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Summary

 

This article describes situations in which regres-
sion through the origin is appropriate, derives
the normal equation for such a regression and
explains the controversy regarding its evaluative
statistics. Differences between three popular soft-
ware packages that allow regression through the
origin are illustrated using examples from previous
issues of 

 

Teaching Statistics

 

.

 

ª

 

INTRODUCTION

 

ª

 

A

 

lthough ordinary least-squares (OLS) regres-
sion is one of the most familiar statistical

tools, far less has been written 

 

−

 

 especially in the
pedagogical literature 

 

−

 

 on regression through
the origin (RTO). Indeed, the subject is surpris-
ingly controversial. The present note highlights
situations in which RTO is appropriate, discusses
the implementation and evaluation of such models
and compares RTO functions among three pop-
ular statistical packages. Some examples gleaned
from past 

 

Teaching Statistics

 

 articles are used as
illustrations. For expository convenience, OLS
and RTO refer here to linear regressions obtained
by least-squares methods with and without a con-
stant term, respectively.

 

ª

 

MODEL SELECTION:

 

ª

 

WHEN IS RTO APPROPRIATE?

 

Textbooks rarely discuss RTO other than to cau-
tion against dropping the constant term from a
regression, on the grounds that imposing any such
restriction can only diminish the model’s fit to the
data. There are, however, circumstances in which
RTO is appropriate or even necessary.

First, RTO may be unavoidable if transforma-
tions of the OLS model are needed to correct
violations of the Gauss–Markov assumptions.
Consider, for example, the simple linear regression
of 
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where 
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 is the intercept, 
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is the slope and 
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denotes the 

 

i

 

th residual. Lagging observations
and taking first differences (i.e. subtracting each
observation from its successor) to correct for serial
correlation in the errors requires transforming equa-
tion (1) into an RTO equation of the form
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Alternatively, applying weighted least squares
to correct for heteroscedasticity will result in a
model with no intercept if the weighting factor
(

 

z

 

) is not an independent variable. In that case,

 

β

 

0

 

 becomes a coefficient and equation (1) is
replaced by a multiple linear regression without
a constant:
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Even without such transformations, however, there
are often strong a priori reasons for believing that

 

Y

 

 

 

=

 

 0 when 

 

x

 

 

 

=

 

 0, and therefore omitting the
constant. Indeed, Theil (1971, p. 176) contends
‘From an economic point of view, a constant term
usually has little or no explanatory virtues’. While
that may be a slight exaggeration 

 

−

 

 it is easy to
find examples in which an intercept does matter 

 

−

 

there are certainly cases in which economic theory
posits the absence of a constant. The widely used
Cobb–Douglas production function, for example,
relates output (

 

Y

 

) to capital (

 

K

 

) and labour (

 

L

 

)
according to , and taking logarithms
yields ln 
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; imposing a constant
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on this model would imply an unrealistic ability
to manufacture goods without resources. An
agricultural example is provided by Chambers and
Dunstan (1986), who regress sugar cane har-
vests on farmland acreage; clearly, if no land is
cultivated, there will be no crop. Casella (1983,
p. 150) suggests an engineering example in which
gasoline usage is a simple linear function of
vehicular weight; he reasons that, in principle, a
weightless vehicle would consume no fuel, so ‘con-
sidering the physical constraints ... it seems most
appropriate to fit a line through the origin’. And
Adelman and Watkins (1994) apply RTO to the
valuation of mineral deposits. Of course, similar
instances can be found in almost any discipline;
some ornithological and nutritional examples are
discussed below.

Even when theory proscribes a constant, how-
ever, careful consideration of the observed range
of data is needed. As Hocking (1996, p. 177)
points out, ‘if the data are far from the origin, we
have no evidence that the linearity applies over
this expanded range. For example, the response
may increase exponentially near the origin and
then stabilize into a near linear response in the
region of typical inputs.’ Alternatively, observa-
tions at the origin may represent a discontinuity
from an otherwise linear function with a positive
or negative intercept. Under those circumstances,
knowing that 

 

Y

 

 

 

=

 

 0 when 

 

x

 

 

 

=

 

 0 is insufficient
justification for RTO.

If there is uncertainty regarding the appropriate-
ness of including an intercept, several diagnostic
devices can provide guidance. Most obviously,
one can run the OLS regression and test the null
hypothesis 

 

Η

 

0

 

 : 

 

β

 

0

 

 

 

=

 

 0 using the Student’s 

 

t

 

 statistic
to determine whether the intercept is significant.
Alternatively, Hahn (1977) suggests running the
regression with and without an intercept, and com-
paring the standard errors to decide whether
OLS or RTO provides a superior fit. And Casella
(1983) suggests artificially creating an extra obser-
vation 

 

−

 

 a leverage point 

 

−

 

 that pulls the OLS
regression line naturally through the origin. Unless
the data set is small and the observations cluster
near the origin, any such leverage point is likely to
be an outlier but, if it appears to be a plausible
extrapolation of the actual data, one may con-
clude that RTO is an acceptable model. Unfor-
tunately, there are infinitely many such leverage
points that could be chosen for that exercise, and
the reasonableness of RTO will depend on which
point is used.
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IMPLEMENTATION AND

 

ª

 

 

 

EVALUATION OF RTO

 

In one respect, RTO is merely a special case of
OLS, and the absence of the constant is actually
a simplification. Indeed, minimizing the sum
of squared errors for the simple linear RTO model
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involves far less calculation than it does for the
OLS model of equation (1). The problem

has only one normal equation or first-order
condition

and the easily derived second-order condition,
, clearly guarantees a minimum. From

the normal equation, the estimated slope of the
regression line is

as noted by, for example, Pettit and Peers (1991).
(For weighted versions, see Turner, 1960.)

Unfortunately, the RTO residuals will usually
have a nonzero mean, because forcing the regres-
sion line through the origin is generally incon-
sistent with the best fit. The proper method for
evaluating RTO has long been disputed (see, for
example, Marquardt and Snee 1974; Maddala
1977; Gordon 1981). To appreciate the contro-
versy, note the familiar identity
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 y ) = (Yi − Yi) + (Yi − y ) (2)

where y denotes the mean of the dependent
variable and Yi is the ith fitted value. Squaring
both sides and summing across all observations
gives

∑(Yi − y )2 = ∑(Yi − Yi)
2 + ∑(Yi − y )2 

+ 2∑(Yi − Yi)(Yi − y )

but, as is well known, the cross-product term is
equal to zero in the case of OLS. The remaining
terms therefore constitute the usual analysis of
variance decomposition
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∑(Yi − y )2 = ∑(Yi − Yi )
2 + ∑(Yi − y )2 (3)

where the left-hand side is the sum of squares total
(SST), the first term on the right is the sum of
squares due to error (SSE) and the final term is
the sum of squares due to regression (SSR). The
coefficient of determination for OLS is then
defined by the ratio of SSR to SST

or equivalently

(4)

Some authors maintain that because this diag-
nostic measure is based on an identity, it should
not depend on the inclusion or exclusion of a
constant term in the regression. From that per-
spective, equation (4) is equally valid for RTO
and OLS.

However, when there is no constant in the regres-
sion, ∑(Yi − Yi)(Yi − y ) will generally take a
nonzero value, so equation (3) is not a valid
basis for analysis of variance in RTO. And if
the RTO model provides a sufficiently poor fit,
the data may exhibit more variation around the
regression line than around y, in which case
∑(Yi − Yi)

2 > ∑(Yi − y )2. Heedlessly applying
equation (4) would then result in an implausibly
negative (and thus uninterpretable) coefficient
of determination as well as a negative F ratio.
Moreover, it is often argued that defining SST as
the sum of squared deviations from the mean is
inappropriate when the regression line is forced
through the origin but does not necessarily pass
through (x,y ); when so viewed, equation (2) is
replaced by the identity

(Yi − 0) = (Yi − Yi ) + (Yi − 0)  (2′)

Squaring and summing yields

but the final (cross-product) term in this equation
equals zero under RTO, because

Thus, equation (3) is replaced by

(3′)

Applying equation (3′ ) rather than equation (3) to
RTO, one finds that SSE is unchanged, but SST =

 and SSR = . Redefining SST and SSR in
this manner results in

(4′)

a strictly non-negative coefficient of determina-
tion that equals or exceeds the measure in equa-
tion (4). Of course, these definitions also affect the
adjusted R2 and F statistics, but do not alter the
standard error of the regression (Se). Note that,
without a constant, the degrees of freedom for
SST, SSR and SSE are n, k and n – k, respectively,
where n is the sample size and k is the number of

independent variables; thus, 

regardless of how SST is defined.

The controversy over SST is not merely academic:
practitioners (and students) running RTO will
obtain various outputs depending on which com-
puter packages they use. Indeed, as Prvan et al.
(2002, p. 74) observed in a recent comparison of
Minitab, SPSS and Excel, ‘Obtaining a simple
linear regression is easy in all three packages, and
all three give the standard output options (such as
regression through the origin)’. But in fact the three
packages all give different outputs for RTO! Two
illustrative examples are provided below.

ª EXAMPLES ª

In Kimber’s essay on the shape of birds’ eggs,
egg height is regressed on width, both with and
without an intercept (Kimber 1995). Her study of
281 species can be approximately replicated using
the 96 observations provided in the Data Bank
section of the Summer 1990 issue of Teaching
Statistics (Data Bank 1990). Regardless of which
computer package is used, OLS yields the follow-
ing output:

Height = −1.774 + 1.444 Width
[0.001] [0.000]

Se = 2.123 F = 5720.076 R2 = 0.984 R2 = 0.984
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where two-tailed p-values are shown in brackets
below the estimates. Notice that the intercept is
statistically significant; although it is, of course,
impossible for an egg to have a zero width, the
intercept may nevertheless be important, as it
represents the extrapolation of the regression
line back to the vertical axis. The effect of
removing the intercept can be seen by running
RTO. If Excel is used, as it was by Kimber, RTO
yields

Height = 1.382 Width
[0.000] 

Se = 2.251 F = 5073.616 R2 = 0.9816 R2 = 0.9711

which indicates a poorer fit by all diagnostic
measures: the standard error, F and R2 (adjusted
and unadjusted). However, the SPSS linear regres-
sion procedure without an intercept yields

Height = 1.382 Width
[0.000]

Se = 2.251 F = 24,283.995 R2 = 0.996 R2 = 0.996

Notice that the regression equation and standard
error are the same in the two programs, but the
F and R2 statistics are different. Indeed, in SPSS
these statistics seem to indicate a better fit with-
out the intercept than with it. The discrepancy
between software packages arises because Excel
is based on equations (3) and (4), while the RTO
function in SPSS uses equations (3′) and (4′). The
SPSS output, however, is accompanied by the
disclaimer ‘For regression through the origin
(the no-intercept model), R Square measures
the proportion of the variability in the dependent
variable about the origin explained by regression.
This CANNOT be compared to R Square for
models which include an intercept’ [emphasis in
original].

To make matters more confusing still, SPSS
offers a nonlinear regression option, which
requires a model statement and initial parameter
values. If one uses the nonlinear option but
specifies the linear model and a reasonable initial
value for the slope, this option yields results
identical to those for Excel − that is, it applies
equation (4) to compute R2! Meanwhile, the
Minitab option for RTO gives the same regres-
sion equation and standard error as Excel and
SPSS, but reports neither the F nor the R2 statistic.
However, Minitab’s ANOVA table, from which
F and R2 would be derived, is based on equation
(3′).

Because Excel and the nonlinear option in SPSS
apply equation (4) regardless of whether an inter-
cept is present, it is easy (and perhaps instructive
for students) to construct examples that generate
negative R2 and F statistics for regressions through
the origin using these packages. (One need only
construct a line with a large intercept and then
estimate it without the intercept.) Extreme cases
of that sort can provide a springboard for discus-
sion, and make a compelling argument for using
equation (4′) rather than equation (4) to evaluate
RTO.

The same issues arise, of course, in multiple linear
regressions. Consider the nutritional study con-
ducted by Johnson (1995): the caloric contents of
various foods are regressed on their fat, protein
and carbohydrate contents. For the 13 foods in his
sample, OLS yields

Calories = 4.446 + 8.715 Fat + 4.044 Protein
[0.395] [0.000] [0.000]

+ 3.841 Carbohydrates
[0.000]

Se = 6.97 F = 232 R2 = 0.987 R2 = 0.983

regardless of which statistical software is used. But
here the constant is insignificant and, as Johnson
observes, nutritional theory indicates that a con-
stant is inappropriate for this regression. In SPSS,
removing the constant gives

Calories = 8.888 Fat + 4.266 Protein
[0.000] [0.000]
+ 3.978 Carbohydrates

[0.000]
Se = 6.90 F = 1459.66 R2 = 0.998 R2 = 0.997

with all diagnostics indicating an improved fit.
Minitab and Excel produce the same equation but
different diagnostics. Minitab again reports only
Se, while Excel generates

Calories = 8.888 Fat + 4.266 Protein
[0.000] [0.000] 
+ 3.978 Carbohydrates

[0.000]
Se = 6.895 F = 236.5 R2 = 0.986 R2 = 0.883

In contrast to the previous example, the Excel
output now seems more confusing than the SPSS
output. Notice that Excel’s R2 and adjusted R2

statistics for RTO indicate a worse fit, while its Se

and F statistics indicate a better fit, compared to
the OLS model.
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Given these inconsistencies, Hocking (1996, p. 178)
notes: ‘It is natural to ask if there is a measure
analogous to R2 for the no-intercept model. We
suggest the square of the sample correlation
between observed and predicted values’. It can
easily be shown that this measure is equal to the
unadjusted coefficient of determination for the
OLS model. It therefore gives an interpretable
measure of the quality of an RTO model, but does
not help in comparing RTO with OLS. For that
purpose, the best measures appear to be the p-
value of the OLS constant and the standard errors
of the OLS and RTO regressions. Using these
measures, the constant should be retained in the
eggs example given above, but not in the nutrition
example.

ª CONCLUSION ª

Regression through the origin is an import-
ant and useful tool in applied statistics, but it
remains a subject of pedagogical neglect, contro-
versy and confusion. Hopefully, this synthesis
provides some clarity. However, in the light of
the unresolved debate, perhaps the strongest con-
clusion to be drawn from this review is that the
practice of statistics remains as much an art as
it is a science, and the development of statistical
judgment is therefore as important as computa-
tional skill.
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