepts and relate them back to the concepts covered previously. The 
application will c ontain a data access layer, a business logic layer, and a user interface layer.  

After reading this chapter, you will understand why applications are split into different 
layers and how to construct them.  

Revisiting Application Design 
When you design an application, you can typically proceed in three distinct phases. First, you 
complete a conceptual design, then a logical design, and then a physical design.  

The conceptual design,  as explained in Chapter 4, constitutes the discovery phase of the 
process. T he conceptual design phase involves a considerable amount of collaboration and 
communication between the users of the system and the system designers. The system 
designers must gain a complete understanding of the business processes that the proposed 
syste m will encompass. Using scenarios and use cases, the designers define the functional 
requirements of the system. A common understanding and agreement on system functionality 
and scope among the developers and users of the system is the required outcome of this 
phase. 

The second phase of the design process is the logical design.  During the logical design phase, 
you work out the details about the structure and organization of the system. This phase consists 
of the development and identification of the busines s objects and classes that will compose the 
system. UML class diagrams identify the system objects for which you identify and document 
the attributes and behaviors. You also develop and document the structural interdependencies of 
these objects using the c lass diagrams. Using sequence and collaboration diagrams, you 
discover and identify the interactions and behavioral dependencies between the various system 
objects. The outcome of this phase, the application object model, is independent of any 
implementati on- specific technology and deployment architecture.  

The third phase of the design process is the physical design.  During the physical design 
phase, you transform the application object model into an actual system. You evaluate and 
decide upon specific tech nologies and infrastructures, do cost analysis, and determine any 
constraints. Issues such as  
programmer experience and knowledge base, current implementation technologies, and legacy 
system integration will all influence your decisions during the physical  design phase. You must 
also analyze security concerns, network infrastructure, and scalability requirements.  

When designing a distributed application, you normally separate its logical architectural 
structure from its physical architectural structure. By separating the architectural structure in 
this way, you will find it much easier to maintain and update the ap plication. You can make any 
physical architectural changes (to increase scalability, for example) with minimal impact. The 
logical architectural design typically separates the various parts of an application into tiers. 
Users interact with the presentation  tier, which presents data to the user and gives the user ways 



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

289  

 

 

to initiate business service requests. The business logic tier  encapsulates and implements the 
business logic of an application. It is responsible for performing calculations, processing data, 
and controlling application logic and sequencing. The data tier  is responsible for managing 
access to and storage of information that must be persisted and shared among various users 
and business processes. Figure 14 - 1 shows the different logical tiers of a typical 3 -  tier 
application.  

Ul Layer 

v 

Business Layer 

A 

V 

Data Access Layer 

A 

V 

Database 

Figure 14 - 1. Logical tiers of a 3 - tiered application  

When you create the physical tiers of an application, each logical tier would ideally 
correspond to a distinct physical tier on its own dedicated server. In reality, the physical layers 
of the application are influenced by such factors as available hardware and network 
infrastructure. You may have all the logical tiers on one physical server or spread across a web 
and database server. What is important is that you create applications that implement clear 
separation of duties among the classes. Figure 14 - 2 shows the layout of the OSO application. 
The business logic classes and the data access classes are contained in  the same assembly 
(BLL assembly), while the user interface layer is contained in its own assembly (UI assembly). 
Both assemblies are contained on the same server. Because there is a clear separation of duties 
between the business logic classes and the dat a access classes, as the application grows in 
features and users, it can easily be refactored into separate assemblies hosted on separate 
severs.   



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

290  

 

 

UI Assembly 

Server 

BLL Assembly 

 

 ː

V 

Data Access Classes 

Figure 14 - 2. Physical tiers of the OSO application  

Building the OSO Applicationõs Data Access and Business 
Logic Layers 
In order to develop the business logic and data access layers of the application, you need to 
review the OSO class diagram you created in Chapter 4 (shown in Figure 14 - 3).

 

 

 

 

 

 

 

 
Figure 14 - 3. OSO application class diagram  

As discussed in Chapter 4, you need to create an Employee class that implements a login 
method (Login()). The login method will interact with the database to verify login information. 
To accomplish this, you will create two employee classes: one for the business logic layer 
(Employee) and one for the

Business Logic S'  s UI Classes 

Classes 4  s 

Orderltem 

ProductNo:String 
Quantity:lnteger 
UnitPrice:Real 

 ___________ 1 __________  

Purchaser (UI) 
1..n 

-4 contains 
«inherits»  _ I  Product 

1..n 

DepartmentManager 

ApprovePurchaseQ 

Employee contains Ƹ Order 

Employeeld:lnteger 
LoginName:String 
Password:String 

Department:String 
FirstName:String 
LastName:String 

OrderNo:Long 
OrderDateiDate 
Status:String 1 1..ʈ 

AddltemO 
RemoveltemO 
SubmitltemO 

LoginQ  

 
ProductCatalog 

contains 
Ƹ 

contains 
Ƹ 1 

ProductNo:String 
ProductName:String 
Category:String 
Description:String 
UnitPrice:Decimal 
VendorCode:String 

1 1..n 



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

291  

 

 

data access layer (DALEmployee). The Employee class will pass the request to login from the 
User Interface (UI) to the DALEmployee class, which in turn will interact with the database to 
retrieve the requested information. Figure 14 - 4 is the database schema for the Of fice Supply 
database. This database is hosted in a SQL Server database.  

 

ƵNote If you did not install the Office Supply database, see Appendix C for instructions.  

Now, you'll begin with the data access layer an d then implement the business logic layer.  

1. In Visual Studio, create a Class Library application and name it 
OSOBLL; this application will contain the classes for the business 
logic layer and data access layer of the OSO application. If not 
already there, add the references shown in Figure 14 - 5. Figure 14 - 5 
also shows the classes you will create to implement the data access 
and business logic of the application.  

ƵNote ®ËdÞÔÚdÉÔÓ̃ÙdÜÆÓÙdÙÔdÈÔÉÊdÙÍÊd´¸´dÆÕÕÑÎÈÆÙÎÔÓdË×ÔÒdØÈ×ÆÙÈÍpdÞÔÚdÈÆÓdÉÔÜÓÑÔÆÉdÎÙdË×ÔÒdÙÍÊd

Apress web site. See Appendix C for details.  

Solution Explorer 

§ I ® El I * 
Ƶ3 Solution 'OSOBLL' (2 projects) 

- ^ OSOBLL 

+ Ƶ i^i Properties | ɫ- _/ 

 

Figure 14 - 4. Office Supply database diagram  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

292  

 

 

References 

ƵO Microsoft.CSharp ƵO 

System ƵO System.Core 

ƵO System.Data 

ƵO System. Data. DataSetExtensions ƵO 

System.Xrml ƵO System.Xml.Linq 

DALErmployee.cs DALOrder.cs 

DALProductCatalog.cs  ˮDALUtility.es 

Employee.cs CJ=] 0rder.es 

<511 0rderlterm.es ________________________  

Figure 14 - 5. References and classes of the OSOBLL class library  

Next, you'll create a static class (DALUtility) that implements the setting 
of the database connection string in one centralized location. The other 
classes will call its GetSQLConnection to retrieve the connection string.  

2. Add a class to the application and name it DALUtility. Add the 
following code to the class file:  

using System;  
using System.Collections.Generic; using System.Linq; using System.Text;  

namespace OSOBLL {  
public static class DALUtility {  

public static string GetSQLConnection()  

{  
return @"Integrated Security=True;Data Source=. \ SQLEXPRESS;'' + "Initial 

Catalog=OfficeSupply";  
}  

}  
}  

3. The next class to add is the DALEmployee class. This class contains a Login 
method that checks the user name and password supplied to the values in the 
database. It uses a SQLCommand object to execute a SQL statement against the 
database. If a match is found, it returns the employee ID. If no match is found, it 
returns - 1. Since a single value is returned by the SQL statement, you can use the 
ExecuteScalar method of the SQLCommand object. Add a class named 
DALEmployee and insert the following code into the class file:  

using System;  
using System.Collections.Generic; using 
System.Linq; using System.Text; using 
System.Data.SqlClient; using 
System.Diagnostics; using System.Data;  

namespace OSOBLL {  
class DALEmployee {  

public int LogIn(string userName, string password)  
{  

string connString = DALUtility.GetSQLConnectionQ;  
SqlConnection conn = new SqlConnection(connString); try {  

SqlCommand cmd = new SqlCommand(); cmd.Connection = conn; 
cmd.CommandText =  "Select EmployeeID from Employee where "  

+ " UserName = @UserName and Password = @Password "; 
cmd.Parameters.AddWithValue(''@UserName'', userName); 



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

293  

 

 

cmd.Parameters.AddWithValue(''@Password'', password); int userId; 
conn.Open();  
userId = (int)cmd.ExecuteScalar();  
if (userId > 0)  

return userId;  

else  

return - 1; 
}



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

{ 

294  

 

 

catch (Exception ex)  
{  

Debug.WriteLine(ex.ToString()); return - 1; 
}  
finally  
{  

if (conn.State == ConnectionState.Open)  

conn.Close();  

}  

4. The next class to construct is the DALProductCatalog class, the purpose of which 
is to encapsulate the functionality the application needs to retrieve and list the 
available products in the database. You also want to be able to view the products 
based on the category to whi ch they belong. The information you need is in two 
database tables: the catalog table and the products table. These two tables are 
related through the CatID field.  
When a client requests the product catalog information, a dataset is created and 
returned to  the client. This service is provided in the DALProductCatalog class's 
GetProductInfo method. The code for the DALProductCatalog class is shown in here:  

using System;  
using System.Collections.Generic;  
using System.Linq;  
using System.Text;  
using System.Data .SqlClient;  
using System.Data;  
using System.Diagnostics;  

namespace OSOBLL {  
public class DALProductCatalog {  

SqlConnection _conn;  
DataSet _dsProducts;  

public DALProductCatalog()  
{  

string connString = DALUtility.GetSQLConnection(); _conn = 
new SqlConnection(connString);  

}  
public DataSet GetProductInfo()  

try  
{  

//Get category info  
String strSQL = "Select CatId, Name, Description from Category"; 
SqlCommand cmdSelCategory = new SqlCommand(strSQL, _conn); 
SqlDataAdapter daCatagory = new SqlDataAdapte r(cmdSelCategory); 
_dsProducts = new DataSet("Products"); daCatagory.Fill(_dsProducts, 
"Category");  
//Get product info  
String strSQL2 = "Select ProductID, CatID, Name," +  

"Description, UnitCost from Product";  
SqlCommand cmdSelProduct = new SqlCommand(strSQL2, _conn); 
SqlDataAdapter daProduct = new SqlDataAdapter(cmdSelProduct); 
daProduct.Fill(_dsProducts, "Product");  
//Set up the table relation  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

295  

 

 

DataRelation drCat_Prod = new DataRelation("drCat_Prod", 
_dsProducts.Tables["Category"].Columns["C atID"], 
_dsProducts.Tables[''Product' l].Columns[' lCatID' l],false); 
_dsProducts.Relations.Add(drCat_Prod);  

}  
catch(Exception ex)  
{  

Debug.WriteLine(ex.Message);  
}  
return _dsProducts;  

}  

}  
}  

5. When a client is ready to submit an order, it will call the PlaceOrder method of the 
Order class, which you will define shortly in the business logic classes. The client 
will pass the employee ID into the method and receive an order number as a return 
value. The PlaceOrder method of the Order class will pass the or der information in 
the form of an XML string to the DALOrder class for processing. The DALOrder 
class contains the PlaceOrder method that receives an XML order string from the 
Order class and passes it into a stored procedure in the SQL Server database. Th e 
stored procedure updates the database and passes back the order number. This 
order number is then returned to the Order class, which in turn passes it back to 
the client.  

Add the following code to define the DALOrder class:  

using System;  
using System.Col lections.Generic;  
using System.Linq;  
using System.Text;  
using System.Data.SqlClient;  
using System.Data;  
using System.Diagnostics;
namespace 
OSOBLL {  

class DALOrder  
{  

public int PlaceOrder(string xmlOrder)  
{  

string connString = DALUtility.GetSQLConnectionQ;  
SqlConnection cn = new 
SqlConnection(connString); try {  

SqlCommand cmd = cn.CreateCommand(); 
cmd.CommandType = CommandType.StoredProcedure; 
cmd.CommandText = "up_PlaceOrder";  
SqlParameter inParameter = new SqlParameter(); 
inParameter.ParameterName = "@xmlOrder"; 
inParameter.Value = xmlOrder; inParameter.DbType = 
DbType.String; inParameter.Direction = 
ParameterDirection.Input; 
cmd.Parameters.Add(inParameter);  
SqlParameter ReturnParameter = new SqlParameter(); 
ReturnParameter .ParameterName = "@OrderID";  
ReturnParameter.Direction = ParameterDirection.ReturnValue;  
cmd.Parameters.Add(ReturnParameter);  
int intOrderNo;  
cn.Open();  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

296  

 

 

cmd.ExecuteNonQuery(); cn.Close();  
intOrderNo = (int)cmd.Parameters["@OrderID"].Value; 
return intOrderNo;  

}  
catch (Exception ex)  
{  

Debug.WriteLine(ex.ToString()); return 0;  
}  
finally  
{  

if (cn.State == ConnectionState.Open)  
{  

cn.Close();  
}  

}  
}  

}  
}  

Now that you have constructed the data access layer classes, you are ready to 
construct the business logic layer set of classes.  

6. Add a class named Employee to the application. This class will 
encapsulate employee information used by the UI and pass a login 
request to the data access layer. Add the following code to the 
Employee. cs f ile:

using System;  
using System.Collections.Generic; 
using System.Linq; using 
System.Text;  

namespace OSOBLL {  
public class 
Employee {  

int _employeeID; 

public int EmployeeID 

{  

get { return _employeeID; 
} set { _employeeID = 
value; }  

}  

string _loginName; 

public string 

LoginName {  

get { return _loginName; } 
set { _loginName = value; 
}  

}  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

{ 

297  

 

 

string _password; 

public string 

Password {  

get { return _password; } 
set { _password = value; }  

}  

Boolean _loggedIn = 

false; public Boolean 

LoggedIn {  

get { return _loggedIn ; }  
}  

public Boolean LogIn()  
{  

DALEmployee dbEmp = new 
DALEmployee(); int empId;  
empId = dbEmp.LogIn(this.LoginName, 
this.Password); if (empId > 0)  
{  

this.EmployeeID = 
empId; this._loggedIn 
= true; return true;  

}  
else  
{  

this._loggedIn = false; 
return false;

}  

}  
}  

}  

7. The ProductCatalog class provides the Product dataset to the UI. It 
retrieves the dataset from the DALProductCatalog class. You could 
perform any business logic on the DataSet before passing it to the UI. 
Add the following code to a c lass file for the ProductCatalog class:  

using System;  
using 
System.Collections.Generic; 
using System.Linq; using 
System.Text; using System.Data;  

namespace OSOBLL {  
public class 
ProductCatalog {  

public DataSet GetProductInfo()  
{  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

298  

 

 

//perform any business logic  befor passing to client.  
// None needed at this time.  
DALProductCatalog prodCatalog = new 
DALProductCatalog(); return 
prodCatalog.GetProductInfo();  

}  
}  

}  

8. When a user adds items to an order, the order item information is encapsulated 
in an OrderItem class.  This class implements the INotifyPropertyChanged 
interface. This interface is necessary to notify the UI that a property changed 
so that it can update any controls bound to the class. It also overrides the 
ToString method to provide an XML string containi ng the item information. This 
string will get passed to the DAL when an order is placed. Add the following 
code to implement the OrderItem class:  

using System;  
using 
System.Collections.Generic; 
using System.Linq; using 
System.Text; using 
System.ComponentMo del;  

namespace OSOBLL {  
public class OrderItem : 
INotifyPropertyChanged {  

#region INotifyPropertyChanged Members  
public event PropertyChangedEventHandler PropertyChanged;  
protected void Notify(string propName)  

if (this.PropertyChanged != null)  
{  

PropertyChanged(this, new PropertyChangedEventArgs(propName));  
}  

}  
#endregion string _ProdID; int _Quantity; double _UnitPrice; double _SubTotal; 
public string ProdID {  

get { return _ProdID; } set { _ProdID = value; }  
}  
public int Quantity {  

get { return _Quantity; } set {  
_Quantity = value;  
Notify("Quantity");  
}  

}  
public double UnitPrice {  

get { return _UnitPrice; } set { _UnitPrice = value; }  
}  
public double SubTotal {  

get { return _SubTotal; }  
}  
public OrderItem(String productID,double unitPrice,int quantity)  
{  

_ProdID = productID;  
_UnitPrice = unitPrice;  
_Quantity = quantity;  
_SubTotal = _UnitPrice * _Quantity;  

}  
public override string ToString()  
{  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

{ 

299  

 

 

string xml = "<OrderItem";  
xml += " ProductID='" + _ProdID + .. ; 
xml += " Quantity='" + _Quantity +  .... ; 
xml += " />"; return xml;  

}  
}  

}



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

{ 

300  

 

 

9. The final class of the business logic layer is the Order class. This class is 
responsible for maintaining a collection of order items. It has methods for adding 
and deleting items as well as passing  the items to the DALOrder class when an 
order is placed. The following code implements the Order class:  

using System;  
using System.Collections.Generic; using 
System.Linq; using System.Text;  
using System.Collections.ObjectModel; using 
System.ComponentModel;  

namespace OSOBLL {  
public class Order {  

ObservableCollection<OrderItem> _orderItemList = new 
ObservableCollection<OrderItem>();  

public ObservableCollection<OrderItem> OrderItemList {  
get { return _orderItemList; }  

}  
public void AddItem(OrderItem orderItem)  
{  

foreach (var item in _orderItemList)  
{  

if (item.ProdID == orderItem.ProdID)  
{  

item.Quantity += orderItem.Quantity; return;  

}  
}  
_orderItemList.Add(orderItem);  

}  
public void RemoveItem(string productID)  
{  

foreach (var item in _orderItemList)  
{  

if (item.ProdID == productID)  
{  

_orderItemList.Remove(item);  
return;  

}  
}  

}  
public double GetOrderTotal()  
{  

if (_orderItemList.Count == 0)
return 0.00;  

}  
else  
{  

double total = 0;  
foreach (var item in _orderItemList)  
{  

total += item.SubTotal;  
}  
return total;  

}  
}  
public int PlaceOrder(int employeeID)  
{  

string xmlOrder;  
xmlOrder = "<Order EmployeeID='" + employeeID.ToString() + 



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

301  

 

 

"'>"; foreach (var item in _orderItemList)  
{  

xmlOrder += item.ToString();  
}  
xmlOrder += "</Order>";  
DALOrder dbOrder = new DALOrder(); return 
dbOrder.PlaceOrder(xmlOrder);  

}  

}  
}  

Now that you have constructed the data access and business logic layers of the OSO 
application, you are ready to construct the UI. In the next section you will construct a WPF 
application users will use to place office supply orders.  

Creating the OSO Application UI 
In order to create the ordering system's WPF interface, you'll need to add a WPF project to the 
solution containing the OSOBLL project.  

1. In Visual Studio, add a WPF project to the solution and name it OSOWPFUI.  
Figure 14 - 6 shows the Solution Explorer with both projects added. 
Make sure you add the references shown in Figure 14 - 6 for the 
OSOWPFUI application.  
Notice a reference to the OSOBLL class  library is included.



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

302  

 

 

Q Solution 'OSOBLL' (2 projects)

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14 - 6. References and classes of the OSOWPFUI application  

The first goal of the user interface is to present information about the products 
that can be ordered. The product information is presented in a DataGrid control. 
The user will view products in a particular category by selecting the category in 
a ComboBox control. Once products are listed, users can add products to an 
order. When a product is added to an order, it's displayed in a ListView below 
the DataGrid. Figure 14 - 7 shows the OSO order form with the items added to an 
order.

+  
- 

+  

a- 

+  
+  
+  
+  

OSOBLL 

OSOWPFUI 

ʜ-ʄ1 Properties References ƵO 

Microsoft.CSharp ʇ OSOBLL ʇ 

PresentationCore ʇ 

PresentationFramework ʇ System 

ʇ System.Core ʇ System.Data 

ʇ System.Data.DataSetExtensions ʇ 

System.Xaml ʇ System.Xml ʇ System.Xml.Linq 

ʇ WindowsBase App.xaml LoginDialog.xaml 

MainWindow.xaml OrderltemDialog.xaml 



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

303  

 

 

ȵ X 
˂ Off ice Supply Ordering  

 

 

 

 

You must login to place an order.  

Figure 14 - 7. Form for adding items to an order  

2. Add the following XAML code to the MainWindow.xaml file to create the OSO 
order form. Notice the use of data binding for the various controls.  

<Window x:Class="OSOWPFUI.MainWindow"  
xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
xmlns:x=" http://schemas.microsoft.com/winfx/2006/xaml"  
Title="Office Supply Ordering" Height="484" Width="550" Loaded="Window_Loaded">  

<Grid>  
<StackPanel Name="LayoutRoot" DataContext="{Binding}"  

Orientation="Vertical" HorizontalAlignment="Left" Height="auto" Width="auto"> 
<StackPanel Orientation="Horizontal" HorizontalAlignment="Left">  

<Label Content="Categories:"  Margin="10,0,0,0"/>  
<ComboBox ItemsSource="{Binding}" Name="categoriesComboBox" 

IsSynchronizedWithCurrentItem="True"  
DisplayMemberPath="Name" Height="23" Margin="12" 

Width="200" > <ComboBox.ItemsPanel>   

Audio Visual  V  Login   Exit  

ProdLCt IC  Name  Description  Unit Cost  

APO - CG7Q7Q  Transparency  Quick dry inkjet  24.49  

APO - FXL  Overhead Bulb  High intensity replacement bulb  12.00  
APO - MP12GO  Laser Pointer  General purpose laser pointer  29.99  
MMM - 9700P  Overhead Projector  Portable with travel cover  759.97  

   1 

Product Ic  Unit Price   Quantity  

APO- FXL  12 1  

MMM - 97O0P 75S.97  3  

 Ȧɗ ɗ Item  Remove Item  Place Order  

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

304  

 

 

<ItemsPanelTemplate>  
<VirtualizingStackPanel />  

</It emsPanelTemplate>  
</ComboBox.ItemsPanel>  

</ComboBox>  
<Button Content="Login" Height="30" Name="loginButton"  

Width="75" Margin="20,5,0,0" Click="loginButton_Click" />  
<Button Content="Exit" Height="30" Name="exitButton"  

Width="75" Margin="20,5,0,0" Click="exitButton_Click" /> 
</StackPanel>  
<DataGrid AutoGenerateColumns="False" Height="165"  

ItemsSource="{Binding drCat_Prod}"  
Name="ProductsDataGrid" RowDetailsVisibilityMode="VisibleWhenSelected" 
Width="490" HorizontalAlignm ent="Left" Margin="20,0,20,10" 
SelectionMode="Single">  

<DataGrid.Columns>  
<DataGridTextColumn  
x:Name="productIDColumn" Binding="{Binding Path=ProductID}" 
Header="Product ID" Width="40*" />  
<DataGridTextColumn  
x:Name="nameColumn" Binding="{Binding Path=Name}"  
Header="Name" Width="40*" />  
<DataGridTextColumn  
x:Name="descriptColumn" Binding="{Binding Path=Description}" 
Header="Description" Width="80*" />  
<DataGridTextColumn  
x:Name="unitCostColumn" Binding="{Binding Path=UnitCost}"  
Header="Unit Cost" W idth="30*" />  

</DataGrid.Columns>  
</DataGrid>  

<StackPanel Orientation="Vertical">  
<ListView Name="orderListView" MinHeight="150" Width="490" 

ItemsSource="{Binding}" SelectionMode="Single">  
<ListView.View>  

<GridView>  
<GridViewColumn Width="140" Header="Product Id"  

DisplayMemberBinding="{Binding ProdID}" /> 
<GridViewColumn Width="140" Header="Unit Price"  

DisplayMemberBinding="{Binding UnitPrice}" /> 
<GridViewColumn Width="140" Header="Quantity"  

DisplayMemberBinding="{Binding Quantity}" />  
</GridView>  

</ListView.View>  
</ListView>  

</StackPanel>  
<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">  

<Button Name="addButton" MinHeight="25" MinWidth="80"  
Content="Add Item" Click="addButton_Click" />  

<Button Name="removeButton" MinHeight="25" MinWidth="80"  
Content="Remove Item" Click="removeButton_Click"/>

<Button Name="placeOrderButton" MinHeight="25" MinWidth="80"  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

305  

 

 

Content="Place Order" Click="placeOrderButton_Click"/>  
</StackPanel>  

</StackPanel>  
<StatusB ar VerticalAlignment="Bottom" HorizontalAlignment="Stretch">  

<TextBlock Name="statusTextBlock">You must login to place an 
order.</TextBlock> </StatusBar>  

</Grid>  
</Window>  

To add an order item, the user first selects a row in the DataGrid 
and then selects the Add Item button. The Add Item button displays 
a dialog box the user uses to enter a quantity and add the item. 
Figure 14 - 8 shows the Order Item Dialog.  

 

3. Add a new Window to the project named OrderItemDialog.xaml. Ad d 
the following XAML code to create the OrderItemDialog form:  

<Window x:Class="OSOWPFUI.OrderItemDialog"  
xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
xmlns:x=" http://schemas.microsoft.com/winfx/2006/xaml"  
WindowStartupLocation="CenterOwner"  
Title="Order Item" Height="169" Width="300">  

<Grid>  
<Grid.ColumnDefinitions>  

<ColumnDefinition Width="Auto" />  
<ColumnDefinition Width="Auto" />  
<ColumnDefinition />  

</Grid.ColumnDefinitions>  

<Grid.RowDefinitions>  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition />  

</Grid.R owDefinitions>  
<Label Grid.Column="0" Grid.Row="0" Margin="2">Product Id:</Label>  
<TextBox Name="productIdTextBox" Grid.Column="1"  

Grid.Row="0" Margin="2" Grid.ColumnSpan="2" IsEnabled="False"/> 

 

Figure 14 - 8. The Order Item dialog  

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

306  

 

 

<Label Grid.Column="0" Grid.Row="1" Margin="2">Unit Price:< /Label>  
<TextBox Name="unitPriceTextBox" Grid.Column="1"  

Grid.Row="1" Margin="2" Grid.ColumnSpan="2" IsEnabled="False"/> 
<Label Grid.Column="0" Grid.Row="2" Margin="2" >Quantity:</Label>  
<TextBox Name="quantityTextBox" Grid.Column="1"  

Grid.Row="2" Margin=" 2" MinWidth="80" Text="1"/>  
<StackPanel Grid.Column="0" Grid.ColumnSpan="3"  

Grid.Row="3" Orientation="Horizontal" 
HorizontalAlignment="Center">  

<Button Name="okButton" Click="okButton_Click" IsDefault="True" 
MinWidth="80" Margin="5">OK</Button>  

<Button Name="cancelButton" Click="cancelButton_Click" IsCancel="True" 
MinWidth="80" Margin="5">Cancel</Button>  

</StackPanel>  
</Grid>  

</Window>  

Before users can submit an order, they must log in. When they click on the 
Login button, they are presented with a Login  Dialog window, shown in Figure 
14- 9. 

 

4. Add a new Window to the project named LoginDialog.xaml. Add the 
following XAML code to create the LoginDialog form.  

<Window x:Class="OSOWPFUI.LoginDialog"  
xmlns=" http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
xmlns:x=" http: // schemas.microsoft.com/winfx/2006/xaml"  Title="Lo gin" 
Height="131" Width="300" WindowStartupLocation="CenterOwner"  
FocusManager.FocusedElement="{Binding ElementName=nameTextBox}"> 

<Grid>  
<Grid.ColumnDefinitions>  

<ColumnDefinition Width="Auto" />  
<ColumnDefinition />  

</Grid.ColumnDefinitions>  

<Grid.RowDefinitions>  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition Height="Auto" />  
<RowDefinition />  

</Grid.RowDefinitions>  
<Label Grid.Column="0" Grid.Row="0" Margin="2">Name:</Label>  

 

Figure 14 - 9. The Login dialog  

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml


CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

307  

 

 

<TextBox Name="nameTextBox" Grid.Colu mn="1" Grid.Row="0" Margin="2"/>  
<Label Grid.Column="0" Grid.Row="1" Margin="2">Password:</Label>  
<PasswordBox Name="passwordTextBox" Grid.Column="1" Grid.Row="1" Margin="2"/>  

<StackPanel Grid.Column="0" Grid.ColumnSpan="2" Grid.Row="2"  
Orientation="Horizontal" HorizontalAlignment="Center">  

<Button Name="okButton" Click="okButton_Click" IsDefault="True" 
MinWidth="80" Margin="5">OK</Button>  

<Button Name="cancelButton" Click="cancelButton_Click" IsCancel="True" 
MinWidth="80" Margin="5">Canc el</Button>  

</StackPanel>  
</Grid>  

</Window>  

Now that you have created the windows that make up the UI, you are ready 
to add the implementation to the window's codebehind files.  

5. Add the following code to the MainWindow.xaml.cs codebehind file:  

using System;  
using System.Collections.Generic; using 
System.Linq; using System.Text; using 
System.Windows; using 
System.Windows.Controls; using 
System.Windows.Data; using 
System.Windows.Documents; using 
System.Windows.Input; using 
System.Windows.Media; using 
System.Wi ndows.Media.Imaging; using 
System.Windows.Navigation; using 
System.Windows.Shapes; using 
System.Data; using OSOBLL;  
using System.Collections.ObjectModel;  

namespace OSOWPFUI {  
/// <summary>  
/// Interaction logic for MainWindow.xaml /// 
</summary>  
public partial class MainWindow : Window {  

DataSet _dsProdCat; 
Employee _employee; 
Order _order;  

public MainWindow()  
{  

InitializeComponent();  

}  

private void Window_Loaded(object sender, RoutedEventArgs e)  
{  

ProductCatalog prodCat = new ProductCatalog();  
_dsProdCat = prodCat.GetProductInfo(); this.DataContext = 
_dsProdCat.Tables[''Category''];  
_order = new Order();  
_employee = new Employee();  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

308 

 

 

this.orderListView.ItemsSource = _order.OrderItemList;  
}  

private void loginButton_Click(object sender, RoutedEventA rgs e)  
{  

LoginDialog dlg = new LoginDialog(); dlg.Owner = this; dlg.ShowDialog();  
// Process data entered by user if dialog box is accepted if 
(dlg.DialogResult == true)  
{  

_employee.LoginName = dlg.nameTextBox.Text;  
_employee.Password = dlg.passwordTextBox.Password; if 
(_employee.LogIn() == true)  
{  

this.statusTextBlock.Text = "You are logged in as employee number " + 
_employee.EmployeeID.ToString();  
}  
else  
{  

MessageBox.Show("You could not be verified. Please try again.");  
}  

}  
}  

private void exitButton_Click(object sender, RoutedEventArgs e)  
{  

this.Close();  
}  

private void addButton_Click(object sender, RoutedEventArgs e) {  

OrderItemDialog orderItemDialog = new OrderItemDialog();
DataRowView selectedRow;  
selectedRow =  (DataRowView)this.ProductsDataGrid.SelectedItems[0]; 
orderItemDialog.productIdTextBox.Text = 
selectedRow.Row.ItemArray[0].ToString(); 
orderItemDialog.unitPriceTextBox.Text = 
selectedRow.Row.ItemArray[4].ToString(); orderItemDialog.Owner = this; 
orderItemD ialog.ShowDialog(); if (orderItemDialog.DialogResult == true )  
{  

string productId = orderItemDialog.productIdTextBox.Text; double 
unitPrice = double.Parse(orderItemDialog.unitPriceTextBox.Text); int 
quantity = int.Parse(orderItemDialog.quantityTextBox.Text ); 
_order.AddItem(new OrderItem(productId,unitPrice,quantity));  

}  
}  

private void removeButton_Click(object sender, RoutedEventArgs e)  
{  

if (this.orderListView.SelectedItem != null)  
{  

var selectedOrderItem = this.orderListView.SelectedItem as OrderItem; 
_order.RemoveItem(selectedOrderItem.ProdID);  

}  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

309  

 

 

}  

private void placeOrderButton_Click(object sender, RoutedEventArgs e)  
{  

if (_employee.LoggedIn == true)  
{  

//place order int orderId;  
orderId = _order.PlaceOrder(_employee.EmployeeID);  
MessageBox.Show("Your order has been placed. Your order id is " + 

orderId.ToString());  
}  
else  
{  

MessageBox.Show("You must be logged in to place an order.");  
}  

}  
}  

}  

A look at the preceding code reveals that when the window loads, the 
Window_Loaded event retrieves the ProdCat DataSet and sets it equal to the 
DataContext of the window so that the ComboBox and GridView controls can bind 
to it. An Order object is created and the ListView control is bound to its 
OrderItem collection. This code segment is repeated here for your revi ew:  

private void Window_Loaded(object sender, RoutedEventArgs e)  

ProductCatalog prodCat = new ProductCatalog();  
_dsProdCat = prodCat.GetProductInfo(); this.DataContext = 
_dsProdCat.Tables[''Category''];  
_order = new Order();  
_employee = new Employee();  
thi s.orderListView.ItemsSource = _order.OrderItemList;  

}  

The loginButton_Qick event launches an instance of the LoginDialog window 
and checks the Dialog result. If it comes back as true, the _employee object's 
values are set to the values entered in the dialog and the Login method of the 
Employee class is called. If the Login method returns true, the user is notified 
that they are logged in.  

private void loginButton_Click(object sender, RoutedEventArgs e)  
{  

LoginDialog dlg = new LoginDialog(); 
dlg.Owner =  this; dlg.ShowDialog();  
// Process data entered by user if dialog box is accepted if 
(dlg.DialogResult == true)  
{  

_employee.LoginName = dlg.nameTextBox.Text;  
_employee.Password = dlg.passwordTextBox.Password; if (_employee.LogIn() 
== true)  
{  

this.statusTextBlock.Text = "You are logged in as employee number " + 
_employee.EmployeeID.ToString();  
}  
else  
{  

MessageBox.Show(''You could not be verified. Please try again.");  
}  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

310  

 

 

}  
}  

The addButton_Click event launches an instance of the OrderItemDialog window 
and fills the textboxes with information from the selected row of the 
ProductsDataGrid. If the DialogResult returns true, the information entered in 
the dialog is used to create an OrderItem object and add it to the Order's 
OrderItem collection.  

pri vate void addButton_Click(object sender, RoutedEventArgs e)  
{  

OrderItemDialog orderItemDialog = new OrderItemDialog();  

DataRowView selectedRow;  
selectedRow = (DataRowView)this.ProductsDataGrid.SelectedItems[0]; 
orderItemDialog.pr oductIdTextBox.Text = selectedRow.Row.ItemArray[0].ToString(); 
orderItemDialog.unitPriceTextBox.Text = selectedRow.Row.ItemArray[4].ToString(); 
orderItemDialog.Owner = this; orderItemDialog.ShowDialog();

if (orderItemDialog.DialogResult == true )  
{  

string productId = orderItemDialog.productIdTextBox.Text; double unitPrice = 
double.Parse(orderItemDialog.unitPriceTextBox.Text); int quantity = 
int.Parse(orderItemDialog.quantityTextBox.Text); _order.AddItem(new 
OrderItem(productId,unitPrice,quantity));  

}  
}  

The removeButton_Qick event checks to see if an item is selected 
in the orderList view and removes it from the order.  

private void removeButton_Qick(object sender, RoutedEventArgs e)  
{  

if (this.orderListView.SelectedItem != null)  
{  

var selectedOrderItem = this .orderListView.SelectedItem as OrderItem; 
_order.RemoveItem(selectedOrderItem.ProdID);  

}  
}  

The placeOrderButton_Click event checks to see if the user is logged in and places the 
order if they are.  

private void placeOrderButton_Click(object sender, RoutedEventArgs e)  
{  

if (_employee.LoggedIn == true)  
{  

//place order int orderId;  
orderId = _order.PlaceOrder(_employee.EmployeeID);  
MessageBox.Show(''Your order has been placed. Your order id is " + orderId.ToString());  

}  
else  
{  

MessageBox.Show(''You must  be logged in to place an order.");  
}  

}  

Now that the MainWindow's codebehind is implemented, you are ready to add the 
code behind for the dialog widows.  

6. Add the following code to the OrderItemDialog.xaml.cs codebehind file. If the user 



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

311  

 

 

clicks the OK button , the DialogResult is set to true. If the user clicks cancel, the 
DialogResult is set to false.  

using System;  
using System.Collections.Generic;  
using System.Linq;  
using System.Text;  
using System.Windows;  
using System.Windows.Controls;  
using System.Windows.Data; using 
System.Windows.Documents; using 
System.Windows.Input; using 
System.Windows.Media; using 
System.Windows.Media.Imaging; using 
System.Windows.Shapes;  

namespace OSOWPFUI {  
/// <summary>  
/// Interaction logic for OrderItemDialog.xaml /// </summary>  
public partial class OrderItemDialog : Window {  

public OrderItemDialog()  

InitializeComponent();  

private void okButton_Click(object sender, RoutedEventArgs e) 

this.DialogResult = true;  

private void cancelButton_Click(object sender, RoutedEventArgs e) 

this.DialogResult = false;  
}  

}  

7. Add the following code to the LoginDialog.xaml.cs codebehind file. It is similar to 
OrderItemDialog code.  

using System;  
using System.Collections.Generic;  
using System.Linq;  
using System.Text;  
using System.Windows;  
using System.Windows.Controls;  
using System.Windows.Data;  
using System.Windows.Documents;  
using System.Windows.Input;  
using System.Windows.Media;  
using System.Windows.Media.Imaging;  
using System.Windows.Shapes;  

namespace OSOWPFUI {  
/// <summary>  



CHAPTER 14 ƴ DEVELOPING THE OSO APPLICATION 

312  

 

 

/// Interaction logic for LoginDialog.xaml /// </summary>
public partial class LoginDialog : Window {  

public LoginDialog()  
{  

InitializeComponent();  
}  

private void okButton_Click(object sender, RoutedEventArgs e)  
{  

this.DialogResult = true;  
}  

private void cancelButton_Click(object sender, RoutedEventArgs e)  
{  

this.DialogResult = false;  
}  

}  
}  

Now that you have added the implementation code to the UI, you are ready to 
test the application.  

8. Launch the application in debug mode. You are presented with the 
order form (see Figure 14 - 7). Using the category drop - down, switch 
between the different categories and verify that the products are 
updated in the product grid. Select an item in the product grid and 
click the Add It em button. You are presented with the Order Item 
dialog (see Figure 14 - 8). Add some items to the order and test 
removing some items from the order. To test placing an order, click 
the Login button. You are presented with the Login dialog (see Figure 
14- 9).  Enter a value of JSmith for the user and a value of js for the 
password. You should receive confirmation you are logged in. Click 
the Place Order button. You should receive confirmation the order 
was placed. When you've finished testing, click the Exit bu tton to stop 
the program.  

ƵNote ¦ÑÙÍÔÚÌÍdÙÍÎØdÎØdÆdËÚÓÈÙÎÔÓÆÑdÆÕÕÑÎÈÆÙÎÔÓpdÎÙ̃ØdËÔ×dÉÊÒÔÓØÙ×ÆÙÎÔÓdÕÚ×ÕÔØÊØdÔÓÑÞdÆÓÉdÎØdÓÔÙd

production ready.  

Summary 
In this chapter, you revisited the office supply ordering (OSO) application desig ned in Chapter 4. 
You created a functional application incorporating the concepts you learned in the previous 
chapters. The application contains a data access layer, a business logic layer, and a user 
interface layer. You learned why applications are split  into different layers and how to construct 
a working application comprised of the various layers. Although you didn't create a web - based 
user interface application layer, because you created the application in distinct tiers, you could 
easily replace the Windows - based WPF UI with a web -  based Silverlight UI.



313  

 

 

C H A P T E R 1 5 

Wrapping Up 

If you've made it this far, take a moment and pat yourself on the back. You've come a long way 
since the day you first cracked open the cover of this book; you've gained v aluable skills and 
learned concepts you can use to successfully program using the .NET Framework, C#, and the 
Visual Studio IDE. These include, but are not limited to, the following:  

 ̋ The importance of the application design cycle.  

 ̋ The Unified Modeling Language and how it can help facilitate the analysis 
and design of object - oriented programs.  

 ̋ The Common Language Runtime (CLR).  

 ̋ The structure of the .NET Framework.  

 ̋ How to create and use class structures and hierarchies.  

 ̋ How to implement inheritance, polym orphism, and interfaces.  

 ̋ Object interaction and collaboration.  

 ̋ Event - driven programming.  

 ̋ Structured error handling.  

 ̋ How to work with data structures and data sources using ADO.NET.  

 ̋ Using the Entity Framework to create object relational mappings to a SQL 
Server database.  

 ̋ How to use the features of the Visual Studio IDE to increase productivity 
and facilitate debugging.  

 ̋ How to implement a Windows - based graphical user interface using the 
Windows Presentation Framework.  

 ̋ How to implement a web - based graphical user interface using Silverlight.  

 ̋ How to create and consume services using Windows Communication Framework.  

Congratulations! You can now call yourself a C# programmer (albeit a neophyte). 
However, don't get too high on yourself. If your goal is to become a professional  C# programmer, 
your journey has just begun. The next stage of your development is to gain expe rience. In other 
words, design and code, and  
then design and code some more. If you are designing and coding C# at work, this will be easy. 
(Although it will be stressful if you are expected to be an expert after that three - day course 
they sent you to!)  



CHAPTER 15 ƴ WRAPPING UP 

314 

 

 

If  you are learning on your own, you will have to find the time and projects on which to 
work. This is easier than you might think. Commit to an hour a day and come up with an idea for 
a program. For example, you could design a program that converts recipes into Extensible 
Markup Language (XML) data. The XML data could then generate a shopping list. Heck, if you 
really want to go all out, incorporate an inventory tracking system that tracks ingredients you 
have in stock. However you go about gaining experienc e, remember the important adage: use it 
or lose it!  

The following sections highlight some other important things to consider as you develop 
your programming skills.  

Improve Your Object-Oriented Design Skills 
Object - oriented analysis and design is one of th e hardest tasks you will perform as a 
programmer. This is not a skill that comes easily for most programmers. It is, however, one of 
the most important skills you should strive to master. It is what separates what I call a 
programmer  from a coder.  If you talk to most CIOs and programming managers, finding coders is 
easy; it is the programmer they are after.  
·ÊÒÊÒÇÊ×dÙÍÆÙdÙÍÊ×ÊdÎØdÓÔdÔÓÊd̆Ù×ÚÊ̇dÒÊÙÍÔÉÔÑÔÌÞpd×ÆÙÍÊ×dØÊÛÊ×ÆÑdÙÍÆÙdÆ×ÊdÊÖÚÆÑÑÞdÛÆÑÎÉr 

Investigate the .NET Framework Namespaces 
The .NET Fra mework contains a vast number of classes, interfaces, and other types aimed at 
optimizing and expediting your development efforts. The various namespaces that make up the 
.NET Framework Class Library are organized by functionality. It's important you take the time 
to become familiar with the capabilities provided by these namespaces.  

Start out with the namespaces that incorporate functionality you will use most often, such as 
the root namespace System and the System.Data.EntityClient, which contains the .NE T 
Framework Data Provider for the Entity Framework.  

After you become familiar with the more common namespaces, explore some of the more 
obscure ones. For example, System.Security.Cryptography provides cryptographic services 
such as data encoding, hashing, and message authentication. You will be amazed at the extent of 
the support provided by the framework. You can find a wealth of information on the members of 
the various namespaces in Visual Studio's integrated documentation.  

Become Familiar with ADO.NET and the Entity Framework 
Data is fundamental to programming. You store, retrieve, and manipulate data in every program 
you write. The data structure a program works with during execution is nondurable  data˿it is 
held in RAM. When the application terminates , this data is lost and has to be re - created the next 
time the application runs. Durable data  is data that is maintained in a permanent data structure 
such as a file system or a database. Most programs need to retrieve data from and persist data 
to some so rt of durable data storage. This is where ADO.NET steps in. ADO.NET refers to the 
namespaces that contain the functionality for working with durable data. (It also contains 
functionality for organizing and working with nondurable data in a familiar relatio nal database or 
XML - type structure.) Although I have introduced you to ADO.NET and the Entity Framework, 
this is such an important topic that it deserves a book devoted solely to these data access 
technologies. (Don't worry ˿there are many!) This is definit ely  
an area where you need to devote further study. To learn more about these technologies, visit the 
Data Developer Center site at  http://msdn.microsoft.com/en - us/data. A good book on the Entity 
Framewo rk is Entity Framework 4.0 Recipes  by Larry Tenny and Zeeshan Hirani (Apress, 2010).  

http://msdn.microsoft.com/en-us/data


CHAPTER 15 ƴ WRAPPING UP 

315 

 

 

Learn More About WPF and Silverlight 
Although you were introduced to WPF and Silverlight in Chapters 11 and 12, I only scratched the 
surface of these powerful technologies . Silverlight and WPF are packed full of features for 
developing engaging, interactive user experiences on the web, desktop, and mobile devices. For 
more information on programming WPF, visit the Windows Client development center at  
http://windowsclient.net. For more information about programming in Silverlight visit the 
Silverlight developer center at www.silverlight.net. Both these sites are full of learning materials 
and demo applications showcasing the power of these technologies. A good book on WPF is 
Applied WPF 4 in Context  by Raffaele Garofalo (Apress, 2011). A good book for further study into 
Silverlight is Pro Silverlight 4 in C# 3rd Edition  by Matthew MacDonald (Ap ress, 2010).  

Move Toward Component-Based Development 
After you have mastered object - oriented development and the encapsulation of your programming 
logic in a class system, you are ready to move toward component - based development. Components  
are assemblies that further encapsulate the functionality of your programming logic. Although the 
OSO application's business logic tier is logically isolated from the data access tier, physically they 
reside in the same assembly. You can increase code maintenance and reu se by compiling each into 
its own assembly. You should start moving to a Lego approach of application development. This is 
where your application is comprised of a set of independent pieces (assemblies) that can be 
snapped together and work in conjunction to perform the necessary services. For more 
information on this and other best practices, go to the Microsoft's patterns & practices web site at  
http://msdn.microsoft.com/en - us/practices/.  

Find Help 
An enormous amount of information is available on the .NET Framework and the C# programming 
language. The help system provided with Visual Studio is an excellent resource for programmers.  
Get in the habit of using this resource religiously. Another extre mely important resource is 
http://msdn.microsoft.com. This web site, provided by Microsoft for developers, contains a wealth 
of information including white papers, tutorials, and webcast seminars; quite honestly, i t's one of 
the most informative sites in the industry. If you are developing using Microsoft technologies, 
visiting this site should be as routine as reading the daily paper. There are also a number of 
independent web sites dedicated to the various .NET pr ogramming languages. One good site is C# 
Corner ( www.c - sharpcorner.com/), w hich contains tons of articles on all aspects of programming 
in C#. You can use your favorite search engine to discover other good site s on the web dedicated 
to C# programming.  

Join a User Group 
Microsoft is investing a lot of support for the development of local .NET user groups. The 
user groups consist of members with an interest in .NET programming. These groups 
provide a great  
avenue for learning, mentoring, and networking. There is a listing of .NET user groups 
available at http://msdn.microsoft.com. The International .NET Association (INETA) also 
provides support for .NET user groups; you can find a listing of INETA affiliated user groups 
at www.ineta.org.  

If you can't find a .NET user group in your area, heck, why not start one?  

http://windowsclient.net/
http://windowsclient.net/
http://www.silverlight.net/
http://msdn.microsoft.com/en-us/practices/
http://msdn.microsoft.com/en-us/practices/
http://msdn.microsoft.com/
http://www.c-sharpcorner.com/
http://msdn.microsoft.com/
http://www.ineta.org/


CHAPTER 15 ƴ WRAPPING UP 

316 

 

 

Please Provide Feedback 
Although every effort has been made to provide you with an error - free text, it is inevitable 
that some mistakes will make it through the editing process. I am committed to providing 
updated errata at the Apress Web site ( www.apress.com), bu t I can't do this without  your help. 
If you have come across any mistakes while reading this text, please report them to me 
through the Apress site.  

Thank You and Good Luck 
I sincerely hope you found working your way through this text an enjoyable and worthwhile 
experience.  
I want to thank you for allowing me to be your guide on this journey. Just as yo ur skills as a 
developer increased as a result of reading this book, my skills as a developer have increased 
immensely as a result of writing it. My experience of teaching and training for the past two 
decades has been that you really don't fully comprehen d a subject until you can teach it to 
someone else. So, again, thank you and good luck!

A P P E N D I X A 

Fundamental Programming 
Concepts 

The following information is for readers who are new to programming and need a primer on 
some fundamental programming  concepts. If you have programmed in another language, 
chances are the concepts presented in this appendix are not new to you. You should, however, 
review the material briefly to become familiar with the C# syntax.  

Working with Variables and Data Types 
Var iables in programming languages store values that can change while the program executes. For 
example, if you wanted to count the number of times a user tries to log in to an application, you 
could use a variable to track the number of attempts. The variabl e is a memory location where the 
value is stored. Using the variable, your program can read or alter the value stored in memory. 
Before you use a variable in your program, however, you must declare it. When you declare a 
variable, the compiler also needs t o know what kind of data will be stored at the memory location. 
For example, will it be numbers or letters? If the variable will store numbers, how large can a 
number be? Will the variable store decimals or only whole numbers? You answer these questions 
by assigning a data type to the variable. A login counter, for example, only needs to hold positive 
whole numbers. The following code demonstrates how you declare a variable named counter in C# 

http://www.apress.com/


APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

317 

 

 

with an Integer data type:  

int counter;  

Specifying the data type  is referred to as strong typing.  Strong typing results in more 
efficient memory management, faster execution, and compiler type checking, all of which 
reduces runtime errors.  

Once you declare the variable, you can assign it an initial value, either in a s eparate 
statement or within the declaration statement itself. For instance, the following code  

int counter = 1;  

is equivalent to this  

int counter; 
counter = 1;  

If you do not explicitly assign an initial value to a variable at the time you declare it, the 
compiler will do so implicitly, assigning numeric data types to 0, Boolean data types to false, 
ÈÍÆ×ÆÈÙÊ×dÉÆÙÆdÙÞÕÊØdÙÔdÊÒÕÙÞdl̆ḋmpdÉÆÙÊdÉÆÙÆdÙÞÕÊØdÙÔd1/1/0001,  and object data types to null 
(which is an empty reference pointer). The following sections further describe these various data 
types.  

Understanding Elementary Data Types 
C# supports elementary data types such as numeric, character, and date.  

Integral Data Types 
Integral data types represent whole numbers only. Table A - 1 summarizes the integral data types used 
in 
C#. 

 

Obviously, memory size is important when choosing a data type for a variable. A less obvious 
consideration is how easily the compiler works with the data type. The compiler performs 
arithmetic operations with integers more efficiently than the other types. Often, it's better to use 
integers as counter variables even though a byte or short type could easily manage the maximum 
value reache d. 

Table A - 1. Integral Data Types  
Data Type Storage Size Value Range 

Byte  8- bit  0 through 255  

Short  16- bit  - 32,768 through 32,767  

Integer  32- bit  - 2,147,483,648 through 2,147,483,647  

Long  64- bit  - 9,223,372,036,854,775,808 through 
9,223,372,036,854,775,807  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

318 

 

 

Non-Integral Data Types 
If a variable will store numbers that include decimal parts, then you must use a non - integral data type.  
C# supports the non - integral data types listed in Table A - 2. 

 

The decimal data type holds a larger number of significant digits than either the single or 
the double data types and it is not subject to rounding errors. Decimal data types are usually 
reserved for financial or scientific calculations that require a higher degree of precision . 

Character Data Types 
Character data types are for variables that hold characters used in the human language. For 
example, a character data type holds letters such as a or numbers used for display and printing 
ØÚÈÍdÆØd̆vdÆÕÕÑÊØṙd¹ÍÊdÈÍÆ×ÆÈÙÊ×dÉÆÙÆdÙÞÕÊØdin C# are based on Unicode, which defines a 
character set that can represent the characters found in every language from English to Arabic 
and Mandarin Chinese. C# supports two character data types: char and string. The char data 
type holds single (16 - bit)  Unicode character values such as a or B. The string data type holds a 
sequence of Unicode characters. It can range from zero up to about two billion characters.  

Boolean Data Type 
The Boolean data type holds a 16 - bit value that is interpreted as true or fa lse. It's used for 
variables that can be one of only two values, such as yes or no, or on or off.  

Date Data Type 
Dates are held as 64 - bit integers where each increment represents a period of elapsed time 
from the start of the Gregorian calendar (1/1/0001 at 12:00 a.m.).  

Object Data Type 
An object data type is a 32 - bit address that points to the memory location of another data type. 
It is commonly used to declare variables where the actual data type they refer to can't be 
determined until runtime. Although t he object data type can be a catch - all to refer to the other 
data types, it is the most inefficient data type when it comes to performance and should be 
avoided unless absolutely necessary.  

Table A - 2. Non- Integral Data Types  
Data Type Storage Size Value Range 

Single  32- bit  - 3.4028235E+38 through - 1.401298E - 45 for negative values; 
1.401298E - 45 through 3.4028235E+38 for positive values  

Double  64- bit  1.79769313486231570E+308 through - 4.94065645841246544E -
324 for negative values; 4.94065645841246544E - 324 through 
1.79769313486231570E+308 for positive values  

Decimal  128- bit  0 through +/ - 79,228,162,514,264,337,593,543,950,335 with no 
decimal point; 0 through +/ - 7.9228162514264337593543950335 
with 28 places to the right of the decimal  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

319 

 

 

Nullable Types 
By default, value types such as the Boolean, integer, and double data types can't be assigned a null 
value. This can become problematic when retrieving data from data structures such as a database 
that does allow nulls. When declaring a value type variable that may be assigned a null, you make it 
a nullable type by placing a question mark symbol (?) after the type name, like so:  

double salary = null; // Not allowed. double? salary = null; // allowed.  

Introducing Composite Data Types 
Combining elementary data types creates composite data types. Structu res, arrays, and classes are 
examples of composite data types.  

Structures 
A structure data type is useful when you want to organize and work with information that is mostly 
just a piece of data and does not need the overhead of class methods and constructo rs. It's well 
suited for representing lightweight objects such as the coordinates of a point or rectangle. A single 
variable of type structure can store such the information. You declare a structure with the struct 
keyword. For example, the following code creates a structure named Point to store the coordinates 
of a point in a two dimensional surface:  

public struct Point {  
public int _x, _y;  

public Point(int x, int y)  

{  
_x = x;  
_y = y;  

}  

}  
Once you define the structure, you can declare a variable of the structure type and create a 

new instance of the type, like so:  

Point p1 = new Point(10,20);  

Arrays 
Arrays are often used to organize and work with groups of the same data type; for example, you 
may need to work with a group of names, so you declare an arra y data type by placing square 
brackets ([]) immediately following the variable name, like so:  

string[] name;  
The new operator is used to create the array and initialize its elements to their default 

values. Because the elements of the array are referenced by a zero - based index, the following 
array holds five elements:  

string[] name = new string[4];  

To initialize the elements of an array when the array is declared, you use curly brackets ({}) to 
list the values. Since the size of the array can be inferred, you do not have to state it.  

string[] name = {"Bob","Bill","Jane","Judy"};  

C# supports multidimensional arrays. When you declare the array, you separate the size of the 
dimensions by commas. The following declaration creates a two - dimensional array of inte gers with 
five rows and four columns:  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

320 

 

 

string[,] name = new string[4,3];  

To initialize the elements of a two dimensional array when the array is declared, you use curly 
brackets inside curly brackets to list the array elements.  

int[,] intArray = {{1,2}, {3, 4}, {5,6}, {7,8}};  

You access elements of the array using its name followed by the index of the element in 
brackets. For example, name[2] references the third element of the names array declared 
previously and has a value of Jane.  

Classes 
Classes are used extensively in object - oriented programming languages. Most of this book is 
devoted to their creation and use. At this point, it suffices to say that classes define a complex data 
type definition for an object. They contain information about how an object s hould behave, including 
its name, methods, properties, and events. The .NET Framework contains many predefined classes 
with which you can work. You can also create your own class type definitions. A variable defined as 
a class type contains a 32 - bit addres s pointer to the memory location of the object. The following 
code declares an object instance of the StringBuilder class defined in the .NET Framework:  

StringBuilder sb = new StringBuilder();  

Looking at Literals, Constants, and Enumerations 
Although the v alues of variables change during program execution, literals and constants contain 
items of data that do not change.  

Literals 
Literals are fixed values implicitly assigned a data type and are often used to initialize variables. The 
following code uses a li teral to add the value of 2 to an integer value:  

Count = Count + 2  
By inspecting the literal, the compiler assigns a data type to the literal. Numeric literals without 

decimal values are assigned the integer data type; those with a decimal value are assigned as double 
data type. The keywords true and false are assigned the Boolean data type. If the literal is contained 
in quotes, it is assigned as a string data type. In the following line of code, the two string literals are 
combined and assigned to a  string variable:  

FullName = "Bob" + "Smith"  

It's possible to override the default data type assignment of the literal by appending a type 
character to the literal. For example, a value of 12.25 will be assigned the double data type but a 
value of 12.25f w ill cause the compiler to assign it a single data type.  

Constants 
Many times you have to use the same constant value repeatedly in your code. For example, a series 
of geometric calculations may need to use the value of pi. Instead of repeating the literal 3.14 in 
your code, you can make your code more readable and maintainable by using a declared constant. 
You declare a constant using the const keyword followed by the constant name and the data type:  

const Single pi = 3.14159265358979323846f;  

The constant is assigned a value when it is declared and this value can't be altered or reassigned.  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

321 

 

 

Enumerations 
You often need to assign the value of a variable to one of several related predefined constants. In 
these instances, you can create an enumeration type to g roup together the values. Enumerations 
associate a set of integer constants to names that can be used in code. For example, the 
following code creates an enum type of Manager used to define three related manager constants 
with names of DeptManager, General Manager, and AssistantManager with values of 0, 1, and 2, 
respectively:  

enum Manager {  
DeptManager,  
GeneralManager,  
AssistantManager,  

}  

A variable of the enum type can be declared and set to one of the Enum constants.  

Manager managerLevel = Manager.DeptManager;  

ƵNote The .NET Framework provides a variety of intrinsic constants and enumerations designed to 

make your coding more intuitive and readable. For example, the StringAlignment enumeration 

specifies the alignment of a text string relativ e to its layout rectangle.  

Exploring Variable Scope 
Two important aspects of a variable are its scope and lifetime. The scope of a variable refers to 
how the variable can be accessed from other code. The lifetime of a variable is the period of time 
when the variable is valid and available for use. A variable's scope and lifetime are determined by 
where it is declared and the access modifier used to declare it.  

Block-Level Scope 
A code block is a set of grouped code statements. Examples of code blocks incl ude code organized 
in if -  else, do - loop, or for - next statements. Block - level scope is the narrowest scope a variable 
can have. A variable declared within a block of code is available only within the block it is 
declared. In the following code, the variable  blockCount can only be accessed from inside the if 
block. Any attempt to access the variable outside the block will generate a compiler error.  
if (icount > 10)  
{  

int blockCount; 
blockCount = icount;  

}  

Although the scope of blockCount is limited to the if block, the lifetime of the variable is for the 
entire procedure where the block exists. You will probably find block - level scope to be too 
restrictive in most cases and will instead use procedure scope.  

Procedure Scope 
Procedures are blocks of code that ca n be called and executed from other code. There are two 
types of procedures supported in C#: method and property. Variables declared outside of a code 
block but within a procedure have procedure - level scope. Variables with procedure scope can be 
accessed b y code within the same procedure. In the following code, the counter iCount is declared 
with procedure scope and can be referenced from anywhere within the procedure block of the 
Counter method:  
void Counter()  
{  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

322 

 

 

int iCount = 0; do {  
iCount = iCount + 2;  

}  
while (iCount < 10);  

}  

The lifetime of a procedure scope variable is limited to the duration of the execution of the 
procedure.  

Module Scope 
Variables with module scope are available to any code within the class or structure. To have module 
scope, the variable is declared in the general declaration section (outside of any procedure blocks) 
of the class or structure. To limit the accessibility to the module where it is declared, you use the 
private access modifier keyword. In the following code, the iCou nt variable can be accessed by both 
procedures defined in the class:  
public class Class1 {  

private int _iCount; public void 
IncrementCount()  
{  

int iCount = 0; do {  
iCount = iCount + 2;  

}  
while (iCount < 10);  

}  
public void ReadCount()  
{  

Console.WriteLine(_iCount.ToString());  
}  

}  

The lifetime of the variable declared with module scope is the same as the lifetime of the 
object instance of the class or structure in which it is declared.  

ƵNote There are several additional variations of scope addressed in the main body of the book.  

Understanding Data Type Conversion 
During program execution there are many times when a value must be converted from one data type 
to another. The process of converting between data types is referred to as casting  or conversion.  

Implicit Conversion  
The C# compiler will perform some data type conversions for you automatically. For numeric types, 
an implicit conversion can be made when the value to be stored can fit into the variable without 
being truncated or rounde d off. For example, in the following code, an integer data type is implicitly 
converted to a long data type:  
int i1 = 373737373; long l1 = i1;  
l1  *= l1;  

Explicit Conversion 
Explicit conversion is referred to as casting.  To perform a cast, you specify the type that you are 
casting to in parentheses in front of the value or variable to be converted. The following code uses 
a cast to explicitly convert the double type n1 to an integer type:  

double n1 = 3.73737373; int i1 = (int)n1;  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

323 

 

 

Widening and Narrowing Conversions 
Widening conversions occur when the data type being converted to can accommodate all the 
possible values contained in the original data type. For example, an integer data type can be 
converted to a double data ty pe without any data loss or overflow. Data loss occurs when the 
number gets truncated. For example, 2.54 gets truncated to 2 if it is converted to an integer data 
type. Overflow occurs when a number is too large to fit in the new data type. For example, if  the 
number 50000 is converted to a short data type, the maximum capacity of the short data type is 
exceeded, causing the overflow error. Narrowing conversions, on the other hand, occur when the 
data type being converted to can't accommodate all the values  that can be contained in the original 
data type. For example, when the value of a double data type is converted to a short data type, any 
decimal values contained in the original value will be lost. In addition, if the original value is more 
than the limi t of the short data type, a runtime exception will occur. You should be particularly 
careful to trap for these situations when implementing narrowing conversions in your code.  

Working with Operators 
An operator is a code symbol that tells the compiler to p erform an operation on a value. The 
operation can be arithmetic, comparative, or logical.  

Arithmetic Operators  
Arithmetic operators perform mathematical manipulation to numeric types. Table A - 3 lists the 
commonly used arithmetic operators available in C#.

 

The following code increments the value of an integer data type by the number one:  

Count = Count + 1  

C# also supports shorthand assignment operators that combine the assignment with the 
operation. The following code is equivalent to the previous code:  

Count += 1  

If you are going to increment by one, you can also use the shorthand assignment ++. The 
following code is equivalent to the previous code:  

Count ++  

Table A - 3. Arithmetic Ope rators  
Operator Description 

= Assignment  

*  Multiplication  

/  Division  

+  Addition  

-  Subtraction  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

324 

} 

 

 

Comparison Operators 
A comparison operator compares two values and returns a Boolean value of true or false. Table 
A- 4 lists the common comparison operators used in C#.

 

You use comparison operators in condition statements to decide when to execute a block 
of code. The following if block checks to see if the number of invalid login attempts is greater 
than three before throwing an exception:  
if (_loginAttemps > 3)  
{  

throw new Exception("Invalid login.");  
}  

Table A - 4. Comparison Operators  
Operator Description 

< Less than  

<= Less than or equal to  

> Greater than  

>= Greater than or equal to  

== Equal to  

!= Not equal to  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

325 

 

 

Logical Operators 
Logical operators combine the results of conditional operators. The three most commonly  used 
logical operators are the And, Or, and Not operators. The And operator (&&) combines two 
expressions and returns true if both expressions are true. The Or operator (||) combines two 
expressions and returns true if either one is true. The Not operator  (!) switches the result of 
the comparison: a value of true returns false and a value of false returns true. The following 
code checks to see whether the logged - in user is a department manager or assistant manager 
before running a method:  

if (currentUserLe vel == Manager.AssistantManager || currentUserLevel == 
Manager.DeptManager)  

{  
ReadLog();  

}  

Ternary Operator 
The ternary operator evaluates a Boolean expression and returns one of two values depending 
on the result of the expression. The following shows the  syntax of the ternary operator:  
condition ? first_expression : second_expression;  

If the condition evaluates to true, the result of the first expression is returned. If the 
condition evaluates to false, the result of the second expression is returned. The following code 
checks to see if the value of x is zero. If it is, it returns 0; if not, it divides y by x and returns 
the result.  
return x == 0.0 ? 0 : y/x;  

Introducing Decision Structures 
Decision structures allow conditional  execution of code blocks depending on the evaluation of a 
condition statement. The if statement evaluates a Boolean expression and executes the code 
block if the result is true. The switch statement checks the same expression for several 
different values and conditionally executes a code block depending on the results.  

If Statements 
To execute a code block if a condition is true, use the following structure: if (condition1)  
{  

//code  
}  

To execute a code block if a condition is true and an alternate code block if it is false, add 
an else block.  
if (condition1)  
{  

//code  
}  
else  
{  

//code  
}  

To test additional conditions if the first evaluates to false, add an else - if block: if 

(condition1)  
{  

//code  
}  
else if (condition2)  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

326 

} 

 

 

{  
//code else  

{  
//code  

}  

An if statement can have multiple else - if blocks. If a condition evaluates to true, the 
corresponding code statements are executed, after which execution jumps to the end of the 
statements. If a condition evaluates to false, the next else - if condition is checked . The else 
block is optional, but if included, it must be the last. The else block has no condition check and 
executes only if all other condition checks have evaluated to false. The following code 
demonstrates using the if statement to evaluate a series o f conditions. It checks a performance 
rating to determine what bonus to use and includes a check to see if the employee is a manager 
to determine the minimum bonus.  

if (performance ==1)  
{  

bonus = salary * 0.1;  
}  
else if (performance == 2)  
{  

bonus = salary * 0.08;  
}  
else if (employeeLevel == Manager.DeptManager)  
{  

bonus = salary * 0.05;  
}  
else  
{  

bonus = salary * 0.03;  
}  

Switch Statements 
Although the switch statement is similar to the if - else statement, it's used to test a single 
expression for a series of values. The structure of the switch statement is as follows:  
switch (expression)  
{  
case 1:  

Console.WriteLine("Case 
1"); break; case 2:  

Console.WriteLine("Case 
2"); break; default:  

Console.WriteLine("Default case"); 
break;  

}  

A switch statement can have multiple case blocks. If the test expression value matches 
the case expression, the code statements in the case block execute. After the case block 
executes, you need a break statement to bypass the rest of the case statements. If  the test 
expression doesn't match the case



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

}  

327 

 

 

expression, execution jumps to the next case block. The default block doesn't have an 
expression. It executes if no other case blocks are executed. The default block is optional, but 
if used, it must be last. The  following example uses a switch to evaluate a performance rating 
to set the appropriate bonus rate:  

switch(performance)  
{  

case 1:  
bonus = salary * 0.1; 

break; case 2:  
bonus = salary * 0.08; 

break; case 3:  
bonus = salary * 0.03; 

break; default:  
bonus = sal ary * 0.01; 
break;  

}  

Using Loop Structures 
Looping structures repeat a block of code until a condition is met. C# supports the following 
looping structures.  

While Statement 
The while statement repeats the execution of code while a Boolean expression remains true. 
The expression gets evaluated at the beginning of the loop. The following code executes until 
a valid login variable evaluates to true:  

while (validLogin = false)  
{  

//code statements...  
}  

Do-While Statement 
The do - while loop is similar to the  while loop except the expression is evaluated at the end of 
the loop. The following code will loop until the maximum login attempts are met:  

do 
{  

//code statements...  
}  
while (iCount < maxLoginAttempts);  

For Statement 
A for statement loops through a code block a specific number of times based on the value stored 
in a counter. For statements are a better choice when you know the number of times a loop 
needs to execute at design time. In the parenthesis that follow a for statement, you initialize a 
counter, define the evaluation expression, and define the counter increment amount.  
for (int i = 0; i < 10; i++)  
{  

//Code statments...  
}  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

328 

 

 

For Each Statement 
The for - each statement loops through code for each item in a collection. A collection  is a group 
of ordered items; for example, the controls placed on a Windows Form are organized into a 
Controls collection. To use the for - each statement, you first declare a variable of the type of 
items contained in the collection. This variable is set to  the current item in the collection. The 
following for - each statement loops through the employees in an employee list collection:  
foreach (Employee e in employeeList)  
{  

//Code statements  
}  

If you need to conditionally exit a looping code block, you can use  the break statement. The 
following code shows breaking out of the for - each loop:  
foreach (Employee e in employeeList)  
{  

//Code statements if (e.Name == "Bob")  
{  

break;  
}  

}  

Introducing Methods 
Methods are blocks of code that can be called and executed from  other code. Breaking an 
application up into discrete logical blocks of code greatly enhances code maintenance and reuse. 
C# supports methods that return values and methods that do not. When you declare a method, 
you specify an access modifier, a return ty pe, and a name for the method. The following code 
declares a method with no return type (designated by the keyword void) used to record logins to 
the event log:  
public void RecordLogin(string userName)  
{  

EventLog appLog = new EventLog(); 
appLog.Source = "O SO App";  
appLog.WriteEntry(userName + " has logged in.");  
You can declare methods with a parameter list that defines arguments that must be passed to 

the method when it is called. The following code defines a method that encapsulates the 
assignment of a bo nus rate. The calling code passes an integer type value to the method and 
receives a double type value back.  
public double GetBonusRate(int performanceRating)  
{  

double bonusRate; switch (performanceRating)  
{  

case 1:  
bonusRate = 0.1; 

break; case 2:  
bonusRate = 

0.08; break; case 3:  
bonusRate = 

0.03; break; default:  
bonusRate = 
0.01; break;  

}  
return bonusRate;  
}  

The following code demonstrates how the method is called:  



APPENDIX A ƴ FUNDAMENTAL PROGRAMMING CONCEPTS 

}  

329 

 

 

double salary; 
int 
performance; 
double bonus;  
// Get salary and performance data from data 
base... bonus = GetBonusRate(performance) * 
salary;  

If the access modifier of the method is private, it is only accessible from code within the 
same class. If the method needs to be accessed by code in other classes, then the public access 
modifier is used.

A P P E N D I X B 

Exception Handling in C# 

The to pics discussed here extend the discussion of exception handling found in Chapter 8, so this 
discussion assumes that you have first thoroughly reviewed Chapter 8. The purpose of this 
appendix is to review Microsoft's recommendations for exception management  and present a few 
of the exception classes provided by the .NET Framework.  

Managing Exceptions 
Exceptions are generated when the implicit assumptions made by your programming logic are 
violated. For example, when a program attempts to connect to a database, it assumes that the 
database server is up and running on the network. If the server can't be located, an exception is 
generated. It's important that your application gracefully handles any exceptions that may occur. 
If an exception is not handled , your application will terminate.  

You should incorporate a systematic exception handling process in your methods. To 
facilitate this process, the .NET Framework makes use of structured exception handling through 
the Try, Catch, and Finally code blocks. Th e first step is to detect any exceptions that may be 
thrown as your code executes. To detect any exceptions thrown, place the code within the Try 
block. When an exception is thrown in the Try block, execution transfers to the Catch block. You 
can use more than one Catch block to filter for specific types of exceptions that may be thrown. 
The Finally block performs any cleanup code that you wish to execute. The code in the Finally 
block executes regardless of whether an exception is thrown. The following cod e demonstrates 
reading a list of names from a file using the appropriate exception handling structure:  

public ArrayList GetNames(string file)  
{  

StreamReader stream = new StreamReader();  
ArrayList names = new ArrayList(); 
try {  

stream = File.OpenText(file);  



APPENDIX B ƴ EXCEPTION HANDLING IN C# 

330 

 

 

while (stream.Peek() > - 1) 
{  

names.Add(stream.ReadLine());  
}  

}  
catch (FileNotFoundException e)  
{  

//Could not find file  
catch (FileLoadException e)  
{  

//Could not open file  
}  
catch (Exception e)  
{  

//Some kind of error occurred. Report error.  
}  
finally  
{  

stream.Close();  
}  
return names;  

}  

After an exception is caught, the next step in the process is to determine how to respond to it. 
You basically have two options: either recover from the exception or pass the exception to the 
calling procedure. The followi ng code demonstrates how to recover from a DivideByZeroException 
by setting the result to zero:  

try  
{  

Z = x / y 
}  
catch (DivideByZeroException e)  
{  

Z = 0  
}  

An exception is passed to the calling procedure using the Throw statement. The following code 
demonstrates throwing an exception to the calling procedure where it can be caught and handled:  

catch (FileNotFoundException e)  
{  

throw e;  
}  

As exceptions are thrown up the calling chain, the relevanc e of the original exception can 
become less obvious. To maintain relevance, you can wrap the exception in a new exception 
containing additional information that adds relevancy to the exception. The following code shows 
how to wrap a caught exception in a n ew one and then pass it up the calling chain:  

catch (FileLoadException e)  
{  

throw new Exception("GetNames function could not open file", e);  
}  

You preserve the original exception by using the InnerException property of the Exception class.  
Implementing this exception management policy consistently throughout the various methods in 

your application will greatly enhance your ability to build highly maintainable, flexible, and successful 
applications.



APPENDIX B ƴ EXCEPTION HANDLING IN C# 

331 

 

 

Using the .NET Framework Exception Classes 
The Common Language Runtime (CLR) has a set of built - in exc eption classes. The CLR will throw 
an object instance of the appropriate exception type if an error occurs while executing code 
instructions. All .NET Framework exception classes derive from the SystemException class, 
which in turn derives from the Excepti on class. These base classes provide functionality needed 
by all exception classes.  

Each namespace in the framework contains a set of exception classes that derive from the 
SystemException class. These exception classes handle common exceptions that may oc cur 
while implementing the functionality contained in the namespace. To implement robust 
exception handling, it's important for you to be familiar with the exception classes provided by 
the various namespaces. For example, Table B - 1 summarizes the exceptio n classes in the 
System.IO namespace.  

 

Every exception class in the .Net Framework contains the properties listed in Table B - 2. 
These properties help identify where  the exception occurred and its cause.

 

In addition, the ToString method of the exception classes provides summary information 
about the current exception. It combines the name of the class that threw the current exception, 

Table B - 1. Exception Classes in the System.IO Namespace  
Exception Description 

IOException  The base class for exceptions thrown while accessing 
information using streams, files, and directories  

DirectoryNotFoundException  Thrown when part of a file or directory can't be found.  

EndOfStreamException  Thrown when reading is attempted past the end of a stream.  

FileLoadException  Thrown when a file is found but can't be loaded.  

FileNotFoundException  Thrown when an attempt to access a file that does not exist on 
disk fails.  

PathTooLongException  Thrown when a path or filename is longer than the system -
defined maximum length.  

Table B - 2. Exception Class Properties  
Property Description 

Message  Gets a message that describes the current exception.  

Source  Gets or sets the name of the application or the object that causes the error.  

StackTrace  Gets a string representation of the frames on the call stack at the time the 
current exception was thrown.  

InnerException  Gets the exception instance that caused the current exception.  

HelpLink  Gets or sets a link to the help file associated with this exception.  



APPENDIX B ƴ EXCEPTION HANDLING IN C# 

332 

 

 

the message, the result of calling the ToString method of the inner exception, and the stack 
trace information of the current exception.  

You will find that the exception classes in the .NET Framework provide you with the 
capabilities to handle most exceptions that may occur in your  applications. In cases where you 
may need to implement custom error handling, you can create your own exception classes. 
These classes need to inherit from System.ApplicationException, which in turn inherits from 
System.Exception. The topic of creating cu stom exception classes is an advanced one and thus 
beyond the scope of this text; for more information, consult the .NET Framework documentation 
at http://msdn.microsoft.com/en -  us/ library/.

http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/


333  

 

 

C 

A P P E N D I X 

Installing the Required Software 

I have included many learning activities throughout this book. In order to get the most out of the 
topics I discuss, you should complete these activities. This is where the theory becomes 
concrete. It is my hope that you will take these activities seriously and work through them 
thoroughly and even repeatedly.  

The UML modeling activities in Part  1 are meant for someone using UMLet. I chose this 
program because it is a good diagraming tool to learn on. It enables you to create UML diagrams 
without adding a lot of advanced features. UMLet is a free open source tool and can be 
downloaded from www.umlet.com.  But you don't need a tool to complete these activities; a 
paper and pencil will work just fine.  

The activities in Part 2 require Visual Studio 2010 with C# installed. You can use either the 
free version, Visu al Studio 2010 Express, or a trial version of Visual Studio 2010 Professional. 
These versions are available at  http://msdn.microsoft.com/en - us/vstudio/. I encourage you to 
install the help files and make abundant use of them while you're completing the activities.  

The activities in Part 3 require Microsoft SQL Server 2008 R2. You can use either the free 
version SQL Server 2008 R2 Express or a tria l version of SQL Server 2008 R2 available at  
http://msdn.microsoft.com/en - us/sqlserver/. When you install SQL Server, be sure you add 
yourself as an administrator.  

Installing the Sample Databases 
The scripts to install the sample database used in this book are available at www.apress.com. In 
order to install the scripts, follow these steps:  

1. Open a command prompt window.  

2. From the command prompt, use the cd command to navigate to the 
folder containing the sample database scripts.  

cd c: \ SampleDatabases  

3. Run SQLCmd.exe specifying instOSODB.sql as the input file.  

4. To install the database on a default instance, use SQLCmd.exe - E - i 

instOSODB.sql  

5. To install the database on a named instance, use SQLCmd.exe - E - S 

ComputerName \ InstanceName - i instOSODB.sql  

6. Repeat the procedure for the instpubs.sql and instnwnd.sql files.

http://www.umlet.com/
http://msdn.microsoft.com/en-us/vstudio/
http://msdn.microsoft.com/en-us/sqlserver/
http://www.apress.com/


APPENDIX C ƴ INSTALLING THE REQUIRED SOFTWARE 

334 

 

 

Verifying the Database Installs 
To verify the database installs:  

1. Start Visual Studio. If you don't see the Database Explorer window 
shown in Figure C - 1, open it by choosing Server Explore on the View 
menu. 

 

Figure C - 1. The Database Explorer window  

2. In the Database Explorer window, right - click the Data Connections 
node and select Add Connection. In the Add Connections dialog box 
shown in Figure C - 2, fill in the name of your server, select the 
Northwind database, and click OK.  

Add Connection I ? Iɼʮ | 

Enter information to connect to the selected data source or click "Change" to 

choose a different data source and/or provider.  

 

Log on to the server  

òdºØÊd¼ÎÓÉÔÜØd¦ÚÙÍÊÓÙÎÈÆÙÎÔÓdȬ Use 5QL Server Authentication User name:  

Password:  

[server Explo rer  -  édx|  

 

|J Data Connections   

çn˄ʽ ̔  

Data source:  
Microsoft 5QL Server (SqlClient)   Change...  

Server name:    

localhost \ SQLEXPRE5S V  Refresh  



APPENDIX C ƴ INSTALLING THE REQUIRED SOFTWARE 

335 

 

 

 

Figure C - 2. The Add Connections dialog box  

3. Expand the Northwind database node and the Tables node in the 
Database Explorer window, as shown in Figure C - 3.

5ave my password  

 



- x 

APPENDIX C ƴ INSTALLING THE REQUIRED 
SOFTWARE 

336 

 

 

+ 
- 

+ 
+ 
+  
+  
+  
+  

Server Explorer  

IQ. Ijj 
Data Connections

 

-  dhf0010957lt \ sqlexpress.rJorthwind.dbo

 

 

Servers  

Figure C - 3. Expanding the Tables node  

4. Right - click the Suppliers table node and select Show Table 
Data. The Suppliers table data should display as shown in 
Figure C - 4.

a Database Diagrams I Tables  
+  1 Categories  

+  1 CustomerCustomerDemo  
+  1 CustomerDemographics  
+  1 Customers  
+  1 Employees  
+  1 EmployeeTerritories  
+  1 Order Details  
+  1 Orders  
+  1 Products  
+  1 Region  
+  1 Shippers  
+  1 Suppliers  
+  1 Territories  
 _ J Views  

 _ J Stored Procedures  

Functions Synonyms _J Types a 

Assemblies  



APPENDIX C ƴ INSTALLING THE REQUIRED SOFTWARE 

337 

 

 

 

Figure C - 4. Viewing the table data  

5. Repeat these steps to test the pubs and the OfficeSupply 
databases. After testing, exit Visual Studio.

Suppliers: Query (dhf...qlexpress,Northwind) X  5tart Page    ͮÜ 

 5upplierID  CompanyName  ContactName  ContactTitle  Address City  

ͼ  ---------------   
El 

Exotic Liquids  Charlotte Cooper  Purchasing Man...  49 Gilbert St.  , \  

Londoi  
 2 New Orleans Caj...  5helley Burke  Order Administr...  P.O. Box 78934  New  ʁ

 3 Grandma Kelly's ...  Regina Murphy  5ales Represent...  707 Oxford Rd.  Ann Ai  

 4 Tokyo Traders  Yoshi Nagase  Marketing Manager  9- 8 SekJmai Mus...  Tokyo  

 5 Cooperativa de ...  Antonio del Valle...  Export Administr...  Calle del Rosal 4  Oviedt  

 6 Mayumi's  Mayumi Ohno  Marketing Repre...  92 5etsuko Chu...  Osaka 

 7 Pavlova, Ltd.  Ian Devling  Marketing Manager  74 Rose 5t. Moo...  Melboi  

 8 Specialty Biscuit...  Peter Wilson  5ales Represent...  29 King's Way  Manch  

 9 ʵʦdKnackebrod ʥʦ Lars Peterson  5ales Agent  Kaloadagatan 13  Gotebi  

 10 Refrescos Ameri...  Carlos Diaz  Marketing Manager  Av. das America...  5ao P;  

 11 Heli 5ufiwaren G...  Petra Winkler  5ales Manager  Tiergartenstrafie 5  Berlin  

 12 Plutzer Lebensmi...  Martin Bein  International Ma...  Bogenallee 51  Frankf  

 13 Nord - Ost- Fisch ...  5ven Petersen  Coordinator For...  Frahmredder 112a  Cuxha  

 14 Formaggi Fortini ...  Elio Rossi  5ales Represent...  Viale Dante, 75  Raven 

 15 Norsks Meierier  Beate Vileid  Marketing Manager  Hatlevegen 5  5andv  

 16 Bigfoot Breweries  Cheryl 5aylor  Regional Accoun...  3400 - 8th Aven...  Bend 

 17 5vensk 5j6f6da AB  Michael Bjorn  5ales Represent...  Brovallavagen 231  5tockh 
v 

< INI     L>l _ 

ʁ < | 1 of 29 |  Ƹ N Ƹ Cell is Read Only.   1 
 





343  

 

 

Index
 

 

 

 

 

ƴA 
abstract classes,  117,  123  abstract 
keyword,  117,  122,  123  
abstraction, 3 access modifiers,  
117,  118  

defining method signatures, 138 
activity diagrams, 8, 42 - 48 activity 
ownership, 44 creating, 44 - 48 
decision point, 43 generic activity 
diagram, 42 guard condition, 43 
GUI activity diagrams, 49- 50 Login 
activity diagram, 70, 71 Login use 
case, 67 parallel processing, 43 
task analysis, 49 
View products activity diagram, 71, 72 

activity ownership, 44 actors, UML, 10  
developing use case, 57 identifying 

actor classes,  63 Add Connections 
dialog box, 338, 339  Add method, 
ArrayList, 169 Add New Item window  

creating WCF Data Services, 281  
creating WCF web services, 274 Add 
Service Reference dialog WCF Data 
Services, 280, 283  WCF web services, 
270, 276 addButton_Click event OSO 
application UI, 309  AddEmployee 
method, 104 overloading methods, 108 
ADO.NET, 80, 181  

Command object, 184 
Connection object,  183 
data providers, 1 82- 183 
DataAdapter object,  187- 188 
DataReader object, 186,  191- 192 
DataSet object,  193,  195,  196,  197  
DataTable object,  193,  194 Entity 
Framework, 80, 204 - 206, 314 
interoperability, 182 namespaces, 
314 scalability, 182 stored 
procedures,  185  ADO.NET Entity 
Data Model, 205  WCF Data 

Services, 279, 281  aggregation, 5 
modeling object relationships, 

21 All Windows Forms node  
Toolbox window, VS IDE, 92 

And operator (&&), C#, 327  
application design  

distributed applications, 288 
office - supply ordering , 287- 288 
application prototyping GUI design, 
52 application services, .NET, 81 
Application tab  

Project Properties window, VS IDE, 87, 
88 ApplicationException class,  149  
applications  

Windows applications, 81 args 
array, Main method, 170 arithmetic 
operators, C#, 325  Array class, 
164, 166, 169, 170 Clear method,  
167,  172 properties and methods, 
166 Reverse method,  167  array 
data type, C#, 320 ArrayList class, 
164, 169, 170,  173- 175  Add 
method, 169 casting type, 170 
Insert method, 169  

methods and properties, 
169 arrays,  165- 175  

accessing elements of,  165  args array, 
Main method, 170 Array class, 164, 166, 
169, 170 ArrayList class, 164, 169, 170 
creating and populating, 170 - 172 
declaring array type, 166 iterating 
through elements of,  167  
multidimensional arrays,  165,  168,  173, 
321  variable number of items in, 169 
ASP.NET, 81 assemblies, 79, 82 
building and executing, 94 - 95 
component based development, 315  
Global Assembly Cache (GAC), 79 
manifests, 82 namespaces, 83 
referencing, 82, 83 assignment 



ƴ INDEX 

344 

 

 

operators, C#  
shorthand assignment operators, 326 

association classes  
modeling object relationships, 21- 22 

associations  
creating class diagrams, 24 identifying 
class associations,  65- 66 modeling 
object relationships,  19- 20 
AsyncCallback delegate,  156,  157  
asynchronous messaging,  155- 157  
AsyncCallback delegate, 156,  157  
BackgroundWorker thread,  157  
BeginInvoke method, 156,  157  calling 
methods, 160 - 161  delegates, 156  
EndInvoke method, 156,  157  

IAsyncCallback interface,  157  
IAsynchResult interface, 156,  157,  160 
sequence diagrams, 32 attributes  

adding to classes,  63- 65 attributes of 
classes see properties auto hide feature, 
Toolbox window turning on/off, 92, 93 

ƴB 
BackgroundWorker thread,  
157  base class library, .NET, 
80 base classes  

access modifiers,  117  
calling derived class method from,  123  
calling method from derived class, 124, 
128 creating, 118 hiding methods,  125  
inheritance,  115,  116 overloading 
methods,  125  overriding base class 
method, 122 - 123,  126 polymorphism,  
115  restricting use of class members, 
122 restricting use of methods, 120 base 
qualifier  
calling base class method from derived 

class, 124, 128 Base Types folder, Class 
View, 88 BeginInvoke method  

asynchronous messaging, 156,  157  
behaviors  

modeling class behaviors, 66 - 70 
behaviors of classes see methods binding 
see data binding Binding attribute, 
Silverlight, 251  block - level scope, 323  
Boolean data type, C#, 319 branching, 
messages  

creating activity diagram, 47 sequence 
diagrams, 35- 36 Breakpoint Condition 
dialog, VS IDE, 98 breakpoints  

setting conditional breakpoints, 97- 99 
setting in code editor, 96 Breakpoints 
window, VS IDE,  97, 99 browsers, 
Silverlight, 243  build errors, VS IDE  

locating and fixing, 99- 100 Build 
Solution  

Class View window, VS IDE, 90  
building and executing assemblies, 95 
locating and fixing build errors, 100 

creating Employee class, 106 overloading 
class constructors,  111  overloading class 
methods,  113  testing class constructors,  
111  testing Employee class,  107  business 
logic modeling, 75 business logic layer, 
office - supply ordering app., 295- 300 
classes for, 288 Employee class, 295 

logical architectural design, 288 
Order class, 299  OrderItem class, 
297  OSO class diagram, 289 
ProductCatalog class, 297  button 
click event  
building and executing assemblies, 94 
event handler method, 221  overloading 
class methods,  113  testing class 
constructors,  111  testing Employee 
class,  107  byte data type, C#, 318  

ƴC 
C# 

classes, 321  
constants, 322  
data type conversions, 324 - 325  
data types, 317, 318- 321  decision 
structures, 328 do - while 
statement, 330 enumerations, 322 
exception handling, 333- 336 
for/for - each statements, 331  
history of, 5- 6 if statement, 328 -
330 literals, 321  
loop structures, 330 - 331  
methods, 331  operators, 
325- 328 switch statement, 
329  using help system, 315  
variables, 317  
web site learning resources, 315  

while statement, 330 callbacks  
AsyncCallback delegate, 156,  157  

IAsyncCallback interface,  157  Cancel 
but ton  

IsCancel property, 229  



ƴ INDEX 

345 

 

 

Canvas control, 218 case 
statement, C#, 329  CASE tools, 
14 
CaseInsensitiveComparer class, 90 
casting  

explicit type conversion, 325  
casting type  

ArrayList class, 170 catch 
block see try - catch block  
character data types, C#, 
319  CheckBox control  

adding to Silverlight page, 246 
class associations, identifying,  
65- 66 class attributes  

creating class diagrams, 26 class 
behaviors, modeling, 66 - 70 class 
constructor method see constructors 
class def inition file  

adding and raising event messaging in, 
142 class diagrams, 8, 18 - 19 adding 
methods, 41 - 42 aggregation, 21 
association,  19- 20 association classes, 
21- 22 creating, 22 - 26 
creating sequence diagrams, 
36 inheritance, 20  
modeling object relationships,  19-

22 preliminary diagram for OSO app.,  
63 Purchase Request class diagram, 
70 class keyword, 102 class models  

adding attributes to classes,  63-
65 developing, 61 - 74 
developing user interface model 

design, 70 - 74 
identifying class associations,  65- 66 
identifying classes, 61 - 63 modeling 
class behaviors, 66 - 70 Class View 
window, VS IDE, 88 - 90 Base Types 
folder, 88 Build Solution, 90 Form node, 
89 classes/objects, 3, 18, 101- 102 
abstract classes,  117,  123  aggregation, 
21 association,  19- 20 association 
classes, 21- 22 asynchronous 
messaging,  155- 157,  160- 161  
attributes,  101  base classes, 116  

access modifiers,  117  
C#, 321  
collection c lasses,  163  
constructors,  107  creating class 
methods,  103- 107  creating class 
properties, 102 - 103  defining 
classes, 102 - 107  derived 

classes, 116  
event - driven programming,  
139  exception classes,  147  
final class,  117  
identifying classes from SRS, 
18 inheritance, 20 methods,  
101  
modeling object interaction, 29- 52 
modeling object relationships,  19- 22 
objec t communication through 
messaging, 137- 139  
overloading methods, 108 - 114  125  
polymorphism, 130 - 132 properties,  
101  sealed classes,  117  static 
methods,  151  static pr operties, 
150- 151  synchronous messaging,  
155,  157- 159  classes, list of  
ApplicationException,  
149  Array, 164 
ArrayList, 164  
CaselnsensitiveComparer , 90 
CollectionBase, 164 
CommandBuilder , 198 
DataService , 279  
DataServiceConfiguration , 
279  DictionaryBase, 164 
Exception , 334, 336 
FileNotFoundException,  147 
Hashtable,  164 MessageBox , 
227  ObjectContext , 206 
Queue, 164 SortedList, 164 
SqlCommand , 182 
SqlConnection , 182 
SqlDataAdapter , 182 
SqlDataReader , 182 SqlError 
, 183  SqlException ,  183  
SqlParameter , 182 
SqlTransaction ,  183  Stack, 
164  
SystemException , 335  Clear method, 

Array,  167,  172 CLI (Common Language 
Infrastructure), 78 click event  

coding control events, 226 updating 
data using TwoWay binding, Silverlight, 
258 Click Event met hod 

testing class constructors,  111,  
112 client class  

receiving events in, 
144 client proxy  

consuming WCF web services, 
271  Close method  



ƴ INDEX 

346 

 

 

Connection class,  183  DataReader 
class, 186 CLR (Common Language 
Runtime), 80 exception classes, .NET, 
335  CLS (Common Language 
Specification), 78 Code Editor window, 
225  codebehind file  

coding control events, 225  event 
handler, 221  OSO app. UI, 306, 310, 311  
codebehind file, Silverlight adding controls, 
249  handling control events, 247, 250 
updating data using TwoWay bindi ng, 257  
collaboration diagrams, 8 collection 
classes, .NET,  163  collection interfaces, 
.NET, 164 collection types, .NET,  163  
CollectionBase class, 164 collections  

arrays,  165- 175  generic 
collections,  175- 179  .NET 
Framework,  175  queues,  
179  stacks,  179  Collections 
namespace collection 
classes,  163  collection 
interfaces, 164 columns  
DataColumn object, 

194 Command object  
CommandText property, 184 
CommandType  property,  185  
ExecuteNonQuery method, 184 
ExecuteReader method, 184, 186 
ExecuteScalar method, 184, 190 
executing SQL statements, 184 
executing stored procedure using, 192 -
193  submitting CommandText to 
database, 184 CommandBuilder class, 
198 commands  
executing, 184 

SqlCommand class, 182 
CommandText property, 184 
submitting to database, 184  

using stored procedures,  
185  CommandType property  

using stored procedures,  185  
Common Language Infrastructure (CLI), 
78 Common Language Runtime (CLR), 
80, 335  Common Language 
Specification (CLS), 78 communication  

object communication through 
messaging, 137- 139  Compare method,  151  

sorting generic collections, 176 
comparison operators, C#, 326 
decision structures, 328 
components, 315  conceptual 

design, 287 
conceptual schema definition language 

(CSDL), 205  
Connection object,  
183  connections  

data providers, 182 
establishing,  183,  189- 190 
SqlConnection class, 182 
ConnectionString property  

establishing connections,  183,  
190 establishing relationships, 202 
populating DataSet,  199  Console 
application  

command line switches,  165 creating 
and populating arrays, 170 implementing 
generic collections,  177  ReadLine method, 
172 WriteLine method,  167,  178 co nstants, 
C#, 322 Constraint object, 194 constraints  

ForeignKeyConstraint object, 
194 UniqueConstraint object, 194 
constraints, messages sequence 
diagrams, 35 constructors,  107  
creating, 110 overloading, 110,  
111  overloading methods,  109  
testing,  111- 112 container 
controls, Windows, 215  Context 
object  

SaveChanges method, 207  
control e vents coding, 224 -
226 event handling methods,  
141  handling, 220 - 222  

Silverlight, 247, 
250 control templates  

creating/using, 237- 239 controls  
container controls, 215  display 
controls, 218 layout controls, 
217- 218  

Silverlight, 245- 246, 
249  positioning, 216  

fixed positioning, 217  
relative positioning, 217  
properties, 2 16 Windows, 215  
XAML, 216 controls, 
Silverlight  

layout controls, 245- 246, 249  
controls, WPF 

adding event to, 220  
binding using DataContext, 230, 231 
Canvas control, 218  
data binding in Windows - based GUIs, 

230 display controls, 218 DockPanel 



ƴ INDEX 

347 

 

 

control, 218 Grid control, 217  layout 
controls, 217- 218 ListBox control, 218 
StackPanel control, 218 TextBox control, 
218 WrapPanel control, 218 conversions, 
data type, 324 - 325  Converter property, 
Silverlight, 260 .cs extension, 88  
CSDL (conceptual schema definition 

language), 205  
custom dialog, creating, 229 

ƴD 
DALEmployee class, 292 DALOrder class, 
294 DALProductCatalog class, 293  
DALUtility class, 291 data 

WCF Data Services, 279- 280 data 
access  

ADO.NET,  181  data providers, 182 -
183  DataAdapter retrieving data,  187-
188 DataReader retrieving data, 186,  
191- 192 DataSet object,  193  

editing data in,  197- 198, 201- 202 
establishing relationships between tables in, 
196, 202 - 204 populating from SQL Server 
database,  195,  199- 201  DataTable object,  
193,  194 Entity Framework, 204 - 206 

querying entities with LINQ to, 206 -
207  updating entities with, 207  establishing 
connections,  183,  189- 190 executing 
commands, 184 interoperability, 182 using 
stored procedures,  185  data access layer, 
office - supply ordering app., 290 - 295  
classes for, 288 DALEmployee class, 292 
DALOrder class, 294 DALProductCatalog 
class, 293  DALUtility class, 291  logical 
architectural design, 288 OSO class 
diagram, 289  data adapters  

SqlDataAdapter class, 182 
data binding  

binding cont rols using DataContext 
property, 230 - 231  binding DataGrid to 
DataTable, 232 - 235  data templates, 
237  OSO application UI, 302 
Silverlight, 251- 259  

binding controls to collection, 254 
updating data using TwoWay binding, 257  
Windows - based GUIs, 230 data classes  

.NET Framework, 80 
data contracts, 272 -

273  Data Control 

Language DCL 
statements, 184 data 

conversion  
Silverlight, 259, 262, 263  

Data Definition Language 
DDL statements, 184 data 
encapsulation,  103  Data 
Manipulation Language DML 
statements, 184 data 
providers, 80, 182 - 183  

SQL Server provider classes, 
182 data readers  

SqlDataReader class, 182 data 
storage,  181  data templates  

creating/using, 237- 241  data type 
conversions, 324 - 325  explicit 
conversion, 325  implicit conversion, 
324 narrowing conversion, 325  
widening conversion, 325  data 
types, 80 arrays,  165- 175  
collection types, .NET,  163  complex 
data ty pes, .NET,  139  data types, 
C#, 317, 318- 321  array data type, 
320 Boolean data type, 319  byte 
data type, 318 character data types, 
319  classes, 321  conversions, 324 -
325  date data type, 319  decimal 
data type, 319  double data type, 
319  integer data type, 318 long data 
type, 318 nullable data types, 320 
object data type, 319  short data 
type, 318 single data type, 319  
strong typing, 317  structure data 
type, 320 data validation, 
Silverlight, 259, 260, 263  
DataAdapter object,  187,  193  Fill 
method,  187,  195  populating 
DataSet,  195  retrieving data,  187-
188 SelectCommand prop erty,  187,  
195  Update method,  197  Database 
Explorer window  
verifying installation of sample database, 

338, 339  
database schema, OSO app., 290 
databases  

executing commands against, 184 
installing sample database, 337- 341  
submitting CommandText to, 184 
DataColumn object, 194, 196 DataContext 
property  

binding controls using, 230 - 231 



ƴ INDEX 

348 

 

 

data binding, S ilverlight, 251  
DataContract attribute, 272, 273  
creating WCF web services, 275  
DataGrid  control  

binding controls using 
DataContext property, 230 binding to 
DataTable, 232 - 235  data binding, 
Silverlight, 253  displaying stored 
data wi th, 231  OSO application UI, 
301, 304 updating, 236 DataGridView 
control, 200, 203  DataMember 
attribute, 272, 273  creating WCF web 
services, 275 DataMember property, 
204 DataReader object Close method, 
186 Read method, 186 ret rieving 
data, 186,  191- 192 DataRelation 
object, 194, 196 DataRow object, 194 
DataService class, 279  
DataServiceConfiguration class, 279 
DataSet object,  193,  194, 198 - 204 

binding DataGrid to DataTable, 232 
DataAdapter retrieving data to,  187  editing 
data in,  197- 198, 201- 202 establishing 
relationships between tables in, 196, 202 -
204 GetChanges method, 201  GetData 
method,  197,  198,  199  populating from SQL 
Server database,  195,  199- 201  UpdateData 
method,  197,  198 DataSource property, 204 
DataTa ble object,  193,  194  

binding DataGrid to, 232 -
235  DataTemplate class 
creating, 240  

ListBox using, 237, 238, 
239 date data type, C#, 319 
DatePicker control, 246, 282 
debug mode  

launching OSO application in, 312 
Debug toolbar, VS IDE, 97 debugging, 
VS IDE, 95- 100  

locating and fixing build errors, 99-
100 setting conditional breakpoints, 
97- 99 stepping through code, 95- 97 
testing classes, 120 testing 
Employee class,  107  

decimal data type, C#, 319  decision 
point, activity diagrams, 43 decision 
structures, C#, 328 delegate class,  
139  delegated method, 140 
delegates  

AsyncCallback delegate, 156 
asynchronous messaging, 156 

BeginInvoke method, 156 
EndInvoke me thod, 156 event 
notification, 221  delegation,  
139- 140  
creating delegated method, 140 

events, 140 - 146 delegation object, 220 
DeleteCommand proper ty, DataAdapter 
editing data in DataSet, 198 
DepartmentManager class, 64,  65, 66 
deployment, .NET Framework, 78 
dequeue method, Queue class,  179  
derived classes  

calling base class method from, 124, 128 
calling method from base class,  123 
creating, 118  
hiding base class methods,  125  
inher itance, 116  
overriding base class method, 122 

polymorphism, 130 - 132 restricting use 
of class members, 122 restricting use of 
methods, 120 design  

business logic tier, 288 conceptual 
design, 287 creatin g SRS, 56- 57 data 
access tier, 288 developing class model, 
61- 74 developing OOP solution, 55- 74 
developing use cases, 57- 58 
diagramming use cases, 59- 61 
distributed application, 288 domain 
model design, 75 goals of software 
design, 7 involving users, 74 logical 
design, 287 office - supply ordering app., 
287- 288 OOP design  pitfalls, 74 - 75 
physical design, 287  presentation tier, 
288 Visual Studio designer, 219  
developing Windows applications, 215  
dialog boxes  
creating and using, 226 - 227 creating 

custom dialog, 229  displaying critical 
information, 227  MessageBox class, 227  
New Project dialog, 226, 227  windows 
compared, 226 DictionaryBase class, 164 
DirectoryNotFoundException, 335  
disconnected model, ADO.NET, 182 display 
controls  

adding, Silverlight, 246, 249 
WPF, 218 distributed application 
designing, 288 
DivideByZeroException recovering 
from, 334 DockPanel control, 218  

binding DataGrid to DataTable, 234 
creating data template, 240, 241  creating 



ƴ INDEX 

349 

 

 

memo viewer interface, 223 domain model 
design, 75 double data type, C#, 319  do-
while statement, C#, 330  

ƴE 
EF see Entity Framework elements, 
arrays accessing,  165  iterating 
through,  167  else - if blocks, C#, 329  
Employee class,  63, 64, 65, 66 
AddEmployee method, 104 busi ness 
logic layer, OSO, 295  constructor,  107  
creating, 104 - 106 DALEmployee 
class, 292 Login method, 104, 289  
OSO application design, 289 OSO 
class diagram, 289  testing,  107 

test ing class constructors,  111- 112 
encapsulation, 4  

data encapsulation,  103  end point, WCF 
web services, 266, 271  EndInvoke method  

asynchronous messaging, 156,  157  
EndOfStreamException, 335 enqueue 
method, Queue class,  179  entities  

binding ListBox control to, 239 - 240 
querying with LINQ to EF, 206 - 207  
updating with EF, 207  Entity Data 
Model, ADO.NET, 205  creating, 
208- 211  querying, 211- 213 
querying entities with LINQ to EF, 206 
Entity Framework (EF), 204 - 206 
ADO.NET, 80, 314 creating entity data 
model, 208 - 211  querying entities w ith 
LINQ to EF, 206 - 207  querying entity 
data model, 211- 213  retrieving data 
with, 208 - 213  updating entities with, 207  
Entity Model Designer  
creating entity data model, 210, 

211  enumerations, C#, 322 Error List 
window, VS IDE  

locating and fixing build errors, 
100 errors  

SqlError class,  
183  event handlers, 
220  

method handling multiple events,  
145  parameters, 221  
RoutedEventArgs parameter, 221  

sender parameter, 221  Silverlight 
controls, 247, 250 Windows Forms 
implementing,  141  wiring up in 
Properties window, 221  event 

handling methods,  141  button click 
event, 221  control events,  141  
naming convention, 221, 247 event 
wiring,  141,  146 event - driven 
applications, 220 event - driven 
programming,  139 delegation,  139-
140 Silverlight, 247 events, 140 - 146, 
220  

adding, Silverlight, 247 coding 
control events, 224 - 226 delegation 
object, 220 event messages, 142 
handling control events, 220 - 222 
method handling multiple events,  
145  receiving in client class, 144 
responding to,  141, 220 Exception 
class  
InnerException property, 334, 336 

propertie s, 336 exception classes,  
147, 335- 336  

ApplicationException,  149  creating 
custom excepti on classes, 336 
DirectoryNotFoundException, 335  
EndOfStreamException, 335 
FileLoadException, 335  
FileNotFoundException,  147, 335  
IOException, 335 
PathTooLongException, 335 
SqlException class,  183  ToString 
method, 336 exception handling 
delegates, 220 finally block, 148 in 
.NET  Framework,  147- 150 nesting,  
149  
structured exception 

handlers benefits of,  147  
creating, 154 try - catch block,  
147  exception handling, C#, 
333- 336 Throw statement, 334 
exceptions  

filtering, 154 - 155  
throwing,  149  
ExecuteNonQuery method 
Command object, 184 
ExecuteReader method 
Command object, 184 
ExecuteReader method 
Command object, 186 
ExecuteScalar method  

Command object, 184, 190 
SQLCommand class, 292 expl icit 
type conversion, C#, 325  
extends relationship, UML, 12  



ƴ INDEX 

350 

 

 

diagramming use case diagram for OSO, 
60 extensibility, .NET Framework, 78  

ƴF 
feedback, 316 fields see instance 
variables FileLoadException, 
335  FileNotFoundException,  
147, 335  Fill method, 
DataAdapter,  187,  195  filtering 
exceptions, 154 - 155  final class,  
117  finally block  

adding to try - catch block, 
148 exception handling, C#, 
333  

fixed positioning  
layout controls, 217  

Silverlight, 245  for 
statement, C#, 331  foreach 
loop, arrays,  167 for - each 
statemen t, C#, 331  foreign 
keys  

referential integrity, 196 
ForeignKeyConstraint object, 
194 form designer  

building and executing assemblies, 
94 Form node, Class View, 89 Form1 
class file, Solution Explorer, 88  

ƴG 
GAC (Global Assembly Cache), 
79 garbage collection, 79 
generalization shape  

creating class diagrams, 25 
generic collections,  175- 179  
implementing,  177  sorting, 
176, 178 get block  

creating class properties, 
102 GetChanges method, 
DataSet, 201  GetData method, 
DataSet,  197,  198,  199 
GetProductInfo method, 293 
GetSQLConnection method, 291 
Global Assembly Cache (GAC), 
79 graphical user interfaces see 
GUIs Grid control  

positioning, 217  Silverlight, 245  
guard condition, activity diagrams, 43 
GUI activity diagrams, 49- 50 GUI 
design, 48 - 52 

application prototyping, 52 developing UI 
model design, 70 - 74 interface flow 
diagrams, 51 interface prototyping, 50 
Login screen prototype, 71 Order 
request screen prototype, 73, 74 View 
products screen prototype, 72, 73 GUIs 
(graphical user interfaces) co ntrol 
events, 220 - 222 creating and using 
dialogs, 226 - 227  creating OSO 
application UI, 300 - 312 data binding in 
Windows - based GUIs, 230 GUI design, 
48- 52 

ƴH 
handling exceptions see exception handling  
Hashtable class, 164  
Hejlsberg, Anders, 6  
HelpLink property, Exception class, 336  
hosting environment, WCF services, 266  

Ƶ I 
IAsyncCallback interface,  157  
IAsynchResult interface, 156,  157,  160 
ICollection interface, 164 IComparer 
interface, 164, 176, 178 IDEs  

Visual Studio IDE, 83- 100 
IDictionary interface, 164 
IDictionaryEnumerator interface,  164 
IEnumerable interface, 164 
IEnumerator interface, 164 if 
statement, C#, 328 - 330 else - if 
blocks, 329  IList interface, 164 
implicit type conversion, C#, 324 
includes relationship, UML, 12, 59 
indexes, arrays,  165  industry 
standards .NET Framework, 77 
inheritance, 5, 115- 122 abstract 
classes,  117  access modifiers,  117  
base classes, 116,  117  derived 
classes, 116 identifying class 
associations,  65 interfaces, 130  

modeling object relationships, 20 
multiple inher itance, 130 
polymorphism, 130, 132 - 134 sealed 
classes,  117  inherits relationship  

identifying class associations,  65 
InitializeService method  

WCF Data Services, 279, 281  
InnerException property, 334, 336 
INotifyPropertyChanged interface, 254, 297  
input parameters see parameters Insert 



ƴ INDEX 

351 

 

 

method, ArrayList, 169 InsertCommand 
property, DataAdapter editing data in 
DataSet, 198 Installed Templates pane  

New Project dialog, VS IDE, 86  
instance variables C#, 317 

creating class properties, 102 
overloading class constructors,  111  
scope, 323- 324 integer data type, 
C#, 318 interfac e flow diagrams, 
GUI design, 51 interface 
prototyping, GUI design, 50 
interfaces,  129  

collection interfaces, 164 
IAsyncCallback,  157  
IAsynchResu lt, 156,  157,  
160 ICollection, 164 
IComparer, 164, 176, 178 
IDictionary, 164 
IDictionaryEnumerator, 164 
IEnumerable, 164 
IEnumerator, 164 IList, 164  
INotifyPropertyChanged, 254, 

297  method signatures,  129 
polymorphism,  131,  134- 135  
intermediate language  

Common Language Specification (CLS), 
78 intermediate language see MSIL, 83 
interoperability data access, 182 
IOException class, 335  IsCancel property, 
Cancel button, 229  IsDefault property, 
Login button, 229  IService1.cs file  

WCF web services, 267  iterative 
messages, sequence diagrams, 34 - 35 

ƴJ 
JIT (just - in- time) compiler, 83 

ƴK 
keywords  

see also  qualifiers 
abstract,  117,  122,  
123  class, 102 new,  
125  override, 122 
private, 102 
protected, 118 
public, 102 ref, 138  
sealed,  
117  
virtual, 

122 void, 
104, 331 

Ƶ L 
Language Integrated Query (LINQ), 
81 layout controls  

Canvas control, 218 DockPanel 
control, 218 fixed positioning, 
217, 245  Grid control, 217  
relative positioning, 217  
Silverlight, 245- 246, 249  
StackPanel control, 218 WPF, 
217- 218 WrapPanel control, 
218 LINQ (Language Integrated 
Query), 81 
querying entities with LINQ to EF, 206 -

207  ListBox control  
binding to an entity, 239 - 240 consuming 
WCF service in Silverlight client, 278  
display controls, WPF, 218 

using DataTemplate, 237, 238, 239 
literals, C#, 321  Load method, 
DataTable, 194 Loaded event 
attribute  

coding control events, 224 
consuming WCF Data Services, 283  
consuming WCF service, 278 
Locals window, VS IDE  

setting conditional breakpoints, 
98 logical design, 287  logical 
operators, C#, 327  Login activity 
diagram, 70, 71 Login button  

IsDefault property, 
229  Login dialog  

OSO application, 305, 309, 
312 Login method, 104  

creating class methods,  
103  DALEmployee class, 292 
Employee class, 106,  107, 289  
Login screen prototype, 71 
Login use case  

activity diagram for,  67 
modeling class behaviors, 66,  67 
sequence diagram for, 68 
loginButton_Click event  

OSO application UI, 
309  LoginDialog.xaml file, 
305  LoginDialog.xa ml.cs 
file, 311  long data type, 
C#, 318 loop structures, 



ƴ INDEX 

352 

 

 

C#, 330 - 331  

ƴM 
Main method args 
array, 170 
MainPage.xaml 
file  

consuming WCF Data Services, 
282 consuming WCF service, 277 
MainWindow.xaml file  

creating memo viewer interface, 
222 OSO application UI, 302 
MainWindow.xaml.cs file OSO 
application UI, 306 managed code, 
.NET  

compiling and executing, 83 
manifests, .NET, 82 assemblies, 79 
mapping specification language (MSL), 
206 Master Detail view, 241 memo 
viewer interface, creating, 222 - 224 
MemoEditor window, 224 memory 
management, .NET, 79 
MemoViewer_Loaded event handler, 225  
Menu control  

creating memo viewer interface, 
223  Message property, Exception 
class, 336 MessageBox class, 227 

displaying MessageBox to user, 227- 229  
Show method, 228 messages, sequence 
diagrams asynchronous messages, 32 
creating sequence diagrams, 37 iterative 
messages, 34 - 35 message branching, 
35- 36 message constraints, 35 message 
types, 32 - 33 recursive messages, 33 
synchronous messages, 32 messaging  
asynchronous messaging,  155- 157,  160-
161  defining method signatures,  137  
delegation,  139- 140 event messages, 
142 event - driven programming,  139  
events, 140 - 146 object communication 
through,  137- 139  passing parameters, 
138- 139  receiving events in client class, 
144 subscription - based messaging,  139  
synchronous messaging,  155,  157- 159  
metadata, 79 

.NET Framework, 83 
method signatures, 108  

creating delegated method, 140 defining 
method signatures,  137  interfaces,  129  
methods,  101  

asynchronous messaging, 156 C#, 331 
calling as ynchronously, 160 - 161  calling 
synchronously,  157- 159  creating class 
methods,  103- 107  creating delegated 
method, 140 creating sequence 
diagrams, 41 - 42 event handling 
methods,  141 hiding base class methods,  
125  overloading, 108 - 114,  125  
overriding base class method, 122 - 123,  
126 polymorphism,  115  restricting use 
of, 120 static methods,  151  Microsoft 
intermed iate language (MSIL), 83 
mnuExit control  
coding control events, 226 modal 

windows, 226 Mode property  
data binding, Silverlight, 251  modeling  
business logic, 75 class behaviors, 66 -

70 confusing with documenting, 74 
developing class model, 61 - 74 developing 
complex systems, 74 domain model design, 
75 iterative nature of, 75 methodologies, 75 
object interaction, 29- 52 activity d iagrams, 
42- 48 scenarios, 29- 30 sequence diagrams, 
30- 42 object relationships,  19- 22 patterns 
and reusability, 75 user interface model 
design, 70 - 74 modifiers  

abstract modifier,  117  
defining method signatures, 138 

private access modifier,  117 protected 
access modifier, 118 public access 
modifier,  117  sealed modifier,  117  module 
scope, 324 MSDN web site, 85, 315  MSIL 
(Microsoft intermediate language), 83 
MSL (mapping specification language), 
206 multidimensional arrays,  165,  168,  
173  

ƴN 
namespace node, VS IDE, 88 
namespaces, ADO.NET, 314 
namespaces, .NET Framework 
assemblies, 83 learning more 
about, 314 referencing, 82 System 
namespace, 82 narrowing type 
conversion, C#, 325  nesting 
exception handling,  149  .NET 
Framework, 6, 77- 83 ADO.NET,  
181  application services, 81 
assemblies, 82  

building and executing, 94 - 95 



ƴ INDEX 

353 

 

 

assemblies, referencing, 82 
asynchronous messaging,  155  base class 
library, 80 classes, 321  collection 
classes,  163  collection interfaces, 164 
collection types,  163  collections,  175  
CommandBuilder class, 198 Common 
Language Runtime (CLR), 80 complex 
data types,  139  data binding in 
Windows - based GUIs, 230 data classes, 
80 data providers, 182 - 183  data 
storage,  181  delegates, 221 deployment, 
78 exception classes, 335- 336 
exception handling,  147- 150 
extensibility, 78 garbage collection, 79 
goals of, 77- 79 industry standards, 77 
managed code, compiling and executing, 
83 manifests, 82 memory management, 
79 metadata, 83 namespaces, 314 
referencing, 82 PE (portable executable) 
file, 83 security, 79 Silverlight, 244  
System.Data namespace classes, 194 

unified programming models, 78 user 
groups, 315  using help system, 315  web 
applications, 81 web services, 265  
Windows applications, 81 .NET Windows 
Presentation Foundation see WPF new 
keyword  

hiding base class methods,  
125  new operator, array type, 
321  New Project dialog box , 
226, 227  creating VS project, 86 
Northwind database  

verifying installation of sample 
database, 338, 339  Not operator (!), C#, 
327  NotifyOnExceptions property, 
Silverlight, 259,  261  
noun phrases in use cases, 18, 23, 36, 45, 
61, 62 nullable data types, C#, 320  

ƴO 
Object Browser window, VS IDE, 91 object  
data type, C#, 319  object interaction  

activity diagrams, 42 -
48 modeling, 29- 52 
scenarios, 29- 30 sequence 
diagrams, 30 - 42 
ObjectContext class  

querying entities with LINQ to EF, 206 
Object/Relational Mapping (ORM) 
framework, 80  

object - oriented programming see OOP 
objects see classes/objects OfficeSupply 
database 

verifying installation of sample 
database, 341  

office - supply ordering application see 
OSO OLEDB namespace data providers, 
182 OneWay binding, 230 Silverlight, 
251  OOP (object - or iented programming) 
abstraction, 3 aggregation, 5 C#, 5- 6 

characteristics of, 3- 5 constructors,  107  
data encapsulation,  103  delegation,  139-
140 design pitfalls, 74 - 75 developing 
OOP solution, 55- 74 encapsulation , 4 
events, 140 - 146 history of,  1- 2 
inheritance, 5, 115- 122 modeling object 
interaction, 29- 52 modeling object 
relationships,  19- 22 object 
communication through messaging, 137-
139  objects, 3 
overloading methods, 108 

polymorphism, 4, 130 - 132 reasons 
to use, 3 Unified Mode ling 
Language, 8 OOP design solution, 
55- 74 creating SRS, 56 - 57 
developing class model, 61 - 74 
developing use cases, 57- 58 
diagramming use cases, 59- 61 
Open Data (OData) protocol, 279  
Open method, Connection class,  
183  OperationContract attribute 
WCF web services, 268 operators, 
C#, 325- 328  

arithmetic operators, 325  
comparison operators, 326 logical 
operators, 327  shorthand 
assignment operators, 326 ternary 
operator, 328 Options dialog box  
customizing VS IDE, 

85 Or operator (III), C#, 
327  Order class, 64,  65, 
66, 69 

business logic layer, OSO, 299  
DALOrder class, 294 PlaceOrder 
method, 294 Order Item dialog, 
304, 309, 312  
Order request screen prototype, 73, 74 
OrderItem class, 64, 66,  69, 297  
OrderItemDialog.xaml file, 304 
OrderItemDialog.xaml.cs file, 310 ORM 
(Object/Relational Mapping) framework, 80  



ƴ INDEX 

354 

 

 

Entity Framework, 204 - 206 OSO 
(office - supply ordering) application 
adding attributes to classes, 63- 65 
application design, 287- 288 
business logic layer,  295- 300 class 
diagram, 289  creating SRS, 56 - 57 
creating UI, 300 - 312 data access 
layer, 290 - 295  database schema 
for, 290 developing class model, 
61- 74 developing use cases, 57- 58 
diagramming us e cases, 59- 61 
identifying class associations,  65-
66 identifying classes, 61 - 63 
launchin g app. in debug mode, 312 
modeling class behaviors, 66 - 70 
OSO application UI, 300 - 312 
addButton_Click event, 309  
codebehind files, 306, 310, 311  
developing UI model design, 70 - 74 
Login dialog, 305, 309  
loginButton_Click event, 309  
LoginDialog.xaml file,  305  
LoginDialog.xaml.cs file, 311  
MainWindow.xaml file, 302 
MainWindow.xaml.cs file, 306 Order 
Item dialog, 304, 309  
OrderItemDialog.xaml file, 304 
OrderItemDialog.xaml.cs file, 310 
placeOrderButton_Click event, 310 
removeButton_Click event, 310 
Window_Loaded event, 308 OSO 
class diagram, 289  Output window, 
VS IDE  
building and executing assemblies, 

95 overloading  
class constructors, 110,  
111  class methods , 112 -
114 method signatures, 
108 methods, 108 - 114,  
125  polymorphism, 5 
override keyword  
calling derived class method from 

base class,  123  
hiding base class methods,  125  
overriding base class method, 122 - 123,  
126  

Ƶ P 
Page elem ent  

Silverlight controls, 245  parallel 

processing, activity diagrams, 43 
parameters  

defining method signatures, 138 
editing data in DataSet,  197  
overloading methods,  125  passing 
parameters, 138 - 139  SqlParameter 
class, 182 using stor ed procedures,  
185  PathTooLongException, 335  
PE file, .NET Framework, 83 peek 
method,  179  physical design, 287  
PlaceOrder method, 294 
placeOrderButton_Click event, 310 
polymorphism, 4, 115,  130- 132 

implementing using inheritance, 132 -
134 implementing using interfaces, 134 -
135  overloading, 5 pop method, Stack 
class,  179  presentation tier  

logical architectural design, 
288 primary keys  

referential integrity, 
196 private keyword  

access modifiers,  117  creating 
class constructors, 110 creating 
class properties, 102 creating 
Employee class,  105  scope of code,  
103  procedural languages, 2 
procedu re scope, 323  Product 
class, 64, 66  
ProductCatalog class, 62, 62, 65, 66, 67, 
293, 297  Program class file, Solution 
Explorer, 96, 100 programming  

managed languages, 
5 OOP, 3 
procedural languages, 2 

structured programming, 2 Project 
node, Solution Explorer, 87 Project 
Properties window, VS IDE, 87 
Application tab, 87, 88 projects, VS 
IDE 

creating Employee class,  105  creating 
new project, 86 - 87 properties,  101  
controls, 216  

creating class properties, 102 - 103  
private properties, 10 2 public 
properties, 102 read - only properties, 
102 restrict access to properties, 102 
static properties, 150 - 151 Properties 
node, Solution Explorer, 87 Properties 
window VS IDE, 93- 94 
wiring up event handler, 220, 221  

property block  



ƴ INDEX 

355 

 

 

creating class properties, 102 
PropertyChanged event  

binding control to collection, 254 
protected access modifier, 118 restricting 
use of methods, 120 testing methods,  121  
protected keyword, 118 prototyping  

application, GUI design, 52 Login 
screen, 71 O rder request screen, 73, 
74 View products screen, 72, 73 
public keyword  

access modifiers,  117  creating 
class properties, 102 creating 
Employee class,  105  scope of code,  
103  Pubs database  

verifying installation of, 341 Purchase 
Request class diagram, 70 Purchase 
Request use case sequence diagram for,  69 
push method, Stack class,  179 

ƴQ 
qualifiers  

see also  keywords base 
qualifier, 124, 128 default 
qualifier, 124 this qualifier, 
124 Queue class, 164 
methods,  179  queues,  179  

ƴR 
Read method, DataReader, 186 
ReadLine method, Console, 172 
read - only properties  

creating class properties, 102 recursive 
messages, sequence diagrams, 33 ref 
keyword  

passing parameters by reference, 138 
reference types, 80  
References node, Solution Explorer, 88 
referential integrit y, 196 relational data  

DataSet object,  193  DataTable object,  
193  relationships  

aggregation, 21 association,  19- 20 
association classes, 21- 22 DataRelation 
object, 194 establishing in DataSet, 196, 
202- 204 inheritance, 20  
modeling object  relationships,  19- 22 

relative positioning layout controls, 217  
removeButton_Click event OSO application 
UI, 310 return type  

defining method sign atures, 138 Reverse 
method, arrays,  167  RichTextBox control  

creating memo viewer interface, 224 

RoutedEventArgs parameter event handlers, 
221  rows 

DataRow object, 194  

ƴS 
sample database installing, 337- 341  
verifying installation of, 338 - 341  
SaveChanges method, Context 
updating entities with EF, 207  
scalability  

ADO.NET, 182 using stored procedures,  
185  scenarios, 29- 30 

creating sequence diagrams, 36 scope, 
variables, 323- 324  

block - level scope, 323  
modul e scope, 324 
private keyword,  103  
procedure scope, 323  
public keyword,  103  
sealed classe s, 117  
sealed keyword,  117  
overriding base class method,  123  

sealed modifier,  117  security  
encapsulation, 4 .NET 

Framework, 79 using stored 
procedures,  185  SecurityLevel 
proper ty  

testing Employee class,  107 
SelectCommand property, DataAdapter,  187  
editing data in DataSet, 198 populating 
DataSet,  195  SelectionChanged event 
handler adding controls, Silverlight, 249  
sender parameter, event handlers, 221  
sequence diagrams, 8, 30 - 42 

adding methods to class diagrams, 41 - 42 
creating, 36 - 42 iterative messages, 34 -
35 Login use case, 68 message 
branching, 35- 36 message constraints, 
35 message types, 32 - 33 Purchase 
Request use case,  69 recursive 
messages, 33 View Supply Catalog use 
case, 68 service contract  
WCF web services, 268 

service, WCF services, 
266 Service1.svc.cs file, 
267  ServiceContract 
attribute WCF web 
services, 268 services, 
WCF, 265- 285  

Add Service Reference window, 



ƴ INDEX 

356 

 

 

270 consuming, 270 - 272  
in Silverlight client, 276 - 279  

creating, 266 - 270, 273- 276 WCF 
Data Services, 279- 280 set block  

creating  class properties, 102 short 
data type, C#, 318 shorthand assignment 
operators, C#, 326 Show method, 
MessageBox, 228 signatures  

method signatures, 108 
defining,  137  Silverlight, 81, 
243- 263  data binding, 251- 259  
data conversion, 259, 262, 263  
data validation, 259,  260, 263  
learning more about, 315  
Silverlight application  

binding controls to collection, 254 
consuming WCF service, 276 - 279  
creating, 244, 248 creating WCF Data 
Services, 280 creating WCF web 
services, 274 Silverlight controls 
adding events, 247 binding to 
collections, 254 display controls, 
adding, 246, 249  Grid control, 245  
handling control events, 247, 250 
layout controls, 245- 246, 249  Page 
element, 245  Silverlight page  
adding DatePicker and CheckBox to, 

246 single data type, C#, 319  softwar e 
design, goals of, 7 software requirement 
specification see SRS Solution Explorer, VS 
IDE, 87- 88 

building and executing assemblies, 94 
creating base and derived classes, 118 
Form1 class file, 88 Program class 
file, 96, 100 Project node, 87 Project 
Properties window, 87 Properties 
node, 87 References node, 88 Toolbox 
window, 91- 93 SortedList class, 164 
sorting  
generic collec tions, 176, 178 Source 

property, Exception class, 336 SQL 
Server data provider classes, 182 SQL 
Server database free versions, 337 

populating DataSet from,  195,  199- 201  
populating DataTable from, 194 retrieving 
data from,  189- 193  SQL statements  

executing commands, 184 
SQLClient namespace data 
providers, 182  
SQLCmd.exe  

installing sample database, 

337  SqlCommand class, 182  
ExecuteScalar method, 292 

SqlConnection class, 182,  183,  
190 SqlDataAdapter class, 182 
editing data in DataSet, 198 
SqlDataReader class, 182  

creating WCF web services, 275  
DataReader retrieving data, 186 SqlError 
class,  183  SqlException class,  183  
SqlParameter class, 182,  185  
SqlTransaction class,  183  SRS (software 
requirement specification), 8, 9- 10 creating, 
56- 57 

creating use case diagram,  13- 14 
identify classes from, 18 use cases, 10 
SSDL (store schema definition 
language) Entity Framework, 205  
Stack class, 164 methods,  179  
StackPanel control, 218  

adding, Silverlight, 246, 249 
binding DataGrid to Da taTable, 234 
stacks,  179  
StackTrace property, Exception class, 
336 Start Page, VS IDE, 85 static 
methods,  151  creating, 152 - 154 static 
properties, 150 - 151  static methods,  
151  StatusBar control  

creating memo viewer interface, 
223  stepping through code, VS IDE, 
95- 97 store schema definition 
language (SSDL) Entity Framework, 
205  stored procedures  

executing using Command object, 192 -
193  retrieving data set, 18 8 using,  185  
StringFormat property, Silverlight, 260 
strong typing, C#, 317  structure data type, 
C#, 320 structured exception handlers 
benefits of,  147  creating, 154 structured 
programming, 2 Style property, buttons  

creating/using control and data 
templates, 237  

subscription - based messag ing,  
139  Suppliers table  

verifying installation of sample database, 
340  

switch statement, C#, 329  
synchronous messaging,  155,  157-
159  sequence diagrams, 32 System 
namespace, 82 System.Collections 
namespace coll ection classes,  163  
collection interfaces, 164 



ƴ INDEX 

357 

 

 

System.Data namespace ADO.NET, 
182 classes, 194 data providers, 182 
System.Data.SQLClient namespace 
classes, 182 SystemException class  

exception classes,  .NET, 335  

ƴT 
tables  

DataTable object,  193  establishing 
relationships in DataSet, 196, 202 - 204 

verifying installation of sample database, 
340  

TargetNullValue property, Silverlight, 
260 task analysis, activity diagrams, 49 
templates  

New Project dialog, VS IDE, 86 ternary 
operator, C#, 328 TextBox control  

display controls, WPF, 218 using in Grid, 
217  this qualifier  

calling derived class method from base 
class, 124  

threads  
BackgroundWorker thread,  157  Throw 

statement  
exception handling, C#, 334 throwing 

exceptions,  149  Toolbox window, VS IDE, 
91- 93 All Windows Forms node, 92 turning 
auto hide feature on/off, 92, 93 ToString 
method  

exception classes, 336 
transactions  

SqlTransaction class,  183  try -
catch block,  147  

adding finally block, 148 exception 
handling, C#, 333  TwoWay bi nding, 230  

data binding, Silverlight, 251  
updating data using, 257  types see data 
types typing  

collections, .NET Framework,  175 

ƴU 
UI (user interface)  

creating OSO app. UI, 300 - 312 UML 
(Unified Modeling Language), 8 activity 
diagrams, 8, 42 - 48 actors, 10 CASE 
tools, 14  

class diagrams, 8, 18 - 19, 22- 26 
collaboration diagrams, 8 creating 
activity diagram, 44 - 48 extends 

relationship, 12 includes 
relationship, 12 modeling object 
interaction, 29- 52 scenarios, 29- 30 
sequence diagrams, 8, 30 - 42 SRS, 
8, 9- 10 UMLet, 337  use cases, 8, 
10- 18 UMLet, 337  
adding methods to class diagrams, 41 - 42 

creating activity diagram, 45- 48 creating 
class diagrams, 23- 26 creating sequence 
diagrams, 37- 41 creating use case diagram, 
14- 18 OSO application,  59- 61 Unified  
Modeling Language see UML unified 
programming models, .NET, 78 
UniqueConstraint object, 194 Update 
method  

editing data in DataSet,  197  overloading 
class methods, 112,  113  UpdateCommand 
property editing data in DataSet, 198 
UpdateData method  

editing data in DataSet,  197,  198, 201  
use cas es, 8, 10 - 12 

activity diagram for,  67 
CASE tools, 14  
creating use case diagram, 12 - 18 
developing, 57- 58 diagramming, 59-
61 scenarios, 29- 30 sequence 
diagram for, 68 user groups, 315 

user interface layer, classes for, 288  
user interfa ces see GUIs 
user interfaces see WPF user interfaces  
UserControl_Loaded event handler, 278, 
284  
users  

involving users in design, 74 
using statement, 83 

ƴV 
ValidatesOnExceptions property, 
Silverlight, 259, 261  value types, 80  
variables see instance variables verb 
phrases in use cases,  19, 37, 45 View 
products activity diagram, 71, 72 View 
products screen prototype, 72, 73 View 
Supply Catalog use case sequence diagram 
for, 68 views  

Class View window, VS IDE, 88 -
90 virtual keyword  

overriding base class method, 122 
Visual Designer  

creating memo viewer interface, 224 



ƴ INDEX 

358 

 

 

Visual Studio designer, 219 
creating Silverlight application, 24 4, 248 

Visual Studio IDE, 83- 100  
Add Service Reference window, 270 
adding event to WPF control, 220 
binding control to collection, Silverlight, 
254  
Breakpoint Condition dialog, 98 
Breakpoints window, 97, 99 Class 
View window, 88 - 90 consuming 
WCF web services, 271  creating 
base and derive d classes, 118 
creating Employee class,  105- 106 
creating memo viewer interface, 222 
creating new project, 86 - 87 creating 
OSO application UI, 300  creating 
WCF web services, 266  
customizing, 84 -
85 data access 
layer, OSO, 290 
Debug toolbar, 97 
debugging, 95-
100 Error List 
window, 100 free 
versions, 337 
launching, 84  
locating and fixing build errors, 99- 100 
namespace node, 88 New Project 
dialog, 86, 226 Object Browser 
window, 91 Options dialog, 85 Project 
Properties window, 87 Properties 
window, 93- 94 setting breakpoint in 
code editor, 96 setting conditional 
breakpoints, 97- 99 Silverlight 
designer, 244 Solution Explorer, 87- 88 
stepping through code, 95- 97 Toolbox 
window, 91- 93 verifying installatio n of 
sample database, 338 - 341  Watch 
window, 99 WCF Data Services, 279  
void keyword  
creat ing class methods, 

104 methods, C#, 331  VS IDE 
see Visual Studio IDE  

ƴW 
Watch window, VS IDE, 99 WCF (Windows 
Communication Foundation), 82  

WCF Data Services, 279- 280 consuming, 
282- 285  creating, 280 - 282 WCF web 

services, 265- 285  consuming, 270 - 272 

in Silverlight client, 276 - 279  
creating, 266 - 270, 273- 276 data 
cont racts, 272 - 273  end point, 
266 hosting environment, 266 
service, 266  
WCF Data Services, 279-

280 web applications, 243  
.NET Framework, 81 
Silverlight, 243- 263  web 
browsers  

Silverlight, 243  web services see 
WCF web services while statement, 
C#, 330 widening type conversion, 
C#, 325  Window control  

binding controls us ing 
DataContext property, 230 window 
layout  

binding DataGrid to DataTable, 
234 Window_Loaded event  

creating DataTemplate, 240 OSO 
application UI, 308 Windows, 215 

container controls, 215  controls, 215  
dialogs compared, 226 display controls, 218 
layout controls, 217- 218 modal windows, 
226  Visual Studio designer, 219  Windows 
applications developing, 215 .NET 
Framework, 81 Windows Communication 
Foundation see WCF Windows Forms  

implementing event handling,  141  WPF 
(Windows Presentation Foundation), 81, 215 

creating memo viewer interface, 222 
creating/using control and data templates, 
237- 241  learning more about, 315  
Silverlight, 244 WPF user interfaces  

control events, 220 - 222 creating and 
using dialogs, 226 - 227  creating custom 
dialog, 229  creating memo viewer interface, 
222- 224 creating OSO application UI, 300 -
312 display controls, 218 layout controls, 
217- 218 Visual Studio designer,  219  XAML, 
216 WrapPanel control, 218 WriteLine 
method, Console,  167,  178 WSDL file  

creating WCF web services, 268, 270 
ƴX 
XAML, 216  

binding con trol to collection, 256 binding 
controls using DataContext property, 
230 control syntax, 216 creating memo 
viewer interface, 224 creating/using 
control and data templates, 237 
Silverlight, 244  



ƴ INDEX 

359 

 

 

data bi nding in, 251  
updating DataGrid, 236 
window created with, 217  
XAML code  

OSO application UI, 302 XAML 
code editor  

coding control events, 225  handling 
control events, 247, 250 XAML Editor 
window  

binding DataGrid to DataTable, 234 
coding control events, 224, 225  wiring up 
event handle r, 220 XAML Editor Window  

creating memo viewer interface, 222 
XAP file  

building Silverlight application, 244 XSD 
file  

using data contracts, 273

Beginning C# Object- 

Oriented Programming 

Ƶ Ƶ Ƶ 

Dan Clark 



 

 

@oqdrrÇ 
Beginning C# Object -Oriented Programming  

¨ÔÕÞ×ÎÌÍÙdídvtuudÇÞd©ÆÓd¨ÑÆ×Ð 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, recording, or by any information storage 
or retrieval system, without the prior written permission of the copyright owner and the publisher.  

ISBN- 13 (pbk): 978 - 1- 4302 - 3530 - 9 

ISBN- 13 (electronic): 978 - 1- 4302 - 3531 - 6 

Trademarked names, logos, an d images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and 
images only in an editorial fashion and to the benefit of the trademark owner, with no intention o f 
infringement of the trademark.  

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to prop rietary rights.  

President and Publisher: Paul Manning 
Lead Editor: John Osborn Technical 
Reviewer: Jeff Sanders  
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan 
Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie,  Jeff Olson, Jeffrey Pepper, 
Frank Pohlmann, Douglas Pundick, Ben Renow - Clarke, Dominic Shakeshaft, Matt Wade, Tom 
Welsh Coordinating Editor: Corbin Collins Copy Editor: Mary Behr Compositor: Richard Ables 
Indexer: John Collin Artist: April Milne Cover Des igner: Anna Ishchenko  

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring 
Street, 6th Floor, New York, NY 10013. Phone 1 - 800- SPRINGER, fax (201) 348 - 4505, e - mail 
orders - ny@springer - sbm.com, or visit www.springeronline.com.  

For information on translations, please e - mail  rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional 
use. eBook versions and licenses are also available for most titles. For more information, reference 
our Special Bulk Sales - eBook Licensing  web page at www.apress.com/bulk - sales.  

¹ÍÊdÎÓËÔ×ÒÆÙÎÔÓdÎÓdÙÍÎØdÇÔÔÐdÎØdÉÎØÙ×ÎÇÚÙÊÉdÔÓdÆÓd̆ÆØdÎØ̇dÇÆØÎØpdÜÎÙÍÔÚÙdÜÆ××ÆÓÙÞrd¦ÑÙÍÔÚÌÍdÊÛÊ×Þd
precaution has been taken in the preparation of this work, neither th e author(s) nor Apress shall 
have any liability to any person or entity with respect to any loss or damage caused or alleged to 
be caused directly or indirectly by the information contained in this work.  

The source code for this book is available to readers at www.apress.com. You will need to answer 
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com/
mailto:rights@apress.com
http://www.apress.com/
http://www.apress.com/bulk-sales
http://www.apress.com/




iv  

 

 

Contents 

Ƶ About the Author .................................................................................................................................... xii 

Ƶ About the Technical Reviewer ............................................................................................................. xiii 

Ƶ Acknowledgments ................................................................................................................................. xiv 

Ƶ Introduction ............................................................................................................................................ xv 

Ƶ Chapter 1: Overview of Object-Oriented Programming ........................................................................1 

The History of OOP ........................................................................................................................... 1 

Why Use OOP? .................................................................................................................................. 2 

The Characteristics of OOP ............................................................................................................. 3 

Objects .......................................................................................................................................... 3 
Abstraction .................................................................................................................................... 3 
Encapsulation ............................................................................................................................... 4 
Polymorphism ............................................................................................................................... 4 
Inheritance .................................................................................................................................... 5 
Aggregation .................................................................................................................................. 5 

The History of C# .............................................................................................................................. 5 

Summary............................................................................................................................................ 6 

Ƶ Chapter 2: Designing OOP Solutions: Identifying the Class Structure ...............................................7 

Goals of Software Design................................................................................................................. 7 

Understanding the Unified Modeling Language ............................................................................. 8 

Developing a SRS ............................................................................................................................. 9 

Introducing Use Cases ................................................................................................................... 10 

Understanding Class Diagrams ..................................................................................................... 18 

Modeling Object Relationships ...................................................................................................... 19 

Association ................................................................................................................................. 19 
Inheritance .................................................................................................................................. 20 
Aggregation ................................................................................................................................ 21 
Association Classes ................................................................................................................... 21 

Summary ......................................................................................................................................... 26 



ƴ CONTENTS 

v 

 

 

Ƶ Chapter 3: Designing OOP Solutions: Modeling the Object Interaction .......................................... 29 

Understanding Scenarios .............................................................................................................. 29 

Introducing Sequence Diagrams ................................................................................................... 30 

Message Types ............................................................................................................................... 32 

Recursive Messages ...................................................................................................................... 33 

Message Iteration ........................................................................................................................... 34 

Message Constraints ...................................................................................................................... 35 

Message Branching ........................................................................................................................ 35 

Understanding Activity Diagrams ................................................................................................. 42 

Decision Points and Guard Conditions .................................................................................... 43 
Parallel Processing .................................................................................................................... 43 

Activity Ownership ..................................................................................................................... 44 

Exploring GUI Design ..................................................................................................................... 48 

GUI Activity Diagrams ................................................................................................................ 49 
Interface Prototyping ................................................................................................................. 50 
Interface Flow Diagrams ............................................................................................................ 51 
Application Prototyping ............................................................................................................. 52 

Summary ......................................................................................................................................... 52 

Ƶ Chapter 4: Designing OOP Solutions: A Case Study ......................................................................... 55 

Developing an OOP Solution ......................................................................................................... 55 

Creating the System Requirement Specification ..................................................................... 56 
Developing the Use Cases ......................................................................................................... 57 
Diagramming the Use Cases ..................................................................................................... 59 
Developing the Class Model ...................................................................................................... 61 

Identifying the Classes .......................................................................................................... 61 
Adding Attributes to the Classes ......................................................................................... 63 
Identifying Class Associations ............................................................................................. 65 
Modeling the Class Behaviors .............................................................................................. 66 
Developing the User Interface Model Design ...................................................................... 70 

Avoiding Some Common OOP Design Pitfalls ........................................................................ 74 

Summary ......................................................................................................................................... 75 

Ƶ Chapter 5: Introducing the .NET Framework and Visual Studio ....................................................... 77 

Introducing the .NET Framework .................................................................................................. 77 

Goals of the .NET Framework ................................................................................................... 77 
Support of Industry Standards .................................................................................................................... 77 

Extensibility ................................................................................................................................................... 78 

Unified Programming Models ...................................................................................................................... 78 



ƴ CONTENTS 

vi  

 

 

Easier Deployment ........................................................................................................................................ 78 

Improved Memory Management .................................................................................................................. 79 

Improved Security Model ............................................................................................................................. 79 
Components of the .NET Framework ................................................................................................................ 79 

Common Language Runtime ....................................................................................................................... 80 

Framework Base Class Library ...................................................................................................................  80 

Data Classes .................................................................................................................................................  80 

Windows Applications .................................................................................................................................. 81 

Web Applications .........................................................................................................................................  81 

Application Services ....................................................................................................................................  81 
Working with the .NET Framework ................................................................................................................... 82 

Understanding Assemblies and Manifests ................................................................................................. 82 

Referencing Assemblies and Namespaces  ..............................................................................................  82 

Compiling and Executing Managed Code................................................................................................... 83 
Using the Visual Studio Integrated Development Environment .......................................................................... 83 

Customizing the IDE  ...................................................................................................................................  84 

Creating a New Project ................................................................................................................................  86 

Investigating the Solution Explorer and Class View ................................................................................. 87 

Exploring the Toolbox and Properties Window ......................................................................................... 91 

Building and Executing the Assembly ........................................................................................................ 94 

Stepping Through Code ............................................................................................................................... 95 

Setting Conditional Breakpoints.................................................................................................................. 97 

Locating and Fixing Build Errors................................................................................................................  99 
Summary ................................................................................................................................................................ 100 

Ƶ ..................................................................................................................................Cha
pter 6: Creating Classes ..........................................................................................................................101 

Introducing Objects and Classes ......................................................................................................................... 101 

Defining Classes .................................................................................................................................................... 102 

Creating Class Properties ................................................................................................................................ 102 
Creating Class Methods ................................................................................................................................... 103 

Defining the Employee Class ..................................................................................................................... 105 

Testing the Employee Class ...................................................................................................................... 107 

Using Constructors ............................................................................................................................................... 107 

Overloading Methods ............................................................................................................................................ 108 

Creating and Overloading Class Constructors ........................................................................................ 110 

Testing the Employee Class Constructors ............................................................................................... 111 

Overloading a Class Method ...................................................................................................................... 112 

Testing the Overloaded Update Method .................................................................................................... 113 
Summary ...............................................................................................................................................................  114 



ƴ CONTENTS 

vii  

 

 

Ƶ Chapter 7: Creating Class Hierarchies ...............................................................................................115 
Understanding Inheritance ................................................................................................................................... 115 

Creating Base and Derived Classes ............................................................................................................... 116 

Creating a Sealed Class ................................................................................................................................... 117 

Creating an Abstract Class .............................................................................................................................. 117 

Using Access Modifiers in Base Classes ....................................................................................................... 117 
Overriding the Methods of a Base Class ............................................................................................................. 122 

Calling a Derived Class Method from a Base Class ...................................................................................... 123 

Calling a Base Class Method from a Derived Class ...................................................................................... 124 

Overloading Methods of a Base Class ................................................................................................................ 125 

Hiding Base Class Methods .................................................................................................................................. 125 

Implementing Interfaces ....................................................................................................................................... 129 

Understanding Polymorphism ............................................................................................................................. 130 

Summary ................................................................................................................................................................ 135 

Ƶ Chapter 8: Implementing Object Collaboration .................................................................................137 

Communicating Through Messaging .................................................................................................................. 137 

Defining Method Signatures ................................................................................................................................. 137 

Passing Parameters .............................................................................................................................................. 138 

Understanding Event-Driven Programming ........................................................................................................ 139 

Understanding Delegation .................................................................................................................................... 139 

Implementing Events ............................................................................................................................................. 140 

Responding To Events .......................................................................................................................................... 141 

Windows Control Event Handling ........................................................................................................................ 141 

Handling Exceptions in the .NET Framework ..................................................................................................... 147 

Using the Try-Catch Block ............................................................................................................................... 147 

Adding a Finally Block ..................................................................................................................................... 148 

Throwing Exceptions ....................................................................................................................................... 149 

Nesting Exception Handling ............................................................................................................................ 149 

Static Properties and Methods ............................................................................................................................. 150 

Using Asynchronous Messaging ......................................................................................................................... 155 

Summary ................................................................................................................................................................ 161 

Ƶ Chapter 9: Working with Collections .................................................................................................. 163 

Introducing the .NET Framework Collection Types............................................................................................ 163 

Working with Arrays and Array Lists ................................................................................................................... 165 

Using Generic Collections .................................................................................................................................... 175 

Programming with Stacks and Queues ............................................................................................................... 179 



ƴ CONTENTS 

viii  

 

 

Summary................................................................................................................................................................. 180 

Ƶ Chapter 10: Implementing the Data Access Layer ............................................................................ 181 

Introducing ADO.NET ............................................................................................................................................ 181 

Working with Data Providers ................................................................................................................................ 182 

Establishing a Connection .................................................................................................................................... 183 

Executing a Command .......................................................................................................................................... 184 

Using Stored Procedures ...................................................................................................................................... 185 

Using the DataReader Object to Retrieve Data ................................................................................................... 186 

Using the DataAdapter to Retrieve Data .............................................................................................................. 187 

Working with DataTables and DataSets .............................................................................................................. 193 

Populating a DataTable from a SQL Server Database........................................................................................ 194 

Populating a DataSet from a SQL Server Database ........................................................................................... 195 

Establishing Relationships between Tables in a DataSet.................................................................................. 196 

Editing Data in the DataSet ................................................................................................................................... 197 

Working with the Entity Framework ..................................................................................................................... 204 

Querying Entities with LINQ to EF ....................................................................................................................... 206 

Updating Entities with the Entity Framework...................................................................................................... 207 

Summary................................................................................................................................................................. 213 

Ƶ Chapter 11: Developing Windows Applications ................................................................................ 215 

Windows Fundamentals ........................................................................................................................................ 215 

Introducing XAML .................................................................................................................................................. 216 

Using Layout Controls .......................................................................................................................................... 217 

Adding Display Controls ....................................................................................................................................... 218 

Using the Visual Studio Designer ........................................................................................................................ 219 

Handling Control Events ....................................................................................................................................... 220 

Creating and Using Dialog Boxes  ......................................................................................................................  226 

Presenting a MessageBox to the User................................................................................................................. 227 

Creating a Custom Dialog Box ............................................................................................................................  229 

Data Binding in Windows-Based GUIs ................................................................................................................ 230 

Binding Controls Using a DataContext ...............................................................................................................  230 

Creating and Using Control and Data Templates ..............................................................................................  237 

Summary................................................................................................................................................................  242 

Ƶ Chapter 12: Developing Web Applications ........................................................................................ 243 

What Is Silverlight?................................................................................................................................................ 243 



ƴ CONTENTS 

ix  

 

 

Creating a Silverlight Application  ......................................................................................................................  244 

Using Layout Controls .........................................................................................................................................  245 

Adding Display Controls ....................................................................................................................................... 246 

Handling Control Events ....................................................................................................................................... 247 

Data Binding in Silverlight ...................................................................................................................................  251 

Validating and Converting Data...........................................................................................................................  259 

Summary................................................................................................................................................................  263 

Ƶ Chapter 13: Developing and Consuming WCF Services .................................................................. 265 

What Are Services?  .............................................................................................................................................  265 

Creating a WCF Web Service ................................................................................................................................ 266 

Consuming a WCF Web Service..........................................................................................................................  270 

Using Data Contracts ............................................................................................................................................ 272 

WCF Data Services ................................................................................................................................................ 279 

Summary................................................................................................................................................................  285 

Ƶ Chapter 14: Developing the OSO Application ................................................................................... 287 

Revisiting Application Design .............................................................................................................................. 287 

Building the OSO Applicationõs Data Access and Business Logic Layers ...................................................... 289 

Creating the OSO Application UI  ........................................................................................................................  300 

Summary................................................................................................................................................................. 312 

Ƶ Chapter 15: Wrapping Up .................................................................................................................... 313 

Improve Your Object-Oriented Design Skills ...................................................................................................... 314 

Investigate the .NET Framework Namespaces ................................................................................................... 314 

Become Familiar with ADO.NET and the Entity Framework .............................................................................. 314 

Learn More About WPF and Silverlight ............................................................................................................... 315 

Move Toward Component-Based Development ................................................................................................. 315 

Find Help................................................................................................................................................................. 315 

Join a User Group .................................................................................................................................................. 315 
Please Provide Feedback ...................................................................................................................................... 316 

Thank You and Good Luck ................................................................................................................................... 316 

Ƶ ..................................................................................................................................App
endix A: Fundamental Programming Concepts ....................................................................................317 

Working with Variables and Data Types .............................................................................................................. 317 

Understanding Elementary Data Types ............................................................................................................... 318 

Integral Data Types ........................................................................................................................................... 318 

Non-Integral Data Types .................................................................................................................................. 318 



ƴ CONTENTS 

x 

 

 

Character Data Types ....................................................................................................................................... 319 

Boolean Data Type ........................................................................................................................................... 319 

Date Data Type .................................................................................................................................................. 319 

Object Data Type .............................................................................................................................................. 319 

Nullable Types .................................................................................................................................................  320 
Introducing Composite Data Types ....................................................................................................................  320 

Structures  ........................................................................................................................................................  320 

Arrays ...............................................................................................................................................................  320 

Classes .............................................................................................................................................................  321 
Looking at Literals, Constants, and Enumerations ............................................................................................ 321 

Literals ............................................................................................................................................................... 321 

Constants .......................................................................................................................................................... 322 

Enumerations ...................................................................................................................................................  322 
Exploring Variable Scope ....................................................................................................................................  323 

Block-Level Scope  ..........................................................................................................................................  323 

Procedure Scope .............................................................................................................................................  323 

Module Scope  .................................................................................................................................................  324 
Understanding Data Type Conversion  ..............................................................................................................  324 

Implicit Conversion .........................................................................................................................................  324 

Explicit Conversion .......................................................................................................................................... 325 

Widening and Narrowing Conversions ..........................................................................................................  325 
Working with Operators .......................................................................................................................................  325 

Arithmetic Operators .......................................................................................................................................  325 

Comparison Operators  ...................................................................................................................................  326 

Logical Operators ............................................................................................................................................  327 

Ternary Operator .............................................................................................................................................. 328 
Introducing Decision Structures .........................................................................................................................  328 

If Statements ....................................................................................................................................................  328 

Switch Statements ...........................................................................................................................................  329 
Using Loop Structures .........................................................................................................................................  330 

While Statement ...............................................................................................................................................  330 

Do-While Statement .........................................................................................................................................  330 

For Statement.................................................................................................................................................... 331 

For Each Statement .........................................................................................................................................  331 
Introducing Methods  ...........................................................................................................................................  331 

Ƶ Appendix B: Exception Handling in C# ............................................................................................. 333 

Managing Exceptions ............................................................................................................................................ 333 

Using the .NET Framework Exception Classes .................................................................................................. 335 

Ƶ Appendix C: Installing the Required Software .................................................................................. 337 

Installing the Sample Databases .........................................................................................................................  337 



ƴ CONTENTS 

xi  

 

 

Verifying the Database Installs ............................................................................................................................. 338 

Ƶ Index ..................................................................................................................................................... 383



xii  

 

 

About the Author
 

 

 

 

 

ͮDan Clark is a senior IT consultant specializing in .NET and SQL 
Server technology. He is particularly interested in C# programming 
and SQL Server Business Intelligence development. Dan is a 
Microsoft Certified Trainer and a Microsoft Certified Solution 
Developer. For over a de cade, he has been developing applications 
and training others to develop applications using Microsoft 
technologies. Dan has published several books and numerous 
articles on .NET programming. He is a regular speaker at various 
developer conferences and user  group meetings, and he conducts 
workshops in object - oriented programming and database 
development. He finds particular satisfaction in turning new 
developers on to the thrill of developing and designing object -
oriented applications. You can reach Dan at  Clark.drc@gmail.com.

mailto:Clark.drc@gmail.com


13  

 

 

About the Technical Reviewer 

Jͮeff Sanders is a published author, technical reviewer, and an 
accomplished technologist. He is currently employed with Avanade 
in the capacity of Group Manager/Senior Architect.  

Jeff has years of professional experience in the field of IT and 
strategic business consulting, leading both sales and delivery efforts. 
He regularly contributes to certification and product roadmap 
development with Microsoft and speaks publicly on Microsoft 
enterprise technologies. With roots in software development, Jeff's 
areas of expertise include operational intelligence, collaboration and 
content management solutions, digital marketing, distributed 
component - based application  architectures, object - oriented analysis 
and design, and enterprise integration patterns and designs.  

Jeff is also the CTO of DynamicShift, a client - focused 
organization specializing in Microsoft technologies, specifically 
SharePoint Server, Streamlnsight,  Windows Azure, AppFabric, 

Business Activity Monitoring, BizTalk Server, Commerce Server, and .NET. He is a Microsoft 
Certified Trainer, and he leads DynamicShift in both training and consulting efforts.  

He enjoys non - work - related travel and spending time with his wife and daughter ˿and 
wishes he more time for both. He may be reached at jeff.sanders@dynamicshift.com.   

mailto:jeff.sanders@dynamicshift.com


14  

 

 

Acknowledgments 

A special thanks to the following people who made this book possible:  

 ̋ Jonathan Hassell for once again leading the effort to get the project approval.  

 ̋ Corbin Collins for keeping me on task and for managing the madness.  

 ̋ Jeff Sanders for the helpful suggestions and making sure this book was technically 
accurate.  

 ̋ John Osborn for clarifying my thoughts and increasing the readability of this book.  

 ̋ The rest of the team at Apress for once again making the process of writing an 
enjoyable experience.  

 ̋ And, last but not least, my family for their patience.  


