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Chapter 1: Introduction

This Ph.D. thesis considers the problems of non-quadratic stability analysis and control

design for continuous-time Takagi-Sugeno models. The goal is to develop new approaches to

overcome the drawbacks of existing approaches in fuzzy control theory.

1.1. Background and Motivation

Physical systems are generally described by nonlinear models, which makes stability

analysis  a  goal  difficult  to  rich,  classical  approaches  tend to  approximate  them by linear

systems.  However,  the  major  drawback  is  that  the  linearized  systems  fail  to  completely

represent the real plants that are highly nonlinear. Researchers have proposed several ways to

deal with nonlinear systems; a linear parameter varying (LPV) presentation has been proposed

by [Shamma, 1988] in order to approximate nonlinear systems, An LPV system is essentially

a linear time-varying system which can be written in the form
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Where θ  is a time varying parameter vector. As such it has a structure which is similar to a

linear time-invariant state space system, and control design methods with some similarity to

linear state space methods can indeed be used. Although these  models do not capture the

nonlinear behavior of models [Bernal & Guerra , 2010].

Another alternative introduced by [Shamma & Cloutier, 1993] to write nonlinear systems of

the form  of  quasi-LPV  models,  this  representation  is  obtained  through  an  exact

transformation of the nonlinear states. A quasi-LPV system is de defined as a system where

the state realization can be put in the following form:
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This class of models known also as Takagi-Sugeno models [Takagi & Sugeno , 1985] which

consists in a set of linear models blended together with nonlinear functions called membership

functions (MFs) which hold the convex-sum property [Tanaka & al, 2001]. It allows then to

exactly represent a nonlinear model in a compact set of the state variables [Taniguchi & al,

2001], 
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T-S models may be extended to polynomial fuzzy models which consists in a convex sum of

polynomials  models.  It  has  been  recently  proposed  in  [Tanaka  & al,  2009]  to  represent

efficiently a nonlinear system, especially when nonlinear terms are polynomials.

In this thesis, nonlinear systems represented in the form of both T-S and polynomial fuzzy

models are considered.

1.2. Review of previous Works

Over the last three decades, the so-called Takagi-Sugeno models [Takagi & Sugeno,

1985] have reached a great attention in the control community. Since they allow a systematic

stability analysis and controller design via linear matrix inequalities (LMIs)[Tanaka & wang,

2001]  which  can  be  efficiently  solved  by  convex  programming  techniques  already

implemented in commercially available software [Boyd & al, 1994] The results for stability,

stabilization, estimation [Tanaka & Wang, 2001], [Lendek & al, 2010], [Feng, 2006] are now

converging towards quasi-LPV models results [Sherer & weiland, 2004]. 

T-S models are combined with different control laws, among which parallel distributed

compensation (PDC) is considered a natural option since it is based on linear state feedbacks

blended together  using the same MFs of the T-S representation.  Once a T-S model  and a

control law are proposed, the direct Lyapunov method is applied to obtain LMI conditions for

stability analysis, control and observer design. [Tanaka & Wang , 2001], [Sala & al, 2005].

The stability of a T-S model is based on the Lyapunov theory,  proving the existence of a

common matrix  0P > such that  0V <& , where  ( ) ( ) ( )T
V t x t Px t=  is a Lyapunov candidate

function. Nonetheless, the quadratic approach presents serious limitations because its solutions

are inherently pessimistic,  i.e.,  there are stable or stabilizable models which do not have a

quadratic solution [Sala & al, 2005], this conservativeness comes from different sources: the

type  of  T-S model  [Guerra  & al,  2007],  [Bouarar  & al,  2010],  the  way the  membership

functions are dropped-off to obtain LMI expressions [Tuan & al, 2001][Sala & Arino, 2007],

[Sala & Arino, 2007], the integration of membership-function information [Sala & Guerra,

2008], [Bernal & al, 2009], or the choice of Lyapunov function [Johanson & al, 1999], [tanaka

& al, 2001], there was room for reducing this conservativeness by changing the choice of the

Lyapunov function. 

Researchers have proposed several Lyapunov functions to deal with these drawbacks:

 In [Tanaka & al, 2003], [Blanco & al, 2001] Fuzzy Lyapunov functions (FLFs) were

proposed, thus constituting the first non-quadratic framework for T-S models, Nevertheless,
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the time-derivative of the membership functions of the T-S model appears in the derivative of

the Lyapunov function which make the resulting conditions non LMIs, for that several results

propose just to bound them a priori [Bernal & al, 2006], [Mozelli & al, 2009]. This way of

doing is not satisfactory because the verification of these bounds can only be done a posteriori

on a  case by case  approach,  especially  when compared with  the discrete-case  [Guerra  &

Vermiren, 2004], [Ding & al, 2006], [Guerra & al, 2009]. Another drawback rises from the

fact that authors bound the time-derivatives of the MFs assuming that they do not depend on

the input, which turns out to be very restrictive. Moreover, the proposed control law makes

use of the time-derivatives of the MFs through a classical PDC scheme, thus ignoring the non-

quadratic nature of the involved Lyapunov function.

In [johansson & al, 1999], [Feng & al, 2004], [Feng & al, 2005] researchers proved

that the use of piecewise Lyapunov functions (PWLFs) have effectively relaxed the referred

pessimism, though they require the MFs to induce a polyhedral partition of the state space.

Unfortunately, this condition on the MFs of those TS models obtained by sector nonlinearity

approach  is  not  fulfilled;  moreover,  the  piecewise  approach  leads  to  bilinear  matrix

inequalities in the continuous-time context which cannot be optimally solved [Feng & al,

2005]. 

In [Rhee & Won, 2006], a line-integral Lyapunov function is proposed to circumvent

the MFs’ time-derivative obstacle, though the line integral is asked to be path-independent

thus significantly reducing its applicability [Guelton & al, 2010].

All  these approaches consider the problem of global stability which is far to be the

general  rule  for  nonlinear  systems.  Although they present  some improvements  which  are

particularly  important  and  allows  dealing  with  problems  that  were  unfeasible  before.  A

change of perspective for non-quadratic stability analysis of T-S models has been proposed in

[Guerra  &  Bernal,  2009].  This  approach  employing  a  non-quadratic  Lyapunov  function

(NQLF) and priori known bounds [Guerra & Bernal, 2009], [Bernal & Guerra, 2010], [Bernal

& al, 2010] and [Guerra & al, 2011], reduces global goals to less exigent conditions, thereby

showing that  an  estimation  of  the  region of  attraction  can  be found (local  stability);  this

solution  parallelizes  nonlinear  analysis  and design for  models  that  do not  admit  a  global

solution [Khalil, 2002].

1.3. Purposes and Contributions



Chapter 1: Introduction

The subject  of this  work is  to  develop new non-quadratic  stability  and stabilization

conditions for continuous T-S fuzzy systems, based on non-quadratic Lyapunov functions,

new non-quadratic stability conditions are derived in order to overcome the drawbacks of the

quadratic approaches and the existing approaches.

A first motivation for the work of this thesis arises from the fact that most of stability

conditions  are  based  on quadratic  Lyapunov  functions  which  means  that  the  aim can  be

reached by finding a common Lyapunov matrix  0P >  for all the sub-models. This renders

stability results conservative and even a large number of systems can be stable without the

existence of a quadratic Lyapunov function. 

A second motivation is that in most of existing approaches dealing with stability and

stabilization, the properties of the membership functions are not taking into account except

the property of convexity. In other approaches, it is taking in consideration the upper bound

for the time derivative of the premise membership function as assumed by [Tanaka & al. ,

2001a], [Tanaka & al. , 2001b], [Tanaka & al. , 2001c], [Tanaka & al. , 2003]. 

A third motivation is that it  has been shown that reducing global stability goals to

something less restrictive will give a nice solution by providing an estimation of the stability

domain (local asymptotic conditions), as it is usually the case for nonlinear models for which

stability and/or stabilization cannot be reached globally.

The  main  contributions  of  this  thesis  are  in  both  stability  analysis  and  controller

design:

The first contribution of this thesis  is concerned with a relaxation in the latter sense

which  demands  a  change  of  perspective  from  global  to  local  conditions.  Non-quadratic

Lyapunov functions has been proposed to analyze the stability of continuous time Takagi-

Sugeno models which means that  the objective can be reached after  finding a number of

0iP > .

The second contribution consists in a sum of squares (SOS) approach based first on

polynomial  fuzzy  modeling  providing  a  more  effective  representations  of  the  nonlinear

systems and second more relaxed stability conditions based on polynomial fuzzy Lyapunov

function  comparing  to  the  LMI-Based  approach.  These  SOS  conditions  can  be  solved

numerically using the Matlab toolbox SOSTOOLS [Prajna & al, 2002].  

The  third  contribution  is  the  extension  of  the  local  results  obtained  for  stability

analysis to the control design of continuous time Takagi-Sugeno models, Based on non-PDC

control  law according  to  the  non-quadratic  nature  of  the  Lyapunov  function,  new  Local
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stabilization  conditions  have  been  obtained.  The  well-known  problem  of  handling  time-

derivatives  of  membership  functions  (MFs)  as  to  obtain  conditions  in  the  form of  linear

matrix inequalities (LMIs) is overcome by reducing global goals to the estimation of a region

of attraction.

Another contribution in this thesis, A novel approach is proposed allowing the design of

a  robust  local  H∞  controller  for  continuous  time  Takagi-Sugeno based on non-quadratic

Lyapunov function, the method is based on a new form of non-PDC controller and by the

mean of Finsler’s  Lemma,  LMIs conditions can be obtained,  the idea does not requires a

bound for the input control, it only needs a priori bound of the states which is given from the

domain of definition of the T-S models.

1.4. Chapters outline 

This thesis is organized as follows:

Chapter 1 provides an introduction de the study. 

Chapter  2  introduces  Takagi-Sugeno  models  followed by the  method  used to  the

design  of  these  models.  A recall  of  the  basic  concepts  and  definitions  of  the  theory  of

stability in the Lyapunov sense is given. Quadratic stability and stabilization conditions for

continuous-time  Takagi-Sugeno  models  are  then  presented.  Semi  definite  programming

techniques and a number of tools and properties are cited. The chapter finishes by a large

discussion  of  the  drawbacks  of  existing  approaches  trying  to  overcome  the  problems

encountered when using classical approaches for stability and stabilization.

Chapter  3 is  devoted to  the first  major  contribution  in  this  thesis,  it  presents  new

solutions  for  stability  analysis  problems for  continuous time  Takagi-Sugeno models.  This

chapter is based on a method first proposed by [Guerra & Bernal, 2009] allowing to obtain

local  results  and better  estimation  of  the  region of attraction  via  non-quadratic  Lyapunov

functions.  Some  improvements  are  then  given  in  order  to  obtain  better  relaxed  stability

conditions followed by illustrative examples to show the advantages of the proposed LMIs

conditions.  Moreover,  we  present  polynomial  fuzzy  modeling  and  stability  analysis,  the

stability conditions based on polynomial Lyapunov functions are represented in terms of SOS

and  can  be  numerically  (partially  symbolically)  solved  via  the  recently  developed

SOSTOOLS. To illustrate the validity and applicability of the proposed approach, a number

of analysis and design examples are provided.
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Chapter 4 is devoted to the second major contribution in this thesis, it  extends the

results obtained in chapter 3 for stability analysis to the control design. New non-quadratic

approaches based on non-PDC controller and non-quadratic Lyapunov functions are proposed

in  order  to  obtain  more  relaxed  results  comparing  with  recent  existing  methods  in  non-

quadratic  control  design  and to  prove  stabilization  of  a  large  number  of  continuous-time

Takagi-Sugeno models which do not admit a quadratic stabilization. Simulation results are

then presented to show the effectiveness of the proposed approaches during this chapter.

Chapter  5  studies  the  design  of  a  robust  non-quadratic  controller  based  on  non-

quadratic  Lyapunov  function,  the  goal  in  this  chapter  is  to  take  into  account  during  the

controller design of the different perturbations and unknown inputs that can affect a nonlinear

system, in order to obtain sufficient local conditions allowing to stabilize the proposed models

with better attenuation of the external perturbations. In then, a robust H infinity controller is

designed for the proposed model showing that the link between the controller gain and the

Lyapunov  function  can  be  cut  in  a  convenient  manner  via  Finsler’s  lemma.  Simulation

examples are given to highlight the method’s advantages.

Chapter 6 ends the thesis with some concluding remarks and recommendations for

future work.
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