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Appendix D  

What Every Computer Scientist 
Should Know About Floating-Point 
Arithmetic  

 
Note – This appendix is an edited reprint of the paper What Every Computer 
Scientist Should Know About Floating-Point Arithmetic, by David Goldberg, 

published in the March, 1991 issue of Computing Surveys. Copyright 1991, 
Association for Computing Machinery, Inc., reprinted by permission.  

 

Abstract  

Floating-point arithmetic is considered an esoteric subject by many people. 

This is rather surprising because floating-point is ubiquitous in computer 

systems. Almost every language has a floating-point datatype; computers 
from PCs to supercomputers have floating-point accelerators; most 

compilers will be called upon to compile floating-point algorithms from time 
to time; and virtually every operating system must respond to floating-point 

exceptions such as overflow. This paper presents a tutorial on those aspects 
of floating-point that have a direct impact on designers of computer 

systems. It begins with background on floating-point representation and 
rounding error, continues with a discussion of the IEEE floating-point 

standard, and concludes with numerous examples of how computer builders 
can better support floating-point.  

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems 
Organization]: General -- instruction set design; D.3.4 [Programming 

Languages]: Processors -- compilers, optimization; G.1.0 [Numerical 
Analysis]: General -- computer arithmetic, error analysis, numerical 

algorithms (Secondary)  
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D.2.1 [Software Engineering]: Requirements/Specifications -- languages; 

D.3.4 Programming Languages]: Formal Definitions and Theory -- 
semantics; D.4.1 Operating Systems]: Process Management -- 

synchronization.  

General Terms: Algorithms, Design, Languages  

Additional Key Words and Phrases: Denormalized number, exception, 

floating-point, floating-point standard, gradual underflow, guard digit, NaN, 
overflow, relative error, rounding error, rounding mode, ulp, underflow.  

Introduction  

Builders of computer systems often need information about floating-point 

arithmetic. There are, however, remarkably few sources of detailed 
information about it. One of the few books on the subject, Floating-Point 

Computation by Pat Sterbenz, is long out of print. This paper is a tutorial on 
those aspects of floating-point arithmetic (floating-point hereafter) that have 

a direct connection to systems building. It consists of three loosely 
connected parts. The first section, Rounding Error, discusses the implications 

of using different rounding strategies for the basic operations of addition, 
subtraction, multiplication and division. It also contains background 

information on the two methods of measuring rounding error, ulps and 

relative error. The second part discusses the IEEE floating-point standard, 

which is becoming rapidly accepted by commercial hardware manufacturers. 

Included in the IEEE standard is the rounding method for basic operations. 
The discussion of the standard draws on the material in the section Rounding 

Error. The third part discusses the connections between floating-point and 
the design of various aspects of computer systems. Topics include 

instruction set design, optimizing compilers and exception handling.  

I have tried to avoid making statements about floating-point without also 

giving reasons why the statements are true, especially since the 
justifications involve nothing more complicated than elementary calculus. 

Those explanations that are not central to the main argument have been 
grouped into a section called "The Details," so that they can be skipped if 

desired. In particular, the proofs of many of the theorems appear in this 
section. The end of each proof is marked with the z symbol. When a proof is 

not included, the z appears immediately following the statement of the 
theorem.  

Rounding Error  
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Squeezing infinitely many real numbers into a finite number of bits requires 

an approximate representation. Although there are infinitely many integers, 
in most programs the result of integer computations can be stored in 32 

bits. In contrast, given any fixed number of bits, most calculations with real 
numbers will produce quantities that cannot be exactly represented using 

that many bits. Therefore the result of a floating-point calculation must often 
be rounded in order to fit back into its finite representation. This rounding 

error is the characteristic feature of floating-point computation. The section 
Relative Error and Ulps describes how it is measured.  

Since most floating-point calculations have rounding error anyway, does it 

matter if the basic arithmetic operations introduce a little bit more rounding 

error than necessary? That question is a main theme throughout this 
section. The section Guard Digits discusses guard digits, a means of 

reducing the error when subtracting two nearby numbers. Guard digits were 
considered sufficiently important by IBM that in 1968 it added a guard digit 

to the double precision format in the System/360 architecture (single 
precision already had a guard digit), and retrofitted all existing machines in 

the field. Two examples are given to illustrate the utility of guard digits.  

The IEEE standard goes further than just requiring the use of a guard digit. 
It gives an algorithm for addition, subtraction, multiplication, division and 

square root, and requires that implementations produce the same result as 

that algorithm. Thus, when a program is moved from one machine to 
another, the results of the basic operations will be the same in every bit if 

both machines support the IEEE standard. This greatly simplifies the porting 
of programs. Other uses of this precise specification are given in Exactly 

Rounded Operations.  

Floating-point Formats  

Several different representations of real numbers have been proposed, but 

by far the most widely used is the floating-point representation.1 Floating-
point representations have a base (which is always assumed to be even) 
and a precision p. If = 10 and p = 3, then the number 0.1 is represented 

as 1.00 × 10-1. If = 2 and p = 24, then the decimal number 0.1 cannot be 

represented exactly, but is approximately 1.10011001100110011001101 × 

2-4.  

In general, a floating-point number will be represented as ± d.dd... d × e, 

where d.dd... d is called the significand2 and has p digits. More precisely ± d0 . 

d1 d2 ... dp-1 × e represents the number  

(1) . 
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The term floating-point number will be used to mean a real number that can 

be exactly represented in the format under discussion. Two other 
parameters associated with floating-point representations are the largest 
and smallest allowable exponents, emax and emin. Since there are p possible 
significands, and emax - emin + 1 possible exponents, a floating-point number 

can be encoded in  

 

bits, where the final +1 is for the sign bit. The precise encoding is not 
important for now.  

There are two reasons why a real number might not be exactly 
representable as a floating-point number. The most common situation is 

illustrated by the decimal number 0.1. Although it has a finite decimal 

representation, in binary it has an infinite repeating representation. Thus 
when = 2, the number 0.1 lies strictly between two floating-point numbers 

and is exactly representable by neither of them. A less common situation is 
that a real number is out of range, that is, its absolute value is larger than 

× or smaller than 1.0 × . Most of this paper discusses issues due to 

the first reason. However, numbers that are out of range will be discussed in 
the sections Infinity and Denormalized Numbers.  

Floating-point representations are not necessarily unique. For example, both 
0.01 × 101 and 1.00 × 10-1 represent 0.1. If the leading digit is nonzero (d0 

0 in equation (1) above), then the representation is said to be normalized. 
The floating-point number 1.00 × 10-1 is normalized, while 0.01 × 101 is not. 
When  = 2, p = 3, emin = -1 and emax = 2 there are 16 normalized floating-

point numbers, as shown in FIGURE D-1. The bold hash marks correspond to 

numbers whose significand is 1.00. Requiring that a floating-point 
representation be normalized makes the representation unique. 

Unfortunately, this restriction makes it impossible to represent zero! A 

natural way to represent 0 is with 1.0 × , since this preserves the fact 

that the numerical ordering of nonnegative real numbers corresponds to the 
lexicographic ordering of their floating-point representations.3 When the 
exponent is stored in a k bit field, that means that only 2k - 1 values are 

available for use as exponents, since one must be reserved to represent 0.  

Note that the × in a floating-point number is part of the notation, and 
different from a floating-point multiply operation. The meaning of the × 

symbol should be clear from the context. For example, the expression (2.5 × 
10-3) × (4.0 × 102) involves only a single floating-point multiplication.  
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FIGURE D-1 Normalized numbers when = 2, p = 3, emin = -1, emax = 2 

Relative Error and Ulps  

Since rounding error is inherent in floating-point computation, it is important 

to have a way to measure this error. Consider the floating-point format with 
 = 10 and p = 3, which will be used throughout this section. If the result of 

a floating-point computation is 3.12 × 10-2, and the answer when computed 

to infinite precision is .0314, it is clear that this is in error by 2 units in the 
last place. Similarly, if the real number .0314159 is represented as 3.14 × 

10-2, then it is in error by .159 units in the last place. In general, if the 
floating-point number d.d...d × e is used to represent z, then it is in error 

by d.d...d - (z/ e) p-1 units in the last place.4, 5 The term ulps will be used 

as shorthand for "units in the last place." If the result of a calculation is the 
floating-point number nearest to the correct result, it still might be in error 

by as much as .5 ulp. Another way to measure the difference between a 
floating-point number and the real number it is approximating is relative 

error, which is simply the difference between the two numbers divided by 

the real number. For example the relative error committed when 
approximating 3.14159 by 3.14 × 100 is .00159/3.14159  .0005.  

To compute the relative error that corresponds to .5 ulp, observe that when 

a real number is approximated by the closest possible floating-point number 
d.dd...dd × e, the error can be as large as 0.00...00 ' × e, where ' is the 

digit /2, there are p units in the significand of the floating-point number, 

and p units of 0 in the significand of the error. This error is (( /2) -p) × e. 
Since numbers of the form d.dd...dd × e all have the same absolute error, 

but have values that range between e and × e, the relative error ranges 

between (( /2) -p) × e/ e and (( /2) -p) × e/ e+1. That is,  

(2)  

In particular, the relative error corresponding to .5 ulp can vary by a factor 
of . This factor is called the wobble. Setting = ( /2) -p to the largest of 

the bounds in (2) above, we can say that when a real number is rounded to 
the closest floating-point number, the relative error is always bounded by e, 

which is referred to as machine epsilon.  
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In the example above, the relative error was .00159/3.14159 .0005. In 

order to avoid such small numbers, the relative error is normally written as a 
factor times , which in this case is = ( /2) -p = 5(10)-3 = .005. Thus the 

relative error would be expressed as (.00159/3.14159)/.005) 0.1 .  

To illustrate the difference between ulps and relative error, consider the real 
number x = 12.35. It is approximated by = 1.24 × 101. The error is 0.5 

ulps, the relative error is 0.8 . Next consider the computation 8  . The 

exact value is 8x = 98.8, while the computed value is 8  = 9.92 × 101. The 

error is now 4.0 ulps, but the relative error is still 0.8 . The error measured 

in ulps is 8 times larger, even though the relative error is the same. In 

general, when the base is , a fixed relative error expressed in ulps can 
wobble by a factor of up to . And conversely, as equation (2) above shows, 

a fixed error of .5 ulps results in a relative error that can wobble by .  

The most natural way to measure rounding error is in ulps. For example 

rounding to the nearest floating-point number corresponds to an error of 
less than or equal to .5 ulp. However, when analyzing the rounding error 

caused by various formulas, relative error is a better measure. A good 
illustration of this is the analysis in the section Theorem 9. Since can 

overestimate the effect of rounding to the nearest floating-point number by 
the wobble factor of , error estimates of formulas will be tighter on 

machines with a small .  

When only the order of magnitude of rounding error is of interest, ulps and 

may be used interchangeably, since they differ by at most a factor of . 
For example, when a floating-point number is in error by n ulps, that means 

that the number of contaminated digits is log  n. If the relative error in a 

computation is n , then  

(3) contaminated digits log  n. 

Guard Digits  

One method of computing the difference between two floating-point 

numbers is to compute the difference exactly and then round it to the 
nearest floating-point number. This is very expensive if the operands differ 
greatly in size. Assuming p = 3, 2.15 × 1012 - 1.25 × 10-5 would be 

calculated as  

x = 2.15 × 1012  

y = .0000000000000000125 × 1012 

x - y = 2.1499999999999999875 × 1012
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which rounds to 2.15 × 1012. Rather than using all these digits, floating-

point hardware normally operates on a fixed number of digits. Suppose that 
the number of digits kept is p, and that when the smaller operand is shifted 

right, digits are simply discarded (as opposed to rounding). Then 
2.15 × 1012 - 1.25 × 10-5 becomes  

x = 2.15 × 1012  

y = 0.00 × 1012 

x - y = 2.15 × 1012
  

The answer is exactly the same as if the difference had been computed 
exactly and then rounded. Take another example: 10.1 - 9.93. This becomes  

x = 1.01 × 101  

y = 0.99 × 101 

x - y = .02 × 101
  

The correct answer is .17, so the computed difference is off by 30 ulps and is 
wrong in every digit! How bad can the error be?  

Theorem 1  

Using a floating-point format with parameters and p, and computing 

differences using p digits, the relative error of the result can be as large as 

- 1.  

Proof  

A relative error of - 1 in the expression x - y occurs when x = 1.00...0 and 
y = . ... , where = - 1. Here y has p digits (all equal to ). The exact 

difference is x - y = -p. However, when computing the answer using only p 

digits, the rightmost digit of y gets shifted off, and so the computed 

difference is -p+1. Thus the error is -p - -p+1 = -p (  - 1), and the 
relative error is -p(  - 1)/ -p = - 1. z  

When =2, the relative error can be as large as the result, and when =10, 
it can be 9 times larger. Or to put it another way, when =2, equation (3) 
shows that the number of contaminated digits is log2(1/ ) = log2(2

p) = p. 

That is, all of the p digits in the result are wrong! Suppose that one extra 

digit is added to guard against this situation (a guard digit). That is, the 
smaller number is truncated to p + 1 digits, and then the result of the 

subtraction is rounded to p digits. With a guard digit, the previous example 

becomes  
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x = 1.010 × 101 

y = 0.993 × 101 

x - y = .017 × 101
  

and the answer is exact. With a single guard digit, the relative error of the 
result may be greater than , as in 110 - 8.59.  

x = 1.10 × 102  

y = .085 × 102 

x - y = 1.015 × 102
  

This rounds to 102, compared with the correct answer of 101.41, for a 
relative error of .006, which is greater than = .005. In general, the relative 

error of the result can be only slightly larger than . More precisely,  

Theorem 2  

If x and y are floating-point numbers in a format with parameters and p, 

and if subtraction is done with p + 1 digits (i.e. one guard digit), then the 

relative rounding error in the result is less than 2 .  

This theorem will be proven in Rounding Error. Addition is included in the 
above theorem since x and y can be positive or negative.  

Cancellation  

The last section can be summarized by saying that without a guard digit, the 
relative error committed when subtracting two nearby quantities can be very 

large. In other words, the evaluation of any expression containing a 
subtraction (or an addition of quantities with opposite signs) could result in a 

relative error so large that all the digits are meaningless (Theorem 1). When 

subtracting nearby quantities, the most significant digits in the operands 
match and cancel each other. There are two kinds of cancellation: 

catastrophic and benign.  

Catastrophic cancellation occurs when the operands are subject to rounding 
errors. For example in the quadratic formula, the expression b2 - 4ac occurs. 

The quantities b2 and 4ac are subject to rounding errors since they are the 

results of floating-point multiplications. Suppose that they are rounded to 
the nearest floating-point number, and so are accurate to within .5 ulp. 

When they are subtracted, cancellation can cause many of the accurate 
digits to disappear, leaving behind mainly digits contaminated by rounding 

error. Hence the difference might have an error of many ulps. For example, 
consider b = 3.34, a = 1.22, and c = 2.28. The exact value of b2 - 4ac is 
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.0292. But b2 rounds to 11.2 and 4ac rounds to 11.1, hence the final answer 

is .1 which is an error by 70 ulps, even though 11.2 - 11.1 is exactly equal 
to .16. The subtraction did not introduce any error, but rather exposed the 

error introduced in the earlier multiplications.  

Benign cancellation occurs when subtracting exactly known quantities. If x 

and y have no rounding error, then by Theorem 2 if the subtraction is done 
with a guard digit, the difference x-y has a very small relative error (less 

than 2 ).  

A formula that exhibits catastrophic cancellation can sometimes be 
rearranged to eliminate the problem. Again consider the quadratic formula  

(4)  

When , then does not involve a cancellation and  

.  

But the other addition (subtraction) in one of the formulas will have a 
catastrophic cancellation. To avoid this, multiply the numerator and 
denominator of r1 by  

 

(and similarly for r2) to obtain  

(5)  

If and , then computing r1 using formula (4) will involve a 
cancellation. Therefore, use formula (5) for computing r1 and (4) for r2. On 

the other hand, if b < 0, use (4) for computing r1 and (5) for r2.  

The expression x2 - y2 is another formula that exhibits catastrophic 
cancellation. It is more accurate to evaluate it as (x - y)(x + y).7 Unlike the 

quadratic formula, this improved form still has a subtraction, but it is a 

benign cancellation of quantities without rounding error, not a catastrophic 
one. By Theorem 2, the relative error in x - y is at most 2 . The same is 

true of x + y. Multiplying two quantities with a small relative error results in 

a product with a small relative error (see the section Rounding Error).  
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In order to avoid confusion between exact and computed values, the 
following notation is used. Whereas x - y denotes the exact difference of x 
and y, x y denotes the computed difference (i.e., with rounding error). 

Similarly , , and denote computed addition, multiplication, and division, 

respectively. All caps indicate the computed value of a function, as in LN(x) 

or SQRT(x). Lowercase functions and traditional mathematical notation denote 

their exact values as in ln(x) and .  

Although (x y) (x y) is an excellent approximation to x2 - y2, the 

floating-point numbers x and y might themselves be approximations to some 

true quantities and . For example, and might be exactly known decimal 
numbers that cannot be expressed exactly in binary. In this case, even 
though x   y is a good approximation to x - y, it can have a huge relative 
error compared to the true expression , and so the advantage of (x + 

y)(x - y) over x2 - y2 is not as dramatic. Since computing (x + y)(x - y) is 

about the same amount of work as computing x2 - y2, it is clearly the 
preferred form in this case. In general, however, replacing a catastrophic 

cancellation by a benign one is not worthwhile if the expense is large, 
because the input is often (but not always) an approximation. But 

eliminating a cancellation entirely (as in the quadratic formula) is worthwhile 
even if the data are not exact. Throughout this paper, it will be assumed 

that the floating-point inputs to an algorithm are exact and that the results 

are computed as accurately as possible.  

The expression x2 - y2 is more accurate when rewritten as (x - y)(x + y) 

because a catastrophic cancellation is replaced with a benign one. We next 

present more interesting examples of formulas exhibiting catastrophic 
cancellation that can be rewritten to exhibit only benign cancellation.  

The area of a triangle can be expressed directly in terms of the lengths of its 
sides a, b, and c as  

(6)  

(Suppose the triangle is very flat; that is, a b + c. Then s a, and the 
term (s - a) in formula (6) subtracts two nearby numbers, one of which may 

have rounding error. For example, if a = 9.0, b = c = 4.53, the correct value 

of s is 9.03 and A is 2.342.... Even though the computed value of s (9.05) is 
in error by only 2 ulps, the computed value of A is 3.04, an error of 70 ulps.  

There is a way to rewrite formula (6) so that it will return accurate results 
even for flat triangles [Kahan 1986]. It is  
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(7)  

If a, b, and c do not satisfy a b c, rename them before applying (7). It is 

straightforward to check that the right-hand sides of (6) and (7) are 
algebraically identical. Using the values of a, b, and c above gives a 

computed area of 2.35, which is 1 ulp in error and much more accurate than 
the first formula.  

Although formula (7) is much more accurate than (6) for this example, it 

would be nice to know how well (7) performs in general.  

Theorem 3  

The rounding error incurred when using (7) to compute the area of a triangle 

is at most 11 , provided that subtraction is performed with a guard digit, 
e  .005, and that square roots are computed to within 1/2 ulp.  

The condition that e < .005 is met in virtually every actual floating-point 

system. For example when = 2, p 8 ensures that e < .005, and when = 

10, p  3 is enough.  

In statements like Theorem 3 that discuss the relative error of an 
expression, it is understood that the expression is computed using floating-

point arithmetic. In particular, the relative error is actually of the expression  

(8) SQRT((a (b c)) (c (a b)) (c (a b)) (a (b c))) 4 

Because of the cumbersome nature of (8), in the statement of theorems we 
will usually say the computed value of E rather than writing out E with circle 

notation.  

Error bounds are usually too pessimistic. In the numerical example given 
above, the computed value of (7) is 2.35, compared with a true value of 

2.34216 for a relative error of 0.7 , which is much less than 11 . The main 
reason for computing error bounds is not to get precise bounds but rather to 

verify that the formula does not contain numerical problems.  

A final example of an expression that can be rewritten to use benign 

cancellation is (1 + x)n, where . This expression arises in financial 

calculations. Consider depositing $100 every day into a bank account that 
earns an annual interest rate of 6%, compounded daily. If n = 365 and i = 

.06, the amount of money accumulated at the end of one year is  
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100   

dollars. If this is computed using = 2 and p = 24, the result is $37615.45 
compared to the exact answer of $37614.05, a discrepancy of $1.40. The 
reason for the problem is easy to see. The expression 1 + i/n involves adding 

1 to .0001643836, so the low order bits of i/n are lost. This rounding error is 
amplified when 1 + i/n is raised to the nth power.  

The troublesome expression (1 + i/n)n can be rewritten as enln(1 + i/n), where 

now the problem is to compute ln(1 + x) for small x. One approach is to use 
the approximation ln(1 + x) x, in which case the payment becomes 

$37617.26, which is off by $3.21 and even less accurate than the obvious 
formula. But there is a way to compute ln(1 + x) very accurately, as 

Theorem 4 shows [Hewlett-Packard 1982]. This formula yields $37614.07, 

accurate to within two cents!  

Theorem 4 assumes that LN(x) approximates ln(x) to within 1/2 ulp. The 

problem it solves is that when x is small, LN(1 x) is not close to ln(1 + x) 
because 1 x has lost the information in the low order bits of x. That is, the 

computed value of ln(1 + x) is not close to its actual value when .  

Theorem 4  

If ln(1 + x) is computed using the formula  

 
the relative error is at most 5  when 0 x < 3/4, provided subtraction is 
performed with a guard digit, e < 0.1, and ln is computed to within 1/2 ulp.  

This formula will work for any value of x but is only interesting for , 

which is where catastrophic cancellation occurs in the naive formula ln(1 + 
x). Although the formula may seem mysterious, there is a simple 

explanation for why it works. Write ln(1 + x) as  

.  

The left hand factor can be computed exactly, but the right hand factor 
µ(x) = ln(1 + x)/x will suffer a large rounding error when adding 1 to x. 

However, µ is almost constant, since ln(1 + x) x. So changing x slightly 

will not introduce much error. In other words, if , computing will be 
a good approximation to xµ(x) = ln(1 + x). Is there a value for for which 



and can be computed accurately? There is; namely = (1 x) 1, 

because then 1 + is exactly equal to 1 x.  

The results of this section can be summarized by saying that a guard digit 

guarantees accuracy when nearby precisely known quantities are subtracted 
(benign cancellation). Sometimes a formula that gives inaccurate results can 

be rewritten to have much higher numerical accuracy by using benign 
cancellation; however, the procedure only works if subtraction is performed 

using a guard digit. The price of a guard digit is not high, because it merely 
requires making the adder one bit wider. For a 54 bit double precision adder, 

the additional cost is less than 2%. For this price, you gain the ability to run 
many algorithms such as formula (6) for computing the area of a triangle 
and the expression ln(1 + x). Although most modern computers have a 

guard digit, there are a few (such as Cray systems) that do not.  

Exactly Rounded Operations  

When floating-point operations are done with a guard digit, they are not as 

accurate as if they were computed exactly then rounded to the nearest 
floating-point number. Operations performed in this manner will be called 

exactly rounded.8 The example immediately preceding Theorem 2 shows 
that a single guard digit will not always give exactly rounded results. The 

previous section gave several examples of algorithms that require a guard 
digit in order to work properly. This section gives examples of algorithms 

that require exact rounding.  

So far, the definition of rounding has not been given. Rounding is 

straightforward, with the exception of how to round halfway cases; for 
example, should 12.5 round to 12 or 13? One school of thought divides the 

10 digits in half, letting {0, 1, 2, 3, 4} round down, and {5, 6, 7, 8, 9} 
round up; thus 12.5 would round to 13. This is how rounding works on 

Digital Equipment Corporation's VAX computers. Another school of thought 
says that since numbers ending in 5 are halfway between two possible 

roundings, they should round down half the time and round up the other 
half. One way of obtaining this 50% behavior to require that the rounded 

result have its least significant digit be even. Thus 12.5 rounds to 12 rather 

than 13 because 2 is even. Which of these methods is best, round up or 
round to even? Reiser and Knuth [1975] offer the following reason for 

preferring round to even.  

Theorem 5  
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Let x and y be floating-point numbers, and define x0 = x, x1 = (x0 y) y, 

..., xn = (xn-1   y) y. If and are exactly rounded using round to even, 

then either xn = x for all n or xn = x1 for all n 1. z  

To clarify this result, consider = 10, p = 3 and let x = 1.00, y = -.555. 

When rounding up, the sequence becomes  

x0 y = 1.56, x1 = 1.56 .555 = 1.01, x1   y = 1.01 .555 = 1.57, 

and each successive value of xn increases by .01, until xn = 9.45 (n 845)9. 
Under round to even, xn is always 1.00. This example suggests that when 

using the round up rule, computations can gradually drift upward, whereas 
when using round to even the theorem says this cannot happen. Throughout 

the rest of this paper, round to even will be used.  

One application of exact rounding occurs in multiple precision arithmetic. 
There are two basic approaches to higher precision. One approach 

represents floating-point numbers using a very large significand, which is 

stored in an array of words, and codes the routines for manipulating these 
numbers in assembly language. The second approach represents higher 

precision floating-point numbers as an array of ordinary floating-point 
numbers, where adding the elements of the array in infinite precision 

recovers the high precision floating-point number. It is this second approach 
that will be discussed here. The advantage of using an array of floating-point 

numbers is that it can be coded portably in a high level language, but it 
requires exactly rounded arithmetic.  

The key to multiplication in this system is representing a product xy as a 

sum, where each summand has the same precision as x and y. This can be 
done by splitting x and y. Writing x = xh + xl and y = yh + yl, the exact 

product is  

xy = xh yh + xh yl + xl yh + xl yl.  

If x and y have p bit significands, the summands will also have p bit 
significands provided that xl, xh, yh, yl can be represented using [p/2] bits. 

When p is even, it is easy to find a splitting. The number x0.x1 ... xp - 1 can be 

written as the sum of x0.x1 ... xp/2 - 1 and 0.0 ... 0xp/2 ... xp - 1. When p is odd, 

this simple splitting method will not work. An extra bit can, however, be 

gained by using negative numbers. For example, if = 2, p = 5, and x = 
.10111, x can be split as xh = .11 and xl = -.00001. There is more than one 

way to split a number. A splitting method that is easy to compute is due to 
Dekker [1971], but it requires more than a single guard digit.  
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Theorem 6  

Let p be the floating-point precision, with the restriction that p is even when 

 > 2, and assume that floating-point operations are exactly rounded. Then 
if k = [p/2] is half the precision (rounded up) and m = k + 1, x can be split 

as x = xh + xl, where  
xh = (m  x)   (m x x), xl = x xh,  

and each xi is representable using [p/2] bits of precision.  

To see how this theorem works in an example, let = 10, p = 4, b = 3.476, 
a = 3.463, and c = 3.479. Then b2 - ac rounded to the nearest floating-point 

number is .03480, while b b = 12.08, a c = 12.05, and so the computed 

value of b2 - ac is .03. This is an error of 480 ulps. Using Theorem 6 to write 

b = 3.5 - .024, a = 3.5 - .037, and c = 3.5 - .021, b2 becomes 3.52 - 2 × 3.5 
× .024 + .0242. Each summand is exact, so b2 = 12.25 - .168 + .000576, 

where the sum is left unevaluated at this point. Similarly, ac = 3.52 - (3.5 × 

.037 + 3.5 × .021) + .037 × .021 = 12.25 - .2030 +.000777. Finally, 
subtracting these two series term by term gives an estimate for b2 - ac of 

0  .0350   .000201 = .03480, which is identical to the exactly rounded 

result. To show that Theorem 6 really requires exact rounding, consider p = 
3, = 2, and x = 7. Then m = 5, mx = 35, and m  x = 32. If subtraction is 

performed with a single guard digit, then (m  x)  x = 28. Therefore, xh = 

4 and xl = 3, hence xl is not representable with [p/2] = 1 bit.  

As a final example of exact rounding, consider dividing m by 10. The result is 

a floating-point number that will in general not be equal to m/10. When = 
2, multiplying m/10 by 10 will restore m, provided exact rounding is being 

used. Actually, a more general fact (due to Kahan) is true. The proof is 

ingenious, but readers not interested in such details can skip ahead to 
section The IEEE Standard.  

Theorem 7  

When = 2, if m and n are integers with |m| < 2p - 1 and n has the special 

form n = 2i + 2j, then (m n) n = m, provided floating-point operations 

are exactly rounded.  

Proof  

Scaling by a power of two is harmless, since it changes only the exponent, 
not the significand. If q = m/n, then scale n so that 2p - 1 n < 2p and scale 
m so that 1/2 < q < 1. Thus, 2p - 2 < m < 2p. Since m has p significant bits, it 
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has at most one bit to the right of the binary point. Changing the sign of m is 

harmless, so assume that q > 0.  

If = m n, to prove the theorem requires showing that  

(9)  

That is because m has at most 1 bit right of the binary point, so n  will 

round to m. To deal with the halfway case when |n  - m| = 1/4, note that 

since the initial unscaled m had |m| < 2p - 1, its low-order bit was 0, so the 
low-order bit of the scaled m is also 0. Thus, halfway cases will round to m.  

Suppose that q = .q1q2 ..., and let = .q1q2 ... qp1. To estimate |n  - m|, first 

compute  

|  - q| = |N/2p + 1 - m/n|,  

where N is an odd integer. Since n = 2i + 2j and 2p - 1 n < 2p, it must be 

that n = 2p - 1 + 2k for some k p - 2, and thus  

. 

The numerator is an integer, and since N is odd, it is in fact an odd integer. 

Thus,  

|  - q| 1/(n2p + 1 - k).  

Assume q < (the case q > is similar).10 Then n  < m, and  

|m-n  |= m-n  = n(q-  ) = n(q-(  -2-p-1))  

=(2p-1+2k)2-p-1-2-p-1+k =  

This establishes (9) and proves the theorem.11 z  

The theorem holds true for any base , as long as 2i + 2j is replaced by i + 
j. As gets larger, however, denominators of the form i + j are farther 

and farther apart.  

We are now in a position to answer the question, Does it matter if the basic 

arithmetic operations introduce a little more rounding error than necessary? 
The answer is that it does matter, because accurate basic operations enable 

us to prove that formulas are "correct" in the sense they have a small 
relative error. The section Cancellation discussed several algorithms that 

require guard digits to produce correct results in this sense. If the input to 
those formulas are numbers representing imprecise measurements, 

however, the bounds of Theorems 3 and 4 become less interesting. The 
reason is that the benign cancellation x - y can become catastrophic if x and 

y are only approximations to some measured quantity. But accurate 

operations are useful even in the face of inexact data, because they enable 
us to establish exact relationships like those discussed in Theorems 6 and 7. 

These are useful even if every floating-point variable is only an 
approximation to some actual value.  
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The IEEE Standard  

There are two different IEEE standards for floating-point computation. IEEE 
754 is a binary standard that requires = 2, p = 24 for single precision and 

p = 53 for double precision [IEEE 1987]. It also specifies the precise layout 

of bits in a single and double precision. IEEE 854 allows either = 2 or = 
10 and unlike 754, does not specify how floating-point numbers are encoded 

into bits [Cody et al. 1984]. It does not require a particular value for p, but 
instead it specifies constraints on the allowable values of p for single and 

double precision. The term IEEE Standard will be used when discussing 
properties common to both standards.  

This section provides a tour of the IEEE standard. Each subsection discusses 

one aspect of the standard and why it was included. It is not the purpose of 
this paper to argue that the IEEE standard is the best possible floating-point 

standard but rather to accept the standard as given and provide an 

introduction to its use. For full details consult the standards themselves 
[IEEE 1987; Cody et al. 1984].  

Formats and Operations  

Base  

It is clear why IEEE 854 allows = 10. Base ten is how humans exchange 
and think about numbers. Using = 10 is especially appropriate for 

calculators, where the result of each operation is displayed by the calculator 
in decimal.  

There are several reasons why IEEE 854 requires that if the base is not 10, it 
must be 2. The section Relative Error and Ulps mentioned one reason: the 

results of error analyses are much tighter when is 2 because a rounding 
error of .5 ulp wobbles by a factor of when computed as a relative error, 

and error analyses are almost always simpler when based on relative error. 
A related reason has to do with the effective precision for large bases. 

Consider = 16, p = 1 compared to = 2, p = 4. Both systems have 4 bits 
of significand. Consider the computation of 15/8. When = 2, 15 is 

represented as 1.111 × 23, and 15/8 as 1.111 × 20. So 15/8 is exact. 
However, when = 16, 15 is represented as F × 160, where F is the 

hexadecimal digit for 15. But 15/8 is represented as 1 × 160, which has only 

one bit correct. In general, base 16 can lose up to 3 bits, so that a precision 
of p hexadecimal digits can have an effective precision as low as 4p - 3 

rather than 4p binary bits. Since large values of have these problems, why 

did IBM choose = 16 for its system/370? Only IBM knows for sure, but 
there are two possible reasons. The first is increased exponent range. Single 
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precision on the system/370 has = 16, p = 6. Hence the significand 

requires 24 bits. Since this must fit into 32 bits, this leaves 7 bits for the 
exponent and one for the sign bit. Thus the magnitude of representable 

numbers ranges from about to about = . To get a similar exponent 
range when = 2 would require 9 bits of exponent, leaving only 22 bits for 

the significand. However, it was just pointed out that when = 16, the 
effective precision can be as low as 4p - 3 = 21 bits. Even worse, when = 2 

it is possible to gain an extra bit of precision (as explained later in this 

section), so the = 2 machine has 23 bits of precision to compare with a 
range of 21 - 24 bits for the = 16 machine.  

Another possible explanation for choosing = 16 has to do with shifting. 

When adding two floating-point numbers, if their exponents are different, 
one of the significands will have to be shifted to make the radix points line 

up, slowing down the operation. In the = 16, p = 1 system, all the 

numbers between 1 and 15 have the same exponent, and so no shifting is 

required when adding any of the (  ) = 105 possible pairs of distinct 

numbers from this set. However, in the = 2, p = 4 system, these numbers 

have exponents ranging from 0 to 3, and shifting is required for 70 of the 
105 pairs.  

In most modern hardware, the performance gained by avoiding a shift for a 

subset of operands is negligible, and so the small wobble of = 2 makes it 
the preferable base. Another advantage of using = 2 is that there is a way 

to gain an extra bit of significance.12 Since floating-point numbers are 
always normalized, the most significant bit of the significand is always 1, and 

there is no reason to waste a bit of storage representing it. Formats that use 

this trick are said to have a hidden bit. It was already pointed out in 
Floating-point Formats that this requires a special convention for 0. The 

method given there was that an exponent of emin - 1 and a significand of all 

zeros represents not , but rather 0.  

IEEE 754 single precision is encoded in 32 bits using 1 bit for the sign, 8 bits 
for the exponent, and 23 bits for the significand. However, it uses a hidden 

bit, so the significand is 24 bits (p = 24), even though it is encoded using 
only 23 bits.  

Precision  

The IEEE standard defines four different precisions: single, double, single-
extended, and double-extended. In IEEE 754, single and double precision 

correspond roughly to what most floating-point hardware provides. Single 
precision occupies a single 32 bit word, double precision two consecutive 32 
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bit words. Extended precision is a format that offers at least a little extra 

precision and exponent range (TABLE D-1). 

TABLE D-1   IEEE 754 Format Parameters 

Parameter 
Format 

Single Single-Extended Double Double-Extended 

p  24  32  53  64  

emax  +127  1023  +1023  > 16383  

emin  -126  -1022  -1022  -16382  

Exponent width in bits  8  11  11  15  

Format width in bits  32  43  64  79  

 

The IEEE standard only specifies a lower bound on how many extra bits 
extended precision provides. The minimum allowable double-extended 
format is sometimes referred to as 80-bit format, even though the table 

shows it using 79 bits. The reason is that hardware implementations of 

extended precision normally do not use a hidden bit, and so would use 80 
rather than 79 bits.13  

The standard puts the most emphasis on extended precision, making no 

recommendation concerning double precision, but strongly recommending 
that Implementations should support the extended format corresponding to 

the widest basic format supported, ...  

One motivation for extended precision comes from calculators, which will 

often display 10 digits, but use 13 digits internally. By displaying only 10 of 
the 13 digits, the calculator appears to the user as a "black box" that 

computes exponentials, cosines, etc. to 10 digits of accuracy. For the 
calculator to compute functions like exp, log and cos to within 10 digits with 

reasonable efficiency, it needs a few extra digits to work with. It is not hard 
to find a simple rational expression that approximates log with an error of 

500 units in the last place. Thus computing with 13 digits gives an answer 
correct to 10 digits. By keeping these extra 3 digits hidden, the calculator 

presents a simple model to the operator.  

Extended precision in the IEEE standard serves a similar function. It enables 

libraries to efficiently compute quantities to within about .5 ulp in single (or 
double) precision, giving the user of those libraries a simple model, namely 
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that each primitive operation, be it a simple multiply or an invocation of log, 

returns a value accurate to within about .5 ulp. However, when using 
extended precision, it is important to make sure that its use is transparent to 

the user. For example, on a calculator, if the internal representation of a 
displayed value is not rounded to the same precision as the display, then the 

result of further operations will depend on the hidden digits and appear 
unpredictable to the user.  

To illustrate extended precision further, consider the problem of converting 

between IEEE 754 single precision and decimal. Ideally, single precision 
numbers will be printed with enough digits so that when the decimal number 

is read back in, the single precision number can be recovered. It turns out 

that 9 decimal digits are enough to recover a single precision binary number 
(see the section Binary to Decimal Conversion). When converting a decimal 

number back to its unique binary representation, a rounding error as small 
as 1 ulp is fatal, because it will give the wrong answer. Here is a situation 

where extended precision is vital for an efficient algorithm. When single-
extended is available, a very straightforward method exists for converting a 

decimal number to a single precision binary one. First read in the 9 decimal 

digits as an integer N, ignoring the decimal point. From TABLE D-1, p  32, 

and since 109 < 232 4.3 × 109, N can be represented exactly in single-
extended. Next find the appropriate power 10P necessary to scale N. This will 

be a combination of the exponent of the decimal number, together with the 
position of the (up until now) ignored decimal point. Compute 10|P|. If |P| 

 13, then this is also represented exactly, because 1013 = 213513, and 
513 < 232. Finally multiply (or divide if p < 0) N and 10|P|. If this last 

operation is done exactly, then the closest binary number is recovered. The 
section Binary to Decimal Conversion shows how to do the last multiply (or 
divide) exactly. Thus for |P| 13, the use of the single-extended format 

enables 9-digit decimal numbers to be converted to the closest binary 
number (i.e. exactly rounded). If |P| > 13, then single-extended is not 

enough for the above algorithm to always compute the exactly rounded 
binary equivalent, but Coonen [1984] shows that it is enough to guarantee 

that the conversion of binary to decimal and back will recover the original 
binary number.  

If double precision is supported, then the algorithm above would be run in 
double precision rather than single-extended, but to convert double precision 

to a 17-digit decimal number and back would require the double-extended 
format.  

Exponent  
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Since the exponent can be positive or negative, some method must be 

chosen to represent its sign. Two common methods of representing signed 
numbers are sign/magnitude and two's complement. Sign/magnitude is the 

system used for the sign of the significand in the IEEE formats: one bit is 
used to hold the sign, the rest of the bits represent the magnitude of the 

number. The two's complement representation is often used in integer 
arithmetic. In this scheme, a number in the range [-2p-1, 2p-1 - 1] is 

represented by the smallest nonnegative number that is congruent to it 
modulo 2p.  

The IEEE binary standard does not use either of these methods to represent 
the exponent, but instead uses a biased representation. In the case of single 

precision, where the exponent is stored in 8 bits, the bias is 127 (for double 

precision it is 1023). What this means is that if is the value of the exponent 

bits interpreted as an unsigned integer, then the exponent of the floating-

point number is - 127. This is often called the unbiased exponent to 

distinguish from the biased exponent .  

Referring to TABLE D-1, single precision has emax = 127 and emin = -126. The 
reason for having |emin| < emax is so that the reciprocal of the smallest 

number will not overflow. Although it is true that the reciprocal of the 

largest number will underflow, underflow is usually less serious than 

overflow. The section Base explained that emin - 1 is used for representing 0, 
and Special Quantities will introduce a use for emax + 1. In IEEE single 

precision, this means that the biased exponents range between emin - 1 = -
127 and emax + 1 = 128, whereas the unbiased exponents range between 0 

and 255, which are exactly the nonnegative numbers that can be 
represented using 8 bits.  

Operations  

The IEEE standard requires that the result of addition, subtraction, 
multiplication and division be exactly rounded. That is, the result must be 

computed exactly and then rounded to the nearest floating-point number 
(using round to even). The section Guard Digits pointed out that computing 

the exact difference or sum of two floating-point numbers can be very 
expensive when their exponents are substantially different. That section 

introduced guard digits, which provide a practical way of computing 
differences while guaranteeing that the relative error is small. However, 

computing with a single guard digit will not always give the same answer as 
computing the exact result and then rounding. By introducing a second 

guard digit and a third sticky bit, differences can be computed at only a little 
more cost than with a single guard digit, but the result is the same as if the 
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difference were computed exactly and then rounded [Goldberg 1990]. Thus 

the standard can be implemented efficiently.  

One reason for completely specifying the results of arithmetic operations is 
to improve the portability of software. When a program is moved between 

two machines and both support IEEE arithmetic, then if any intermediate 
result differs, it must be because of software bugs, not from differences in 

arithmetic. Another advantage of precise specification is that it makes it 
easier to reason about floating-point. Proofs about floating-point are hard 

enough, without having to deal with multiple cases arising from multiple 
kinds of arithmetic. Just as integer programs can be proven to be correct, so 

can floating-point programs, although what is proven in that case is that the 

rounding error of the result satisfies certain bounds. Theorem 4 is an 
example of such a proof. These proofs are made much easier when the 

operations being reasoned about are precisely specified. Once an algorithm 
is proven to be correct for IEEE arithmetic, it will work correctly on any 

machine supporting the IEEE standard.  

Brown [1981] has proposed axioms for floating-point that include most of 
the existing floating-point hardware. However, proofs in this system cannot 

verify the algorithms of sections Cancellation and Exactly Rounded 
Operations, which require features not present on all hardware. 

Furthermore, Brown's axioms are more complex than simply defining 

operations to be performed exactly and then rounded. Thus proving 
theorems from Brown's axioms is usually more difficult than proving them 

assuming operations are exactly rounded.  

There is not complete agreement on what operations a floating-point 
standard should cover. In addition to the basic operations +, -, × and /, the 

IEEE standard also specifies that square root, remainder, and conversion 
between integer and floating-point be correctly rounded. It also requires that 

conversion between internal formats and decimal be correctly rounded 
(except for very large numbers). Kulisch and Miranker [1986] have proposed 

adding inner product to the list of operations that are precisely specified. 

They note that when inner products are computed in IEEE arithmetic, the 
final answer can be quite wrong. For example sums are a special case of 

inner products, and the sum ((2 × 10-30 + 1030) - 1030) - 10-30 is exactly 
equal to 10-30, but on a machine with IEEE arithmetic the computed result 

will be -10-30. It is possible to compute inner products to within 1 ulp with 
less hardware than it takes to implement a fast multiplier [Kirchner and 

Kulish 1987].14 15
  

All the operations mentioned in the standard are required to be exactly 
rounded except conversion between decimal and binary. The reason is that 
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efficient algorithms for exactly rounding all the operations are known, except 

conversion. For conversion, the best known efficient algorithms produce 
results that are slightly worse than exactly rounded ones [Coonen 1984].  

The IEEE standard does not require transcendental functions to be exactly 

rounded because of the table maker's dilemma. To illustrate, suppose you 
are making a table of the exponential function to 4 places. Then 

exp(1.626) = 5.0835. Should this be rounded to 5.083 or 5.084? If 
exp(1.626) is computed more carefully, it becomes 5.08350. And then 

5.083500. And then 5.0835000. Since exp is transcendental, this could go 
on arbitrarily long before distinguishing whether exp(1.626) is 
5.083500...0ddd or 5.0834999...9ddd. Thus it is not practical to specify that 

the precision of transcendental functions be the same as if they were 
computed to infinite precision and then rounded. Another approach would be 

to specify transcendental functions algorithmically. But there does not 
appear to be a single algorithm that works well across all hardware 

architectures. Rational approximation, CORDIC,16 and large tables are three 
different techniques that are used for computing transcendentals on 

contemporary machines. Each is appropriate for a different class of 
hardware, and at present no single algorithm works acceptably over the 

wide range of current hardware.  

Special Quantities  

On some floating-point hardware every bit pattern represents a valid 
floating-point number. The IBM System/370 is an example of this. On the 

other hand, the VAXTM reserves some bit patterns to represent special 
numbers called reserved operands. This idea goes back to the CDC 6600, 

which had bit patterns for the special quantities INDEFINITE and INFINITY.  

The IEEE standard continues in this tradition and has NaNs (Not a Number) 

and infinities. Without any special quantities, there is no good way to handle 
exceptional situations like taking the square root of a negative number, 

other than aborting computation. Under IBM System/370 FORTRAN, the 
default action in response to computing the square root of a negative 

number like -4 results in the printing of an error message. Since every bit 
pattern represents a valid number, the return value of square root must be 

some floating-point number. In the case of System/370 FORTRAN, is 

returned. In IEEE arithmetic, a NaN is returned in this situation.  

The IEEE standard specifies the following special values (see TABLE D-2): ± 
0, denormalized numbers, ±  and NaNs (there is more than one NaN, as 

explained in the next section). These special values are all encoded with 
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exponents of either emax + 1 or emin - 1 (it was already pointed out that 0 

has an exponent of emin - 1).  

TABLE D-2   IEEE 754 Special Values 

Exponent Fraction Represents 

e = emin - 1  f = 0  ±0  

e = emin - 1  f 0  
 

emin e emax  --  1.f × 2e 
 

e = emax + 1  f = 0  ±   

e = emax + 1  f 0  NaN  

 

NaNs  

Traditionally, the computation of 0/0 or has been treated as an 

unrecoverable error which causes a computation to halt. However, there are 
examples where it makes sense for a computation to continue in such a 
situation. Consider a subroutine that finds the zeros of a function f, say 

zero(f). Traditionally, zero finders require the user to input an interval [a, b] 

on which the function is defined and over which the zero finder will search. 

That is, the subroutine is called as zero(f, a, b). A more useful zero finder 

would not require the user to input this extra information. This more general 

zero finder is especially appropriate for calculators, where it is natural to 
simply key in a function, and awkward to then have to specify the domain. 

However, it is easy to see why most zero finders require a domain. The zero 

finder does its work by probing the function f at various values. If it probed 

for a value outside the domain of f, the code for f might well compute 0/0 or 

, and the computation would halt, unnecessarily aborting the zero finding 

process.  

This problem can be avoided by introducing a special value called NaN, and 

specifying that the computation of expressions like 0/0 and produce NaN, 
rather than halting. A list of some of the situations that can cause a NaN are 

given in TABLE D-3. Then when zero(f) probes outside the domain of f, the 

code for f will return NaN, and the zero finder can continue. That is, zero(f) 

is not "punished" for making an incorrect guess. With this example in mind, 

it is easy to see what the result of combining a NaN with an ordinary 

floating-point number should be. Suppose that the final statement of f is 

return(-b + sqrt(d))/(2*a). If d < 0, then f should return a NaN. Since d < 0, 
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sqrt(d) is a NaN, and -b + sqrt(d) will be a NaN, if the sum of a NaN and any 

other number is a NaN. Similarly if one operand of a division operation is a 
NaN, the quotient should be a NaN. In general, whenever a NaN participates 

in a floating-point operation, the result is another NaN.  

TABLE D-3   Operations That Produce a NaN 

Operation NaN Produced By 

+  + (- )  

×  0 ×  

/  0/0, /   

REM  x REM 0, REM y  

 (when x < 0)  

 

Another approach to writing a zero solver that doesn't require the user to 
input a domain is to use signals. The zero-finder could install a signal 

handler for floating-point exceptions. Then if f was evaluated outside its 

domain and raised an exception, control would be returned to the zero 

solver. The problem with this approach is that every language has a different 
method of handling signals (if it has a method at all), and so it has no hope 

of portability.  

In IEEE 754, NaNs are often represented as floating-point numbers with the 
exponent emax + 1 and nonzero significands. Implementations are free to put 

system-dependent information into the significand. Thus there is not a 
unique NaN, but rather a whole family of NaNs. When a NaN and an ordinary 

floating-point number are combined, the result should be the same as the 

NaN operand. Thus if the result of a long computation is a NaN, the system-
dependent information in the significand will be the information that was 

generated when the first NaN in the computation was generated. Actually, 
there is a caveat to the last statement. If both operands are NaNs, then the 

result will be one of those NaNs, but it might not be the NaN that was 
generated first.  

Infinity  

Just as NaNs provide a way to continue a computation when expressions like 

0/0 or are encountered, infinities provide a way to continue when an 

overflow occurs. This is much safer than simply returning the largest 



representable number. As an example, consider computing , when 
 = 10, p = 3, and emax = 98. If x = 3 × 1070 and y = 4 × 1070, then x2 will 
overflow, and be replaced by 9.99 × 1098. Similarly y2, and x2 + y2 will each 

overflow in turn, and be replaced by 9.99 × 1098. So the final result will be 

, which is drastically wrong: the correct answer is 
5 × 1070. In IEEE arithmetic, the result of x2 is , as is y2, x2 + y2 and 

. So the final result is , which is safer than returning an ordinary 
floating-point number that is nowhere near the correct answer.17

  

The division of 0 by 0 results in a NaN. A nonzero number divided by 0, 

however, returns infinity: 1/0 = , -1/0 = - . The reason for the 
distinction is this: if f(x) 0 and g(x) 0 as x approaches some limit, then 
f(x)/g(x) could have any value. For example, when f(x) = sin x and g(x) = x, 

then f(x)/g(x) 1 as x 0. But when f(x) = 1 - cos x, f(x)/g(x) 0. When 

thinking of 0/0 as the limiting situation of a quotient of two very small 
numbers, 0/0 could represent anything. Thus in the IEEE standard, 0/0 
results in a NaN. But when c > 0, f(x) c, and g(x) 0, then f(x)/g(x)  ±

, for any analytic functions f and g. If g(x) < 0 for small x, then f(x)/g(x) -
, otherwise the limit is + . So the IEEE standard defines c/0 = ± , as 

long as c 0. The sign of depends on the signs of c and 0 in the usual 

way, so that -10/0 = - , and -10/-0 = + . You can distinguish between 
getting because of overflow and getting because of division by zero by 

checking the status flags (which will be discussed in detail in section Flags). 
The overflow flag will be set in the first case, the division by zero flag in the 

second.  

The rule for determining the result of an operation that has infinity as an 

operand is simple: replace infinity with a finite number x and take the limit 
as x . Thus 3/  = 0, because  

.  

Similarly, 4 - = - , and  = . When the limit doesn't exist, the result 
is a NaN, so /  will be a NaN (TABLE D-3 has additional examples). This 

agrees with the reasoning used to conclude that 0/0 should be a NaN.  

When a subexpression evaluates to a NaN, the value of the entire expression 

is also a NaN. In the case of ±  however, the value of the expression might 
be an ordinary floating-point number because of rules like 1/  = 0. Here is 

a practical example that makes use of the rules for infinity arithmetic. 
Consider computing the function x/(x2 + 1). This is a bad formula, because 

not only will it overflow when x is larger than , but infinity arithmetic 

will give the wrong answer because it will yield 0, rather than a number near 
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1/x. However, x/(x2 + 1) can be rewritten as 1/(x + x-1). This improved 

expression will not overflow prematurely and because of infinity arithmetic 
will have the correct value when x = 0: 1/(0 + 0-1) = 1/(0 + ) = 1/  = 0. 
Without infinity arithmetic, the expression 1/(x + x-1) requires a test for 

x = 0, which not only adds extra instructions, but may also disrupt a 
pipeline. This example illustrates a general fact, namely that infinity 

arithmetic often avoids the need for special case checking; however, 
formulas need to be carefully inspected to make sure they do not have 
spurious behavior at infinity (as x/(x2 + 1) did).  

Signed Zero  

Zero is represented by the exponent emin - 1 and a zero significand. Since 

the sign bit can take on two different values, there are two zeros, +0 and -0. 
If a distinction were made when comparing +0 and -0, simple tests like 

if (x = 0) would have very unpredictable behavior, depending on the sign of 

x. Thus the IEEE standard defines comparison so that +0 = -0, rather than -

0 < +0. Although it would be possible always to ignore the sign of zero, the 

IEEE standard does not do so. When a multiplication or division involves a 
signed zero, the usual sign rules apply in computing the sign of the answer. 

Thus 3·(+0) = +0, and +0/-3 = -0. If zero did not have a sign, then the 
relation 1/(1/x) = x would fail to hold when x = ± . The reason is that 1/-

 and 1/+  both result in 0, and 1/0 results in + , the sign information 
having been lost. One way to restore the identity 1/(1/x) = x is to only have 

one kind of infinity, however that would result in the disastrous consequence 

of losing the sign of an overflowed quantity.  

Another example of the use of signed zero concerns underflow and functions 
that have a discontinuity at 0, such as log. In IEEE arithmetic, it is natural to 
define log 0 = -  and log x to be a NaN when x < 0. Suppose that x 

represents a small negative number that has underflowed to zero. Thanks to 
signed zero, x will be negative, so log can return a NaN. However, if there 

were no signed zero, the log function could not distinguish an underflowed 
negative number from 0, and would therefore have to return - . Another 

example of a function with a discontinuity at zero is the signum function, 
which returns the sign of a number.  

Probably the most interesting use of signed zero occurs in complex 

arithmetic. To take a simple example, consider the equation . 

This is certainly true when z 0. If z = -1, the obvious computation gives 

and . Thus, ! The problem can be 

traced to the fact that square root is multi-valued, and there is no way to 
select the values so that it is continuous in the entire complex plane. 

However, square root is continuous if a branch cut consisting of all negative 



real numbers is excluded from consideration. This leaves the problem of 
what to do for the negative real numbers, which are of the form -x + i0, 

where x > 0. Signed zero provides a perfect way to resolve this problem. 

Numbers of the form x + i(+0) have one sign and numbers of the form 

x + i(-0) on the other side of the branch cut have the other sign . In 

fact, the natural formulas for computing will give these results.  

Back to . If z =1 = -1 + i0, then  

1/z = 1/(-1 + i0) = [(-1- i0)]/[(-1 + i0)(-1 - i0)] = (-1 -- i0)/((-1)2 - 02) = -1 + i(-0), 

and so , while . Thus IEEE arithmetic 
preserves this identity for all z. Some more sophisticated examples are given 

by Kahan [1987]. Although distinguishing between +0 and -0 has 

advantages, it can occasionally be confusing. For example, signed zero 
destroys the relation x = y  1/x = 1/y, which is false when x = +0 and y = 

-0. However, the IEEE committee decided that the advantages of utilizing 

the sign of zero outweighed the disadvantages.  

Denormalized Numbers  

Consider normalized floating-point numbers with = 10, p = 3, and emin = -

98. The numbers x = 6.87 × 10-97 and y = 6.81 × 10-97 appear to be 
perfectly ordinary floating-point numbers, which are more than a factor of 

10 larger than the smallest floating-point number 1.00 × 10-98. They have a 
strange property, however: x y = 0 even though x y! The reason is that 

x - y = .06 × 10 -97  = 6.0 × 10-99 is too small to be represented as a 

normalized number, and so must be flushed to zero. How important is it to 
preserve the property  

(10) x = y x - y = 0 ? 

It's very easy to imagine writing the code fragment, if (x  y) then z = 1/(x-

y), and much later having a program fail due to a spurious division by zero. 

Tracking down bugs like this is frustrating and time consuming. On a more 
philosophical level, computer science textbooks often point out that even 

though it is currently impractical to prove large programs correct, designing 
programs with the idea of proving them often results in better code. For 

example, introducing invariants is quite useful, even if they aren't going to 
be used as part of a proof. Floating-point code is just like any other code: it 

helps to have provable facts on which to depend. For example, when 
analyzing formula (6), it was very helpful to know that x/2 < y < 2x  x  y 

= x - y. Similarly, knowing that (10) is true makes writing reliable floating-
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point code easier. If it is only true for most numbers, it cannot be used to 

prove anything.  

The IEEE standard uses denormalized18 numbers, which guarantee (10), as 
well as other useful relations. They are the most controversial part of the 

standard and probably accounted for the long delay in getting 754 approved. 
Most high performance hardware that claims to be IEEE compatible does not 

support denormalized numbers directly, but rather traps when consuming or 
producing denormals, and leaves it to software to simulate the IEEE 

standard.19 The idea behind denormalized numbers goes back to Goldberg 
[1967] and is very simple. When the exponent is emin, the significand does 

not have to be normalized, so that when = 10, p = 3 and emin = -98, 1.00 

× 10-98 is no longer the smallest floating-point number, because 0.98 × 10-

98 is also a floating-point number.  

There is a small snag when = 2 and a hidden bit is being used, since a 

number with an exponent of emin will always have a significand greater than 
or equal to 1.0 because of the implicit leading bit. The solution is similar to 

that used to represent 0, and is summarized in TABLE D-2. The exponent 
emin is used to represent denormals. More formally, if the bits in the 
significand field are b1, b2, ..., bp -1, and the value of the exponent is e, then 

when e > emin - 1, the number being represented is 1.b1b2...bp - 1 × 2e 
whereas when e = emin - 1, the number being represented is 0.b1b2...bp - 1 × 

2e + 1. The +1 in the exponent is needed because denormals have an 

exponent of emin, not emin - 1.  

Recall the example of = 10, p = 3, emin = -98, x = 6.87 × 10-97 and 
y = 6.81 × 10-97 presented at the beginning of this section. With denormals, 
x - y does not flush to zero but is instead represented by the denormalized 

number .6 × 10-98. This behavior is called gradual underflow. It is easy to 
verify that (10) always holds when using gradual underflow.  

 

FIGURE D-2 Flush To Zero Compared With Gradual Underflow 

FIGURE D-2 illustrates denormalized numbers. The top number line in the 
figure shows normalized floating-point numbers. Notice the gap between 0 
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and the smallest normalized number . If the result of a floating-point 

calculation falls into this gulf, it is flushed to zero. The bottom number line 

shows what happens when denormals are added to the set of floating-point 
numbers. The "gulf" is filled in, and when the result of a calculation is less 

than , it is represented by the nearest denormal. When denormalized 

numbers are added to the number line, the spacing between adjacent 
floating-point numbers varies in a regular way: adjacent spacings are either 

the same length or differ by a factor of . Without denormals, the  

spacing abruptly changes from to , which is a factor of , 

rather than the orderly change by a factor of . Because of this, many 

algorithms that can have large relative error for normalized numbers close to 
the underflow threshold are well-behaved in this range when gradual 

underflow is used.  

Without gradual underflow, the simple expression x - y can have a very large 

relative error for normalized inputs, as was seen above for x = 6.87 × 10-97 
and y = 6.81 × 10-97. Large relative errors can happen even without 

cancellation, as the following example shows [Demmel 1984]. Consider 
dividing two complex numbers, a + ib and c + id. The obvious formula  

· i 

suffers from the problem that if either component of the denominator c + id 

is larger than , the formula will overflow, even though the final result 

may be well within range. A better method of computing the quotients is to 
use Smith's formula:  

(11)  

Applying Smith's formula to (2 · 10-98 + i10-98)/(4 · 10-98 + i(2 · 10-98)) gives 

the correct answer of 0.5 with gradual underflow. It yields 0.4 with flush to 
zero, an error of 100 ulps. It is typical for denormalized numbers to 

guarantee error bounds for arguments all the way down to 1.0 x  .  

Exceptions, Flags and Trap Handlers  

When an exceptional condition like division by zero or overflow occurs in 
IEEE arithmetic, the default is to deliver a result and continue. Typical of the 



default results are NaN for 0/0 and , and for 1/0 and overflow. The 

preceding sections gave examples where proceeding from an exception with 
these default values was the reasonable thing to do. When any exception 

occurs, a status flag is also set. Implementations of the IEEE standard are 
required to provide users with a way to read and write the status flags. The 

flags are "sticky" in that once set, they remain set until explicitly cleared. 
Testing the flags is the only way to distinguish 1/0, which is a genuine 

infinity from an overflow.  

Sometimes continuing execution in the face of exception conditions is not 
appropriate. The section Infinity gave the example of x/(x2 + 1). When x > 

, the denominator is infinite, resulting in a final answer of 0, which is 

totally wrong. Although for this formula the problem can be solved by 
rewriting it as 1/(x + x-1), rewriting may not always solve the problem. The 

IEEE standard strongly recommends that implementations allow trap 
handlers to be installed. Then when an exception occurs, the trap handler is 

called instead of setting the flag. The value returned by the trap handler will 
be used as the result of the operation. It is the responsibility of the trap 

handler to either clear or set the status flag; otherwise, the value of the flag 
is allowed to be undefined.  

The IEEE standard divides exceptions into 5 classes: overflow, underflow, 
division by zero, invalid operation and inexact. There is a separate status 

flag for each class of exception. The meaning of the first three exceptions is 
self-evident. Invalid operation covers the situations listed in TABLE D-3, and 

any comparison that involves a NaN. The default result of an operation that 
causes an invalid exception is to return a NaN, but the converse is not true. 

When one of the operands to an operation is a NaN, the result is a NaN but 
no invalid exception is raised unless the operation also satisfies one of the 

conditions in TABLE D-3.20  

TABLE D-4   Exceptions in IEEE 754* 

Exception Result when traps disabled Argument to trap handler 

overflow  ±  or ±xmax  round(x2
-

)  

underflow  0, or denormal  round(x2 )  

divide by zero  ±   operands  

invalid  NaN  operands  

inexact  round(x)  round(x)  
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*x is the exact result of the operation, = 192 for single precision, 1536 for 

double, and xmax = 1.11 ...11 × .  

The inexact exception is raised when the result of a floating-point operation 
is not exact. In the = 10, p = 3 system, 3.5 4.2 = 14.7 is exact, but 

3.5  4.3 = 15.0 is not exact (since 3.5 · 4.3 = 15.05), and raises an 
inexact exception. Binary to Decimal Conversion discusses an algorithm that 

uses the inexact exception. A summary of the behavior of all five exceptions 
is given in TABLE D-4.  

There is an implementation issue connected with the fact that the inexact 

exception is raised so often. If floating-point hardware does not have flags of 

its own, but instead interrupts the operating system to signal a floating-point 
exception, the cost of inexact exceptions could be prohibitive. This cost can 

be avoided by having the status flags maintained by software. The first time 
an exception is raised, set the software flag for the appropriate class, and 

tell the floating-point hardware to mask off that class of exceptions. Then all 
further exceptions will run without interrupting the operating system. When 

a user resets that status flag, the hardware mask is re-enabled.  

Trap Handlers  

One obvious use for trap handlers is for backward compatibility. Old codes 

that expect to be aborted when exceptions occur can install a trap handler 
that aborts the process. This is especially useful for codes with a loop like 

do S until (x >= 100). Since comparing a NaN to a number with <, , >, , 

or = (but not ) always returns false, this code will go into an infinite loop if 

x ever becomes a NaN.  

There is a more interesting use for trap handlers that comes up when 

computing products such as that could potentially overflow. One 

solution is to use logarithms, and compute exp  instead. The problem 
with this approach is that it is less accurate, and that it costs more than the 

simple expression , even if there is no overflow. There is another solution 
using trap handlers called over/underflow counting that avoids both of these 

problems [Sterbenz 1974].  

The idea is as follows. There is a global counter initialized to zero. Whenever 

the partial product overflows for some k, the trap handler 

increments the counter by one and returns the overflowed quantity with the 

exponent wrapped around. In IEEE 754 single precision, emax = 127, so if 
pk = 1.45 × 2130, it will overflow and cause the trap handler to be called, 

which will wrap the exponent back into range, changing pk to 1.45 × 2-62 
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(see below). Similarly, if pk underflows, the counter would be decremented, 

and negative exponent would get wrapped around into a positive one. When 
all the multiplications are done, if the counter is zero then the final product 

is pn. If the counter is positive, the product overflowed, if the counter is 
negative, it underflowed. If none of the partial products are out of range, the 

trap handler is never called and the computation incurs no extra cost. Even 
if there are over/underflows, the calculation is more accurate than if it had 

been computed with logarithms, because each pk was computed from pk - 1 
using a full precision multiply. Barnett [1987] discusses a formula where the 

full accuracy of over/underflow counting turned up an error in earlier tables 
of that formula.  

IEEE 754 specifies that when an overflow or underflow trap handler is called, 
it is passed the wrapped-around result as an argument. The definition of 

wrapped-around for overflow is that the result is computed as if to infinite 
precision, then divided by 2 , and then rounded to the relevant precision. 

For underflow, the result is multiplied by 2 . The exponent is 192 for 
single precision and 1536 for double precision. This is why 1.45 x 2130 was 

transformed into 1.45 × 2-62 in the example above.  

Rounding Modes  

In the IEEE standard, rounding occurs whenever an operation has a result 

that is not exact, since (with the exception of binary decimal conversion) 
each operation is computed exactly and then rounded. By default, rounding 

means round toward nearest. The standard requires that three other 
rounding modes be provided, namely round toward 0, round toward + , 

and round toward - . When used with the convert to integer operation, 
round toward -  causes the convert to become the floor function, while 

round toward +  is ceiling. The rounding mode affects overflow, because 
when round toward 0 or round toward -  is in effect, an overflow of positive 

magnitude causes the default result to be the largest representable number, 
not + . Similarly, overflows of negative magnitude will produce the largest 

negative number when round toward +  or round toward 0 is in effect.  

One application of rounding modes occurs in interval arithmetic (another is 

mentioned in Binary to Decimal Conversion). When using interval arithmetic, 

the sum of two numbers x and y is an interval , where is x y rounded 

toward - , and is x y rounded toward + . The exact result of the 

addition is contained within the interval . Without rounding modes, 

interval arithmetic is usually implemented by computing and 

, where is machine epsilon.21 This results in overestimates for 
the size of the intervals. Since the result of an operation in interval 

arithmetic is an interval, in general the input to an operation will also be an 
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interval. If two intervals , and , are added, the result is , where 

is with the rounding mode set to round toward - , and is with the 
rounding mode set to round toward + .  

When a floating-point calculation is performed using interval arithmetic, the 
final answer is an interval that contains the exact result of the calculation. 

This is not very helpful if the interval turns out to be large (as it often does), 
since the correct answer could be anywhere in that interval. Interval 

arithmetic makes more sense when used in conjunction with a multiple 
precision floating-point package. The calculation is first performed with some 

precision p. If interval arithmetic suggests that the final answer may be 
inaccurate, the computation is redone with higher and higher precisions until 

the final interval is a reasonable size.  

Flags  

The IEEE standard has a number of flags and modes. As discussed above, 

there is one status flag for each of the five exceptions: underflow, overflow, 
division by zero, invalid operation and inexact. There are four rounding 

modes: round toward nearest, round toward + , round toward 0, and 
round toward - . It is strongly recommended that there be an enable mode 

bit for each of the five exceptions. This section gives some simple examples 

of how these modes and flags can be put to good use. A more sophisticated 
example is discussed in the section Binary to Decimal Conversion.  

Consider writing a subroutine to compute xn, where n is an integer. When 

n > 0, a simple routine like  

PositivePower(x,n) {  

 while (n is even) {  

     x = x*x 

     n = n/2 

 }  

 u = x 

 while (true) {  

     n = n/2 

     if (n==0) return u 

     x = x*x 

     if (n is odd) u = u*x 

 }  

 

If n < 0, then a more accurate way to compute xn is not to call 

PositivePower(1/x, -n) but rather 1/PositivePower(x, -n), because the first 
expression multiplies n quantities each of which have a rounding error from 

the division (i.e., 1/x). In the second expression these are exact (i.e., x), 

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1251


and the final division commits just one additional rounding error. 

Unfortunately, these is a slight snag in this strategy. If PositivePower(x, -n) 

underflows, then either the underflow trap handler will be called, or else the 

underflow status flag will be set. This is incorrect, because if x-n underflows, 
then xn will either overflow or be in range.22 But since the IEEE standard 

gives the user access to all the flags, the subroutine can easily correct for 
this. It simply turns off the overflow and underflow trap enable bits and 

saves the overflow and underflow status bits. It then computes 

1/PositivePower(x, -n). If neither the overflow nor underflow status bit is set, 

it restores them together with the trap enable bits. If one of the status bits 
is set, it restores the flags and redoes the calculation using 

PositivePower(1/x, -n), which causes the correct exceptions to occur.  

Another example of the use of flags occurs when computing arccos via the 

formula  

arccos x = 2 arctan .  

If arctan( ) evaluates to /2, then arccos(-1) will correctly evaluate to 
2·arctan( ) = , because of infinity arithmetic. However, there is a small 
snag, because the computation of (1 - x)/(1 + x) will cause the divide by 

zero exception flag to be set, even though arccos(-1) is not exceptional. The 
solution to this problem is straightforward. Simply save the value of the 

divide by zero flag before computing arccos, and then restore its old value 
after the computation.  

Systems Aspects  

The design of almost every aspect of a computer system requires knowledge 
about floating-point. Computer architectures usually have floating-point 

instructions, compilers must generate those floating-point instructions, and 
the operating system must decide what to do when exception conditions are 

raised for those floating-point instructions. Computer system designers 
rarely get guidance from numerical analysis texts, which are typically aimed 

at users and writers of software, not at computer designers. As an example 
of how plausible design decisions can lead to unexpected behavior, consider 

the following BASIC program.  

q = 3.0/7.0 

if q = 3.0/7.0 then print "Equal": 

    else print "Not Equal" 
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When compiled and run using Borland's Turbo Basic on an IBM PC, the 

program prints Not Equal! This example will be analyzed in the next section  

Incidentally, some people think that the solution to such anomalies is never 
to compare floating-point numbers for equality, but instead to consider them 
equal if they are within some error bound E. This is hardly a cure-all because 

it raises as many questions as it answers. What should the value of E be? If 
x < 0 and y > 0 are within E, should they really be considered to be equal, 

even though they have different signs? Furthermore, the relation defined by 
this rule, a ~ b  |a - b| < E, is not an equivalence relation because a ~ b 
and b ~ c does not imply that a ~ c.  

Instruction Sets  

It is quite common for an algorithm to require a short burst of higher 

precision in order to produce accurate results. One example occurs in the 

quadratic formula (  )/2a. As discussed in the section Proof of 

Theorem 4, when b2 4ac, rounding error can contaminate up to half the 

digits in the roots computed with the quadratic formula. By performing the 
subcalculation of b2 - 4ac in double precision, half the double precision bits of 

the root are lost, which means that all the single precision bits are 
preserved.  

The computation of b2 - 4ac in double precision when each of the quantities 

a, b, and c are in single precision is easy if there is a multiplication 

instruction that takes two single precision numbers and produces a double 
precision result. In order to produce the exactly rounded product of two p-
digit numbers, a multiplier needs to generate the entire 2p bits of product, 

although it may throw bits away as it proceeds. Thus, hardware to compute 
a double precision product from single precision operands will normally be 

only a little more expensive than a single precision multiplier, and much 
cheaper than a double precision multiplier. Despite this, modern instruction 

sets tend to provide only instructions that produce a result of the same 
precision as the operands.23  

If an instruction that combines two single precision operands to produce a 

double precision product was only useful for the quadratic formula, it 
wouldn't be worth adding to an instruction set. However, this instruction has 

many other uses. Consider the problem of solving a system of linear 

equations,  

a11x1 + a12x2 + · · · + a1nxn= b1 

a21x1 + a22x2 + · · · + a2nxn= b2 

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1224
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1224
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#12039


· · · 
an1x1 + an2x2 + · · ·+ annxn= bn 

which can be written in matrix form as Ax = b, where  

 

Suppose that a solution x(1) is computed by some method, perhaps Gaussian 
elimination. There is a simple way to improve the accuracy of the result 

called iterative improvement. First compute  

(12) = Ax(1) - b  

and then solve the system  

(13) Ay =  

Note that if x(1) is an exact solution, then is the zero vector, as is y. In 
general, the computation of and y will incur rounding error, so Ay   
 Ax(1) - b = A(x(1) - x), where x is the (unknown) true solution. Then y  x(1) 

- x, so an improved estimate for the solution is  

(14) x(2) = x(1) - y  

The three steps (12), (13), and (14) can be repeated, replacing x(1) with x(2), 
and x(2) with x(3). This argument that x(i + 1) is more accurate than x(i) is only 

informal. For more information, see [Golub and Van Loan 1989].  

When performing iterative improvement, is a vector whose elements are 
the difference of nearby inexact floating-point numbers, and so can suffer 

from catastrophic cancellation. Thus iterative improvement is not very useful 
unless = Ax(1) - b is computed in double precision. Once again, this is a 

case of computing the product of two single precision numbers (A and x(1)), 

where the full double precision result is needed.  
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To summarize, instructions that multiply two floating-point numbers and 

return a product with twice the precision of the operands make a useful 
addition to a floating-point instruction set. Some of the implications of this 

for compilers are discussed in the next section.  

Languages and Compilers  

The interaction of compilers and floating-point is discussed in Farnum 

[1988], and much of the discussion in this section is taken from that paper.  

Ambiguity  

Ideally, a language definition should define the semantics of the language 

precisely enough to prove statements about programs. While this is usually 
true for the integer part of a language, language definitions often have a 

large grey area when it comes to floating-point. Perhaps this is due to the 
fact that many language designers believe that nothing can be proven about 

floating-point, since it entails rounding error. If so, the previous sections 
have demonstrated the fallacy in this reasoning. This section discusses some 

common grey areas in language definitions, including suggestions about how 
to deal with them.  

Remarkably enough, some languages don't clearly specify that if x is a 

floating-point variable (with say a value of 3.0/10.0), then every occurrence 

of (say) 10.0*x must have the same value. For example Ada, which is based 

on Brown's model, seems to imply that floating-point arithmetic only has to 

satisfy Brown's axioms, and thus expressions can have one of many possible 
values. Thinking about floating-point in this fuzzy way stands in sharp 

contrast to the IEEE model, where the result of each floating-point operation 

is precisely defined. In the IEEE model, we can prove that (3.0/10.0)*10.0 

evaluates to 3 (Theorem 7). In Brown's model, we cannot.  

Another ambiguity in most language definitions concerns what happens on 

overflow, underflow and other exceptions. The IEEE standard precisely 
specifies the behavior of exceptions, and so languages that use the standard 

as a model can avoid any ambiguity on this point.  

Another grey area concerns the interpretation of parentheses. Due to 

roundoff errors, the associative laws of algebra do not necessarily hold for 

floating-point numbers. For example, the expression (x+y)+z has a totally 

different answer than x+(y+z) when x = 1030, y = -1030 and z = 1 (it is 1 in 

the former case, 0 in the latter). The importance of preserving parentheses 

cannot be overemphasized. The algorithms presented in theorems 3, 4 and 6 
all depend on it. For example, in Theorem 6, the formula xh = mx - (mx - x) 



would reduce to xh = x if it weren't for parentheses, thereby destroying the 

entire algorithm. A language definition that does not require parentheses to 
be honored is useless for floating-point calculations.  

Subexpression evaluation is imprecisely defined in many languages. Suppose 

that ds is double precision, but x and y are single precision. Then in the 

expression ds + x*y is the product performed in single or double precision? 

Another example: in x + m/n where m and n are integers, is the division an 

integer operation or a floating-point one? There are two ways to deal with 
this problem, neither of which is completely satisfactory. The first is to 

require that all variables in an expression have the same type. This is the 
simplest solution, but has some drawbacks. First of all, languages like Pascal 

that have subrange types allow mixing subrange variables with integer 
variables, so it is somewhat bizarre to prohibit mixing single and double 

precision variables. Another problem concerns constants. In the expression 

0.1*x, most languages interpret 0.1 to be a single precision constant. Now 

suppose the programmer decides to change the declaration of all the 

floating-point variables from single to double precision. If 0.1 is still treated 
as a single precision constant, then there will be a compile time error. The 

programmer will have to hunt down and change every floating-point 
constant.  

The second approach is to allow mixed expressions, in which case rules for 

subexpression evaluation must be provided. There are a number of guiding 
examples. The original definition of C required that every floating-point 

expression be computed in double precision [Kernighan and Ritchie 1978]. 
This leads to anomalies like the example at the beginning of this section. The 

expression 3.0/7.0 is computed in double precision, but if q is a single-

precision variable, the quotient is rounded to single precision for storage. 
Since 3/7 is a repeating binary fraction, its computed value in double 

precision is different from its stored value in single precision. Thus the 
comparison q = 3/7 fails. This suggests that computing every expression in 

the highest precision available is not a good rule.  

Another guiding example is inner products. If the inner product has 

thousands of terms, the rounding error in the sum can become substantial. 
One way to reduce this rounding error is to accumulate the sums in double 

precision (this will be discussed in more detail in the section Optimizers). If d 

is a double precision variable, and x[] and y[] are single precision arrays, 

then the inner product loop will look like d = d + x[i]*y[i]. If the 

multiplication is done in single precision, than much of the advantage of 

double precision accumulation is lost, because the product is truncated to 
single precision just before being added to a double precision variable.  
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A rule that covers both of the previous two examples is to compute an 

expression in the highest precision of any variable that occurs in that 

expression. Then q = 3.0/7.0 will be computed entirely in single precision24 

and will have the boolean value true, whereas d = d + x[i]*y[i] will be 

computed in double precision, gaining the full advantage of double precision 

accumulation. However, this rule is too simplistic to cover all cases cleanly. 

If dx and dy are double precision variables, the expression y = x + single(dx-

dy) contains a double precision variable, but performing the sum in double 

precision would be pointless, because both operands are single precision, as 

is the result.  

A more sophisticated subexpression evaluation rule is as follows. First assign 

each operation a tentative precision, which is the maximum of the precisions 
of its operands. This assignment has to be carried out from the leaves to the 

root of the expression tree. Then perform a second pass from the root to the 
leaves. In this pass, assign to each operation the maximum of the tentative 

precision and the precision expected by the parent. In the case of 

q = 3.0/7.0, every leaf is single precision, so all the operations are done in 

single precision. In the case of d = d + x[i]*y[i], the tentative precision of the 

multiply operation is single precision, but in the second pass it gets 

promoted to double precision, because its parent operation expects a double 

precision operand. And in y = x + single(dx-dy), the addition is done in single 

precision. Farnum [1988] presents evidence that this algorithm in not 

difficult to implement.  

The disadvantage of this rule is that the evaluation of a subexpression 
depends on the expression in which it is embedded. This can have some 

annoying consequences. For example, suppose you are debugging a 
program and want to know the value of a subexpression. You cannot simply 

type the subexpression to the debugger and ask it to be evaluated, because 
the value of the subexpression in the program depends on the expression it 

is embedded in. A final comment on subexpressions: since converting 

decimal constants to binary is an operation, the evaluation rule also affects 
the interpretation of decimal constants. This is especially important for 

constants like 0.1 which are not exactly representable in binary.  

Another potential grey area occurs when a language includes exponentiation 
as one of its built-in operations. Unlike the basic arithmetic operations, the 

value of exponentiation is not always obvious [Kahan and Coonen 1982]. If 

** is the exponentiation operator, then (-3)**3 certainly has the value -27. 

However, (-3.0)**3.0 is problematical. If the ** operator checks for integer 

powers, it would compute (-3.0)**3.0 as -3.03 = -27. On the other hand, if 

the formula xy = eylogx is used to define ** for real arguments, then 

depending on the log function, the result could be a NaN (using the natural 
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definition of log(x) = NaN when x < 0). If the FORTRAN CLOG function is used 

however, then the answer will be -27, because the ANSI FORTRAN standard 

defines CLOG(-3.0) to be i  + log 3 [ANSI 1978]. The programming language 

Ada avoids this problem by only defining exponentiation for integer powers, 
while ANSI FORTRAN prohibits raising a negative number to a real power.  

In fact, the FORTRAN standard says that  

Any arithmetic operation whose result is not mathematically defined is 
prohibited...  

Unfortunately, with the introduction of ±  by the IEEE standard, the 
meaning of not mathematically defined is no longer totally clear cut. One 
definition might be to use the method shown in section Infinity. For 
example, to determine the value of ab, consider non-constant analytic 

functions f and g with the property that f(x) a and g(x) b as x 0. If 
f(x)g(x) always approaches the same limit, then this should be the value of ab. 

This definition would set 2  =  which seems quite reasonable. In the case 
of 1.0 , when f(x) = 1 and g(x) = 1/x the limit approaches 1, but when f(x) 
= 1 - x and g(x) = 1/x the limit is e-1. So 1.0 , should be a NaN. In the case 

of 00, f(x)g(x) = eg(x)log f(x). Since f and g are analytic and take on the value 0 

at 0, f(x) = a1x1 + a2x2 + ... and g(x) = b1x1 + b2x2 + .... Thus limx 0g(x) log 

f(x) = limx  0x log(x(a1 + a2x + ...)) = limx 0x log(a1x) = 0. So f(x)g(x) e0 
= 1 for all f and g, which means that 00 = 1.25 26 Using this definition would 

unambiguously define the exponential function for all arguments, and in 

particular would define (-3.0)**3.0 to be -27.  

The IEEE Standard  

The section The IEEE Standard," discussed many of the features of the IEEE 

standard. However, the IEEE standard says nothing about how these 
features are to be accessed from a programming language. Thus, there is 

usually a mismatch between floating-point hardware that supports the 
standard and programming languages like C, Pascal or FORTRAN. Some of 

the IEEE capabilities can be accessed through a library of subroutine calls. 
For example the IEEE standard requires that square root be exactly rounded, 

and the square root function is often implemented directly in hardware. This 
functionality is easily accessed via a library square root routine. However, 

other aspects of the standard are not so easily implemented as subroutines. 
For example, most computer languages specify at most two floating-point 

types, while the IEEE standard has four different precisions (although the 
recommended configurations are single plus single-extended or single, 

double, and double-extended). Infinity provides another example. Constants 
to represent ±  could be supplied by a subroutine. But that might make 
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them unusable in places that require constant expressions, such as the 

initializer of a constant variable.  

A more subtle situation is manipulating the state associated with a 
computation, where the state consists of the rounding modes, trap enable 

bits, trap handlers and exception flags. One approach is to provide 
subroutines for reading and writing the state. In addition, a single call that 

can atomically set a new value and return the old value is often useful. As 
the examples in the section Flags show, a very common pattern of modifying 

IEEE state is to change it only within the scope of a block or subroutine. 
Thus the burden is on the programmer to find each exit from the block, and 

make sure the state is restored. Language support for setting the state 

precisely in the scope of a block would be very useful here. Modula-3 is one 
language that implements this idea for trap handlers [Nelson 1991].  

There are a number of minor points that need to be considered when 
implementing the IEEE standard in a language. Since x - x = +0 for all x,27 

(+0) - (+0) = +0. However, -(+0) = -0, thus -x should not be defined as 0 -

 x. The introduction of NaNs can be confusing, because a NaN is never equal 
to any other number (including another NaN), so x = x is no longer always 

true. In fact, the expression x x is the simplest way to test for a NaN if the 

IEEE recommended function Isnan is not provided. Furthermore, NaNs are 

unordered with respect to all other numbers, so x y cannot be defined as 

not x > y. Since the introduction of NaNs causes floating-point numbers to 

become partially ordered, a compare function that returns one of <, =, >, or 

unordered can make it easier for the programmer to deal with comparisons.  

Although the IEEE standard defines the basic floating-point operations to 

return a NaN if any operand is a NaN, this might not always be the best 
definition for compound operations. For example when computing the 

appropriate scale factor to use in plotting a graph, the maximum of a set of 
values must be computed. In this case it makes sense for the max operation 

to simply ignore NaNs.  

Finally, rounding can be a problem. The IEEE standard defines rounding very 

precisely, and it depends on the current value of the rounding modes. This 
sometimes conflicts with the definition of implicit rounding in type 

conversions or the explicit round function in languages. This means that 

programs which wish to use IEEE rounding can't use the natural language 

primitives, and conversely the language primitives will be inefficient to 
implement on the ever increasing number of IEEE machines.  

Optimizers  
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Compiler texts tend to ignore the subject of floating-point. For example Aho 

et al. [1986] mentions replacing x/2.0 with x*0.5, leading the reader to 

assume that x/10.0 should be replaced by 0.1*x. However, these two 

expressions do not have the same semantics on a binary machine, because 
0.1 cannot be represented exactly in binary. This textbook also suggests 

replacing x*y-x*z by x*(y-z), even though we have seen that these two 

expressions can have quite different values when y z. Although it does 

qualify the statement that any algebraic identity can be used when 
optimizing code by noting that optimizers should not violate the language 

definition, it leaves the impression that floating-point semantics are not very 
important. Whether or not the language standard specifies that parenthesis 

must be honored, (x+y)+z can have a totally different answer than x+(y+z), as 

discussed above. There is a problem closely related to preserving 
parentheses that is illustrated by the following code 

eps = 1; 

do eps = 0.5*eps; while (eps + 1 > 1); 

 
:  

This is designed to give an estimate for machine epsilon. If an optimizing 
compiler notices that eps + 1 > 1 eps > 0, the program will be changed 

completely. Instead of computing the smallest number x such that 1 x is 

still greater than x (x e ), it will compute the largest number x for 

which x/2 is rounded to 0 (x ). Avoiding this kind of "optimization" is 

so important that it is worth presenting one more very useful algorithm that 
is totally ruined by it.  

Many problems, such as numerical integration and the numerical solution of 
differential equations involve computing sums with many terms. Because 

each addition can potentially introduce an error as large as .5 ulp, a sum 
involving thousands of terms can have quite a bit of rounding error. A simple 

way to correct for this is to store the partial summand in a double precision 
variable and to perform each addition using double precision. If the 

calculation is being done in single precision, performing the sum in double 
precision is easy on most computer systems. However, if the calculation is 

already being done in double precision, doubling the precision is not so 
simple. One method that is sometimes advocated is to sort the numbers and 

add them from smallest to largest. However, there is a much more efficient 

method which dramatically improves the accuracy of sums, namely  

Theorem 8 (Kahan Summation Formula)  



Suppose that is computed using the following algorithm  

S = X[1]; 

C = 0; 

for j = 2 to N {  

    Y = X[j] - C; 

    T = S + Y; 

    C = (T - S) - Y; 

    S = T; 

}  

 

Then the computed sum S is equal to where .  

Using the naive formula , the computed sum is equal to where |

j| < (n - j)e. Comparing this with the error in the Kahan summation formula 

shows a dramatic improvement. Each summand is perturbed by only 2e, 

instead of perturbations as large as ne in the simple formula. Details are in, 

Errors In Summation.  

An optimizer that believed floating-point arithmetic obeyed the laws of 
algebra would conclude that C = [T-S] - Y = [(S+Y)-S] - Y = 0, rendering 

the algorithm completely useless. These examples can be summarized by 

saying that optimizers should be extremely cautious when applying algebraic 
identities that hold for the mathematical real numbers to expressions 

involving floating-point variables.  

Another way that optimizers can change the semantics of floating-point code 

involves constants. In the expression 1.0E-40*x, there is an implicit decimal 

to binary conversion operation that converts the decimal number to a binary 

constant. Because this constant cannot be represented exactly in binary, the 
inexact exception should be raised. In addition, the underflow flag should to 

be set if the expression is evaluated in single precision. Since the constant is 
inexact, its exact conversion to binary depends on the current value of the 

IEEE rounding modes. Thus an optimizer that converts 1.0E-40 to binary at 

compile time would be changing the semantics of the program. However, 

constants like 27.5 which are exactly representable in the smallest available 
precision can be safely converted at compile time, since they are always 

exact, cannot raise any exception, and are unaffected by the rounding 
modes. Constants that are intended to be converted at compile time should 

be done with a constant declaration, such as const pi = 3.14159265.  

Common subexpression elimination is another example of an optimization 

that can change floating-point semantics, as illustrated by the following code  

C = A*B; 
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RndMode = Up 

D = A*B; 

 

Although A*B can appear to be a common subexpression, it is not because 

the rounding mode is different at the two evaluation sites. Three final 

examples: x = x cannot be replaced by the boolean constant true, because it 

fails when x is a NaN; -x = 0 - x fails for x = +0; and x < y is not the 

opposite of x y, because NaNs are neither greater than nor less than 

ordinary floating-point numbers.  

Despite these examples, there are useful optimizations that can be done on 

floating-point code. First of all, there are algebraic identities that are valid 
for floating-point numbers. Some examples in IEEE arithmetic are x + y = y 

+ x, 2 ×  x = x + x, 1 × x = x, and 0.5× x = x/2. However, even these 

simple identities can fail on a few machines such as CDC and Cray 
supercomputers. Instruction scheduling and in-line procedure substitution 

are two other potentially useful optimizations.28
  

As a final example, consider the expression dx = x*y, where x and y are single 

precision variables, and dx is double precision. On machines that have an 

instruction that multiplies two single precision numbers to produce a double 

precision number, dx = x*y can get mapped to that instruction, rather than 

compiled to a series of instructions that convert the operands to double and 

then perform a double to double precision multiply.  

Some compiler writers view restrictions which prohibit converting (x + y) + z 
to x + (y + z) as irrelevant, of interest only to programmers who use 

unportable tricks. Perhaps they have in mind that floating-point numbers 

model real numbers and should obey the same laws that real numbers do. 
The problem with real number semantics is that they are extremely 
expensive to implement. Every time two n bit numbers are multiplied, the 

product will have 2n bits. Every time two n bit numbers with widely spaced 

exponents are added, the number of bits in the sum is n + the space 

between the exponents. The sum could have up to (emax - emin) + n bits, or 
roughly 2·emax + n bits. An algorithm that involves thousands of operations 

(such as solving a linear system) will soon be operating on numbers with 
many significant bits, and be hopelessly slow. The implementation of library 

functions such as sin and cos is even more difficult, because the value of 
these transcendental functions aren't rational numbers. Exact integer 

arithmetic is often provided by lisp systems and is handy for some problems. 

However, exact floating-point arithmetic is rarely useful.  
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The fact is that there are useful algorithms (like the Kahan summation 
formula) that exploit the fact that (x + y) + z x + (y + z), and work 

whenever the bound  

a b = (a + b)(1 + ) 

holds (as well as similar bounds for -, × and /). Since these bounds hold for 
almost all commercial hardware, it would be foolish for numerical 

programmers to ignore such algorithms, and it would be irresponsible for 
compiler writers to destroy these algorithms by pretending that floating-

point variables have real number semantics.  

Exception Handling  

The topics discussed up to now have primarily concerned systems 

implications of accuracy and precision. Trap handlers also raise some 
interesting systems issues. The IEEE standard strongly recommends that 

users be able to specify a trap handler for each of the five classes of 
exceptions, and the section Trap Handlers, gave some applications of user 

defined trap handlers. In the case of invalid operation and division by zero 
exceptions, the handler should be provided with the operands, otherwise, 

with the exactly rounded result. Depending on the programming language 

being used, the trap handler might be able to access other variables in the 
program as well. For all exceptions, the trap handler must be able to identify 

what operation was being performed and the precision of its destination.  

The IEEE standard assumes that operations are conceptually serial and that 
when an interrupt occurs, it is possible to identify the operation and its 

operands. On machines which have pipelining or multiple arithmetic units, 
when an exception occurs, it may not be enough to simply have the trap 

handler examine the program counter. Hardware support for identifying 
exactly which operation trapped may be necessary.  

Another problem is illustrated by the following program fragment.  

x = y*z; 

z = x*w; 

a = b + c; 

d = a/x; 

 

Suppose the second multiply raises an exception, and the trap handler wants 

to use the value of a. On hardware that can do an add and multiply in 

parallel, an optimizer would probably move the addition operation ahead of 
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the second multiply, so that the add can proceed in parallel with the first 

multiply. Thus when the second multiply traps, a = b + c has already been 

executed, potentially changing the result of a. It would not be reasonable for 

a compiler to avoid this kind of optimization, because every floating-point 
operation can potentially trap, and thus virtually all instruction scheduling 

optimizations would be eliminated. This problem can be avoided by 
prohibiting trap handlers from accessing any variables of the program 

directly. Instead, the handler can be given the operands or result as an 
argument.  

But there are still problems. In the fragment  

x = y*z; 

z = a + b; 

 

the two instructions might well be executed in parallel. If the multiply traps, 

its argument z could already have been overwritten by the addition, 

especially since addition is usually faster than multiply. Computer systems 
that support the IEEE standard must provide some way to save the value of 

z, either in hardware or by having the compiler avoid such a situation in the 

first place.  

W. Kahan has proposed using presubstitution instead of trap handlers to 
avoid these problems. In this method, the user specifies an exception and 

the value he wants to be used as the result when the exception occurs. As 
an example, suppose that in code for computing (sin x)/x, the user decides 

that x = 0 is so rare that it would improve performance to avoid a test for x 
= 0, and instead handle this case when a 0/0 trap occurs. Using IEEE trap 

handlers, the user would write a handler that returns a value of 1 and install 
it before computing sin x/x. Using presubstitution, the user would specify 

that when an invalid operation occurs, the value 1 should be used. Kahan 

calls this presubstitution, because the value to be used must be specified 
before the exception occurs. When using trap handlers, the value to be 

returned can be computed when the trap occurs.  

The advantage of presubstitution is that it has a straightforward hardware 

implementation.29 As soon as the type of exception has been determined, it 
can be used to index a table which contains the desired result of the 

operation. Although presubstitution has some attractive attributes, the 
widespread acceptance of the IEEE standard makes it unlikely to be widely 

implemented by hardware manufacturers.  
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The Details  

A number of claims have been made in this paper concerning properties of 
floating-point arithmetic. We now proceed to show that floating-point is not 

black magic, but rather is a straightforward subject whose claims can be 

verified mathematically. This section is divided into three parts. The first part 
presents an introduction to error analysis, and provides the details for the 

section Rounding Error. The second part explores binary to decimal 
conversion, filling in some gaps from the section The IEEE Standard. The 

third part discusses the Kahan summation formula, which was used as an 
example in the section Systems Aspects.  

Rounding Error  

In the discussion of rounding error, it was stated that a single guard digit is 
enough to guarantee that addition and subtraction will always be accurate 

(Theorem 2). We now proceed to verify this fact. Theorem 2 has two parts, 
one for subtraction and one for addition. The part for subtraction is  

Theorem 9  

If x and y are positive floating-point numbers in a format with parameters 
and p, and if subtraction is done with p + 1 digits (i.e. one guard digit), then 

the relative rounding error in the result is less than  

e 2e. 

Proof  

Interchange x and y if necessary so that x > y. It is also harmless to scale x 
and y so that x is represented by x0.x1 ... xp - 1 × 0. If y is represented as 

y0.y1 ... yp-1, then the difference is exact. If y is represented as 0.y1 ... yp, 

then the guard digit ensures that the computed difference will be the exact 
difference rounded to a floating-point number, so the rounding error is at 
most e. In general, let y = 0.0 ... 0yk + 1 ... yk + p and be y truncated to 

p + 1 digits. Then  

(15) y - < (  - 1)( -p - 1 + -p - 2 + ... + -p - k). 

From the definition of guard digit, the computed value of x - y is x - 

rounded to be a floating-point number, that is, (x - ) + , where the 

rounding error satisfies  
(16) | | ( /2) -p. 

The exact difference is x - y, so the error is (x - y) - (x - + ) = - y + . 

There are three cases. If x - y 1 then the relative error is bounded by  
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(17) -p [(  - 1)( -1 + ... + -k) + /2] < -p(1 + /2) . 

Secondly, if x - < 1, then = 0. Since the smallest that x - y can be is  

> ( - 1)( -1 + ... + -k), where = - 1,  

in this case the relative error is bounded by  

(18) . 

The final case is when x - y < 1 but x - 1. The only way this could 
happen is if x -  = 1, in which case = 0. But if = 0, then (18) applies, so 

that again the relative error is bounded by -p < -p(1 + /2). z  

When = 2, the bound is exactly 2e, and this bound is achieved for x= 1 + 

22 - p and y = 21 - p - 21 - 2p in the limit as p . When adding numbers of 
the same sign, a guard digit is not necessary to achieve good accuracy, as 

the following result shows.  

Theorem 10  

If x 0 and y 0, then the relative error in computing x + y is at most 2 , 

even if no guard digits are used.  

Proof  

The algorithm for addition with k guard digits is similar to that for 

subtraction. If x  y, shift y right until the radix points of x and y are aligned. 
Discard any digits shifted past the p + k position. Compute the sum of these 

two p + k digit numbers exactly. Then round to p digits.  

We will verify the theorem when no guard digits are used; the general case 

is similar. There is no loss of generality in assuming that x y 0 and that x 

is scaled to be of the form d.dd...d × 0. First, assume there is no carry out. 
Then the digits shifted off the end of y have a value less than -p + 1, and the 

sum is at least 1, so the relative error is less than -p+1/1 = 2e. If there is a 

carry out, then the error from shifting must be added to the rounding error 
of  

.  

The sum is at least , so the relative error is less than  

2 . z  
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It is obvious that combining these two theorems gives Theorem 2. Theorem 

2 gives the relative error for performing one operation. Comparing the 
rounding error of x2 - y2 and (x + y) (x - y) requires knowing the relative 

error of multiple operations. The relative error of x y is 1 = [(x y) - (x - 

y)] / (x - y), which satisfies | 1|  2e. Or to write it another way  

(19) x y = (x - y) (1 + 1), | 1| 2e 

Similarly  

(20) x y = (x + y) (1 + 2), | 2| 2e 

Assuming that multiplication is performed by computing the exact product 
and then rounding, the relative error is at most .5 ulp, so  

(21) u v = uv (1 + 3), | 3| e 

for any floating-point numbers u and v. Putting these three equations 

together (letting u = x y and v = x y) gives  

(22) (x y) (x y) = (x - y) (1 + 1) (x + y) (1 + 2) (1 + 3) 

So the relative error incurred when computing (x - y) (x + y) is  

(23)  

This relative error is equal to 1 + 2 + 3 + 1 2 + 1 3 + 2 3 + 1 2

3, which is bounded by 5  + 8 2. In other words, the maximum relative 
error is about 5 rounding errors (since e is a small number, e2 is almost 

negligible).  

A similar analysis of (x x) (y y) cannot result in a small value for the 

relative error, because when two nearby values of x and y are plugged into 

x2 - y2, the relative error will usually be quite large. Another way to see this 
is to try and duplicate the analysis that worked on (x y) (x y), yielding  

(x x) (y y) = [x2(1 + 1) - y
2(1 + 2)] (1 + 3) 

= ((x2 - y2) (1 + 1) + ( 1 - 2)y
2) (1 + 3) 

When x and y are nearby, the error term ( 1 - 2)y
2 can be as large as the 

result x2 - y2. These computations formally justify our claim that (x - y) (x + 

y) is more accurate than x2 - y2.  



We next turn to an analysis of the formula for the area of a triangle. In order 

to estimate the maximum error that can occur when computing with (7), the 
following fact will be needed.  

Theorem 11  

If subtraction is performed with a guard digit, and y/2 x 2y, then x - y is 

computed exactly.  

Proof  

Note that if x and y have the same exponent, then certainly x y is exact. 

Otherwise, from the condition of the theorem, the exponents can differ by at 
most 1. Scale and interchange x and y if necessary so that 0 y x, and x 
is represented as x0.x1 ... xp - 1 and y as 0.y1 ... yp. Then the algorithm for 

computing x y will compute x - y exactly and round to a floating-point 

number. If the difference is of the form 0.d1 ... dp, the difference will already 

be p digits long, and no rounding is necessary. Since x 2y, x - y  y, and 
since y is of the form 0.d1 ... dp, so is x - y. z  

When > 2, the hypothesis of Theorem 11 cannot be replaced by y/ x  
y; the stronger condition y/2 x 2y is still necessary. The analysis of the 

error in (x - y) (x + y), immediately following the proof of Theorem 10, used 

the fact that the relative error in the basic operations of addition and 
subtraction is small (namely equations (19) and (20)). This is the most 

common kind of error analysis. However, analyzing formula (7) requires 
something more, namely Theorem 11, as the following proof will show.  

Theorem 12  

If subtraction uses a guard digit, and if a,b and c are the sides of a triangle 

(a  b  c), then the relative error in computing (a + (b + c))(c - (a -
 b))(c + (a - b))(a +(b - c)) is at most 16 , provided e < .005.  

Proof  

Let's examine the factors one by one. From Theorem 10, b 

 c = (b + c) (1 + 1), where 1 is the relative error, and | 1| 2 . Then 

the value of the first factor is  
(a (b c)) = (a + (b c)) (1 + 2) = (a + (b + c) (1 + 1))(1 + 2),  

and thus  
(a + b + c) (1 - 2 )2 [a + (b + c) (1 - 2 )] · (1-2 )  

a (b c) 

[a + (b + c) (1 + 2 )] (1 + 2 ) 

(a + b + c) (1 + 2 )2  
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This means that there is an 1 so that  
(24) (a (b c)) = (a + b + c) (1 + 1)

2, | 1| 2 .  

The next term involves the potentially catastrophic subtraction of c and a  

 b, because a b may have rounding error. Because a, b and c are the sides 
of a triangle, a b+ c, and combining this with the ordering c b a gives 

a b + c 2b 2a. So a - b satisfies the conditions of Theorem 11. This 

means that a - b = a b is exact, hence c (a - b) is a harmless subtraction 

which can be estimated from Theorem 9 to be  
(25) (c (a b)) = (c - (a - b)) (1 + 2), | 2| 2   

The third term is the sum of two exact positive quantities, so  
(26) (c (a b)) = (c + (a - b)) (1 + 3), | 3| 2  

Finally, the last term is  
(27) (a (b c)) = (a + (b - c)) (1 + 4)

2, | 4| 2 ,  

using both Theorem 9 and Theorem 10. If multiplication is assumed to be 
exactly rounded, so that x y = xy(1 + ) with | | , then combining 

(24), (25), (26) and (27) gives  
(a (b c)) (c (a b)) (c (a b)) (a (b c)) 

(a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c)) E  

where  
E = (1 + 1)

2 (1 + 2) (1 + 3) (1 + 4)
2 (1 + 1)(1 + 2) (1 + 3)  

An upper bound for E is (1 + 2 )6(1 + )3, which expands out to 1 + 15

 + O( 2). Some writers simply ignore the O(e2) term, but it is easy to 
account for it. Writing (1 + 2 )6(1 + )3 = 1 + 15  + R( ), R( ) is a 

polynomial in e with positive coefficients, so it is an increasing function of . 

Since R(.005) = .505, R( ) < 1 for all < .005, and hence E  (1 + 2

)6(1 + )3 < 1 + 16 . To get a lower bound on E, note that 1 - 15  - R(

) < E, and so when < .005, 1 - 16  < (1 - 2 )6(1 - )3. Combining these 
two bounds yields 1 - 16  < E < 1 + 16 . Thus the relative error is at most 

16 . z  

Theorem 12 certainly shows that there is no catastrophic cancellation in 
formula (7). So although it is not necessary to show formula (7) is 

numerically stable, it is satisfying to have a bound for the entire formula, 
which is what Theorem 3 of Cancellation gives.  

Proof of Theorem 3  

Let  
q = (a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c))  

and  
Q = (a (b c)) (c (a b)) (c (a b)) (a (b c)).  

Then, Theorem 12 shows that Q = q(1 + ), with 16 . It is easy to 

check that  

(28)  
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provided .04/(.52)2 .15, and since | | 16  16(.005) = .08, 

does satisfy the condition. Thus  

,  

with | 1|  .52| |  8.5 . If square roots are computed to within .5 ulp, 

then the error when computing is (1 + 1)(1 + 2), with | 2|  . If = 

2, then there is no further error committed when dividing by 4. Otherwise, 
one more factor 1 + 3 with | 3|   is necessary for the division, and 

using the method in the proof of Theorem 12, the final error bound of (1 +

1) (1 + 2) (1 + 3) is dominated by 1 + 4, with | 4| 11 . z  

To make the heuristic explanation immediately following the statement of 
Theorem 4 precise, the next theorem describes just how closely µ(x) 

approximates a constant.  

Theorem 13  

If µ(x) = ln(1 + x)/x, then for 0 x , µ(x) 1 and the derivative 

satisfies |µ'(x)|   .  

Proof  

Note that µ(x) = 1 - x/2 + x2/3 - ... is an alternating series with decreasing 

terms, so for x 1, µ(x) 1 - x/2 1/2. It is even easier to see that 
because the series for µ is alternating, µ(x) 1. The Taylor series of µ'(x) is 

also alternating, and if x has decreasing terms, so - µ'(x) -  + 2x/3, 

or -  µ'(x) 0, thus |µ'(x)| . z  

Proof of Theorem 4  

Since the Taylor series for ln  

 
is an alternating series, 0 < x - ln(1 + x) < x2/2, the relative error incurred 

when approximating ln(1 + x) by x is bounded by x/2. If 1 x = 1, then 
|x| < , so the relative error is bounded by /2.  

When 1 x 1, define via 1 x = 1 + . Then since 0 x < 1, (1 x) 1 

= . If division and logarithms are computed to within ulp, then the 
computed value of the expression ln(1 + x)/((1 + x) - 1) is  

(29) (1 + 1) (1 + 2) = (1 + 1) (1 + 2) = µ(  ) (1 + 1) (1 + 2) 

where | 1| and | 2| . To estimate µ(  ), use the mean value 

theorem, which says that  



(30) µ(  ) - µ(x) = (  - x)µ'( ) 

for some between x and . From the definition of , it follows that |  - x| 
, and combining this with Theorem 13 gives |µ(  ) - µ(x)| /2, or |µ(

 )/µ(x) - 1| /(2|µ(x)|) which means that µ(  ) = µ(x) (1 + 3), 

with | 3| . Finally, multiplying by x introduces a final 4, so the 

computed value of  
x·ln(1  x)/((1 x) 1) 

is  

 
It is easy to check that if < 0.1, then  
(1 + 1) (1 + 2) (1 + 3) (1 + 4) = 1 + ,  

with | |  5 . z  

An interesting example of error analysis using formulas (19), (20), and (21) 

occurs in the quadratic formula . The section Cancellation, 
explained how rewriting the equation will eliminate the potential cancellation 

caused by the ± operation. But there is another potential cancellation that 
can occur when computing d = b2 - 4ac. This one cannot be eliminated by a 

simple rearrangement of the formula. Roughly speaking, when b2 4ac, 

rounding error can contaminate up to half the digits in the roots computed 
with the quadratic formula. Here is an informal proof (another approach to 

estimating the error in the quadratic formula appears in Kahan [1972]).  

If b2 4ac, rounding error can contaminate up to half the digits in the roots 

computed with the quadratic formula .  

Proof: Write (b b) (4a c) = (b2(1 + 1) - 4ac(1 + 2)) (1 + 3), where 
| i|  . 30 Using d = b2 - 4ac, this can be rewritten as (d(1 + 1) - 4ac( 2 - 

1)) (1 + 3). To get an estimate for the size of this error, ignore second 
order terms in i, in which case the absolute error is d( 1 + 3) - 4ac 4, 
where | 4| = | 1 - 2| 2 . Since , the first term d( 1 + 3) can be 

ignored. To estimate the second term, use the fact that ax2 + bx + c = a(x - 

r1) (x - r2), so ar1r2 = c. Since b2 4ac, then r1 r2, so the second error term 

is . Thus the computed value of is  

.  

The inequality  
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shows that  

, 

where  

,  

so the absolute error in a is about . Since 4 
-p, , and 

thus the absolute error of destroys the bottom half of the bits of the 
roots r1 r2. In other words, since the calculation of the roots involves 

computing with , and this expression does not have meaningful bits 
in the position corresponding to the lower order half of ri, then the lower 
order bits of ri cannot be meaningful. z  

Finally, we turn to the proof of Theorem 6. It is based on the following fact, 
which is proven in the section Theorem 14 and Theorem 8.  

Theorem 14  

Let 0 < k < p, and set m = k + 1, and assume that floating-point 
operations are exactly rounded. Then (m x) (m x x) is exactly equal 

to x rounded to p - k significant digits. More precisely, x is rounded by taking 
the significand of x, imagining a radix point just left of the k least significant 

digits and rounding to an integer.  

Proof of Theorem 6  

By Theorem 14, xh is x rounded to p - k = places. If there is no carry 
out, then certainly xh can be represented with significant digits. 

Suppose there is a carry-out. If x = x0.x1 ... xp - 1 × e, then rounding adds 1 
to xp - k - 1, and the only way there can be a carry-out is if xp - k - 1 = - 1, but 

then the low order digit of xh is 1 + xp - k- 1 = 0, and so again xh is 

representable in digits.  
To deal with xl, scale x to be an integer satisfying p - 1 x p - 1. Let 

where is the p - k high order digits of x, and is the k low order 

digits. There are three cases to consider. If , then rounding x to p 

- k places is the same as chopping and , and . Since has at 

most k digits, if p is even, then has at most k = =  digits. 

Otherwise, = 2 and is representable with k - 1 significant 

bits. The second case is when , and then computing xh involves 
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rounding up, so xh = + k, and xl = x - xh = x -  - k = - k. Once 

again, has at most k digits, so is representable with p/2  digits. Finally, if 

= ( /2) k - 1, then xh = or  + k depending on whether there is a 

round up. So xl is either ( /2) k - 1 or ( /2) k - 1 - k = - k/2, both of 
which are represented with 1 digit. z  

Theorem 6 gives a way to express the product of two working precision 
numbers exactly as a sum. There is a companion formula for expressing a 

sum exactly. If |x|  |y| then x + y = (x y) + (x (x y)) y [Dekker 

1971; Knuth 1981, Theorem C in section 4.2.2]. However, when using 
exactly rounded operations, this formula is only true for = 2, and not for 

= 10 as the example x = .99998, y = .99997 shows.  

Binary to Decimal Conversion  

Since single precision has p = 24, and 224 < 108, you might expect that 
converting a binary number to 8 decimal digits would be sufficient to recover 

the original binary number. However, this is not the case.  

Theorem 15  

When a binary IEEE single precision number is converted to the closest eight 

digit decimal number, it is not always possible to uniquely recover the binary 
number from the decimal one. However, if nine decimal digits are used, then 

converting the decimal number to the closest binary number will recover the 
original floating-point number.  

Proof  

Binary single precision numbers lying in the half open interval [103, 210) = 
[1000, 1024) have 10 bits to the left of the binary point, and 14 bits to the 

right of the binary point. Thus there are (210 - 103)214 = 393,216 different 
binary numbers in that interval. If decimal numbers are represented with 8 

digits, then there are (210 - 103)104 = 240,000 decimal numbers in the same 
interval. There is no way that 240,000 decimal numbers could represent 

393,216 different binary numbers. So 8 decimal digits are not enough to 
uniquely represent each single precision binary number.  

To show that 9 digits are sufficient, it is enough to show that the spacing 
between binary numbers is always greater than the spacing between decimal 
numbers. This will ensure that for each decimal number N, the interval  

[N - ulp, N + ulp]  

contains at most one binary number. Thus each binary number rounds to a 

unique decimal number which in turn rounds to a unique binary number.  



To show that the spacing between binary numbers is always greater than 

the spacing between decimal numbers, consider an interval [10n, 10n + 1]. On 
this interval, the spacing between consecutive decimal numbers is 10(n + 1) -

 9. On [10n, 2m], where m is the smallest integer so that 10n < 2m, the 

spacing of binary numbers is 2m - 24, and the spacing gets larger further on in 

the interval. Thus it is enough to check that 10(n + 1) - 9 < 2m - 24. But in fact, 
since 10n < 2m, then 10(n + 1) - 9 = 10n10-8 < 2m10-8 < 2m2-24. z  

The same argument applied to double precision shows that 17 decimal digits 
are required to recover a double precision number.  

Binary-decimal conversion also provides another example of the use of flags. 

Recall from the section Precision, that to recover a binary number from its 
decimal expansion, the decimal to binary conversion must be computed 
exactly. That conversion is performed by multiplying the quantities N and 

10|P| (which are both exact if p < 13) in single-extended precision and then 
rounding this to single precision (or dividing if p < 0; both cases are similar). 
Of course the computation of N · 10|P| cannot be exact; it is the combined 
operation round(N · 10|P|) that must be exact, where the rounding is from 

single-extended to single precision. To see why it might fail to be exact, take 

the simple case of = 10, p = 2 for single, and p = 3 for single-extended. If 
the product is to be 12.51, then this would be rounded to 12.5 as part of the 

single-extended multiply operation. Rounding to single precision would give 
12. But that answer is not correct, because rounding the product to single 

precision should give 13. The error is due to double rounding.  

By using the IEEE flags, double rounding can be avoided as follows. Save the 

current value of the inexact flag, and then reset it. Set the rounding mode to 
round-to-zero. Then perform the multiplication N · 10|P|. Store the new value 

of the inexact flag in ixflag, and restore the rounding mode and inexact flag. 

If ixflag is 0, then N · 10|P| is exact, so round(N · 10|P|) will be correct down 

to the last bit. If ixflag is 1, then some digits were truncated, since round-

to-zero always truncates. The significand of the product will look like 
1.b1...b22b23...b31. A double rounding error may occur if b23 ...b31 = 10...0. A 

simple way to account for both cases is to perform a logical OR of ixflag with 
b31. Then round(N · 10|P|) will be computed correctly in all cases.  

Errors In Summation  

The section Optimizers, mentioned the problem of accurately computing very 

long sums. The simplest approach to improving accuracy is to double the 
precision. To get a rough estimate of how much doubling the precision 
improves the accuracy of a sum, let s1 = x1, s2 = s1  x2..., si = si - 1 xi. 
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Then si = (1 + i) (si - 1 + xi), where i  , and ignoring second order 

terms in i gives  

(31)  

The first equality of (31) shows that the computed value of is the same as 

if an exact summation was performed on perturbed values of xj. The first 
term x1 is perturbed by n , the last term xn by only . The second equality 

in (31) shows that error term is bounded by . Doubling the precision 

has the effect of squaring . If the sum is being done in an IEEE double 
precision format, 1/  1016, so that for any reasonable value of n. 

Thus, doubling the precision takes the maximum perturbation of n  and 

changes it to . Thus the 2  error bound for the Kahan summation 
formula (Theorem 8) is not as good as using double precision, even though 

it is much better than single precision.  

For an intuitive explanation of why the Kahan summation formula works, 
consider the following diagram of the procedure.  

 

Each time a summand is added, there is a correction factor C which will be 
applied on the next loop. So first subtract the correction C computed in the 

previous loop from Xj, giving the corrected summand Y. Then add this 

summand to the running sum S. The low order bits of Y (namely Yl) are lost 
in the sum. Next compute the high order bits of Y by computing T - S. When 

Y is subtracted from this, the low order bits of Y will be recovered. These are 

the bits that were lost in the first sum in the diagram. They become the 
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correction factor for the next loop. A formal proof of Theorem 8, taken from 

Knuth [1981] page 572, appears in the section Theorem 14 and Theorem 8."  

Summary  

It is not uncommon for computer system designers to neglect the parts of a 
system related to floating-point. This is probably due to the fact that 

floating-point is given very little (if any) attention in the computer science 
curriculum. This in turn has caused the apparently widespread belief that 

floating-point is not a quantifiable subject, and so there is little point in 
fussing over the details of hardware and software that deal with it.  

This paper has demonstrated that it is possible to reason rigorously about 
floating-point. For example, floating-point algorithms involving cancellation 

can be proven to have small relative errors if the underlying hardware has a 
guard digit, and there is an efficient algorithm for binary-decimal conversion 

that can be proven to be invertible, provided that extended precision is 
supported. The task of constructing reliable floating-point software is made 

much easier when the underlying computer system is supportive of floating-
point. In addition to the two examples just mentioned (guard digits and 

extended precision), the section Systems Aspects of this paper has examples 
ranging from instruction set design to compiler optimization illustrating how 

to better support floating-point.  

The increasing acceptance of the IEEE floating-point standard means that 

codes that utilize features of the standard are becoming ever more portable. 
The section The IEEE Standard, gave numerous examples illustrating how 

the features of the IEEE standard can be used in writing practical floating-
point codes.  
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Theorem 14 and Theorem 8  

This section contains two of the more technical proofs that were omitted 
from the text.  

Theorem 14  

Let 0 < k < p, and set m = k + 1, and assume that floating-point 
operations are exactly rounded. Then (m x) (m x x) is exactly equal 

to x rounded to p - k significant digits. More precisely, x is rounded by taking 
the significand of x, imagining a radix point just left of the k least significant 

digits, and rounding to an integer.  

Proof  

The proof breaks up into two cases, depending on whether or not the 
computation of mx = kx + x has a carry-out or not.  

Assume there is no carry out. It is harmless to scale x so that it is an 
integer. Then the computation of mx = x + kx looks like this:  
aa...aabb...bb 

+ aa...aabb...bb 
zz...zzbb...bb  



where x has been partitioned into two parts. The low order k digits are 

marked b and the high order p - k digits are marked a. To compute m x 

from mx involves rounding off the low order k digits (the ones marked with b) 

so  
(32) m x = mx - x mod( k) + r k 

The value of r is 1 if .bb...b is greater than and 0 otherwise. More precisely  
(33) r = 1 if a.bb...b rounds to a + 1, r = 0 otherwise.  

Next compute m x - x = mx - x mod( k) + r k - x = k(x + r) - x mod( k). 

The picture below shows the computation of m x - x rounded, that is, (m  

x) x. The top line is k(x + r), where B is the digit that results from adding 

r to the lowest order digit b.  
aa...aabb...bB00...00 

- bb...bb  
zz... zzZ00...00  

If .bb...b < then r = 0, subtracting causes a borrow from the digit marked 

B, but the difference is rounded up, and so the net effect is that the rounded 

difference equals the top line, which is kx. If .bb...b > then r = 1, and 1 is 

subtracted from B because of the borrow, so the result is kx. Finally 

consider the case .bb...b = . If r = 0 then B is even, Z is odd, and the 

difference is rounded up, giving kx. Similarly when r = 1, B is odd, Z is 
even, the difference is rounded down, so again the difference is kx. To 

summarize  
(34) (m x) x = kx  

Combining equations (32) and (34) gives (m x) - (m x x) = x - x mod(
k) + · k. The result of performing this computation is  
r00...00 

+ aa...aabb...bb 

- bb...bb 
aa...aA00...00  

The rule for computing r, equation (33), is the same as the rule for rounding 

a... ab...b to p - k places. Thus computing mx - (mx - x) in floating-point 
arithmetic precision is exactly equal to rounding x to p - k places, in the case 

when x + kx does not carry out.  

When x + kx does carry out, then mx = kx + x looks like this:  
aa...aabb...bb 

+ aa...aabb...bb 
zz...zZbb...bb  

Thus, m x = mx - x mod( k) + w k, where w = -Z if Z < /2, but the exact 

value of w is unimportant. Next, m x - x = kx - x mod( k) + w k. In a 

picture  
aa...aabb...bb00...00 

- bb... bb 

+ w  
zz ... zZbb ...bb31  

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#12192
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1337
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1343


Rounding gives (m x) x = kx + w k - r k, where r = 1 if .bb...b >  or if 

.bb...b = and b0 = 1.32 Finally,  
(m x) - (m x x) = mx - x mod( k) + w k - ( kx + w k - r k) 

= x - x mod( k) + r k. 

And once again, r = 1 exactly when rounding a...ab...b to p - k places 

involves rounding up. Thus Theorem 14 is proven in all cases. z  

Theorem 8 (Kahan Summation Formula)  

Suppose that is computed using the following algorithm  

S = X [1]; 

C = 0; 

for j = 2 to N { 

Y = X [j] - C; 

   T = S + Y; 

   C = (T - S) - Y; 

   S = T; 

} 

 

Then the computed sum S is equal to S = xj (1 + j) + O(N 2) |xj|, 

where | j| 2 .  

Proof  

First recall how the error estimate for the simple formula xi went. 
Introduce s1 = x1, si = (1 + i) (si - 1 + xi). Then the computed sum is sn, 

which is a sum of terms, each of which is an xi multiplied by an expression 

involving j's. The exact coefficient of x1 is (1 + 2)(1 + 3) ... (1 + n), 
and so by renumbering, the coefficient of x2 must be (1 + 3)(1 + 4) ... (1 

+ n), and so on. The proof of Theorem 8 runs along exactly the same lines, 
only the coefficient of x1 is more complicated. In detail s0 = c0 = 0 and  

yk = xk ck - 1 = (xk - ck - 1) (1 + k)  

sk = sk - 1 yk = (sk-1 + yk) (1 + k)  

ck = (sk sk - 1) yk= [(sk - sk - 1) (1 + k) - yk] (1 + k)  

where all the Greek letters are bounded by . Although the coefficient of x1 
in sk is the ultimate expression of interest, in turns out to be easier to 

compute the coefficient of x1 in sk - ck and ck.  
When k = 1,  

c1 = (s1(1 + 1) - y1) (1 + d1)  

= y1((1 + s1) (1 + 1) - 1) (1 + d1)  
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= x1(s1 + 1 + s1g1) (1 + d1) (1 + h1)  

s1 - c1 = x1[(1 + s1) - (s1 + g1 + s1g1) (1 + d1)](1 + h1)  
= x1[1 - g1 - s1d1 - s1g1 - d1g1 - s1g1d1](1 + h1)  

Calling the coefficients of x1 in these expressions Ck and Sk respectively, 

then  
C1 = 2  + O( 2)  

S1 = + 1 - 1 + 4 2 + O( 3)  

To get the general formula for Sk and Ck, expand the definitions of sk and ck, 

ignoring all terms involving xi with i > 1 to get  

sk = (sk - 1 + yk)(1 + k)  
= [sk - 1 + (xk - ck - 1) (1 + k)](1 + k)  

= [(sk - 1 - ck - 1) - kck - 1](1+ k)  

ck = [{sk - sk - 1}(1 + k) - yk](1 + k)  
= [{((sk - 1 - ck - 1) - kck - 1)(1 + k) - sk - 1}(1 + k) + ck - 1(1 + k)](1 + 

k)  
= [{(sk - 1 - ck - 1) k - kck-1(1 + k) - ck - 1}(1 + k) + ck - 1(1 + k)](1 + 

k)  
= [(sk - 1 - ck - 1) k(1 + k) - ck - 1( k + k( k + k + k k))](1 + k),  

sk - ck = ((sk - 1 - ck - 1) - kck - 1) (1 + k)  
- [(sk - 1 - ck - 1) k(1 + k) - ck - 1( k + k( k + k + k k)](1 + k)  

= (sk- 1 - ck - 1)((1 + k) - k(1 + k)(1 + k))  

+ ck - 1(- k(1 + k) + ( k + k( k + k + k k)) (1 + k))  

= (s- 1 - ck - 1) (1 - k( k + k + k k))  
+ ck - 1 - [ k + k + k( k + k k) + ( k + k( k + k + k k)) k]  

Since Sk and Ck are only being computed up to order 2, these formulas can 

be simplified to  
Ck= ( k + O( 2))Sk - 1 + (- k + O( 2))Ck - 1  

Sk= ((1 + 2 2 + O( 3))Sk - 1 + (2  + ( 2))Ck - 1  

Using these formulas gives  
C2 = 2 + O( 2)  

S2 = 1 + 1 - 1 + 10 2 + O( 3)  

and in general it is easy to check by induction that  
Ck = k + O( 2)  

Sk = 1 + 1 - 1 + (4k+2) 2 + O( 3)  

Finally, what is wanted is the coefficient of x1 in sk. To get this value, let 
xn + 1 = 0, let all the Greek letters with subscripts of n + 1 equal 0, and 

compute sn + 1. Then sn + 1 = sn - cn, and the coefficient of x1 in sn is less than 

the coefficient in sn + 1, which is Sn = 1 + 1 - 1 + (4n + 2) 2 = (1 + 2  + 

(n 2)). z  

Differences Among IEEE 754 
Implementations  



 
Note – This section is not part of the published paper. It has been added to 

clarify certain points and correct possible misconceptions about the IEEE 
standard that the reader might infer from the paper. This material was not 

written by David Goldberg, but it appears here with his permission.  

 

The preceding paper has shown that floating-point arithmetic must be 
implemented carefully, since programmers may depend on its properties for 

the correctness and accuracy of their programs. In particular, the IEEE 
standard requires a careful implementation, and it is possible to write useful 

programs that work correctly and deliver accurate results only on systems 
that conform to the standard. The reader might be tempted to conclude that 

such programs should be portable to all IEEE systems. Indeed, portable 

software would be easier to write if the remark "When a program is moved 
between two machines and both support IEEE arithmetic, then if any 

intermediate result differs, it must be because of software bugs, not from 
differences in arithmetic," were true.  

Unfortunately, the IEEE standard does not guarantee that the same program 

will deliver identical results on all conforming systems. Most programs will 
actually produce different results on different systems for a variety of 

reasons. For one, most programs involve the conversion of numbers 
between decimal and binary formats, and the IEEE standard does not 

completely specify the accuracy with which such conversions must be 

performed. For another, many programs use elementary functions supplied 
by a system library, and the standard doesn't specify these functions at all. 

Of course, most programmers know that these features lie beyond the scope 
of the IEEE standard.  

Many programmers may not realize that even a program that uses only the 

numeric formats and operations prescribed by the IEEE standard can 
compute different results on different systems. In fact, the authors of the 

standard intended to allow different implementations to obtain different 
results. Their intent is evident in the definition of the term destination in the 

IEEE 754 standard: "A destination may be either explicitly designated by the 

user or implicitly supplied by the system (for example, intermediate results 
in subexpressions or arguments for procedures). Some languages place the 

results of intermediate calculations in destinations beyond the user's control. 
Nonetheless, this standard defines the result of an operation in terms of that 

destination's format and the operands' values." (IEEE 754-1985, p. 7) In 
other words, the IEEE standard requires that each result be rounded 

correctly to the precision of the destination into which it will be placed, but 
the standard does not require that the precision of that destination be 



determined by a user's program. Thus, different systems may deliver their 

results to destinations with different precisions, causing the same program 
to produce different results (sometimes dramatically so), even though those 

systems all conform to the standard.  

Several of the examples in the preceding paper depend on some knowledge 
of the way floating-point arithmetic is rounded. In order to rely on examples 

such as these, a programmer must be able to predict how a program will be 
interpreted, and in particular, on an IEEE system, what the precision of the 

destination of each arithmetic operation may be. Alas, the loophole in the 
IEEE standard's definition of destination undermines the programmer's 

ability to know how a program will be interpreted. Consequently, several of 

the examples given above, when implemented as apparently portable 
programs in a high-level language, may not work correctly on IEEE systems 

that normally deliver results to destinations with a different precision than 
the programmer expects. Other examples may work, but proving that they 

work may lie beyond the average programmer's ability.  

In this section, we classify existing implementations of IEEE 754 arithmetic 
based on the precisions of the destination formats they normally use. We 

then review some examples from the paper to show that delivering results in 
a wider precision than a program expects can cause it to compute wrong 

results even though it is provably correct when the expected precision is 

used. We also revisit one of the proofs in the paper to illustrate the 
intellectual effort required to cope with unexpected precision even when it 

doesn't invalidate our programs. These examples show that despite all that 
the IEEE standard prescribes, the differences it allows among different 

implementations can prevent us from writing portable, efficient numerical 
software whose behavior we can accurately predict. To develop such 

software, then, we must first create programming languages and 
environments that limit the variability the IEEE standard permits and allow 

programmers to express the floating-point semantics upon which their 
programs depend.  

Current IEEE 754 Implementations  

Current implementations of IEEE 754 arithmetic can be divided into two 
groups distinguished by the degree to which they support different floating-

point formats in hardware. Extended-based systems, exemplified by the 

Intel x86 family of processors, provide full support for an extended double 
precision format but only partial support for single and double precision: 

they provide instructions to load or store data in single and double precision, 
converting it on-the-fly to or from the extended double format, and they 

provide special modes (not the default) in which the results of arithmetic 



operations are rounded to single or double precision even though they are 

kept in registers in extended double format. (Motorola 68000 series 
processors round results to both the precision and range of the single or 

double formats in these modes. Intel x86 and compatible processors round 
results to the precision of the single or double formats but retain the same 

range as the extended double format.) Single/double systems, including 
most RISC processors, provide full support for single and double precision 

formats but no support for an IEEE-compliant extended double precision 
format. (The IBM POWER architecture provides only partial support for single 

precision, but for the purpose of this section, we classify it as a single/double 
system.)  

To see how a computation might behave differently on an extended-based 
system than on a single/double system, consider a C version of the example 

from the section Systems Aspects:  

int main() { 

    double  q; 

    q = 3.0/7.0; 

    if (q == 3.0/7.0) printf("Equal\n"); 

    else printf("Not Equal\n"); 

    return 0; 

} 

 

Here the constants 3.0 and 7.0 are interpreted as double precision floating-

point numbers, and the expression 3.0/7.0 inherits the double data type. On 

a single/double system, the expression will be evaluated in double precision 

since that is the most efficient format to use. Thus, q will be assigned the 

value 3.0/7.0 rounded correctly to double precision. In the next line, the 
expression 3.0/7.0 will again be evaluated in double precision, and of course 

the result will be equal to the value just assigned to q, so the program will 

print "Equal" as expected.  

On an extended-based system, even though the expression 3.0/7.0 has type 

double, the quotient will be computed in a register in extended double 

format, and thus in the default mode, it will be rounded to extended double 

precision. When the resulting value is assigned to the variable q, however, it 

may then be stored in memory, and since q is declared double, the value will 

be rounded to double precision. In the next line, the expression 3.0/7.0 may 
again be evaluated in extended precision yielding a result that differs from 

the double precision value stored in q, causing the program to print "Not 

equal". Of course, other outcomes are possible, too: the compiler could 

decide to store and thus round the value of the expression 3.0/7.0 in the 

second line before comparing it with q, or it could keep q in a register in 
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extended precision without storing it. An optimizing compiler might evaluate 

the expression 3.0/7.0 at compile time, perhaps in double precision or 
perhaps in extended double precision. (With one x86 compiler, the program 

prints "Equal" when compiled with optimization and "Not Equal" when 
compiled for debugging.) Finally, some compilers for extended-based 

systems automatically change the rounding precision mode to cause 
operations producing results in registers to round those results to single or 

double precision, albeit possibly with a wider range. Thus, on these systems, 
we can't predict the behavior of the program simply by reading its source 

code and applying a basic understanding of IEEE 754 arithmetic. Neither can 
we accuse the hardware or the compiler of failing to provide an IEEE 754 

compliant environment; the hardware has delivered a correctly rounded 
result to each destination, as it is required to do, and the compiler has 

assigned some intermediate results to destinations that are beyond the 
user's control, as it is allowed to do.  

Pitfalls in Computations on Extended-Based Systems  

Conventional wisdom maintains that extended-based systems must produce 

results that are at least as accurate, if not more accurate than those 
delivered on single/double systems, since the former always provide at least 

as much precision and often more than the latter. Trivial examples such as 
the C program above as well as more subtle programs based on the 

examples discussed below show that this wisdom is naive at best: some 
apparently portable programs, which are indeed portable across 

single/double systems, deliver incorrect results on extended-based systems 
precisely because the compiler and hardware conspire to occasionally 

provide more precision than the program expects.  

Current programming languages make it difficult for a program to specify 

the precision it expects. As the section Languages and Compilers mentions, 
many programming languages don't specify that each occurrence of an 

expression like 10.0*x in the same context should evaluate to the same 

value. Some languages, such as Ada, were influenced in this respect by 

variations among different arithmetics prior to the IEEE standard. More 
recently, languages like ANSI C have been influenced by standard-

conforming extended-based systems. In fact, the ANSI C standard explicitly 
allows a compiler to evaluate a floating-point expression to a precision wider 

than that normally associated with its type. As a result, the value of the 

expression 10.0*x may vary in ways that depend on a variety of factors: 

whether the expression is immediately assigned to a variable or appears as 

a subexpression in a larger expression; whether the expression participates 
in a comparison; whether the expression is passed as an argument to a 

function, and if so, whether the argument is passed by value or by 
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reference; the current precision mode; the level of optimization at which the 

program was compiled; the precision mode and expression evaluation 
method used by the compiler when the program was compiled; and so on.  

Language standards are not entirely to blame for the vagaries of expression 

evaluation. Extended-based systems run most efficiently when expressions 
are evaluated in extended precision registers whenever possible, yet values 

that must be stored are stored in the narrowest precision required. 

Constraining a language to require that 10.0*x evaluate to the same value 

everywhere would impose a performance penalty on those systems. 

Unfortunately, allowing those systems to evaluate 10.0*x differently in 

syntactically equivalent contexts imposes a penalty of its own on 

programmers of accurate numerical software by preventing them from 
relying on the syntax of their programs to express their intended semantics.  

Do real programs depend on the assumption that a given expression always 

evaluates to the same value? Recall the algorithm presented in Theorem 4 
for computing ln(1 + x), written here in Fortran:  

real function log1p(x) 

real x 

if (1.0 + x .eq. 1.0) then 

   log1p = x 

else 

   log1p = log(1.0 + x) * x / ((1.0 + x) - 1.0) 

endif 

return 

On an extended-based system, a compiler may evaluate the expression 

1.0 + x in the third line in extended precision and compare the result with 

1.0. When the same expression is passed to the log function in the sixth line, 

however, the compiler may store its value in memory, rounding it to single 

precision. Thus, if x is not so small that 1.0 + x rounds to 1.0 in extended 

precision but small enough that 1.0 + x rounds to 1.0 in single precision, then 

the value returned by log1p(x) will be zero instead of x, and the relative error 

will be one--rather larger than 5 . Similarly, suppose the rest of the 
expression in the sixth line, including the reoccurrence of the subexpression 

1.0 + x, is evaluated in extended precision. In that case, if x is small but not 

quite small enough that 1.0 + x rounds to 1.0 in single precision, then the 

value returned by log1p(x) can exceed the correct value by nearly as much 

as x, and again the relative error can approach one. For a concrete example, 

take x to be 2-24 + 2-47, so x is the smallest single precision number such 

that 1.0 + x rounds up to the next larger number, 1 + 2-23. Then log(1.0 + x) 

is approximately 2-23. Because the denominator in the expression in the sixth 

line is evaluated in extended precision, it is computed exactly and delivers x, 



so log1p(x) returns approximately 2-23, which is nearly twice as large as the 

exact value. (This actually happens with at least one compiler. When the 
preceding code is compiled by the Sun WorkShop Compilers 4.2.1 Fortran 77 

compiler for x86 systems using the -O optimization flag, the generated code 

computes 1.0 + x exactly as described. As a result, the function delivers zero 

for log1p(1.0e-10) and 1.19209E-07 for log1p(5.97e-8).)  

For the algorithm of Theorem 4 to work correctly, the expression 1.0 + x 

must be evaluated the same way each time it appears; the algorithm can fail 

on extended-based systems only when 1.0 + x is evaluated to extended 

double precision in one instance and to single or double precision in another. 

Of course, since log is a generic intrinsic function in Fortran, a compiler could 

evaluate the expression 1.0 + x in extended precision throughout, computing 

its logarithm in the same precision, but evidently we cannot assume that the 

compiler will do so. (One can also imagine a similar example involving a 
user-defined function. In that case, a compiler could still keep the argument 

in extended precision even though the function returns a single precision 
result, but few if any existing Fortran compilers do this, either.) We might 

therefore attempt to ensure that 1.0 + x is evaluated consistently by 

assigning it to a variable. Unfortunately, if we declare that variable real, we 

may still be foiled by a compiler that substitutes a value kept in a register in 

extended precision for one appearance of the variable and a value stored in 
memory in single precision for another. Instead, we would need to declare 

the variable with a type that corresponds to the extended precision format. 
Standard FORTRAN 77 does not provide a way to do this, and while Fortran 

95 offers the SELECTED_REAL_KIND mechanism for describing various formats, it 

does not explicitly require implementations that evaluate expressions in 

extended precision to allow variables to be declared with that precision. In 
short, there is no portable way to write this program in standard Fortran that 

is guaranteed to prevent the expression 1.0 + x from being evaluated in a 

way that invalidates our proof.  

There are other examples that can malfunction on extended-based systems 
even when each subexpression is stored and thus rounded to the same 

precision. The cause is double-rounding. In the default precision mode, an 
extended-based system will initially round each result to extended double 

precision. If that result is then stored to double precision, it is rounded 
again. The combination of these two roundings can yield a value that is 

different than what would have been obtained by rounding the first result 
correctly to double precision. This can happen when the result as rounded to 

extended double precision is a "halfway case", i.e., it lies exactly halfway 
between two double precision numbers, so the second rounding is 

determined by the round-ties-to-even rule. If this second rounding rounds in 

the same direction as the first, the net rounding error will exceed half a unit 



in the last place. (Note, though, that double-rounding only affects double 

precision computations. One can prove that the sum, difference, product, or 
quotient of two p-bit numbers, or the square root of a p-bit number, 

rounded first to q bits and then to p bits gives the same value as if the result 

were rounded just once to p bits provided q 2p + 2. Thus, extended 
double precision is wide enough that single precision computations don't 

suffer double-rounding.)  

Some algorithms that depend on correct rounding can fail with double-

rounding. In fact, even some algorithms that don't require correct rounding 
and work correctly on a variety of machines that don't conform to IEEE 754 

can fail with double-rounding. The most useful of these are the portable 
algorithms for performing simulated multiple precision arithmetic mentioned 

in the section Exactly Rounded Operations. For example, the procedure 
described in Theorem 6 for splitting a floating-point number into high and 

low parts doesn't work correctly in double-rounding arithmetic: try to split 
the double precision number 252 + 3 × 226 - 1 into two parts each with at 

most 26 bits. When each operation is rounded correctly to double precision, 
the high order part is 252 + 227 and the low order part is 226 - 1, but when 

each operation is rounded first to extended double precision and then to 

double precision, the procedure produces a high order part of 252 + 228 and 
a low order part of -226 - 1. The latter number occupies 27 bits, so its square 

can't be computed exactly in double precision. Of course, it would still be 
possible to compute the square of this number in extended double precision, 

but the resulting algorithm would no longer be portable to single/double 
systems. Also, later steps in the multiple precision multiplication algorithm 

assume that all partial products have been computed in double precision. 
Handling a mixture of double and extended double variables correctly would 

make the implementation significantly more expensive.  

Likewise, portable algorithms for adding multiple precision numbers 

represented as arrays of double precision numbers can fail in double-
rounding arithmetic. These algorithms typically rely on a technique similar to 

Kahan's summation formula. As the informal explanation of the summation 

formula given on Errors In Summation suggests, if s and y are floating-point 

variables with |s| |y| and we compute:  

t = s + y; 

e = (s - t) + y; 

then in most arithmetics, e recovers exactly the roundoff error that occurred 

in computing t. This technique doesn't work in double-rounded arithmetic, 

however: if s = 252 + 1 and y = 1/2 - 2-54, then s + y rounds first to 252 + 

3/2 in extended double precision, and this value rounds to 252 + 2 in double 
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precision by the round-ties-to-even rule; thus the net rounding error in 

computing t is 1/2 + 2-54, which is not representable exactly in double 

precision and so can't be computed exactly by the expression shown above. 

Here again, it would be possible to recover the roundoff error by computing 
the sum in extended double precision, but then a program would have to do 

extra work to reduce the final outputs back to double precision, and double-
rounding could afflict this process, too. For this reason, although portable 

programs for simulating multiple precision arithmetic by these methods work 
correctly and efficiently on a wide variety of machines, they do not work as 

advertised on extended-based systems.  

Finally, some algorithms that at first sight appear to depend on correct 

rounding may in fact work correctly with double-rounding. In these cases, 
the cost of coping with double-rounding lies not in the implementation but in 

the verification that the algorithm works as advertised. To illustrate, we 
prove the following variant of Theorem 7:  

Theorem 7'  

If m and n are integers representable in IEEE 754 double precision with |m| 
< 252 and n has the special form n = 2i + 2j, then (m n) n = m, provided 

both floating-point operations are either rounded correctly to double 

precision or rounded first to extended double precision and then to double 
precision.  

Proof  

Assume without loss that m > 0. Let q = m n. Scaling by powers of two, 

we can consider an equivalent setting in which 252 m < 253 and likewise 

for q, so that both m and q are integers whose least significant bits occupy 
the units place (i.e., ulp(m) = ulp(q) = 1). Before scaling, we assumed m < 

252, so after scaling, m is an even integer. Also, because the scaled values of 
m and q satisfy m/2 < q < 2m, the corresponding value of n must have one 

of two forms depending on which of m or q is larger: if q < m, then evidently 
1 < n < 2, and since n is a sum of two powers of two, n = 1 + 2-k for some 

k; similarly, if q > m, then 1/2 < n < 1, so n = 1/2 + 2-(k + 1). (As n is the 
sum of two powers of two, the closest possible value of n to one is n = 1 + 

2-52. Because m/(1 + 2-52) is no larger than the next smaller double 
precision number less than m, we can't have q = m.)  

Let e denote the rounding error in computing q, so that q = m/n + e, and 
the computed value q n will be the (once or twice) rounded value of m + 

ne. Consider first the case in which each floating-point operation is rounded 
correctly to double precision. In this case, |e| < 1/2. If n has the form 1/2 + 



2-(k + 1), then ne = nq - m is an integer multiple of 2-(k + 1) and |ne| < 1/4 + 

2-(k + 2). This implies that |ne| 1/4. Recall that the difference between m 
and the next larger representable number is 1 and the difference between m 

and the next smaller representable number is either 1 if m > 252 or 1/2 if m 
= 252. Thus, as |ne| 1/4, m + ne will round to m. (Even if m = 252 and ne 

= -1/4, the product will round to m by the round-ties-to-even rule.) 
Similarly, if n has the form 1 + 2-k, then ne is an integer multiple of 2-k and 

|ne| < 1/2 + 2-(k + 1); this implies |ne| 1/2. We can't have m = 252 in this 
case because m is strictly greater than q, so m differs from its nearest 

representable neighbors by ±1. Thus, as |ne| 1/2, again m + ne will round 
to m. (Even if |ne| = 1/2, the product will round to m by the round-ties-to-

even rule because m is even.) This completes the proof for correctly rounded 
arithmetic.  

In double-rounding arithmetic, it may still happen that q is the correctly 
rounded quotient (even though it was actually rounded twice), so |e| < 1/2 

as above. In this case, we can appeal to the arguments of the previous 
paragraph provided we consider the fact that q n will be rounded twice. To 

account for this, note that the IEEE standard requires that an extended 
double format carry at least 64 significant bits, so that the numbers m ± 1/2 

and m ± 1/4 are exactly representable in extended double precision. Thus, if 
n has the form 1/2 + 2-(k + 1), so that |ne| 1/4, then rounding m + ne to 

extended double precision must produce a result that differs from m by at 
most 1/4, and as noted above, this value will round to m in double precision. 

Similarly, if n has the form 1 + 2-k, so that |ne| 1/2, then rounding 
m + ne to extended double precision must produce a result that differs from 

m by at most 1/2, and this value will round to m in double precision. (Recall 

that m > 252 in this case.)  

Finally, we are left to consider cases in which q is not the correctly rounded 
quotient due to double-rounding. In these cases, we have |e| < 1/2 + 2-(d + 

1) in the worst case, where d is the number of extra bits in the extended 
double format. (All existing extended-based systems support an extended 

double format with exactly 64 significant bits; for this format, d = 64 - 53 = 
11.) Because double-rounding only produces an incorrectly rounded result 

when the second rounding is determined by the round-ties-to-even rule, q 
must be an even integer. Thus if n has the form 1/2 + 2-(k + 1), then ne = nq 

- m is an integer multiple of 2-k, and  

|ne| < (1/2 + 2-(k + 1))(1/2 + 2-(d + 1)) = 1/4 + 2-(k + 2) + 2-(d + 2) + 2-(k + d + 2).  

If k d, this implies |ne| 1/4. If k > d, we have |ne| 1/4 + 2-(d + 2). In 

either case, the first rounding of the product will deliver a result that differs 
from m by at most 1/4, and by previous arguments, the second rounding 



will round to m. Similarly, if n has the form 1 + 2-k, then ne is an integer 

multiple of 2-(k - 1), and  

|ne| < 1/2 + 2-(k + 1) + 2-(d + 1) + 2-(k + d + 1).  

If k d, this implies |ne| 1/2. If k > d, we have |ne| 1/2 + 2-(d + 1). In 
either case, the first rounding of the product will deliver a result that differs 

from m by at most 1/2, and again by previous arguments, the second 
rounding will round to m. z  

The preceding proof shows that the product can incur double-rounding only 

if the quotient does, and even then, it rounds to the correct result. The proof 

also shows that extending our reasoning to include the possibility of double-
rounding can be challenging even for a program with only two floating-point 

operations. For a more complicated program, it may be impossible to 
systematically account for the effects of double-rounding, not to mention 

more general combinations of double and extended double precision 
computations.  

Programming Language Support for Extended Precision  

The preceding examples should not be taken to suggest that extended 
precision per se is harmful. Many programs can benefit from extended 

precision when the programmer is able to use it selectively. Unfortunately, 
current programming languages do not provide sufficient means for a 

programmer to specify when and how extended precision should be used. To 
indicate what support is needed, we consider the ways in which we might 

want to manage the use of extended precision.  

In a portable program that uses double precision as its nominal working 

precision, there are five ways we might want to control the use of a wider 
precision:  

1. Compile to produce the fastest code, using extended precision 

where possible on extended-based systems. Clearly most 

numerical software does not require more of the arithmetic than 
that the relative error in each operation is bounded by the 

"machine epsilon". When data in memory are stored in double 
precision, the machine epsilon is usually taken to be the largest 

relative roundoff error in that precision, since the input data are 
(rightly or wrongly) assumed to have been rounded when they 

were entered and the results will likewise be rounded when they 
are stored. Thus, while computing some of the intermediate 

results in extended precision may yield a more accurate result, 



extended precision is not essential. In this case, we might prefer 

that the compiler use extended precision only when it will not 
appreciably slow the program and use double precision 

otherwise.  

2. Use a format wider than double if it is reasonably fast and wide 
enough, otherwise resort to something else. Some computations 

can be performed more easily when extended precision is 
available, but they can also be carried out in double precision 

with only somewhat greater effort. Consider computing the 
Euclidean norm of a vector of double precision numbers. By 

computing the squares of the elements and accumulating their 

sum in an IEEE 754 extended double format with its wider 
exponent range, we can trivially avoid premature underflow or 

overflow for vectors of practical lengths. On extended-based 
systems, this is the fastest way to compute the norm. On 

single/double systems, an extended double format would have to 
be emulated in software (if one were supported at all), and such 

emulation would be much slower than simply using double 
precision, testing the exception flags to determine whether 

underflow or overflow occurred, and if so, repeating the 
computation with explicit scaling. Note that to support this use of 

extended precision, a language must provide both an indication 
of the widest available format that is reasonably fast, so that a 

program can choose which method to use, and environmental 
parameters that indicate the precision and range of each format, 

so that the program can verify that the widest fast format is 

wide enough (e.g., that it has wider range than double).  

3. Use a format wider than double even if it has to be emulated in 
software. For more complicated programs than the Euclidean 

norm example, the programmer may simply wish to avoid the 
need to write two versions of the program and instead rely on 

extended precision even if it is slow. Again, the language must 
provide environmental parameters so that the program can 

determine the range and precision of the widest available 
format.  

4. Don't use a wider precision; round results correctly to the 
precision of the double format, albeit possibly with extended 

range. For programs that are most easily written to depend on 
correctly rounded double precision arithmetic, including some of 

the examples mentioned above, a language must provide a way 
for the programmer to indicate that extended precision must not 



be used, even though intermediate results may be computed in 

registers with a wider exponent range than double. 
(Intermediate results computed in this way can still incur 

double-rounding if they underflow when stored to memory: if the 
result of an arithmetic operation is rounded first to 53 significant 

bits, then rounded again to fewer significant bits when it must be 
denormalized, the final result may differ from what would have 

been obtained by rounding just once to a denormalized number. 
Of course, this form of double-rounding is highly unlikely to 

affect any practical program adversely.)  

5. Round results correctly to both the precision and range of the 

double format. This strict enforcement of double precision would 
be most useful for programs that test either numerical software 

or the arithmetic itself near the limits of both the range and 
precision of the double format. Such careful test programs tend 

to be difficult to write in a portable way; they become even more 
difficult (and error prone) when they must employ dummy 

subroutines and other tricks to force results to be rounded to a 
particular format. Thus, a programmer using an extended-based 

system to develop robust software that must be portable to all 
IEEE 754 implementations would quickly come to appreciate 

being able to emulate the arithmetic of single/double systems 
without extraordinary effort.  

No current language supports all five of these options. In fact, few languages 
have attempted to give the programmer the ability to control the use of 

extended precision at all. One notable exception is the ISO/IEC 9899:1999 
Programming Languages - C standard, the latest revision to the C language, 

which is now in the final stages of standardization.  

The C99 standard allows an implementation to evaluate expressions in a 
format wider than that normally associated with their type, but the C99 

standard recommends using one of only three expression evaluation 

methods. The three recommended methods are characterized by the extent 
to which expressions are "promoted" to wider formats, and the 

implementation is encouraged to identify which method it uses by defining 

the preprocessor macro FLT_EVAL_METHOD: if FLT_EVAL_METHOD is 0, each 

expression is evaluated in a format that corresponds to its type; if 

FLT_EVAL_METHOD is 1, float expressions are promoted to the format that 

corresponds to double; and if FLT_EVAL_METHOD is 2, float and double 

expressions are promoted to the format that corresponds to long double. (An 

implementation is allowed to set FLT_EVAL_METHOD to -1 to indicate that the 

expression evaluation method is indeterminable.) The C99 standard also 



requires that the <math.h> header file define the types float_t and double_t, 

which are at least as wide as float and double, respectively, and are intended 

to match the types used to evaluate float and double expressions. For 

example, if FLT_EVAL_METHOD is 2, both float_t and double_t are long double. 

Finally, the C99 standard requires that the <float.h> header file define 

preprocessor macros that specify the range and precision of the formats 
corresponding to each floating-point type.  

The combination of features required or recommended by the C99 standard 
supports some of the five options listed above but not all. For example, if an 

implementation maps the long double type to an extended double format and 

defines FLT_EVAL_METHOD to be 2, the programmer can reasonably assume that 

extended precision is relatively fast, so programs like the Euclidean norm 

example can simply use intermediate variables of type long double (or 

double_t). On the other hand, the same implementation must keep 

anonymous expressions in extended precision even when they are stored in 

memory (e.g., when the compiler must spill floating-point registers), and it 

must store the results of expressions assigned to variables declared double to 

convert them to double precision even if they could have been kept in 

registers. Thus, neither the double nor the double_t type can be compiled to 

produce the fastest code on current extended-based hardware.  

Likewise, the C99 standard provides solutions to some of the problems 

illustrated by the examples in this section but not all. A C99 standard version 

of the log1p function is guaranteed to work correctly if the expression 1.0 + x 

is assigned to a variable (of any type) and that variable used throughout. A 
portable, efficient C99 standard program for splitting a double precision 

number into high and low parts, however, is more difficult: how can we split 

at the correct position and avoid double-rounding if we cannot guarantee 

that double expressions are rounded correctly to double precision? One 

solution is to use the double_t type to perform the splitting in double 

precision on single/double systems and in extended precision on extended-

based systems, so that in either case the arithmetic will be correctly 
rounded. Theorem 14 says that we can split at any bit position provided we 

know the precision of the underlying arithmetic, and the FLT_EVAL_METHOD and 

environmental parameter macros should give us this information.  

The following fragment shows one possible implementation:  

#include <math.h> 

#include <float.h> 

#if (FLT_EVAL_METHOD==2) 

#define PWR2  LDBL_MANT_DIG - (DBL_MANT_DIG/2) 

#elif ((FLT_EVAL_METHOD==1) || (FLT_EVAL_METHOD==0)) 



#define PWR2  DBL_MANT_DIG - (DBL_MANT_DIG/2) 

#else 

#error FLT_EVAL_METHOD unknown! 

#endif 

... 

    double   x, xh, xl; 

    double_t m; 

    m = scalbn(1.0, PWR2) + 1.0;  // 2**PWR2 + 1 

    xh = (m * x) - ((m * x) - x); 

    xl = x - xh; 

Of course, to find this solution, the programmer must know that double 

expressions may be evaluated in extended precision, that the ensuing 
double-rounding problem can cause the algorithm to malfunction, and that 

extended precision may be used instead according to Theorem 14. A more 
obvious solution is simply to specify that each expression be rounded 

correctly to double precision. On extended-based systems, this merely 
requires changing the rounding precision mode, but unfortunately, the C99 

standard does not provide a portable way to do this. (Early drafts of the 
Floating-Point C Edits, the working document that specified the changes to 

be made to the C90 standard to support floating-point, recommended that 

implementations on systems with rounding precision modes provide 

fegetprec and fesetprec functions to get and set the rounding precision, 

analogous to the fegetround and fesetround functions that get and set the 

rounding direction. This recommendation was removed before the changes 

were made to the C99 standard.)  

Coincidentally, the C99 standard's approach to supporting portability among 
systems with different integer arithmetic capabilities suggests a better way 

to support different floating-point architectures. Each C99 standard 

implementation supplies an <stdint.h> header file that defines those integer 

types the implementation supports, named according to their sizes and 

efficiency: for example, int32_t is an integer type exactly 32 bits wide, 

int_fast16_t is the implementation's fastest integer type at least 16 bits 

wide, and intmax_t is the widest integer type supported. One can imagine a 

similar scheme for floating-point types: for example, float53_t could name a 

floating-point type with exactly 53 bit precision but possibly wider range, 

float_fast24_t could name the implementation's fastest type with at least 24 

bit precision, and floatmax_t could name the widest reasonably fast type 

supported. The fast types could allow compilers on extended-based systems 
to generate the fastest possible code subject only to the constraint that the 

values of named variables must not appear to change as a result of register 
spilling. The exact width types would cause compilers on extended-based 

systems to set the rounding precision mode to round to the specified 
precision, allowing wider range subject to the same constraint. Finally, 



double_t could name a type with both the precision and range of the IEEE 

754 double format, providing strict double evaluation. Together with 
environmental parameter macros named accordingly, such a scheme would 

readily support all five options described above and allow programmers to 
indicate easily and unambiguously the floating-point semantics their 

programs require.  

Must language support for extended precision be so complicated? On 
single/double systems, four of the five options listed above coincide, and 

there is no need to differentiate fast and exact width types. Extended-based 
systems, however, pose difficult choices: they support neither pure double 

precision nor pure extended precision computation as efficiently as a mixture 

of the two, and different programs call for different mixtures. Moreover, the 
choice of when to use extended precision should not be left to compiler 

writers, who are often tempted by benchmarks (and sometimes told outright 
by numerical analysts) to regard floating-point arithmetic as "inherently 

inexact" and therefore neither deserving nor capable of the predictability of 
integer arithmetic. Instead, the choice must be presented to programmers, 

and they will require languages capable of expressing their selection.  

Conclusion  

The foregoing remarks are not intended to disparage extended-based 

systems but to expose several fallacies, the first being that all IEEE 754 
systems must deliver identical results for the same program. We have 

focused on differences between extended-based systems and single/double 
systems, but there are further differences among systems within each of 

these families. For example, some single/double systems provide a single 

instruction to multiply two numbers and add a third with just one final 
rounding. This operation, called a fused multiply-add, can cause the same 

program to produce different results across different single/double systems, 
and, like extended precision, it can even cause the same program to produce 

different results on the same system depending on whether and when it is 
used. (A fused multiply-add can also foil the splitting process of Theorem 6, 

although it can be used in a non-portable way to perform multiple precision 
multiplication without the need for splitting.) Even though the IEEE standard 

didn't anticipate such an operation, it nevertheless conforms: the 
intermediate product is delivered to a "destination" beyond the user's control 

that is wide enough to hold it exactly, and the final sum is rounded correctly 
to fit its single or double precision destination.  

The idea that IEEE 754 prescribes precisely the result a given program must 
deliver is nonetheless appealing. Many programmers like to believe that they 

can understand the behavior of a program and prove that it will work 



correctly without reference to the compiler that compiles it or the computer 

that runs it. In many ways, supporting this belief is a worthwhile goal for the 
designers of computer systems and programming languages. Unfortunately, 

when it comes to floating-point arithmetic, the goal is virtually impossible to 
achieve. The authors of the IEEE standards knew that, and they didn't 

attempt to achieve it. As a result, despite nearly universal conformance to 
(most of) the IEEE 754 standard throughout the computer industry, 

programmers of portable software must continue to cope with unpredictable 
floating-point arithmetic.  

If programmers are to exploit the features of IEEE 754, they will need 

programming languages that make floating-point arithmetic predictable. The 

C99 standard improves predictability to some degree at the expense of 
requiring programmers to write multiple versions of their programs, one for 

each FLT_EVAL_METHOD. Whether future languages will choose instead to allow 

programmers to write a single program with syntax that unambiguously 

expresses the extent to which it depends on IEEE 754 semantics remains to 
be seen. Existing extended-based systems threaten that prospect by 

tempting us to assume that the compiler and the hardware can know better 
than the programmer how a computation should be performed on a given 

system. That assumption is the second fallacy: the accuracy required in a 
computed result depends not on the machine that produces it but only on 

the conclusions that will be drawn from it, and of the programmer, the 
compiler, and the hardware, at best only the programmer can know what 

those conclusions may be.  
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14

 Some arguments against including inner product as one of the basic operations are 

presented by Kahan and LeBlanc [1985]. 
15

 Kirchner writes: It is possible to compute inner products to within 1 ulp in hardware in one partial product per clock 

cycle. The additionally needed hardware compares to the multiplier array needed anyway for that speed.  
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 CORDIC is an acronym for Coordinate Rotation Digital Computer and is a method of computing transcendental functions 

that uses mostly shifts and adds (i.e., very few multiplications and divisions) [Walther 1971]. It is the method additionally 
needed hardware compares to the multiplier array needed anyway for that speed. d used on both the Intel 8087 and the 
Motorola 68881. 
17

 Fine point: Although the default in IEEE arithmetic is to round overflowed numbers to , 

it is possible to change the default (see Rounding Modes) 
18

 They are called subnormal in 854, denormal in 754. 
19

 This is the cause of one of the most troublesome aspects of the standard. Programs that frequently underflow often run 

noticeably slower on hardware that uses software traps. 
20

 No invalid exception is raised unless a "trapping" NaN is involved in the operation. See 

section 6.2 of IEEE Std 754-1985. - Ed.  
21

 may be greater than if both x and y are negative. - Ed.  
22

 It can be in range because if x < 1, n < 0 and x-n is just a tiny bit smaller than the 

underflow threshold , then , and so may not overflow, since in all IEEE 

precisions, -emin < emax. 
23

 This is probably because designers like "orthogonal" instruction sets, where the precisions 

of a floating-point instruction are independent of the actual operation. Making a special case 

for multiplication destroys this orthogonality. 
24

 This assumes the common convention that 3.0 is a single-precision constant, while 3.0D0 

is a double precision constant. 
25

 The conclusion that 00 = 1 depends on the restriction that f be nonconstant. If this 

restriction is removed, then letting f be the identically 0 function gives 0 as a possible value 

for lim x 0 f(x)g(x), and so 00 would have to be defined to be a NaN. 
26

 In the case of 00, plausibility arguments can be made, but the convincing argument is found in "Concrete Mathematics" 

by Graham, Knuth and Patashnik, and argues that 00 = 1 for the binomial theorem to work. - Ed.  
27

 Unless the rounding mode is round toward - , in which case x - x = -0. 
28

 The VMS math libraries on the VAX use a weak form of in-line procedure substitution, in 

that they use the inexpensive jump to subroutine call rather than the slower CALLS and 

CALLG instructions. 
29

 The difficulty with presubstitution is that it requires either direct hardware 

implementation, or continuable floating-point traps if implemented in software. - Ed.  
30

 In this informal proof, assume that = 2 so that multiplication by 4 is exact and doesn't 

require a i. 
31

 This is the sum if adding w does not generate carry out. Additional argument is needed 

for the special case where adding w does generate carry out. - Ed.  
32

 Rounding gives kx + w k - r k only if ( kx + w k) keeps the form of kx. - Ed.  
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