Floating-point Formats

Several different representations of real numbers have been proposed, but by far the most widely used is the floating-point representation. ${ }^{1}$ Floating-point representations have a base β (which is always assumed to be even) and a precision p. If $\beta=10$ and $P=3$, then the number 0.1 is represented as 1.00×10^{-1}. If β $=2$ and $p=24$, then the decimal number 0.1 cannot be represented exactly, but is approximately
$1.10011001100110011001101 \times 2^{-4}$.
In general, a floating-point number will be represented as \pm d.dd... $d \times \beta^{e}$, where d.dd... d is called the significand ${ }^{\underline{2}}$ and has p digits. More precisely $=d_{0} d_{d} d_{2} \ldots d_{p-1} \times \beta^{e}$ represents the number
(1) $\pm\left(d_{0}+d_{1} \beta^{-1}+\ldots+d_{p-1} \beta^{-(p-1)}\right) \beta^{e},\left(0 \leq d_{i}<\beta\right)$

The term floating-point number will be used to mean a real number that can be exactly represented in the format under discussion. Two other parameters associated with floating-point representations are the largest and smallest allowable exponents, $e_{\text {max }}$ and e emin. Since there are β^{P} possible significands, and $\mathrm{e}_{\max }-\mathrm{e}_{\min }+1$ possible exponents, a floating-point number can be encoded in
$\left[\log _{2}\left(e_{\text {max }}-e_{\text {mint }}+1\right)\right]+\left[\log _{2}\left(\beta^{p}\right)\right]+1$
bits, where the final +1 is for the sign bit. The precise encoding is not important for now.
There are two reasons why a real number might not be exactly representable as a floating-point number. The most common situation is illustrated by the decimal number 0.1. Although it has a finite decimal representation, in binary it has an infinite repeating representation. Thus when $\beta=2$, the number 0.1 lies strictly between two floating-point numbers and is exactly representable by neither of them. A less common situation is that a real number is out of range, that is, its absolute value is larger than $\beta \times{ }^{\beta^{c}=x}$ or smaller than $1.0 \times{ }^{\beta^{\text {cosin }}}$. Most of this paper discusses issues due to the first reason. However, numbers that are out of range will be discussed in the sections Infinity and Denormalized Numbers.
Floating-point representations are not necessarily unique. For example, both 0.01×10^{1} and 1.00×10^{-1} represent 0.1 . If the leading digit is nonzero ($\mathrm{d}_{0} \neq 0$ in equation (1) above), then the
representation is said to be normalized. The floating-point number 1.00×10^{-1} is normalized, while 0.01×10^{1} is not. When $\beta=2, p=$ $3, e_{\text {min }}=-1$ and $e_{\max }=2$ there are 16 normalized floating-point numbers, as shown in FIGURE D-1. The bold hash marks correspond to numbers whose significand is 1.00 . Requiring that a floating-point representation be normalized makes the representation unique. Unfortunately, this restriction makes it impossible to represent zero! A natural way to represent 0 is with $1.0 \times{ }^{\beta^{\kappa \alpha_{i n}-1}}$, since this preserves the fact that the numerical ordering of nonnegative real numbers corresponds to the lexicographic ordering of their floating-point representations. ${ }^{3}$ When the exponent is stored in a k bit field, that means that only $2^{k}-1$ values are available for use as exponents, since one must be reserved to represent 0 .
Note that the \times in a floating-point number is part of the notation, and different from a floating-point multiply operation. The meaning of the \times symbol should be clear from the context. For example, the expression $\left(2.5 \times 10^{-3}\right) \times\left(4.0 \times 10^{2}\right)$ involves only a single floating-point multiplication.

FIGURE D-1 Normalized numbers when $\beta=2, p=3, e_{\min }=-1, e_{\max }=2$

Relative Error and Ulps

