Figure 1.

Test Statistic

 Assume to begin with that H0 is true. The sample mean x-bar is our best estimate of μ, and we use it in a standardized form as the test statistic:

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \approx \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

Figure 2.

Test Statistic

 Assume to begin with that H0 is true. The sample mean x-bar is our best estimate of μ, and we use it in a standardized form as the test statistic:

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \approx \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

Test Statistic

 Assume to begin with that H0 is true. The sample mean x-bar is our best estimate of μ, and we use it in a standardized form as the test statistic:

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \approx \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

Figure 4.

Test Statistic

 Assume to begin with that H₀ is true. The sample mean x-bar is our best estimate of μ, and we use it in a standardized form as the test statistic:

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \approx \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$