
 Numerical Computation Guide

Appendix D

What Every Computer Scientist
Should Know About Floating-Point
Arithmetic

Note – This appendix is an edited reprint of the paper What Every Computer
Scientist Should Know About Floating-Point Arithmetic, by David Goldberg,

published in the March, 1991 issue of Computing Surveys. Copyright 1991,
Association for Computing Machinery, Inc., reprinted by permission.

Abstract

Floating-point arithmetic is considered an esoteric subject by many people.

This is rather surprising because floating-point is ubiquitous in computer

systems. Almost every language has a floating-point datatype; computers
from PCs to supercomputers have floating-point accelerators; most

compilers will be called upon to compile floating-point algorithms from time
to time; and virtually every operating system must respond to floating-point

exceptions such as overflow. This paper presents a tutorial on those aspects
of floating-point that have a direct impact on designers of computer

systems. It begins with background on floating-point representation and
rounding error, continues with a discussion of the IEEE floating-point

standard, and concludes with numerous examples of how computer builders
can better support floating-point.

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems
Organization]: General -- instruction set design; D.3.4 [Programming

Languages]: Processors -- compilers, optimization; G.1.0 [Numerical
Analysis]: General -- computer arithmetic, error analysis, numerical

algorithms (Secondary)

http://docs.oracle.com/index.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncgTOC.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_x86.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_compliance.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncgIX.html

D.2.1 [Software Engineering]: Requirements/Specifications -- languages;

D.3.4 Programming Languages]: Formal Definitions and Theory --
semantics; D.4.1 Operating Systems]: Process Management --

synchronization.

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Denormalized number, exception,

floating-point, floating-point standard, gradual underflow, guard digit, NaN,
overflow, relative error, rounding error, rounding mode, ulp, underflow.

Introduction

Builders of computer systems often need information about floating-point

arithmetic. There are, however, remarkably few sources of detailed
information about it. One of the few books on the subject, Floating-Point

Computation by Pat Sterbenz, is long out of print. This paper is a tutorial on
those aspects of floating-point arithmetic (floating-point hereafter) that have

a direct connection to systems building. It consists of three loosely
connected parts. The first section, Rounding Error, discusses the implications

of using different rounding strategies for the basic operations of addition,
subtraction, multiplication and division. It also contains background

information on the two methods of measuring rounding error, ulps and

relative error. The second part discusses the IEEE floating-point standard,

which is becoming rapidly accepted by commercial hardware manufacturers.

Included in the IEEE standard is the rounding method for basic operations.
The discussion of the standard draws on the material in the section Rounding

Error. The third part discusses the connections between floating-point and
the design of various aspects of computer systems. Topics include

instruction set design, optimizing compilers and exception handling.

I have tried to avoid making statements about floating-point without also

giving reasons why the statements are true, especially since the
justifications involve nothing more complicated than elementary calculus.

Those explanations that are not central to the main argument have been
grouped into a section called "The Details," so that they can be skipped if

desired. In particular, the proofs of many of the theorems appear in this
section. The end of each proof is marked with the z symbol. When a proof is

not included, the z appears immediately following the statement of the
theorem.

Rounding Error

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#680
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#680
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#680

Squeezing infinitely many real numbers into a finite number of bits requires

an approximate representation. Although there are infinitely many integers,
in most programs the result of integer computations can be stored in 32

bits. In contrast, given any fixed number of bits, most calculations with real
numbers will produce quantities that cannot be exactly represented using

that many bits. Therefore the result of a floating-point calculation must often
be rounded in order to fit back into its finite representation. This rounding

error is the characteristic feature of floating-point computation. The section
Relative Error and Ulps describes how it is measured.

Since most floating-point calculations have rounding error anyway, does it

matter if the basic arithmetic operations introduce a little bit more rounding

error than necessary? That question is a main theme throughout this
section. The section Guard Digits discusses guard digits, a means of

reducing the error when subtracting two nearby numbers. Guard digits were
considered sufficiently important by IBM that in 1968 it added a guard digit

to the double precision format in the System/360 architecture (single
precision already had a guard digit), and retrofitted all existing machines in

the field. Two examples are given to illustrate the utility of guard digits.

The IEEE standard goes further than just requiring the use of a guard digit.
It gives an algorithm for addition, subtraction, multiplication, division and

square root, and requires that implementations produce the same result as

that algorithm. Thus, when a program is moved from one machine to
another, the results of the basic operations will be the same in every bit if

both machines support the IEEE standard. This greatly simplifies the porting
of programs. Other uses of this precise specification are given in Exactly

Rounded Operations.

Floating-point Formats

Several different representations of real numbers have been proposed, but

by far the most widely used is the floating-point representation.1 Floating-
point representations have a base (which is always assumed to be even)
and a precision p. If = 10 and p = 3, then the number 0.1 is represented

as 1.00 × 10-1. If = 2 and p = 24, then the decimal number 0.1 cannot be

represented exactly, but is approximately 1.10011001100110011001101 ×

2-4.

In general, a floating-point number will be represented as ± d.dd... d × e,

where d.dd... d is called the significand2 and has p digits. More precisely ± d0 .

d1 d2 ... dp-1 × e represents the number

(1) .

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#689
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#693
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#704
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#704
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1370
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1377

The term floating-point number will be used to mean a real number that can

be exactly represented in the format under discussion. Two other
parameters associated with floating-point representations are the largest
and smallest allowable exponents, emax and emin. Since there are p possible
significands, and emax - emin + 1 possible exponents, a floating-point number

can be encoded in

bits, where the final +1 is for the sign bit. The precise encoding is not
important for now.

There are two reasons why a real number might not be exactly
representable as a floating-point number. The most common situation is

illustrated by the decimal number 0.1. Although it has a finite decimal

representation, in binary it has an infinite repeating representation. Thus
when = 2, the number 0.1 lies strictly between two floating-point numbers

and is exactly representable by neither of them. A less common situation is
that a real number is out of range, that is, its absolute value is larger than

× or smaller than 1.0 × . Most of this paper discusses issues due to

the first reason. However, numbers that are out of range will be discussed in
the sections Infinity and Denormalized Numbers.

Floating-point representations are not necessarily unique. For example, both
0.01 × 101 and 1.00 × 10-1 represent 0.1. If the leading digit is nonzero (d0

0 in equation (1) above), then the representation is said to be normalized.
The floating-point number 1.00 × 10-1 is normalized, while 0.01 × 101 is not.
When = 2, p = 3, emin = -1 and emax = 2 there are 16 normalized floating-

point numbers, as shown in FIGURE D-1. The bold hash marks correspond to

numbers whose significand is 1.00. Requiring that a floating-point
representation be normalized makes the representation unique.

Unfortunately, this restriction makes it impossible to represent zero! A

natural way to represent 0 is with 1.0 × , since this preserves the fact

that the numerical ordering of nonnegative real numbers corresponds to the
lexicographic ordering of their floating-point representations.3 When the
exponent is stored in a k bit field, that means that only 2k - 1 values are

available for use as exponents, since one must be reserved to represent 0.

Note that the × in a floating-point number is part of the notation, and
different from a floating-point multiply operation. The meaning of the ×

symbol should be clear from the context. For example, the expression (2.5 ×
10-3) × (4.0 × 102) involves only a single floating-point multiplication.

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#918
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#929
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#687
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1374
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#685

FIGURE D-1 Normalized numbers when = 2, p = 3, emin = -1, emax = 2

Relative Error and Ulps

Since rounding error is inherent in floating-point computation, it is important

to have a way to measure this error. Consider the floating-point format with
 = 10 and p = 3, which will be used throughout this section. If the result of

a floating-point computation is 3.12 × 10-2, and the answer when computed

to infinite precision is .0314, it is clear that this is in error by 2 units in the
last place. Similarly, if the real number .0314159 is represented as 3.14 ×

10-2, then it is in error by .159 units in the last place. In general, if the
floating-point number d.d...d × e is used to represent z, then it is in error

by d.d...d - (z/ e) p-1 units in the last place.4, 5 The term ulps will be used

as shorthand for "units in the last place." If the result of a calculation is the
floating-point number nearest to the correct result, it still might be in error

by as much as .5 ulp. Another way to measure the difference between a
floating-point number and the real number it is approximating is relative

error, which is simply the difference between the two numbers divided by

the real number. For example the relative error committed when
approximating 3.14159 by 3.14 × 100 is .00159/3.14159 .0005.

To compute the relative error that corresponds to .5 ulp, observe that when

a real number is approximated by the closest possible floating-point number
d.dd...dd × e, the error can be as large as 0.00...00 ' × e, where ' is the

digit /2, there are p units in the significand of the floating-point number,

and p units of 0 in the significand of the error. This error is ((/2) -p) × e.
Since numbers of the form d.dd...dd × e all have the same absolute error,

but have values that range between e and × e, the relative error ranges

between ((/2) -p) × e/ e and ((/2) -p) × e/ e+1. That is,

(2)

In particular, the relative error corresponding to .5 ulp can vary by a factor
of . This factor is called the wobble. Setting = (/2) -p to the largest of

the bounds in (2) above, we can say that when a real number is rounded to
the closest floating-point number, the relative error is always bounded by e,

which is referred to as machine epsilon.

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#690
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#728
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5736

In the example above, the relative error was .00159/3.14159 .0005. In

order to avoid such small numbers, the relative error is normally written as a
factor times , which in this case is = (/2) -p = 5(10)-3 = .005. Thus the

relative error would be expressed as (.00159/3.14159)/.005) 0.1 .

To illustrate the difference between ulps and relative error, consider the real
number x = 12.35. It is approximated by = 1.24 × 101. The error is 0.5

ulps, the relative error is 0.8 . Next consider the computation 8 . The

exact value is 8x = 98.8, while the computed value is 8 = 9.92 × 101. The

error is now 4.0 ulps, but the relative error is still 0.8 . The error measured

in ulps is 8 times larger, even though the relative error is the same. In

general, when the base is , a fixed relative error expressed in ulps can
wobble by a factor of up to . And conversely, as equation (2) above shows,

a fixed error of .5 ulps results in a relative error that can wobble by .

The most natural way to measure rounding error is in ulps. For example

rounding to the nearest floating-point number corresponds to an error of
less than or equal to .5 ulp. However, when analyzing the rounding error

caused by various formulas, relative error is a better measure. A good
illustration of this is the analysis in the section Theorem 9. Since can

overestimate the effect of rounding to the nearest floating-point number by
the wobble factor of , error estimates of formulas will be tighter on

machines with a small .

When only the order of magnitude of rounding error is of interest, ulps and

may be used interchangeably, since they differ by at most a factor of .
For example, when a floating-point number is in error by n ulps, that means

that the number of contaminated digits is log n. If the relative error in a

computation is n , then

(3) contaminated digits log n.

Guard Digits

One method of computing the difference between two floating-point

numbers is to compute the difference exactly and then round it to the
nearest floating-point number. This is very expensive if the operands differ
greatly in size. Assuming p = 3, 2.15 × 1012 - 1.25 × 10-5 would be

calculated as

x = 2.15 × 1012

y = .0000000000000000125 × 1012

x - y = 2.1499999999999999875 × 1012

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5736
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1129

which rounds to 2.15 × 1012. Rather than using all these digits, floating-

point hardware normally operates on a fixed number of digits. Suppose that
the number of digits kept is p, and that when the smaller operand is shifted

right, digits are simply discarded (as opposed to rounding). Then
2.15 × 1012 - 1.25 × 10-5 becomes

x = 2.15 × 1012

y = 0.00 × 1012

x - y = 2.15 × 1012

The answer is exactly the same as if the difference had been computed
exactly and then rounded. Take another example: 10.1 - 9.93. This becomes

x = 1.01 × 101

y = 0.99 × 101

x - y = .02 × 101

The correct answer is .17, so the computed difference is off by 30 ulps and is
wrong in every digit! How bad can the error be?

Theorem 1

Using a floating-point format with parameters and p, and computing

differences using p digits, the relative error of the result can be as large as

- 1.

Proof

A relative error of - 1 in the expression x - y occurs when x = 1.00...0 and
y = , where = - 1. Here y has p digits (all equal to). The exact

difference is x - y = -p. However, when computing the answer using only p

digits, the rightmost digit of y gets shifted off, and so the computed

difference is -p+1. Thus the error is -p - -p+1 = -p (- 1), and the
relative error is -p(- 1)/ -p = - 1. z

When =2, the relative error can be as large as the result, and when =10,
it can be 9 times larger. Or to put it another way, when =2, equation (3)
shows that the number of contaminated digits is log2(1/) = log2(2

p) = p.

That is, all of the p digits in the result are wrong! Suppose that one extra

digit is added to guard against this situation (a guard digit). That is, the
smaller number is truncated to p + 1 digits, and then the result of the

subtraction is rounded to p digits. With a guard digit, the previous example

becomes

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1378

x = 1.010 × 101

y = 0.993 × 101

x - y = .017 × 101

and the answer is exact. With a single guard digit, the relative error of the
result may be greater than , as in 110 - 8.59.

x = 1.10 × 102

y = .085 × 102

x - y = 1.015 × 102

This rounds to 102, compared with the correct answer of 101.41, for a
relative error of .006, which is greater than = .005. In general, the relative

error of the result can be only slightly larger than . More precisely,

Theorem 2

If x and y are floating-point numbers in a format with parameters and p,

and if subtraction is done with p + 1 digits (i.e. one guard digit), then the

relative rounding error in the result is less than 2 .

This theorem will be proven in Rounding Error. Addition is included in the
above theorem since x and y can be positive or negative.

Cancellation

The last section can be summarized by saying that without a guard digit, the
relative error committed when subtracting two nearby quantities can be very

large. In other words, the evaluation of any expression containing a
subtraction (or an addition of quantities with opposite signs) could result in a

relative error so large that all the digits are meaningless (Theorem 1). When

subtracting nearby quantities, the most significant digits in the operands
match and cancel each other. There are two kinds of cancellation:

catastrophic and benign.

Catastrophic cancellation occurs when the operands are subject to rounding
errors. For example in the quadratic formula, the expression b2 - 4ac occurs.

The quantities b2 and 4ac are subject to rounding errors since they are the

results of floating-point multiplications. Suppose that they are rounded to
the nearest floating-point number, and so are accurate to within .5 ulp.

When they are subtracted, cancellation can cause many of the accurate
digits to disappear, leaving behind mainly digits contaminated by rounding

error. Hence the difference might have an error of many ulps. For example,
consider b = 3.34, a = 1.22, and c = 2.28. The exact value of b2 - 4ac is

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1127

.0292. But b2 rounds to 11.2 and 4ac rounds to 11.1, hence the final answer

is .1 which is an error by 70 ulps, even though 11.2 - 11.1 is exactly equal
to .16. The subtraction did not introduce any error, but rather exposed the

error introduced in the earlier multiplications.

Benign cancellation occurs when subtracting exactly known quantities. If x

and y have no rounding error, then by Theorem 2 if the subtraction is done
with a guard digit, the difference x-y has a very small relative error (less

than 2).

A formula that exhibits catastrophic cancellation can sometimes be
rearranged to eliminate the problem. Again consider the quadratic formula

(4)

When , then does not involve a cancellation and

.

But the other addition (subtraction) in one of the formulas will have a
catastrophic cancellation. To avoid this, multiply the numerator and
denominator of r1 by

(and similarly for r2) to obtain

(5)

If and , then computing r1 using formula (4) will involve a
cancellation. Therefore, use formula (5) for computing r1 and (4) for r2. On

the other hand, if b < 0, use (4) for computing r1 and (5) for r2.

The expression x2 - y2 is another formula that exhibits catastrophic
cancellation. It is more accurate to evaluate it as (x - y)(x + y).7 Unlike the

quadratic formula, this improved form still has a subtraction, but it is a

benign cancellation of quantities without rounding error, not a catastrophic
one. By Theorem 2, the relative error in x - y is at most 2 . The same is

true of x + y. Multiplying two quantities with a small relative error results in

a product with a small relative error (see the section Rounding Error).

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#9521
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5751
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5811
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5751
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5751
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5811
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1397
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1127

In order to avoid confusion between exact and computed values, the
following notation is used. Whereas x - y denotes the exact difference of x
and y, x y denotes the computed difference (i.e., with rounding error).

Similarly , , and denote computed addition, multiplication, and division,

respectively. All caps indicate the computed value of a function, as in LN(x)

or SQRT(x). Lowercase functions and traditional mathematical notation denote

their exact values as in ln(x) and .

Although (x y) (x y) is an excellent approximation to x2 - y2, the

floating-point numbers x and y might themselves be approximations to some

true quantities and . For example, and might be exactly known decimal
numbers that cannot be expressed exactly in binary. In this case, even
though x y is a good approximation to x - y, it can have a huge relative
error compared to the true expression , and so the advantage of (x +

y)(x - y) over x2 - y2 is not as dramatic. Since computing (x + y)(x - y) is

about the same amount of work as computing x2 - y2, it is clearly the
preferred form in this case. In general, however, replacing a catastrophic

cancellation by a benign one is not worthwhile if the expense is large,
because the input is often (but not always) an approximation. But

eliminating a cancellation entirely (as in the quadratic formula) is worthwhile
even if the data are not exact. Throughout this paper, it will be assumed

that the floating-point inputs to an algorithm are exact and that the results

are computed as accurately as possible.

The expression x2 - y2 is more accurate when rewritten as (x - y)(x + y)

because a catastrophic cancellation is replaced with a benign one. We next

present more interesting examples of formulas exhibiting catastrophic
cancellation that can be rewritten to exhibit only benign cancellation.

The area of a triangle can be expressed directly in terms of the lengths of its
sides a, b, and c as

(6)

(Suppose the triangle is very flat; that is, a b + c. Then s a, and the
term (s - a) in formula (6) subtracts two nearby numbers, one of which may

have rounding error. For example, if a = 9.0, b = c = 4.53, the correct value

of s is 9.03 and A is 2.342.... Even though the computed value of s (9.05) is
in error by only 2 ulps, the computed value of A is 3.04, an error of 70 ulps.

There is a way to rewrite formula (6) so that it will return accurate results
even for flat triangles [Kahan 1986]. It is

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1403
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1403

(7)

If a, b, and c do not satisfy a b c, rename them before applying (7). It is

straightforward to check that the right-hand sides of (6) and (7) are
algebraically identical. Using the values of a, b, and c above gives a

computed area of 2.35, which is 1 ulp in error and much more accurate than
the first formula.

Although formula (7) is much more accurate than (6) for this example, it

would be nice to know how well (7) performs in general.

Theorem 3

The rounding error incurred when using (7) to compute the area of a triangle

is at most 11 , provided that subtraction is performed with a guard digit,
e .005, and that square roots are computed to within 1/2 ulp.

The condition that e < .005 is met in virtually every actual floating-point

system. For example when = 2, p 8 ensures that e < .005, and when =

10, p 3 is enough.

In statements like Theorem 3 that discuss the relative error of an
expression, it is understood that the expression is computed using floating-

point arithmetic. In particular, the relative error is actually of the expression

(8) SQRT((a (b c)) (c (a b)) (c (a b)) (a (b c))) 4

Because of the cumbersome nature of (8), in the statement of theorems we
will usually say the computed value of E rather than writing out E with circle

notation.

Error bounds are usually too pessimistic. In the numerical example given
above, the computed value of (7) is 2.35, compared with a true value of

2.34216 for a relative error of 0.7 , which is much less than 11 . The main
reason for computing error bounds is not to get precise bounds but rather to

verify that the formula does not contain numerical problems.

A final example of an expression that can be rewritten to use benign

cancellation is (1 + x)n, where . This expression arises in financial

calculations. Consider depositing $100 every day into a bank account that
earns an annual interest rate of 6%, compounded daily. If n = 365 and i =

.06, the amount of money accumulated at the end of one year is

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1405
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1403
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1405
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1405
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1403
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1405
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1405
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1411
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1405

100

dollars. If this is computed using = 2 and p = 24, the result is $37615.45
compared to the exact answer of $37614.05, a discrepancy of $1.40. The
reason for the problem is easy to see. The expression 1 + i/n involves adding

1 to .0001643836, so the low order bits of i/n are lost. This rounding error is
amplified when 1 + i/n is raised to the nth power.

The troublesome expression (1 + i/n)n can be rewritten as enln(1 + i/n), where

now the problem is to compute ln(1 + x) for small x. One approach is to use
the approximation ln(1 + x) x, in which case the payment becomes

$37617.26, which is off by $3.21 and even less accurate than the obvious
formula. But there is a way to compute ln(1 + x) very accurately, as

Theorem 4 shows [Hewlett-Packard 1982]. This formula yields $37614.07,

accurate to within two cents!

Theorem 4 assumes that LN(x) approximates ln(x) to within 1/2 ulp. The

problem it solves is that when x is small, LN(1 x) is not close to ln(1 + x)
because 1 x has lost the information in the low order bits of x. That is, the

computed value of ln(1 + x) is not close to its actual value when .

Theorem 4

If ln(1 + x) is computed using the formula

the relative error is at most 5 when 0 x < 3/4, provided subtraction is
performed with a guard digit, e < 0.1, and ln is computed to within 1/2 ulp.

This formula will work for any value of x but is only interesting for ,

which is where catastrophic cancellation occurs in the naive formula ln(1 +
x). Although the formula may seem mysterious, there is a simple

explanation for why it works. Write ln(1 + x) as

.

The left hand factor can be computed exactly, but the right hand factor
µ(x) = ln(1 + x)/x will suffer a large rounding error when adding 1 to x.

However, µ is almost constant, since ln(1 + x) x. So changing x slightly

will not introduce much error. In other words, if , computing will be
a good approximation to xµ(x) = ln(1 + x). Is there a value for for which

and can be computed accurately? There is; namely = (1 x) 1,

because then 1 + is exactly equal to 1 x.

The results of this section can be summarized by saying that a guard digit

guarantees accuracy when nearby precisely known quantities are subtracted
(benign cancellation). Sometimes a formula that gives inaccurate results can

be rewritten to have much higher numerical accuracy by using benign
cancellation; however, the procedure only works if subtraction is performed

using a guard digit. The price of a guard digit is not high, because it merely
requires making the adder one bit wider. For a 54 bit double precision adder,

the additional cost is less than 2%. For this price, you gain the ability to run
many algorithms such as formula (6) for computing the area of a triangle
and the expression ln(1 + x). Although most modern computers have a

guard digit, there are a few (such as Cray systems) that do not.

Exactly Rounded Operations

When floating-point operations are done with a guard digit, they are not as

accurate as if they were computed exactly then rounded to the nearest
floating-point number. Operations performed in this manner will be called

exactly rounded.8 The example immediately preceding Theorem 2 shows
that a single guard digit will not always give exactly rounded results. The

previous section gave several examples of algorithms that require a guard
digit in order to work properly. This section gives examples of algorithms

that require exact rounding.

So far, the definition of rounding has not been given. Rounding is

straightforward, with the exception of how to round halfway cases; for
example, should 12.5 round to 12 or 13? One school of thought divides the

10 digits in half, letting {0, 1, 2, 3, 4} round down, and {5, 6, 7, 8, 9}
round up; thus 12.5 would round to 13. This is how rounding works on

Digital Equipment Corporation's VAX computers. Another school of thought
says that since numbers ending in 5 are halfway between two possible

roundings, they should round down half the time and round up the other
half. One way of obtaining this 50% behavior to require that the rounded

result have its least significant digit be even. Thus 12.5 rounds to 12 rather

than 13 because 2 is even. Which of these methods is best, round up or
round to even? Reiser and Knuth [1975] offer the following reason for

preferring round to even.

Theorem 5

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1403
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#729

Let x and y be floating-point numbers, and define x0 = x, x1 = (x0 y) y,

..., xn = (xn-1 y) y. If and are exactly rounded using round to even,

then either xn = x for all n or xn = x1 for all n 1. z

To clarify this result, consider = 10, p = 3 and let x = 1.00, y = -.555.

When rounding up, the sequence becomes

x0 y = 1.56, x1 = 1.56 .555 = 1.01, x1 y = 1.01 .555 = 1.57,

and each successive value of xn increases by .01, until xn = 9.45 (n 845)9.
Under round to even, xn is always 1.00. This example suggests that when

using the round up rule, computations can gradually drift upward, whereas
when using round to even the theorem says this cannot happen. Throughout

the rest of this paper, round to even will be used.

One application of exact rounding occurs in multiple precision arithmetic.
There are two basic approaches to higher precision. One approach

represents floating-point numbers using a very large significand, which is

stored in an array of words, and codes the routines for manipulating these
numbers in assembly language. The second approach represents higher

precision floating-point numbers as an array of ordinary floating-point
numbers, where adding the elements of the array in infinite precision

recovers the high precision floating-point number. It is this second approach
that will be discussed here. The advantage of using an array of floating-point

numbers is that it can be coded portably in a high level language, but it
requires exactly rounded arithmetic.

The key to multiplication in this system is representing a product xy as a

sum, where each summand has the same precision as x and y. This can be
done by splitting x and y. Writing x = xh + xl and y = yh + yl, the exact

product is

xy = xh yh + xh yl + xl yh + xl yl.

If x and y have p bit significands, the summands will also have p bit
significands provided that xl, xh, yh, yl can be represented using [p/2] bits.

When p is even, it is easy to find a splitting. The number x0.x1 ... xp - 1 can be

written as the sum of x0.x1 ... xp/2 - 1 and 0.0 ... 0xp/2 ... xp - 1. When p is odd,

this simple splitting method will not work. An extra bit can, however, be

gained by using negative numbers. For example, if = 2, p = 5, and x =
.10111, x can be split as xh = .11 and xl = -.00001. There is more than one

way to split a number. A splitting method that is easy to compute is due to
Dekker [1971], but it requires more than a single guard digit.

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#730

Theorem 6

Let p be the floating-point precision, with the restriction that p is even when

 > 2, and assume that floating-point operations are exactly rounded. Then
if k = [p/2] is half the precision (rounded up) and m = k + 1, x can be split

as x = xh + xl, where
xh = (m x) (m x x), xl = x xh,

and each xi is representable using [p/2] bits of precision.

To see how this theorem works in an example, let = 10, p = 4, b = 3.476,
a = 3.463, and c = 3.479. Then b2 - ac rounded to the nearest floating-point

number is .03480, while b b = 12.08, a c = 12.05, and so the computed

value of b2 - ac is .03. This is an error of 480 ulps. Using Theorem 6 to write

b = 3.5 - .024, a = 3.5 - .037, and c = 3.5 - .021, b2 becomes 3.52 - 2 × 3.5
× .024 + .0242. Each summand is exact, so b2 = 12.25 - .168 + .000576,

where the sum is left unevaluated at this point. Similarly, ac = 3.52 - (3.5 ×

.037 + 3.5 × .021) + .037 × .021 = 12.25 - .2030 +.000777. Finally,
subtracting these two series term by term gives an estimate for b2 - ac of

0 .0350 .000201 = .03480, which is identical to the exactly rounded

result. To show that Theorem 6 really requires exact rounding, consider p =
3, = 2, and x = 7. Then m = 5, mx = 35, and m x = 32. If subtraction is

performed with a single guard digit, then (m x) x = 28. Therefore, xh =

4 and xl = 3, hence xl is not representable with [p/2] = 1 bit.

As a final example of exact rounding, consider dividing m by 10. The result is

a floating-point number that will in general not be equal to m/10. When =
2, multiplying m/10 by 10 will restore m, provided exact rounding is being

used. Actually, a more general fact (due to Kahan) is true. The proof is

ingenious, but readers not interested in such details can skip ahead to
section The IEEE Standard.

Theorem 7

When = 2, if m and n are integers with |m| < 2p - 1 and n has the special

form n = 2i + 2j, then (m n) n = m, provided floating-point operations

are exactly rounded.

Proof

Scaling by a power of two is harmless, since it changes only the exponent,
not the significand. If q = m/n, then scale n so that 2p - 1 n < 2p and scale
m so that 1/2 < q < 1. Thus, 2p - 2 < m < 2p. Since m has p significant bits, it

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#799

has at most one bit to the right of the binary point. Changing the sign of m is

harmless, so assume that q > 0.

If = m n, to prove the theorem requires showing that

(9)

That is because m has at most 1 bit right of the binary point, so n will

round to m. To deal with the halfway case when |n - m| = 1/4, note that

since the initial unscaled m had |m| < 2p - 1, its low-order bit was 0, so the
low-order bit of the scaled m is also 0. Thus, halfway cases will round to m.

Suppose that q = .q1q2 ..., and let = .q1q2 ... qp1. To estimate |n - m|, first

compute

| - q| = |N/2p + 1 - m/n|,

where N is an odd integer. Since n = 2i + 2j and 2p - 1 n < 2p, it must be

that n = 2p - 1 + 2k for some k p - 2, and thus

.

The numerator is an integer, and since N is odd, it is in fact an odd integer.

Thus,

| - q| 1/(n2p + 1 - k).

Assume q < (the case q > is similar).10 Then n < m, and

|m-n |= m-n = n(q-) = n(q-(-2-p-1))

=(2p-1+2k)2-p-1-2-p-1+k =

This establishes (9) and proves the theorem.11 z

The theorem holds true for any base , as long as 2i + 2j is replaced by i +
j. As gets larger, however, denominators of the form i + j are farther

and farther apart.

We are now in a position to answer the question, Does it matter if the basic

arithmetic operations introduce a little more rounding error than necessary?
The answer is that it does matter, because accurate basic operations enable

us to prove that formulas are "correct" in the sense they have a small
relative error. The section Cancellation discussed several algorithms that

require guard digits to produce correct results in this sense. If the input to
those formulas are numbers representing imprecise measurements,

however, the bounds of Theorems 3 and 4 become less interesting. The
reason is that the benign cancellation x - y can become catastrophic if x and

y are only approximations to some measured quantity. But accurate

operations are useful even in the face of inexact data, because they enable
us to establish exact relationships like those discussed in Theorems 6 and 7.

These are useful even if every floating-point variable is only an
approximation to some actual value.

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#11697
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#787
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#9921
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#700

The IEEE Standard

There are two different IEEE standards for floating-point computation. IEEE
754 is a binary standard that requires = 2, p = 24 for single precision and

p = 53 for double precision [IEEE 1987]. It also specifies the precise layout

of bits in a single and double precision. IEEE 854 allows either = 2 or =
10 and unlike 754, does not specify how floating-point numbers are encoded

into bits [Cody et al. 1984]. It does not require a particular value for p, but
instead it specifies constraints on the allowable values of p for single and

double precision. The term IEEE Standard will be used when discussing
properties common to both standards.

This section provides a tour of the IEEE standard. Each subsection discusses

one aspect of the standard and why it was included. It is not the purpose of
this paper to argue that the IEEE standard is the best possible floating-point

standard but rather to accept the standard as given and provide an

introduction to its use. For full details consult the standards themselves
[IEEE 1987; Cody et al. 1984].

Formats and Operations

Base

It is clear why IEEE 854 allows = 10. Base ten is how humans exchange
and think about numbers. Using = 10 is especially appropriate for

calculators, where the result of each operation is displayed by the calculator
in decimal.

There are several reasons why IEEE 854 requires that if the base is not 10, it
must be 2. The section Relative Error and Ulps mentioned one reason: the

results of error analyses are much tighter when is 2 because a rounding
error of .5 ulp wobbles by a factor of when computed as a relative error,

and error analyses are almost always simpler when based on relative error.
A related reason has to do with the effective precision for large bases.

Consider = 16, p = 1 compared to = 2, p = 4. Both systems have 4 bits
of significand. Consider the computation of 15/8. When = 2, 15 is

represented as 1.111 × 23, and 15/8 as 1.111 × 20. So 15/8 is exact.
However, when = 16, 15 is represented as F × 160, where F is the

hexadecimal digit for 15. But 15/8 is represented as 1 × 160, which has only

one bit correct. In general, base 16 can lose up to 3 bits, so that a precision
of p hexadecimal digits can have an effective precision as low as 4p - 3

rather than 4p binary bits. Since large values of have these problems, why

did IBM choose = 16 for its system/370? Only IBM knows for sure, but
there are two possible reasons. The first is increased exponent range. Single

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#689

precision on the system/370 has = 16, p = 6. Hence the significand

requires 24 bits. Since this must fit into 32 bits, this leaves 7 bits for the
exponent and one for the sign bit. Thus the magnitude of representable

numbers ranges from about to about = . To get a similar exponent
range when = 2 would require 9 bits of exponent, leaving only 22 bits for

the significand. However, it was just pointed out that when = 16, the
effective precision can be as low as 4p - 3 = 21 bits. Even worse, when = 2

it is possible to gain an extra bit of precision (as explained later in this

section), so the = 2 machine has 23 bits of precision to compare with a
range of 21 - 24 bits for the = 16 machine.

Another possible explanation for choosing = 16 has to do with shifting.

When adding two floating-point numbers, if their exponents are different,
one of the significands will have to be shifted to make the radix points line

up, slowing down the operation. In the = 16, p = 1 system, all the

numbers between 1 and 15 have the same exponent, and so no shifting is

required when adding any of the () = 105 possible pairs of distinct

numbers from this set. However, in the = 2, p = 4 system, these numbers

have exponents ranging from 0 to 3, and shifting is required for 70 of the
105 pairs.

In most modern hardware, the performance gained by avoiding a shift for a

subset of operands is negligible, and so the small wobble of = 2 makes it
the preferable base. Another advantage of using = 2 is that there is a way

to gain an extra bit of significance.12 Since floating-point numbers are
always normalized, the most significant bit of the significand is always 1, and

there is no reason to waste a bit of storage representing it. Formats that use

this trick are said to have a hidden bit. It was already pointed out in
Floating-point Formats that this requires a special convention for 0. The

method given there was that an exponent of emin - 1 and a significand of all

zeros represents not , but rather 0.

IEEE 754 single precision is encoded in 32 bits using 1 bit for the sign, 8 bits
for the exponent, and 23 bits for the significand. However, it uses a hidden

bit, so the significand is 24 bits (p = 24), even though it is encoded using
only 23 bits.

Precision

The IEEE standard defines four different precisions: single, double, single-
extended, and double-extended. In IEEE 754, single and double precision

correspond roughly to what most floating-point hardware provides. Single
precision occupies a single 32 bit word, double precision two consecutive 32

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#808
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#682

bit words. Extended precision is a format that offers at least a little extra

precision and exponent range (TABLE D-1).

TABLE D-1 IEEE 754 Format Parameters

Parameter
Format

Single Single-Extended Double Double-Extended

p 24 32 53 64

emax +127 1023 +1023 > 16383

emin -126 -1022 -1022 -16382

Exponent width in bits 8 11 11 15

Format width in bits 32 43 64 79

The IEEE standard only specifies a lower bound on how many extra bits
extended precision provides. The minimum allowable double-extended
format is sometimes referred to as 80-bit format, even though the table

shows it using 79 bits. The reason is that hardware implementations of

extended precision normally do not use a hidden bit, and so would use 80
rather than 79 bits.13

The standard puts the most emphasis on extended precision, making no

recommendation concerning double precision, but strongly recommending
that Implementations should support the extended format corresponding to

the widest basic format supported, ...

One motivation for extended precision comes from calculators, which will

often display 10 digits, but use 13 digits internally. By displaying only 10 of
the 13 digits, the calculator appears to the user as a "black box" that

computes exponentials, cosines, etc. to 10 digits of accuracy. For the
calculator to compute functions like exp, log and cos to within 10 digits with

reasonable efficiency, it needs a few extra digits to work with. It is not hard
to find a simple rational expression that approximates log with an error of

500 units in the last place. Thus computing with 13 digits gives an answer
correct to 10 digits. By keeping these extra 3 digits hidden, the calculator

presents a simple model to the operator.

Extended precision in the IEEE standard serves a similar function. It enables

libraries to efficiently compute quantities to within about .5 ulp in single (or
double) precision, giving the user of those libraries a simple model, namely

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#812
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#854

that each primitive operation, be it a simple multiply or an invocation of log,

returns a value accurate to within about .5 ulp. However, when using
extended precision, it is important to make sure that its use is transparent to

the user. For example, on a calculator, if the internal representation of a
displayed value is not rounded to the same precision as the display, then the

result of further operations will depend on the hidden digits and appear
unpredictable to the user.

To illustrate extended precision further, consider the problem of converting

between IEEE 754 single precision and decimal. Ideally, single precision
numbers will be printed with enough digits so that when the decimal number

is read back in, the single precision number can be recovered. It turns out

that 9 decimal digits are enough to recover a single precision binary number
(see the section Binary to Decimal Conversion). When converting a decimal

number back to its unique binary representation, a rounding error as small
as 1 ulp is fatal, because it will give the wrong answer. Here is a situation

where extended precision is vital for an efficient algorithm. When single-
extended is available, a very straightforward method exists for converting a

decimal number to a single precision binary one. First read in the 9 decimal

digits as an integer N, ignoring the decimal point. From TABLE D-1, p 32,

and since 109 < 232 4.3 × 109, N can be represented exactly in single-
extended. Next find the appropriate power 10P necessary to scale N. This will

be a combination of the exponent of the decimal number, together with the
position of the (up until now) ignored decimal point. Compute 10|P|. If |P|

 13, then this is also represented exactly, because 1013 = 213513, and
513 < 232. Finally multiply (or divide if p < 0) N and 10|P|. If this last

operation is done exactly, then the closest binary number is recovered. The
section Binary to Decimal Conversion shows how to do the last multiply (or
divide) exactly. Thus for |P| 13, the use of the single-extended format

enables 9-digit decimal numbers to be converted to the closest binary
number (i.e. exactly rounded). If |P| > 13, then single-extended is not

enough for the above algorithm to always compute the exactly rounded
binary equivalent, but Coonen [1984] shows that it is enough to guarantee

that the conversion of binary to decimal and back will recover the original
binary number.

If double precision is supported, then the algorithm above would be run in
double precision rather than single-extended, but to convert double precision

to a 17-digit decimal number and back would require the double-extended
format.

Exponent

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1251
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#812
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1251

Since the exponent can be positive or negative, some method must be

chosen to represent its sign. Two common methods of representing signed
numbers are sign/magnitude and two's complement. Sign/magnitude is the

system used for the sign of the significand in the IEEE formats: one bit is
used to hold the sign, the rest of the bits represent the magnitude of the

number. The two's complement representation is often used in integer
arithmetic. In this scheme, a number in the range [-2p-1, 2p-1 - 1] is

represented by the smallest nonnegative number that is congruent to it
modulo 2p.

The IEEE binary standard does not use either of these methods to represent
the exponent, but instead uses a biased representation. In the case of single

precision, where the exponent is stored in 8 bits, the bias is 127 (for double

precision it is 1023). What this means is that if is the value of the exponent

bits interpreted as an unsigned integer, then the exponent of the floating-

point number is - 127. This is often called the unbiased exponent to

distinguish from the biased exponent .

Referring to TABLE D-1, single precision has emax = 127 and emin = -126. The
reason for having |emin| < emax is so that the reciprocal of the smallest

number will not overflow. Although it is true that the reciprocal of the

largest number will underflow, underflow is usually less serious than

overflow. The section Base explained that emin - 1 is used for representing 0,
and Special Quantities will introduce a use for emax + 1. In IEEE single

precision, this means that the biased exponents range between emin - 1 = -
127 and emax + 1 = 128, whereas the unbiased exponents range between 0

and 255, which are exactly the nonnegative numbers that can be
represented using 8 bits.

Operations

The IEEE standard requires that the result of addition, subtraction,
multiplication and division be exactly rounded. That is, the result must be

computed exactly and then rounded to the nearest floating-point number
(using round to even). The section Guard Digits pointed out that computing

the exact difference or sum of two floating-point numbers can be very
expensive when their exponents are substantially different. That section

introduced guard digits, which provide a practical way of computing
differences while guaranteeing that the relative error is small. However,

computing with a single guard digit will not always give the same answer as
computing the exact result and then rounding. By introducing a second

guard digit and a third sticky bit, differences can be computed at only a little
more cost than with a single guard digit, but the result is the same as if the

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#812
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#803
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#875
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#693

difference were computed exactly and then rounded [Goldberg 1990]. Thus

the standard can be implemented efficiently.

One reason for completely specifying the results of arithmetic operations is
to improve the portability of software. When a program is moved between

two machines and both support IEEE arithmetic, then if any intermediate
result differs, it must be because of software bugs, not from differences in

arithmetic. Another advantage of precise specification is that it makes it
easier to reason about floating-point. Proofs about floating-point are hard

enough, without having to deal with multiple cases arising from multiple
kinds of arithmetic. Just as integer programs can be proven to be correct, so

can floating-point programs, although what is proven in that case is that the

rounding error of the result satisfies certain bounds. Theorem 4 is an
example of such a proof. These proofs are made much easier when the

operations being reasoned about are precisely specified. Once an algorithm
is proven to be correct for IEEE arithmetic, it will work correctly on any

machine supporting the IEEE standard.

Brown [1981] has proposed axioms for floating-point that include most of
the existing floating-point hardware. However, proofs in this system cannot

verify the algorithms of sections Cancellation and Exactly Rounded
Operations, which require features not present on all hardware.

Furthermore, Brown's axioms are more complex than simply defining

operations to be performed exactly and then rounded. Thus proving
theorems from Brown's axioms is usually more difficult than proving them

assuming operations are exactly rounded.

There is not complete agreement on what operations a floating-point
standard should cover. In addition to the basic operations +, -, × and /, the

IEEE standard also specifies that square root, remainder, and conversion
between integer and floating-point be correctly rounded. It also requires that

conversion between internal formats and decimal be correctly rounded
(except for very large numbers). Kulisch and Miranker [1986] have proposed

adding inner product to the list of operations that are precisely specified.

They note that when inner products are computed in IEEE arithmetic, the
final answer can be quite wrong. For example sums are a special case of

inner products, and the sum ((2 × 10-30 + 1030) - 1030) - 10-30 is exactly
equal to 10-30, but on a machine with IEEE arithmetic the computed result

will be -10-30. It is possible to compute inner products to within 1 ulp with
less hardware than it takes to implement a fast multiplier [Kirchner and

Kulish 1987].14 15

All the operations mentioned in the standard are required to be exactly
rounded except conversion between decimal and binary. The reason is that

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#700
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#704
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#704
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#12895
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#12898

efficient algorithms for exactly rounding all the operations are known, except

conversion. For conversion, the best known efficient algorithms produce
results that are slightly worse than exactly rounded ones [Coonen 1984].

The IEEE standard does not require transcendental functions to be exactly

rounded because of the table maker's dilemma. To illustrate, suppose you
are making a table of the exponential function to 4 places. Then

exp(1.626) = 5.0835. Should this be rounded to 5.083 or 5.084? If
exp(1.626) is computed more carefully, it becomes 5.08350. And then

5.083500. And then 5.0835000. Since exp is transcendental, this could go
on arbitrarily long before distinguishing whether exp(1.626) is
5.083500...0ddd or 5.0834999...9ddd. Thus it is not practical to specify that

the precision of transcendental functions be the same as if they were
computed to infinite precision and then rounded. Another approach would be

to specify transcendental functions algorithmically. But there does not
appear to be a single algorithm that works well across all hardware

architectures. Rational approximation, CORDIC,16 and large tables are three
different techniques that are used for computing transcendentals on

contemporary machines. Each is appropriate for a different class of
hardware, and at present no single algorithm works acceptably over the

wide range of current hardware.

Special Quantities

On some floating-point hardware every bit pattern represents a valid
floating-point number. The IBM System/370 is an example of this. On the

other hand, the VAXTM reserves some bit patterns to represent special
numbers called reserved operands. This idea goes back to the CDC 6600,

which had bit patterns for the special quantities INDEFINITE and INFINITY.

The IEEE standard continues in this tradition and has NaNs (Not a Number)

and infinities. Without any special quantities, there is no good way to handle
exceptional situations like taking the square root of a negative number,

other than aborting computation. Under IBM System/370 FORTRAN, the
default action in response to computing the square root of a negative

number like -4 results in the printing of an error message. Since every bit
pattern represents a valid number, the return value of square root must be

some floating-point number. In the case of System/370 FORTRAN, is

returned. In IEEE arithmetic, a NaN is returned in this situation.

The IEEE standard specifies the following special values (see TABLE D-2): ±
0, denormalized numbers, ± and NaNs (there is more than one NaN, as

explained in the next section). These special values are all encoded with

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#874
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#878

exponents of either emax + 1 or emin - 1 (it was already pointed out that 0

has an exponent of emin - 1).

TABLE D-2 IEEE 754 Special Values

Exponent Fraction Represents

e = emin - 1 f = 0 ±0

e = emin - 1 f 0

emin e emax -- 1.f × 2e

e = emax + 1 f = 0 ±

e = emax + 1 f 0 NaN

NaNs

Traditionally, the computation of 0/0 or has been treated as an

unrecoverable error which causes a computation to halt. However, there are
examples where it makes sense for a computation to continue in such a
situation. Consider a subroutine that finds the zeros of a function f, say

zero(f). Traditionally, zero finders require the user to input an interval [a, b]

on which the function is defined and over which the zero finder will search.

That is, the subroutine is called as zero(f, a, b). A more useful zero finder

would not require the user to input this extra information. This more general

zero finder is especially appropriate for calculators, where it is natural to
simply key in a function, and awkward to then have to specify the domain.

However, it is easy to see why most zero finders require a domain. The zero

finder does its work by probing the function f at various values. If it probed

for a value outside the domain of f, the code for f might well compute 0/0 or

, and the computation would halt, unnecessarily aborting the zero finding

process.

This problem can be avoided by introducing a special value called NaN, and

specifying that the computation of expressions like 0/0 and produce NaN,
rather than halting. A list of some of the situations that can cause a NaN are

given in TABLE D-3. Then when zero(f) probes outside the domain of f, the

code for f will return NaN, and the zero finder can continue. That is, zero(f)

is not "punished" for making an incorrect guess. With this example in mind,

it is easy to see what the result of combining a NaN with an ordinary

floating-point number should be. Suppose that the final statement of f is

return(-b + sqrt(d))/(2*a). If d < 0, then f should return a NaN. Since d < 0,

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5001

sqrt(d) is a NaN, and -b + sqrt(d) will be a NaN, if the sum of a NaN and any

other number is a NaN. Similarly if one operand of a division operation is a
NaN, the quotient should be a NaN. In general, whenever a NaN participates

in a floating-point operation, the result is another NaN.

TABLE D-3 Operations That Produce a NaN

Operation NaN Produced By

+ + (-)

× 0 ×

/ 0/0, /

REM x REM 0, REM y

 (when x < 0)

Another approach to writing a zero solver that doesn't require the user to
input a domain is to use signals. The zero-finder could install a signal

handler for floating-point exceptions. Then if f was evaluated outside its

domain and raised an exception, control would be returned to the zero

solver. The problem with this approach is that every language has a different
method of handling signals (if it has a method at all), and so it has no hope

of portability.

In IEEE 754, NaNs are often represented as floating-point numbers with the
exponent emax + 1 and nonzero significands. Implementations are free to put

system-dependent information into the significand. Thus there is not a
unique NaN, but rather a whole family of NaNs. When a NaN and an ordinary

floating-point number are combined, the result should be the same as the

NaN operand. Thus if the result of a long computation is a NaN, the system-
dependent information in the significand will be the information that was

generated when the first NaN in the computation was generated. Actually,
there is a caveat to the last statement. If both operands are NaNs, then the

result will be one of those NaNs, but it might not be the NaN that was
generated first.

Infinity

Just as NaNs provide a way to continue a computation when expressions like

0/0 or are encountered, infinities provide a way to continue when an

overflow occurs. This is much safer than simply returning the largest

representable number. As an example, consider computing , when
 = 10, p = 3, and emax = 98. If x = 3 × 1070 and y = 4 × 1070, then x2 will
overflow, and be replaced by 9.99 × 1098. Similarly y2, and x2 + y2 will each

overflow in turn, and be replaced by 9.99 × 1098. So the final result will be

, which is drastically wrong: the correct answer is
5 × 1070. In IEEE arithmetic, the result of x2 is , as is y2, x2 + y2 and

. So the final result is , which is safer than returning an ordinary
floating-point number that is nowhere near the correct answer.17

The division of 0 by 0 results in a NaN. A nonzero number divided by 0,

however, returns infinity: 1/0 = , -1/0 = - . The reason for the
distinction is this: if f(x) 0 and g(x) 0 as x approaches some limit, then
f(x)/g(x) could have any value. For example, when f(x) = sin x and g(x) = x,

then f(x)/g(x) 1 as x 0. But when f(x) = 1 - cos x, f(x)/g(x) 0. When

thinking of 0/0 as the limiting situation of a quotient of two very small
numbers, 0/0 could represent anything. Thus in the IEEE standard, 0/0
results in a NaN. But when c > 0, f(x) c, and g(x) 0, then f(x)/g(x) ±

, for any analytic functions f and g. If g(x) < 0 for small x, then f(x)/g(x) -
, otherwise the limit is + . So the IEEE standard defines c/0 = ± , as

long as c 0. The sign of depends on the signs of c and 0 in the usual

way, so that -10/0 = - , and -10/-0 = + . You can distinguish between
getting because of overflow and getting because of division by zero by

checking the status flags (which will be discussed in detail in section Flags).
The overflow flag will be set in the first case, the division by zero flag in the

second.

The rule for determining the result of an operation that has infinity as an

operand is simple: replace infinity with a finite number x and take the limit
as x . Thus 3/ = 0, because

.

Similarly, 4 - = - , and = . When the limit doesn't exist, the result
is a NaN, so / will be a NaN (TABLE D-3 has additional examples). This

agrees with the reasoning used to conclude that 0/0 should be a NaN.

When a subexpression evaluates to a NaN, the value of the entire expression

is also a NaN. In the case of ± however, the value of the expression might
be an ordinary floating-point number because of rules like 1/ = 0. Here is

a practical example that makes use of the rules for infinity arithmetic.
Consider computing the function x/(x2 + 1). This is a bad formula, because

not only will it overflow when x is larger than , but infinity arithmetic

will give the wrong answer because it will yield 0, rather than a number near

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#920
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#989
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5001

1/x. However, x/(x2 + 1) can be rewritten as 1/(x + x-1). This improved

expression will not overflow prematurely and because of infinity arithmetic
will have the correct value when x = 0: 1/(0 + 0-1) = 1/(0 +) = 1/ = 0.
Without infinity arithmetic, the expression 1/(x + x-1) requires a test for

x = 0, which not only adds extra instructions, but may also disrupt a
pipeline. This example illustrates a general fact, namely that infinity

arithmetic often avoids the need for special case checking; however,
formulas need to be carefully inspected to make sure they do not have
spurious behavior at infinity (as x/(x2 + 1) did).

Signed Zero

Zero is represented by the exponent emin - 1 and a zero significand. Since

the sign bit can take on two different values, there are two zeros, +0 and -0.
If a distinction were made when comparing +0 and -0, simple tests like

if (x = 0) would have very unpredictable behavior, depending on the sign of

x. Thus the IEEE standard defines comparison so that +0 = -0, rather than -

0 < +0. Although it would be possible always to ignore the sign of zero, the

IEEE standard does not do so. When a multiplication or division involves a
signed zero, the usual sign rules apply in computing the sign of the answer.

Thus 3·(+0) = +0, and +0/-3 = -0. If zero did not have a sign, then the
relation 1/(1/x) = x would fail to hold when x = ± . The reason is that 1/-

 and 1/+ both result in 0, and 1/0 results in + , the sign information
having been lost. One way to restore the identity 1/(1/x) = x is to only have

one kind of infinity, however that would result in the disastrous consequence

of losing the sign of an overflowed quantity.

Another example of the use of signed zero concerns underflow and functions
that have a discontinuity at 0, such as log. In IEEE arithmetic, it is natural to
define log 0 = - and log x to be a NaN when x < 0. Suppose that x

represents a small negative number that has underflowed to zero. Thanks to
signed zero, x will be negative, so log can return a NaN. However, if there

were no signed zero, the log function could not distinguish an underflowed
negative number from 0, and would therefore have to return - . Another

example of a function with a discontinuity at zero is the signum function,
which returns the sign of a number.

Probably the most interesting use of signed zero occurs in complex

arithmetic. To take a simple example, consider the equation .

This is certainly true when z 0. If z = -1, the obvious computation gives

and . Thus, ! The problem can be

traced to the fact that square root is multi-valued, and there is no way to
select the values so that it is continuous in the entire complex plane.

However, square root is continuous if a branch cut consisting of all negative

real numbers is excluded from consideration. This leaves the problem of
what to do for the negative real numbers, which are of the form -x + i0,

where x > 0. Signed zero provides a perfect way to resolve this problem.

Numbers of the form x + i(+0) have one sign and numbers of the form

x + i(-0) on the other side of the branch cut have the other sign . In

fact, the natural formulas for computing will give these results.

Back to . If z =1 = -1 + i0, then

1/z = 1/(-1 + i0) = [(-1- i0)]/[(-1 + i0)(-1 - i0)] = (-1 -- i0)/((-1)2 - 02) = -1 + i(-0),

and so , while . Thus IEEE arithmetic
preserves this identity for all z. Some more sophisticated examples are given

by Kahan [1987]. Although distinguishing between +0 and -0 has

advantages, it can occasionally be confusing. For example, signed zero
destroys the relation x = y 1/x = 1/y, which is false when x = +0 and y =

-0. However, the IEEE committee decided that the advantages of utilizing

the sign of zero outweighed the disadvantages.

Denormalized Numbers

Consider normalized floating-point numbers with = 10, p = 3, and emin = -

98. The numbers x = 6.87 × 10-97 and y = 6.81 × 10-97 appear to be
perfectly ordinary floating-point numbers, which are more than a factor of

10 larger than the smallest floating-point number 1.00 × 10-98. They have a
strange property, however: x y = 0 even though x y! The reason is that

x - y = .06 × 10 -97 = 6.0 × 10-99 is too small to be represented as a

normalized number, and so must be flushed to zero. How important is it to
preserve the property

(10) x = y x - y = 0 ?

It's very easy to imagine writing the code fragment, if (x y) then z = 1/(x-

y), and much later having a program fail due to a spurious division by zero.

Tracking down bugs like this is frustrating and time consuming. On a more
philosophical level, computer science textbooks often point out that even

though it is currently impractical to prove large programs correct, designing
programs with the idea of proving them often results in better code. For

example, introducing invariants is quite useful, even if they aren't going to
be used as part of a proof. Floating-point code is just like any other code: it

helps to have provable facts on which to depend. For example, when
analyzing formula (6), it was very helpful to know that x/2 < y < 2x x y

= x - y. Similarly, knowing that (10) is true makes writing reliable floating-

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1403
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#932

point code easier. If it is only true for most numbers, it cannot be used to

prove anything.

The IEEE standard uses denormalized18 numbers, which guarantee (10), as
well as other useful relations. They are the most controversial part of the

standard and probably accounted for the long delay in getting 754 approved.
Most high performance hardware that claims to be IEEE compatible does not

support denormalized numbers directly, but rather traps when consuming or
producing denormals, and leaves it to software to simulate the IEEE

standard.19 The idea behind denormalized numbers goes back to Goldberg
[1967] and is very simple. When the exponent is emin, the significand does

not have to be normalized, so that when = 10, p = 3 and emin = -98, 1.00

× 10-98 is no longer the smallest floating-point number, because 0.98 × 10-

98 is also a floating-point number.

There is a small snag when = 2 and a hidden bit is being used, since a

number with an exponent of emin will always have a significand greater than
or equal to 1.0 because of the implicit leading bit. The solution is similar to

that used to represent 0, and is summarized in TABLE D-2. The exponent
emin is used to represent denormals. More formally, if the bits in the
significand field are b1, b2, ..., bp -1, and the value of the exponent is e, then

when e > emin - 1, the number being represented is 1.b1b2...bp - 1 × 2e
whereas when e = emin - 1, the number being represented is 0.b1b2...bp - 1 ×

2e + 1. The +1 in the exponent is needed because denormals have an

exponent of emin, not emin - 1.

Recall the example of = 10, p = 3, emin = -98, x = 6.87 × 10-97 and
y = 6.81 × 10-97 presented at the beginning of this section. With denormals,
x - y does not flush to zero but is instead represented by the denormalized

number .6 × 10-98. This behavior is called gradual underflow. It is easy to
verify that (10) always holds when using gradual underflow.

FIGURE D-2 Flush To Zero Compared With Gradual Underflow

FIGURE D-2 illustrates denormalized numbers. The top number line in the
figure shows normalized floating-point numbers. Notice the gap between 0

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#935
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#932
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#937
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#878
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#932
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#943

and the smallest normalized number . If the result of a floating-point

calculation falls into this gulf, it is flushed to zero. The bottom number line

shows what happens when denormals are added to the set of floating-point
numbers. The "gulf" is filled in, and when the result of a calculation is less

than , it is represented by the nearest denormal. When denormalized

numbers are added to the number line, the spacing between adjacent
floating-point numbers varies in a regular way: adjacent spacings are either

the same length or differ by a factor of . Without denormals, the

spacing abruptly changes from to , which is a factor of ,

rather than the orderly change by a factor of . Because of this, many

algorithms that can have large relative error for normalized numbers close to
the underflow threshold are well-behaved in this range when gradual

underflow is used.

Without gradual underflow, the simple expression x - y can have a very large

relative error for normalized inputs, as was seen above for x = 6.87 × 10-97
and y = 6.81 × 10-97. Large relative errors can happen even without

cancellation, as the following example shows [Demmel 1984]. Consider
dividing two complex numbers, a + ib and c + id. The obvious formula

· i

suffers from the problem that if either component of the denominator c + id

is larger than , the formula will overflow, even though the final result

may be well within range. A better method of computing the quotients is to
use Smith's formula:

(11)

Applying Smith's formula to (2 · 10-98 + i10-98)/(4 · 10-98 + i(2 · 10-98)) gives

the correct answer of 0.5 with gradual underflow. It yields 0.4 with flush to
zero, an error of 100 ulps. It is typical for denormalized numbers to

guarantee error bounds for arguments all the way down to 1.0 x .

Exceptions, Flags and Trap Handlers

When an exceptional condition like division by zero or overflow occurs in
IEEE arithmetic, the default is to deliver a result and continue. Typical of the

default results are NaN for 0/0 and , and for 1/0 and overflow. The

preceding sections gave examples where proceeding from an exception with
these default values was the reasonable thing to do. When any exception

occurs, a status flag is also set. Implementations of the IEEE standard are
required to provide users with a way to read and write the status flags. The

flags are "sticky" in that once set, they remain set until explicitly cleared.
Testing the flags is the only way to distinguish 1/0, which is a genuine

infinity from an overflow.

Sometimes continuing execution in the face of exception conditions is not
appropriate. The section Infinity gave the example of x/(x2 + 1). When x >

, the denominator is infinite, resulting in a final answer of 0, which is

totally wrong. Although for this formula the problem can be solved by
rewriting it as 1/(x + x-1), rewriting may not always solve the problem. The

IEEE standard strongly recommends that implementations allow trap
handlers to be installed. Then when an exception occurs, the trap handler is

called instead of setting the flag. The value returned by the trap handler will
be used as the result of the operation. It is the responsibility of the trap

handler to either clear or set the status flag; otherwise, the value of the flag
is allowed to be undefined.

The IEEE standard divides exceptions into 5 classes: overflow, underflow,
division by zero, invalid operation and inexact. There is a separate status

flag for each class of exception. The meaning of the first three exceptions is
self-evident. Invalid operation covers the situations listed in TABLE D-3, and

any comparison that involves a NaN. The default result of an operation that
causes an invalid exception is to return a NaN, but the converse is not true.

When one of the operands to an operation is a NaN, the result is a NaN but
no invalid exception is raised unless the operation also satisfies one of the

conditions in TABLE D-3.20

TABLE D-4 Exceptions in IEEE 754*

Exception Result when traps disabled Argument to trap handler

overflow ± or ±xmax round(x2
-

)

underflow 0, or denormal round(x2)

divide by zero ± operands

invalid NaN operands

inexact round(x) round(x)

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#918
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5001
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5001
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5385

*x is the exact result of the operation, = 192 for single precision, 1536 for

double, and xmax = 1.11 ...11 × .

The inexact exception is raised when the result of a floating-point operation
is not exact. In the = 10, p = 3 system, 3.5 4.2 = 14.7 is exact, but

3.5 4.3 = 15.0 is not exact (since 3.5 · 4.3 = 15.05), and raises an
inexact exception. Binary to Decimal Conversion discusses an algorithm that

uses the inexact exception. A summary of the behavior of all five exceptions
is given in TABLE D-4.

There is an implementation issue connected with the fact that the inexact

exception is raised so often. If floating-point hardware does not have flags of

its own, but instead interrupts the operating system to signal a floating-point
exception, the cost of inexact exceptions could be prohibitive. This cost can

be avoided by having the status flags maintained by software. The first time
an exception is raised, set the software flag for the appropriate class, and

tell the floating-point hardware to mask off that class of exceptions. Then all
further exceptions will run without interrupting the operating system. When

a user resets that status flag, the hardware mask is re-enabled.

Trap Handlers

One obvious use for trap handlers is for backward compatibility. Old codes

that expect to be aborted when exceptions occur can install a trap handler
that aborts the process. This is especially useful for codes with a loop like

do S until (x >= 100). Since comparing a NaN to a number with <, , >, ,

or = (but not) always returns false, this code will go into an infinite loop if

x ever becomes a NaN.

There is a more interesting use for trap handlers that comes up when

computing products such as that could potentially overflow. One

solution is to use logarithms, and compute exp instead. The problem
with this approach is that it is less accurate, and that it costs more than the

simple expression , even if there is no overflow. There is another solution
using trap handlers called over/underflow counting that avoids both of these

problems [Sterbenz 1974].

The idea is as follows. There is a global counter initialized to zero. Whenever

the partial product overflows for some k, the trap handler

increments the counter by one and returns the overflowed quantity with the

exponent wrapped around. In IEEE 754 single precision, emax = 127, so if
pk = 1.45 × 2130, it will overflow and cause the trap handler to be called,

which will wrap the exponent back into range, changing pk to 1.45 × 2-62

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1251
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5585

(see below). Similarly, if pk underflows, the counter would be decremented,

and negative exponent would get wrapped around into a positive one. When
all the multiplications are done, if the counter is zero then the final product

is pn. If the counter is positive, the product overflowed, if the counter is
negative, it underflowed. If none of the partial products are out of range, the

trap handler is never called and the computation incurs no extra cost. Even
if there are over/underflows, the calculation is more accurate than if it had

been computed with logarithms, because each pk was computed from pk - 1
using a full precision multiply. Barnett [1987] discusses a formula where the

full accuracy of over/underflow counting turned up an error in earlier tables
of that formula.

IEEE 754 specifies that when an overflow or underflow trap handler is called,
it is passed the wrapped-around result as an argument. The definition of

wrapped-around for overflow is that the result is computed as if to infinite
precision, then divided by 2 , and then rounded to the relevant precision.

For underflow, the result is multiplied by 2 . The exponent is 192 for
single precision and 1536 for double precision. This is why 1.45 x 2130 was

transformed into 1.45 × 2-62 in the example above.

Rounding Modes

In the IEEE standard, rounding occurs whenever an operation has a result

that is not exact, since (with the exception of binary decimal conversion)
each operation is computed exactly and then rounded. By default, rounding

means round toward nearest. The standard requires that three other
rounding modes be provided, namely round toward 0, round toward + ,

and round toward - . When used with the convert to integer operation,
round toward - causes the convert to become the floor function, while

round toward + is ceiling. The rounding mode affects overflow, because
when round toward 0 or round toward - is in effect, an overflow of positive

magnitude causes the default result to be the largest representable number,
not + . Similarly, overflows of negative magnitude will produce the largest

negative number when round toward + or round toward 0 is in effect.

One application of rounding modes occurs in interval arithmetic (another is

mentioned in Binary to Decimal Conversion). When using interval arithmetic,

the sum of two numbers x and y is an interval , where is x y rounded

toward - , and is x y rounded toward + . The exact result of the

addition is contained within the interval . Without rounding modes,

interval arithmetic is usually implemented by computing and

, where is machine epsilon.21 This results in overestimates for
the size of the intervals. Since the result of an operation in interval

arithmetic is an interval, in general the input to an operation will also be an

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1251
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#753

interval. If two intervals , and , are added, the result is , where

is with the rounding mode set to round toward - , and is with the
rounding mode set to round toward + .

When a floating-point calculation is performed using interval arithmetic, the
final answer is an interval that contains the exact result of the calculation.

This is not very helpful if the interval turns out to be large (as it often does),
since the correct answer could be anywhere in that interval. Interval

arithmetic makes more sense when used in conjunction with a multiple
precision floating-point package. The calculation is first performed with some

precision p. If interval arithmetic suggests that the final answer may be
inaccurate, the computation is redone with higher and higher precisions until

the final interval is a reasonable size.

Flags

The IEEE standard has a number of flags and modes. As discussed above,

there is one status flag for each of the five exceptions: underflow, overflow,
division by zero, invalid operation and inexact. There are four rounding

modes: round toward nearest, round toward + , round toward 0, and
round toward - . It is strongly recommended that there be an enable mode

bit for each of the five exceptions. This section gives some simple examples

of how these modes and flags can be put to good use. A more sophisticated
example is discussed in the section Binary to Decimal Conversion.

Consider writing a subroutine to compute xn, where n is an integer. When

n > 0, a simple routine like

PositivePower(x,n) {

 while (n is even) {

 x = x*x

 n = n/2

 }

 u = x

 while (true) {

 n = n/2

 if (n==0) return u

 x = x*x

 if (n is odd) u = u*x

 }

If n < 0, then a more accurate way to compute xn is not to call

PositivePower(1/x, -n) but rather 1/PositivePower(x, -n), because the first
expression multiplies n quantities each of which have a rounding error from

the division (i.e., 1/x). In the second expression these are exact (i.e., x),

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1251

and the final division commits just one additional rounding error.

Unfortunately, these is a slight snag in this strategy. If PositivePower(x, -n)

underflows, then either the underflow trap handler will be called, or else the

underflow status flag will be set. This is incorrect, because if x-n underflows,
then xn will either overflow or be in range.22 But since the IEEE standard

gives the user access to all the flags, the subroutine can easily correct for
this. It simply turns off the overflow and underflow trap enable bits and

saves the overflow and underflow status bits. It then computes

1/PositivePower(x, -n). If neither the overflow nor underflow status bit is set,

it restores them together with the trap enable bits. If one of the status bits
is set, it restores the flags and redoes the calculation using

PositivePower(1/x, -n), which causes the correct exceptions to occur.

Another example of the use of flags occurs when computing arccos via the

formula

arccos x = 2 arctan .

If arctan() evaluates to /2, then arccos(-1) will correctly evaluate to
2·arctan() = , because of infinity arithmetic. However, there is a small
snag, because the computation of (1 - x)/(1 + x) will cause the divide by

zero exception flag to be set, even though arccos(-1) is not exceptional. The
solution to this problem is straightforward. Simply save the value of the

divide by zero flag before computing arccos, and then restore its old value
after the computation.

Systems Aspects

The design of almost every aspect of a computer system requires knowledge
about floating-point. Computer architectures usually have floating-point

instructions, compilers must generate those floating-point instructions, and
the operating system must decide what to do when exception conditions are

raised for those floating-point instructions. Computer system designers
rarely get guidance from numerical analysis texts, which are typically aimed

at users and writers of software, not at computer designers. As an example
of how plausible design decisions can lead to unexpected behavior, consider

the following BASIC program.

q = 3.0/7.0

if q = 3.0/7.0 then print "Equal":

 else print "Not Equal"

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#6189

When compiled and run using Borland's Turbo Basic on an IBM PC, the

program prints Not Equal! This example will be analyzed in the next section

Incidentally, some people think that the solution to such anomalies is never
to compare floating-point numbers for equality, but instead to consider them
equal if they are within some error bound E. This is hardly a cure-all because

it raises as many questions as it answers. What should the value of E be? If
x < 0 and y > 0 are within E, should they really be considered to be equal,

even though they have different signs? Furthermore, the relation defined by
this rule, a ~ b |a - b| < E, is not an equivalence relation because a ~ b
and b ~ c does not imply that a ~ c.

Instruction Sets

It is quite common for an algorithm to require a short burst of higher

precision in order to produce accurate results. One example occurs in the

quadratic formula ()/2a. As discussed in the section Proof of

Theorem 4, when b2 4ac, rounding error can contaminate up to half the

digits in the roots computed with the quadratic formula. By performing the
subcalculation of b2 - 4ac in double precision, half the double precision bits of

the root are lost, which means that all the single precision bits are
preserved.

The computation of b2 - 4ac in double precision when each of the quantities

a, b, and c are in single precision is easy if there is a multiplication

instruction that takes two single precision numbers and produces a double
precision result. In order to produce the exactly rounded product of two p-
digit numbers, a multiplier needs to generate the entire 2p bits of product,

although it may throw bits away as it proceeds. Thus, hardware to compute
a double precision product from single precision operands will normally be

only a little more expensive than a single precision multiplier, and much
cheaper than a double precision multiplier. Despite this, modern instruction

sets tend to provide only instructions that produce a result of the same
precision as the operands.23

If an instruction that combines two single precision operands to produce a

double precision product was only useful for the quadratic formula, it
wouldn't be worth adding to an instruction set. However, this instruction has

many other uses. Consider the problem of solving a system of linear

equations,

a11x1 + a12x2 + · · · + a1nxn= b1

a21x1 + a22x2 + · · · + a2nxn= b2

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1224
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1224
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#12039

· · ·
an1x1 + an2x2 + · · ·+ annxn= bn

which can be written in matrix form as Ax = b, where

Suppose that a solution x(1) is computed by some method, perhaps Gaussian
elimination. There is a simple way to improve the accuracy of the result

called iterative improvement. First compute

(12) = Ax(1) - b

and then solve the system

(13) Ay =

Note that if x(1) is an exact solution, then is the zero vector, as is y. In
general, the computation of and y will incur rounding error, so Ay
 Ax(1) - b = A(x(1) - x), where x is the (unknown) true solution. Then y x(1)

- x, so an improved estimate for the solution is

(14) x(2) = x(1) - y

The three steps (12), (13), and (14) can be repeated, replacing x(1) with x(2),
and x(2) with x(3). This argument that x(i + 1) is more accurate than x(i) is only

informal. For more information, see [Golub and Van Loan 1989].

When performing iterative improvement, is a vector whose elements are
the difference of nearby inexact floating-point numbers, and so can suffer

from catastrophic cancellation. Thus iterative improvement is not very useful
unless = Ax(1) - b is computed in double precision. Once again, this is a

case of computing the product of two single precision numbers (A and x(1)),

where the full double precision result is needed.

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#11302
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#11305
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#11308

To summarize, instructions that multiply two floating-point numbers and

return a product with twice the precision of the operands make a useful
addition to a floating-point instruction set. Some of the implications of this

for compilers are discussed in the next section.

Languages and Compilers

The interaction of compilers and floating-point is discussed in Farnum

[1988], and much of the discussion in this section is taken from that paper.

Ambiguity

Ideally, a language definition should define the semantics of the language

precisely enough to prove statements about programs. While this is usually
true for the integer part of a language, language definitions often have a

large grey area when it comes to floating-point. Perhaps this is due to the
fact that many language designers believe that nothing can be proven about

floating-point, since it entails rounding error. If so, the previous sections
have demonstrated the fallacy in this reasoning. This section discusses some

common grey areas in language definitions, including suggestions about how
to deal with them.

Remarkably enough, some languages don't clearly specify that if x is a

floating-point variable (with say a value of 3.0/10.0), then every occurrence

of (say) 10.0*x must have the same value. For example Ada, which is based

on Brown's model, seems to imply that floating-point arithmetic only has to

satisfy Brown's axioms, and thus expressions can have one of many possible
values. Thinking about floating-point in this fuzzy way stands in sharp

contrast to the IEEE model, where the result of each floating-point operation

is precisely defined. In the IEEE model, we can prove that (3.0/10.0)*10.0

evaluates to 3 (Theorem 7). In Brown's model, we cannot.

Another ambiguity in most language definitions concerns what happens on

overflow, underflow and other exceptions. The IEEE standard precisely
specifies the behavior of exceptions, and so languages that use the standard

as a model can avoid any ambiguity on this point.

Another grey area concerns the interpretation of parentheses. Due to

roundoff errors, the associative laws of algebra do not necessarily hold for

floating-point numbers. For example, the expression (x+y)+z has a totally

different answer than x+(y+z) when x = 1030, y = -1030 and z = 1 (it is 1 in

the former case, 0 in the latter). The importance of preserving parentheses

cannot be overemphasized. The algorithms presented in theorems 3, 4 and 6
all depend on it. For example, in Theorem 6, the formula xh = mx - (mx - x)

would reduce to xh = x if it weren't for parentheses, thereby destroying the

entire algorithm. A language definition that does not require parentheses to
be honored is useless for floating-point calculations.

Subexpression evaluation is imprecisely defined in many languages. Suppose

that ds is double precision, but x and y are single precision. Then in the

expression ds + x*y is the product performed in single or double precision?

Another example: in x + m/n where m and n are integers, is the division an

integer operation or a floating-point one? There are two ways to deal with
this problem, neither of which is completely satisfactory. The first is to

require that all variables in an expression have the same type. This is the
simplest solution, but has some drawbacks. First of all, languages like Pascal

that have subrange types allow mixing subrange variables with integer
variables, so it is somewhat bizarre to prohibit mixing single and double

precision variables. Another problem concerns constants. In the expression

0.1*x, most languages interpret 0.1 to be a single precision constant. Now

suppose the programmer decides to change the declaration of all the

floating-point variables from single to double precision. If 0.1 is still treated
as a single precision constant, then there will be a compile time error. The

programmer will have to hunt down and change every floating-point
constant.

The second approach is to allow mixed expressions, in which case rules for

subexpression evaluation must be provided. There are a number of guiding
examples. The original definition of C required that every floating-point

expression be computed in double precision [Kernighan and Ritchie 1978].
This leads to anomalies like the example at the beginning of this section. The

expression 3.0/7.0 is computed in double precision, but if q is a single-

precision variable, the quotient is rounded to single precision for storage.
Since 3/7 is a repeating binary fraction, its computed value in double

precision is different from its stored value in single precision. Thus the
comparison q = 3/7 fails. This suggests that computing every expression in

the highest precision available is not a good rule.

Another guiding example is inner products. If the inner product has

thousands of terms, the rounding error in the sum can become substantial.
One way to reduce this rounding error is to accumulate the sums in double

precision (this will be discussed in more detail in the section Optimizers). If d

is a double precision variable, and x[] and y[] are single precision arrays,

then the inner product loop will look like d = d + x[i]*y[i]. If the

multiplication is done in single precision, than much of the advantage of

double precision accumulation is lost, because the product is truncated to
single precision just before being added to a double precision variable.

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1070

A rule that covers both of the previous two examples is to compute an

expression in the highest precision of any variable that occurs in that

expression. Then q = 3.0/7.0 will be computed entirely in single precision24

and will have the boolean value true, whereas d = d + x[i]*y[i] will be

computed in double precision, gaining the full advantage of double precision

accumulation. However, this rule is too simplistic to cover all cases cleanly.

If dx and dy are double precision variables, the expression y = x + single(dx-

dy) contains a double precision variable, but performing the sum in double

precision would be pointless, because both operands are single precision, as

is the result.

A more sophisticated subexpression evaluation rule is as follows. First assign

each operation a tentative precision, which is the maximum of the precisions
of its operands. This assignment has to be carried out from the leaves to the

root of the expression tree. Then perform a second pass from the root to the
leaves. In this pass, assign to each operation the maximum of the tentative

precision and the precision expected by the parent. In the case of

q = 3.0/7.0, every leaf is single precision, so all the operations are done in

single precision. In the case of d = d + x[i]*y[i], the tentative precision of the

multiply operation is single precision, but in the second pass it gets

promoted to double precision, because its parent operation expects a double

precision operand. And in y = x + single(dx-dy), the addition is done in single

precision. Farnum [1988] presents evidence that this algorithm in not

difficult to implement.

The disadvantage of this rule is that the evaluation of a subexpression
depends on the expression in which it is embedded. This can have some

annoying consequences. For example, suppose you are debugging a
program and want to know the value of a subexpression. You cannot simply

type the subexpression to the debugger and ask it to be evaluated, because
the value of the subexpression in the program depends on the expression it

is embedded in. A final comment on subexpressions: since converting

decimal constants to binary is an operation, the evaluation rule also affects
the interpretation of decimal constants. This is especially important for

constants like 0.1 which are not exactly representable in binary.

Another potential grey area occurs when a language includes exponentiation
as one of its built-in operations. Unlike the basic arithmetic operations, the

value of exponentiation is not always obvious [Kahan and Coonen 1982]. If

** is the exponentiation operator, then (-3)**3 certainly has the value -27.

However, (-3.0)**3.0 is problematical. If the ** operator checks for integer

powers, it would compute (-3.0)**3.0 as -3.03 = -27. On the other hand, if

the formula xy = eylogx is used to define ** for real arguments, then

depending on the log function, the result could be a NaN (using the natural

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1054

definition of log(x) = NaN when x < 0). If the FORTRAN CLOG function is used

however, then the answer will be -27, because the ANSI FORTRAN standard

defines CLOG(-3.0) to be i + log 3 [ANSI 1978]. The programming language

Ada avoids this problem by only defining exponentiation for integer powers,
while ANSI FORTRAN prohibits raising a negative number to a real power.

In fact, the FORTRAN standard says that

Any arithmetic operation whose result is not mathematically defined is
prohibited...

Unfortunately, with the introduction of ± by the IEEE standard, the
meaning of not mathematically defined is no longer totally clear cut. One
definition might be to use the method shown in section Infinity. For
example, to determine the value of ab, consider non-constant analytic

functions f and g with the property that f(x) a and g(x) b as x 0. If
f(x)g(x) always approaches the same limit, then this should be the value of ab.

This definition would set 2 = which seems quite reasonable. In the case
of 1.0 , when f(x) = 1 and g(x) = 1/x the limit approaches 1, but when f(x)
= 1 - x and g(x) = 1/x the limit is e-1. So 1.0 , should be a NaN. In the case

of 00, f(x)g(x) = eg(x)log f(x). Since f and g are analytic and take on the value 0

at 0, f(x) = a1x1 + a2x2 + ... and g(x) = b1x1 + b2x2 + Thus limx 0g(x) log

f(x) = limx 0x log(x(a1 + a2x + ...)) = limx 0x log(a1x) = 0. So f(x)g(x) e0
= 1 for all f and g, which means that 00 = 1.25 26 Using this definition would

unambiguously define the exponential function for all arguments, and in

particular would define (-3.0)**3.0 to be -27.

The IEEE Standard

The section The IEEE Standard," discussed many of the features of the IEEE

standard. However, the IEEE standard says nothing about how these
features are to be accessed from a programming language. Thus, there is

usually a mismatch between floating-point hardware that supports the
standard and programming languages like C, Pascal or FORTRAN. Some of

the IEEE capabilities can be accessed through a library of subroutine calls.
For example the IEEE standard requires that square root be exactly rounded,

and the square root function is often implemented directly in hardware. This
functionality is easily accessed via a library square root routine. However,

other aspects of the standard are not so easily implemented as subroutines.
For example, most computer languages specify at most two floating-point

types, while the IEEE standard has four different precisions (although the
recommended configurations are single plus single-extended or single,

double, and double-extended). Infinity provides another example. Constants
to represent ± could be supplied by a subroutine. But that might make

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#918
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1061
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1062
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#799

them unusable in places that require constant expressions, such as the

initializer of a constant variable.

A more subtle situation is manipulating the state associated with a
computation, where the state consists of the rounding modes, trap enable

bits, trap handlers and exception flags. One approach is to provide
subroutines for reading and writing the state. In addition, a single call that

can atomically set a new value and return the old value is often useful. As
the examples in the section Flags show, a very common pattern of modifying

IEEE state is to change it only within the scope of a block or subroutine.
Thus the burden is on the programmer to find each exit from the block, and

make sure the state is restored. Language support for setting the state

precisely in the scope of a block would be very useful here. Modula-3 is one
language that implements this idea for trap handlers [Nelson 1991].

There are a number of minor points that need to be considered when
implementing the IEEE standard in a language. Since x - x = +0 for all x,27

(+0) - (+0) = +0. However, -(+0) = -0, thus -x should not be defined as 0 -

 x. The introduction of NaNs can be confusing, because a NaN is never equal
to any other number (including another NaN), so x = x is no longer always

true. In fact, the expression x x is the simplest way to test for a NaN if the

IEEE recommended function Isnan is not provided. Furthermore, NaNs are

unordered with respect to all other numbers, so x y cannot be defined as

not x > y. Since the introduction of NaNs causes floating-point numbers to

become partially ordered, a compare function that returns one of <, =, >, or

unordered can make it easier for the programmer to deal with comparisons.

Although the IEEE standard defines the basic floating-point operations to

return a NaN if any operand is a NaN, this might not always be the best
definition for compound operations. For example when computing the

appropriate scale factor to use in plotting a graph, the maximum of a set of
values must be computed. In this case it makes sense for the max operation

to simply ignore NaNs.

Finally, rounding can be a problem. The IEEE standard defines rounding very

precisely, and it depends on the current value of the rounding modes. This
sometimes conflicts with the definition of implicit rounding in type

conversions or the explicit round function in languages. This means that

programs which wish to use IEEE rounding can't use the natural language

primitives, and conversely the language primitives will be inefficient to
implement on the ever increasing number of IEEE machines.

Optimizers

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#989
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1067

Compiler texts tend to ignore the subject of floating-point. For example Aho

et al. [1986] mentions replacing x/2.0 with x*0.5, leading the reader to

assume that x/10.0 should be replaced by 0.1*x. However, these two

expressions do not have the same semantics on a binary machine, because
0.1 cannot be represented exactly in binary. This textbook also suggests

replacing x*y-x*z by x*(y-z), even though we have seen that these two

expressions can have quite different values when y z. Although it does

qualify the statement that any algebraic identity can be used when
optimizing code by noting that optimizers should not violate the language

definition, it leaves the impression that floating-point semantics are not very
important. Whether or not the language standard specifies that parenthesis

must be honored, (x+y)+z can have a totally different answer than x+(y+z), as

discussed above. There is a problem closely related to preserving
parentheses that is illustrated by the following code

eps = 1;

do eps = 0.5*eps; while (eps + 1 > 1);

:

This is designed to give an estimate for machine epsilon. If an optimizing
compiler notices that eps + 1 > 1 eps > 0, the program will be changed

completely. Instead of computing the smallest number x such that 1 x is

still greater than x (x e), it will compute the largest number x for

which x/2 is rounded to 0 (x). Avoiding this kind of "optimization" is

so important that it is worth presenting one more very useful algorithm that
is totally ruined by it.

Many problems, such as numerical integration and the numerical solution of
differential equations involve computing sums with many terms. Because

each addition can potentially introduce an error as large as .5 ulp, a sum
involving thousands of terms can have quite a bit of rounding error. A simple

way to correct for this is to store the partial summand in a double precision
variable and to perform each addition using double precision. If the

calculation is being done in single precision, performing the sum in double
precision is easy on most computer systems. However, if the calculation is

already being done in double precision, doubling the precision is not so
simple. One method that is sometimes advocated is to sort the numbers and

add them from smallest to largest. However, there is a much more efficient

method which dramatically improves the accuracy of sums, namely

Theorem 8 (Kahan Summation Formula)

Suppose that is computed using the following algorithm

S = X[1];

C = 0;

for j = 2 to N {

 Y = X[j] - C;

 T = S + Y;

 C = (T - S) - Y;

 S = T;

}

Then the computed sum S is equal to where .

Using the naive formula , the computed sum is equal to where |

j| < (n - j)e. Comparing this with the error in the Kahan summation formula

shows a dramatic improvement. Each summand is perturbed by only 2e,

instead of perturbations as large as ne in the simple formula. Details are in,

Errors In Summation.

An optimizer that believed floating-point arithmetic obeyed the laws of
algebra would conclude that C = [T-S] - Y = [(S+Y)-S] - Y = 0, rendering

the algorithm completely useless. These examples can be summarized by

saying that optimizers should be extremely cautious when applying algebraic
identities that hold for the mathematical real numbers to expressions

involving floating-point variables.

Another way that optimizers can change the semantics of floating-point code

involves constants. In the expression 1.0E-40*x, there is an implicit decimal

to binary conversion operation that converts the decimal number to a binary

constant. Because this constant cannot be represented exactly in binary, the
inexact exception should be raised. In addition, the underflow flag should to

be set if the expression is evaluated in single precision. Since the constant is
inexact, its exact conversion to binary depends on the current value of the

IEEE rounding modes. Thus an optimizer that converts 1.0E-40 to binary at

compile time would be changing the semantics of the program. However,

constants like 27.5 which are exactly representable in the smallest available
precision can be safely converted at compile time, since they are always

exact, cannot raise any exception, and are unaffected by the rounding
modes. Constants that are intended to be converted at compile time should

be done with a constant declaration, such as const pi = 3.14159265.

Common subexpression elimination is another example of an optimization

that can change floating-point semantics, as illustrated by the following code

C = A*B;

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1262

RndMode = Up

D = A*B;

Although A*B can appear to be a common subexpression, it is not because

the rounding mode is different at the two evaluation sites. Three final

examples: x = x cannot be replaced by the boolean constant true, because it

fails when x is a NaN; -x = 0 - x fails for x = +0; and x < y is not the

opposite of x y, because NaNs are neither greater than nor less than

ordinary floating-point numbers.

Despite these examples, there are useful optimizations that can be done on

floating-point code. First of all, there are algebraic identities that are valid
for floating-point numbers. Some examples in IEEE arithmetic are x + y = y

+ x, 2 × x = x + x, 1 × x = x, and 0.5× x = x/2. However, even these

simple identities can fail on a few machines such as CDC and Cray
supercomputers. Instruction scheduling and in-line procedure substitution

are two other potentially useful optimizations.28

As a final example, consider the expression dx = x*y, where x and y are single

precision variables, and dx is double precision. On machines that have an

instruction that multiplies two single precision numbers to produce a double

precision number, dx = x*y can get mapped to that instruction, rather than

compiled to a series of instructions that convert the operands to double and

then perform a double to double precision multiply.

Some compiler writers view restrictions which prohibit converting (x + y) + z
to x + (y + z) as irrelevant, of interest only to programmers who use

unportable tricks. Perhaps they have in mind that floating-point numbers

model real numbers and should obey the same laws that real numbers do.
The problem with real number semantics is that they are extremely
expensive to implement. Every time two n bit numbers are multiplied, the

product will have 2n bits. Every time two n bit numbers with widely spaced

exponents are added, the number of bits in the sum is n + the space

between the exponents. The sum could have up to (emax - emin) + n bits, or
roughly 2·emax + n bits. An algorithm that involves thousands of operations

(such as solving a linear system) will soon be operating on numbers with
many significant bits, and be hopelessly slow. The implementation of library

functions such as sin and cos is even more difficult, because the value of
these transcendental functions aren't rational numbers. Exact integer

arithmetic is often provided by lisp systems and is handy for some problems.

However, exact floating-point arithmetic is rarely useful.

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1103

The fact is that there are useful algorithms (like the Kahan summation
formula) that exploit the fact that (x + y) + z x + (y + z), and work

whenever the bound

a b = (a + b)(1 +)

holds (as well as similar bounds for -, × and /). Since these bounds hold for
almost all commercial hardware, it would be foolish for numerical

programmers to ignore such algorithms, and it would be irresponsible for
compiler writers to destroy these algorithms by pretending that floating-

point variables have real number semantics.

Exception Handling

The topics discussed up to now have primarily concerned systems

implications of accuracy and precision. Trap handlers also raise some
interesting systems issues. The IEEE standard strongly recommends that

users be able to specify a trap handler for each of the five classes of
exceptions, and the section Trap Handlers, gave some applications of user

defined trap handlers. In the case of invalid operation and division by zero
exceptions, the handler should be provided with the operands, otherwise,

with the exactly rounded result. Depending on the programming language

being used, the trap handler might be able to access other variables in the
program as well. For all exceptions, the trap handler must be able to identify

what operation was being performed and the precision of its destination.

The IEEE standard assumes that operations are conceptually serial and that
when an interrupt occurs, it is possible to identify the operation and its

operands. On machines which have pipelining or multiple arithmetic units,
when an exception occurs, it may not be enough to simply have the trap

handler examine the program counter. Hardware support for identifying
exactly which operation trapped may be necessary.

Another problem is illustrated by the following program fragment.

x = y*z;

z = x*w;

a = b + c;

d = a/x;

Suppose the second multiply raises an exception, and the trap handler wants

to use the value of a. On hardware that can do an add and multiply in

parallel, an optimizer would probably move the addition operation ahead of

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#979

the second multiply, so that the add can proceed in parallel with the first

multiply. Thus when the second multiply traps, a = b + c has already been

executed, potentially changing the result of a. It would not be reasonable for

a compiler to avoid this kind of optimization, because every floating-point
operation can potentially trap, and thus virtually all instruction scheduling

optimizations would be eliminated. This problem can be avoided by
prohibiting trap handlers from accessing any variables of the program

directly. Instead, the handler can be given the operands or result as an
argument.

But there are still problems. In the fragment

x = y*z;

z = a + b;

the two instructions might well be executed in parallel. If the multiply traps,

its argument z could already have been overwritten by the addition,

especially since addition is usually faster than multiply. Computer systems
that support the IEEE standard must provide some way to save the value of

z, either in hardware or by having the compiler avoid such a situation in the

first place.

W. Kahan has proposed using presubstitution instead of trap handlers to
avoid these problems. In this method, the user specifies an exception and

the value he wants to be used as the result when the exception occurs. As
an example, suppose that in code for computing (sin x)/x, the user decides

that x = 0 is so rare that it would improve performance to avoid a test for x
= 0, and instead handle this case when a 0/0 trap occurs. Using IEEE trap

handlers, the user would write a handler that returns a value of 1 and install
it before computing sin x/x. Using presubstitution, the user would specify

that when an invalid operation occurs, the value 1 should be used. Kahan

calls this presubstitution, because the value to be used must be specified
before the exception occurs. When using trap handlers, the value to be

returned can be computed when the trap occurs.

The advantage of presubstitution is that it has a straightforward hardware

implementation.29 As soon as the type of exception has been determined, it
can be used to index a table which contains the desired result of the

operation. Although presubstitution has some attractive attributes, the
widespread acceptance of the IEEE standard makes it unlikely to be widely

implemented by hardware manufacturers.

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1124

The Details

A number of claims have been made in this paper concerning properties of
floating-point arithmetic. We now proceed to show that floating-point is not

black magic, but rather is a straightforward subject whose claims can be

verified mathematically. This section is divided into three parts. The first part
presents an introduction to error analysis, and provides the details for the

section Rounding Error. The second part explores binary to decimal
conversion, filling in some gaps from the section The IEEE Standard. The

third part discusses the Kahan summation formula, which was used as an
example in the section Systems Aspects.

Rounding Error

In the discussion of rounding error, it was stated that a single guard digit is
enough to guarantee that addition and subtraction will always be accurate

(Theorem 2). We now proceed to verify this fact. Theorem 2 has two parts,
one for subtraction and one for addition. The part for subtraction is

Theorem 9

If x and y are positive floating-point numbers in a format with parameters
and p, and if subtraction is done with p + 1 digits (i.e. one guard digit), then

the relative rounding error in the result is less than

e 2e.

Proof

Interchange x and y if necessary so that x > y. It is also harmless to scale x
and y so that x is represented by x0.x1 ... xp - 1 × 0. If y is represented as

y0.y1 ... yp-1, then the difference is exact. If y is represented as 0.y1 ... yp,

then the guard digit ensures that the computed difference will be the exact
difference rounded to a floating-point number, so the rounding error is at
most e. In general, let y = 0.0 ... 0yk + 1 ... yk + p and be y truncated to

p + 1 digits. Then

(15) y - < (- 1)(-p - 1 + -p - 2 + ... + -p - k).

From the definition of guard digit, the computed value of x - y is x -

rounded to be a floating-point number, that is, (x -) + , where the

rounding error satisfies
(16) | | (/2) -p.

The exact difference is x - y, so the error is (x - y) - (x - +) = - y + .

There are three cases. If x - y 1 then the relative error is bounded by

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#680
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#799
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1015

(17) -p [(- 1)(-1 + ... + -k) + /2] < -p(1 + /2) .

Secondly, if x - < 1, then = 0. Since the smallest that x - y can be is

> (- 1)(-1 + ... + -k), where = - 1,

in this case the relative error is bounded by

(18) .

The final case is when x - y < 1 but x - 1. The only way this could
happen is if x - = 1, in which case = 0. But if = 0, then (18) applies, so

that again the relative error is bounded by -p < -p(1 + /2). z

When = 2, the bound is exactly 2e, and this bound is achieved for x= 1 +

22 - p and y = 21 - p - 21 - 2p in the limit as p . When adding numbers of
the same sign, a guard digit is not necessary to achieve good accuracy, as

the following result shows.

Theorem 10

If x 0 and y 0, then the relative error in computing x + y is at most 2 ,

even if no guard digits are used.

Proof

The algorithm for addition with k guard digits is similar to that for

subtraction. If x y, shift y right until the radix points of x and y are aligned.
Discard any digits shifted past the p + k position. Compute the sum of these

two p + k digit numbers exactly. Then round to p digits.

We will verify the theorem when no guard digits are used; the general case

is similar. There is no loss of generality in assuming that x y 0 and that x

is scaled to be of the form d.dd...d × 0. First, assume there is no carry out.
Then the digits shifted off the end of y have a value less than -p + 1, and the

sum is at least 1, so the relative error is less than -p+1/1 = 2e. If there is a

carry out, then the error from shifting must be added to the rounding error
of

.

The sum is at least , so the relative error is less than

2 . z

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1140

It is obvious that combining these two theorems gives Theorem 2. Theorem

2 gives the relative error for performing one operation. Comparing the
rounding error of x2 - y2 and (x + y) (x - y) requires knowing the relative

error of multiple operations. The relative error of x y is 1 = [(x y) - (x -

y)] / (x - y), which satisfies | 1| 2e. Or to write it another way

(19) x y = (x - y) (1 + 1), | 1| 2e

Similarly

(20) x y = (x + y) (1 + 2), | 2| 2e

Assuming that multiplication is performed by computing the exact product
and then rounding, the relative error is at most .5 ulp, so

(21) u v = uv (1 + 3), | 3| e

for any floating-point numbers u and v. Putting these three equations

together (letting u = x y and v = x y) gives

(22) (x y) (x y) = (x - y) (1 + 1) (x + y) (1 + 2) (1 + 3)

So the relative error incurred when computing (x - y) (x + y) is

(23)

This relative error is equal to 1 + 2 + 3 + 1 2 + 1 3 + 2 3 + 1 2

3, which is bounded by 5 + 8 2. In other words, the maximum relative
error is about 5 rounding errors (since e is a small number, e2 is almost

negligible).

A similar analysis of (x x) (y y) cannot result in a small value for the

relative error, because when two nearby values of x and y are plugged into

x2 - y2, the relative error will usually be quite large. Another way to see this
is to try and duplicate the analysis that worked on (x y) (x y), yielding

(x x) (y y) = [x2(1 + 1) - y
2(1 + 2)] (1 + 3)

= ((x2 - y2) (1 + 1) + (1 - 2)y
2) (1 + 3)

When x and y are nearby, the error term (1 - 2)y
2 can be as large as the

result x2 - y2. These computations formally justify our claim that (x - y) (x +

y) is more accurate than x2 - y2.

We next turn to an analysis of the formula for the area of a triangle. In order

to estimate the maximum error that can occur when computing with (7), the
following fact will be needed.

Theorem 11

If subtraction is performed with a guard digit, and y/2 x 2y, then x - y is

computed exactly.

Proof

Note that if x and y have the same exponent, then certainly x y is exact.

Otherwise, from the condition of the theorem, the exponents can differ by at
most 1. Scale and interchange x and y if necessary so that 0 y x, and x
is represented as x0.x1 ... xp - 1 and y as 0.y1 ... yp. Then the algorithm for

computing x y will compute x - y exactly and round to a floating-point

number. If the difference is of the form 0.d1 ... dp, the difference will already

be p digits long, and no rounding is necessary. Since x 2y, x - y y, and
since y is of the form 0.d1 ... dp, so is x - y. z

When > 2, the hypothesis of Theorem 11 cannot be replaced by y/ x
y; the stronger condition y/2 x 2y is still necessary. The analysis of the

error in (x - y) (x + y), immediately following the proof of Theorem 10, used

the fact that the relative error in the basic operations of addition and
subtraction is small (namely equations (19) and (20)). This is the most

common kind of error analysis. However, analyzing formula (7) requires
something more, namely Theorem 11, as the following proof will show.

Theorem 12

If subtraction uses a guard digit, and if a,b and c are the sides of a triangle

(a b c), then the relative error in computing (a + (b + c))(c - (a -
 b))(c + (a - b))(a +(b - c)) is at most 16 , provided e < .005.

Proof

Let's examine the factors one by one. From Theorem 10, b

 c = (b + c) (1 + 1), where 1 is the relative error, and | 1| 2 . Then

the value of the first factor is
(a (b c)) = (a + (b c)) (1 + 2) = (a + (b + c) (1 + 1))(1 + 2),

and thus
(a + b + c) (1 - 2)2 [a + (b + c) (1 - 2)] · (1-2)

a (b c)

[a + (b + c) (1 + 2)] (1 + 2)

(a + b + c) (1 + 2)2

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1405
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#6266
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1154
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1405

This means that there is an 1 so that
(24) (a (b c)) = (a + b + c) (1 + 1)

2, | 1| 2 .

The next term involves the potentially catastrophic subtraction of c and a

 b, because a b may have rounding error. Because a, b and c are the sides
of a triangle, a b+ c, and combining this with the ordering c b a gives

a b + c 2b 2a. So a - b satisfies the conditions of Theorem 11. This

means that a - b = a b is exact, hence c (a - b) is a harmless subtraction

which can be estimated from Theorem 9 to be
(25) (c (a b)) = (c - (a - b)) (1 + 2), | 2| 2

The third term is the sum of two exact positive quantities, so
(26) (c (a b)) = (c + (a - b)) (1 + 3), | 3| 2

Finally, the last term is
(27) (a (b c)) = (a + (b - c)) (1 + 4)

2, | 4| 2 ,

using both Theorem 9 and Theorem 10. If multiplication is assumed to be
exactly rounded, so that x y = xy(1 +) with | | , then combining

(24), (25), (26) and (27) gives
(a (b c)) (c (a b)) (c (a b)) (a (b c))

(a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c)) E

where
E = (1 + 1)

2 (1 + 2) (1 + 3) (1 + 4)
2 (1 + 1)(1 + 2) (1 + 3)

An upper bound for E is (1 + 2)6(1 +)3, which expands out to 1 + 15

 + O(2). Some writers simply ignore the O(e2) term, but it is easy to
account for it. Writing (1 + 2)6(1 +)3 = 1 + 15 + R(), R() is a

polynomial in e with positive coefficients, so it is an increasing function of .

Since R(.005) = .505, R() < 1 for all < .005, and hence E (1 + 2

)6(1 +)3 < 1 + 16 . To get a lower bound on E, note that 1 - 15 - R(

) < E, and so when < .005, 1 - 16 < (1 - 2)6(1 -)3. Combining these
two bounds yields 1 - 16 < E < 1 + 16 . Thus the relative error is at most

16 . z

Theorem 12 certainly shows that there is no catastrophic cancellation in
formula (7). So although it is not necessary to show formula (7) is

numerically stable, it is satisfying to have a bound for the entire formula,
which is what Theorem 3 of Cancellation gives.

Proof of Theorem 3

Let
q = (a + (b + c)) (c - (a - b)) (c + (a - b)) (a + (b - c))

and
Q = (a (b c)) (c (a b)) (c (a b)) (a (b c)).

Then, Theorem 12 shows that Q = q(1 +), with 16 . It is easy to

check that

(28)

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#6358
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1194
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1197
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1200
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1405
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1405
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#700

provided .04/(.52)2 .15, and since | | 16 16(.005) = .08,

does satisfy the condition. Thus

,

with | 1| .52| | 8.5 . If square roots are computed to within .5 ulp,

then the error when computing is (1 + 1)(1 + 2), with | 2| . If =

2, then there is no further error committed when dividing by 4. Otherwise,
one more factor 1 + 3 with | 3| is necessary for the division, and

using the method in the proof of Theorem 12, the final error bound of (1 +

1) (1 + 2) (1 + 3) is dominated by 1 + 4, with | 4| 11 . z

To make the heuristic explanation immediately following the statement of
Theorem 4 precise, the next theorem describes just how closely µ(x)

approximates a constant.

Theorem 13

If µ(x) = ln(1 + x)/x, then for 0 x , µ(x) 1 and the derivative

satisfies |µ'(x)| .

Proof

Note that µ(x) = 1 - x/2 + x2/3 - ... is an alternating series with decreasing

terms, so for x 1, µ(x) 1 - x/2 1/2. It is even easier to see that
because the series for µ is alternating, µ(x) 1. The Taylor series of µ'(x) is

also alternating, and if x has decreasing terms, so - µ'(x) - + 2x/3,

or - µ'(x) 0, thus |µ'(x)| . z

Proof of Theorem 4

Since the Taylor series for ln

is an alternating series, 0 < x - ln(1 + x) < x2/2, the relative error incurred

when approximating ln(1 + x) by x is bounded by x/2. If 1 x = 1, then
|x| < , so the relative error is bounded by /2.

When 1 x 1, define via 1 x = 1 + . Then since 0 x < 1, (1 x) 1

= . If division and logarithms are computed to within ulp, then the
computed value of the expression ln(1 + x)/((1 + x) - 1) is

(29) (1 + 1) (1 + 2) = (1 + 1) (1 + 2) = µ() (1 + 1) (1 + 2)

where | 1| and | 2| . To estimate µ(), use the mean value

theorem, which says that

(30) µ() - µ(x) = (- x)µ'()

for some between x and . From the definition of , it follows that | - x|
, and combining this with Theorem 13 gives |µ() - µ(x)| /2, or |µ(

)/µ(x) - 1| /(2|µ(x)|) which means that µ() = µ(x) (1 + 3),

with | 3| . Finally, multiplying by x introduces a final 4, so the

computed value of
x·ln(1 x)/((1 x) 1)

is

It is easy to check that if < 0.1, then
(1 + 1) (1 + 2) (1 + 3) (1 + 4) = 1 + ,

with | | 5 . z

An interesting example of error analysis using formulas (19), (20), and (21)

occurs in the quadratic formula . The section Cancellation,
explained how rewriting the equation will eliminate the potential cancellation

caused by the ± operation. But there is another potential cancellation that
can occur when computing d = b2 - 4ac. This one cannot be eliminated by a

simple rearrangement of the formula. Roughly speaking, when b2 4ac,

rounding error can contaminate up to half the digits in the roots computed
with the quadratic formula. Here is an informal proof (another approach to

estimating the error in the quadratic formula appears in Kahan [1972]).

If b2 4ac, rounding error can contaminate up to half the digits in the roots

computed with the quadratic formula .

Proof: Write (b b) (4a c) = (b2(1 + 1) - 4ac(1 + 2)) (1 + 3), where
| i| . 30 Using d = b2 - 4ac, this can be rewritten as (d(1 + 1) - 4ac(2 -

1)) (1 + 3). To get an estimate for the size of this error, ignore second
order terms in i, in which case the absolute error is d(1 + 3) - 4ac 4,
where | 4| = | 1 - 2| 2 . Since , the first term d(1 + 3) can be

ignored. To estimate the second term, use the fact that ax2 + bx + c = a(x -

r1) (x - r2), so ar1r2 = c. Since b2 4ac, then r1 r2, so the second error term

is . Thus the computed value of is

.

The inequality

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#6266
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1154
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1156
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#700
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1241

shows that

,

where

,

so the absolute error in a is about . Since 4
-p, , and

thus the absolute error of destroys the bottom half of the bits of the
roots r1 r2. In other words, since the calculation of the roots involves

computing with , and this expression does not have meaningful bits
in the position corresponding to the lower order half of ri, then the lower
order bits of ri cannot be meaningful. z

Finally, we turn to the proof of Theorem 6. It is based on the following fact,
which is proven in the section Theorem 14 and Theorem 8.

Theorem 14

Let 0 < k < p, and set m = k + 1, and assume that floating-point
operations are exactly rounded. Then (m x) (m x x) is exactly equal

to x rounded to p - k significant digits. More precisely, x is rounded by taking
the significand of x, imagining a radix point just left of the k least significant

digits and rounding to an integer.

Proof of Theorem 6

By Theorem 14, xh is x rounded to p - k = places. If there is no carry
out, then certainly xh can be represented with significant digits.

Suppose there is a carry-out. If x = x0.x1 ... xp - 1 × e, then rounding adds 1
to xp - k - 1, and the only way there can be a carry-out is if xp - k - 1 = - 1, but

then the low order digit of xh is 1 + xp - k- 1 = 0, and so again xh is

representable in digits.
To deal with xl, scale x to be an integer satisfying p - 1 x p - 1. Let

where is the p - k high order digits of x, and is the k low order

digits. There are three cases to consider. If , then rounding x to p

- k places is the same as chopping and , and . Since has at

most k digits, if p is even, then has at most k = = digits.

Otherwise, = 2 and is representable with k - 1 significant

bits. The second case is when , and then computing xh involves

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1324

rounding up, so xh = + k, and xl = x - xh = x - - k = - k. Once

again, has at most k digits, so is representable with p/2 digits. Finally, if

= (/2) k - 1, then xh = or + k depending on whether there is a

round up. So xl is either (/2) k - 1 or (/2) k - 1 - k = - k/2, both of
which are represented with 1 digit. z

Theorem 6 gives a way to express the product of two working precision
numbers exactly as a sum. There is a companion formula for expressing a

sum exactly. If |x| |y| then x + y = (x y) + (x (x y)) y [Dekker

1971; Knuth 1981, Theorem C in section 4.2.2]. However, when using
exactly rounded operations, this formula is only true for = 2, and not for

= 10 as the example x = .99998, y = .99997 shows.

Binary to Decimal Conversion

Since single precision has p = 24, and 224 < 108, you might expect that
converting a binary number to 8 decimal digits would be sufficient to recover

the original binary number. However, this is not the case.

Theorem 15

When a binary IEEE single precision number is converted to the closest eight

digit decimal number, it is not always possible to uniquely recover the binary
number from the decimal one. However, if nine decimal digits are used, then

converting the decimal number to the closest binary number will recover the
original floating-point number.

Proof

Binary single precision numbers lying in the half open interval [103, 210) =
[1000, 1024) have 10 bits to the left of the binary point, and 14 bits to the

right of the binary point. Thus there are (210 - 103)214 = 393,216 different
binary numbers in that interval. If decimal numbers are represented with 8

digits, then there are (210 - 103)104 = 240,000 decimal numbers in the same
interval. There is no way that 240,000 decimal numbers could represent

393,216 different binary numbers. So 8 decimal digits are not enough to
uniquely represent each single precision binary number.

To show that 9 digits are sufficient, it is enough to show that the spacing
between binary numbers is always greater than the spacing between decimal
numbers. This will ensure that for each decimal number N, the interval

[N - ulp, N + ulp]

contains at most one binary number. Thus each binary number rounds to a

unique decimal number which in turn rounds to a unique binary number.

To show that the spacing between binary numbers is always greater than

the spacing between decimal numbers, consider an interval [10n, 10n + 1]. On
this interval, the spacing between consecutive decimal numbers is 10(n + 1) -

 9. On [10n, 2m], where m is the smallest integer so that 10n < 2m, the

spacing of binary numbers is 2m - 24, and the spacing gets larger further on in

the interval. Thus it is enough to check that 10(n + 1) - 9 < 2m - 24. But in fact,
since 10n < 2m, then 10(n + 1) - 9 = 10n10-8 < 2m10-8 < 2m2-24. z

The same argument applied to double precision shows that 17 decimal digits
are required to recover a double precision number.

Binary-decimal conversion also provides another example of the use of flags.

Recall from the section Precision, that to recover a binary number from its
decimal expansion, the decimal to binary conversion must be computed
exactly. That conversion is performed by multiplying the quantities N and

10|P| (which are both exact if p < 13) in single-extended precision and then
rounding this to single precision (or dividing if p < 0; both cases are similar).
Of course the computation of N · 10|P| cannot be exact; it is the combined
operation round(N · 10|P|) that must be exact, where the rounding is from

single-extended to single precision. To see why it might fail to be exact, take

the simple case of = 10, p = 2 for single, and p = 3 for single-extended. If
the product is to be 12.51, then this would be rounded to 12.5 as part of the

single-extended multiply operation. Rounding to single precision would give
12. But that answer is not correct, because rounding the product to single

precision should give 13. The error is due to double rounding.

By using the IEEE flags, double rounding can be avoided as follows. Save the

current value of the inexact flag, and then reset it. Set the rounding mode to
round-to-zero. Then perform the multiplication N · 10|P|. Store the new value

of the inexact flag in ixflag, and restore the rounding mode and inexact flag.

If ixflag is 0, then N · 10|P| is exact, so round(N · 10|P|) will be correct down

to the last bit. If ixflag is 1, then some digits were truncated, since round-

to-zero always truncates. The significand of the product will look like
1.b1...b22b23...b31. A double rounding error may occur if b23 ...b31 = 10...0. A

simple way to account for both cases is to perform a logical OR of ixflag with
b31. Then round(N · 10|P|) will be computed correctly in all cases.

Errors In Summation

The section Optimizers, mentioned the problem of accurately computing very

long sums. The simplest approach to improving accuracy is to double the
precision. To get a rough estimate of how much doubling the precision
improves the accuracy of a sum, let s1 = x1, s2 = s1 x2..., si = si - 1 xi.

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#810
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1070

Then si = (1 + i) (si - 1 + xi), where i , and ignoring second order

terms in i gives

(31)

The first equality of (31) shows that the computed value of is the same as

if an exact summation was performed on perturbed values of xj. The first
term x1 is perturbed by n , the last term xn by only . The second equality

in (31) shows that error term is bounded by . Doubling the precision

has the effect of squaring . If the sum is being done in an IEEE double
precision format, 1/ 1016, so that for any reasonable value of n.

Thus, doubling the precision takes the maximum perturbation of n and

changes it to . Thus the 2 error bound for the Kahan summation
formula (Theorem 8) is not as good as using double precision, even though

it is much better than single precision.

For an intuitive explanation of why the Kahan summation formula works,
consider the following diagram of the procedure.

Each time a summand is added, there is a correction factor C which will be
applied on the next loop. So first subtract the correction C computed in the

previous loop from Xj, giving the corrected summand Y. Then add this

summand to the running sum S. The low order bits of Y (namely Yl) are lost
in the sum. Next compute the high order bits of Y by computing T - S. When

Y is subtracted from this, the low order bits of Y will be recovered. These are

the bits that were lost in the first sum in the diagram. They become the

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1264
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1264

correction factor for the next loop. A formal proof of Theorem 8, taken from

Knuth [1981] page 572, appears in the section Theorem 14 and Theorem 8."

Summary

It is not uncommon for computer system designers to neglect the parts of a
system related to floating-point. This is probably due to the fact that

floating-point is given very little (if any) attention in the computer science
curriculum. This in turn has caused the apparently widespread belief that

floating-point is not a quantifiable subject, and so there is little point in
fussing over the details of hardware and software that deal with it.

This paper has demonstrated that it is possible to reason rigorously about
floating-point. For example, floating-point algorithms involving cancellation

can be proven to have small relative errors if the underlying hardware has a
guard digit, and there is an efficient algorithm for binary-decimal conversion

that can be proven to be invertible, provided that extended precision is
supported. The task of constructing reliable floating-point software is made

much easier when the underlying computer system is supportive of floating-
point. In addition to the two examples just mentioned (guard digits and

extended precision), the section Systems Aspects of this paper has examples
ranging from instruction set design to compiler optimization illustrating how

to better support floating-point.

The increasing acceptance of the IEEE floating-point standard means that

codes that utilize features of the standard are becoming ever more portable.
The section The IEEE Standard, gave numerous examples illustrating how

the features of the IEEE standard can be used in writing practical floating-
point codes.

Acknowledgments

This article was inspired by a course given by W. Kahan at Sun Microsystems

from May through July of 1988, which was very ably organized by David
Hough of Sun. My hope is to enable others to learn about the interaction of

floating-point and computer systems without having to get up in time to

attend 8:00 a.m. lectures. Thanks are due to Kahan and many of my
colleagues at Xerox PARC (especially John Gilbert) for reading drafts of this

paper and providing many useful comments. Reviews from Paul Hilfinger and
an anonymous referee also helped improve the presentation.

References

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1324
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1015
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#799

Aho, Alfred V., Sethi, R., and Ullman J. D. 1986. Compilers: Principles,

Techniques and Tools, Addison-Wesley, Reading, MA.

ANSI 1978. American National Standard Programming Language FORTRAN,
ANSI Standard X3.9-1978, American National Standards Institute, New York,

NY.

Barnett, David 1987. A Portable Floating-Point Environment, unpublished

manuscript.

Brown, W. S. 1981. A Simple but Realistic Model of Floating-Point
Computation, ACM Trans. on Math. Software 7(4), pp. 445-480.

Cody, W. J et. al. 1984. A Proposed Radix- and Word-length-independent

Standard for Floating-point Arithmetic, IEEE Micro 4(4), pp. 86-100.

Cody, W. J. 1988. Floating-Point Standards -- Theory and Practice, in

"Reliability in Computing: the role of interval methods in scientific
computing", ed. by Ramon E. Moore, pp. 99-107, Academic Press, Boston,

MA.

Coonen, Jerome 1984. Contributions to a Proposed Standard for Binary

Floating-Point Arithmetic, PhD Thesis, Univ. of California, Berkeley.

Dekker, T. J. 1971. A Floating-Point Technique for Extending the Available
Precision, Numer. Math. 18(3), pp. 224-242.

Demmel, James 1984. Underflow and the Reliability of Numerical Software,

SIAM J. Sci. Stat. Comput. 5(4), pp. 887-919.

Farnum, Charles 1988. Compiler Support for Floating-point Computation,

Software-Practice and Experience, 18(7), pp. 701-709.

Forsythe, G. E. and Moler, C. B. 1967. Computer Solution of Linear Algebraic
Systems, Prentice-Hall, Englewood Cliffs, NJ.

Goldberg, I. Bennett 1967. 27 Bits Are Not Enough for 8-Digit Accuracy,
Comm. of the ACM. 10(2), pp 105-106.

Goldberg, David 1990. Computer Arithmetic, in "Computer Architecture: A

Quantitative Approach", by David Patterson and John L. Hennessy, Appendix
A, Morgan Kaufmann, Los Altos, CA.

Golub, Gene H. and Van Loan, Charles F. 1989. Matrix Computations, 2nd

edition,The Johns Hopkins University Press, Baltimore Maryland.

Graham, Ronald L. , Knuth, Donald E. and Patashnik, Oren. 1989. Concrete
Mathematics, Addison-Wesley, Reading, MA, p.162.

Hewlett Packard 1982. HP-15C Advanced Functions Handbook.

IEEE 1987. IEEE Standard 754-1985 for Binary Floating-point Arithmetic,
IEEE, (1985). Reprinted in SIGPLAN 22(2) pp. 9-25.

Kahan, W. 1972. A Survey Of Error Analysis, in Information Processing 71,

Vol 2, pp. 1214 - 1239 (Ljubljana, Yugoslavia), North Holland, Amsterdam.

Kahan, W. 1986. Calculating Area and Angle of a Needle-like Triangle,

unpublished manuscript.

Kahan, W. 1987. Branch Cuts for Complex Elementary Functions, in "The
State of the Art in Numerical Analysis", ed. by M.J.D. Powell and A. Iserles

(Univ of Birmingham, England), Chapter 7, Oxford University Press, New
York.

Kahan, W. 1988. Unpublished lectures given at Sun Microsystems, Mountain
View, CA.

Kahan, W. and Coonen, Jerome T. 1982. The Near Orthogonality of Syntax,

Semantics, and Diagnostics in Numerical Programming Environments, in
"The Relationship Between Numerical Computation And Programming

Languages", ed. by J. K. Reid, pp. 103-115, North-Holland, Amsterdam.

Kahan, W. and LeBlanc, E. 1985. Anomalies in the IBM Acrith Package, Proc.

7th IEEE Symposium on Computer Arithmetic (Urbana, Illinois), pp. 322-
331.

Kernighan, Brian W. and Ritchie, Dennis M. 1978. The C Programming

Language, Prentice-Hall, Englewood Cliffs, NJ.

Kirchner, R. and Kulisch, U. 1987. Arithmetic for Vector Processors, Proc. 8th

IEEE Symposium on Computer Arithmetic (Como, Italy), pp. 256-269.

Knuth, Donald E., 1981. The Art of Computer Programming, Volume II,
Second Edition, Addison-Wesley, Reading, MA.

Kulisch, U. W., and Miranker, W. L. 1986. The Arithmetic of the Digital

Computer: A New Approach, SIAM Review 28(1), pp 1-36.

Matula, D. W. and Kornerup, P. 1985. Finite Precision Rational Arithmetic:
Slash Number Systems, IEEE Trans. on Comput. C-34(1), pp 3-18.

Nelson, G. 1991. Systems Programming With Modula-3, Prentice-Hall,

Englewood Cliffs, NJ.

Reiser, John F. and Knuth, Donald E. 1975. Evading the Drift in Floating-

point Addition, Information Processing Letters 3(3), pp 84-87.

Sterbenz, Pat H. 1974. Floating-Point Computation, Prentice-Hall, Englewood
Cliffs, NJ.

Swartzlander, Earl E. and Alexopoulos, Aristides G. 1975. The
Sign/Logarithm Number System, IEEE Trans. Comput. C-24(12), pp. 1238-

1242.

Walther, J. S., 1971. A unified algorithm for elementary functions,
Proceedings of the AFIP Spring Joint Computer Conf. 38, pp. 379-385.

Theorem 14 and Theorem 8

This section contains two of the more technical proofs that were omitted
from the text.

Theorem 14

Let 0 < k < p, and set m = k + 1, and assume that floating-point
operations are exactly rounded. Then (m x) (m x x) is exactly equal

to x rounded to p - k significant digits. More precisely, x is rounded by taking
the significand of x, imagining a radix point just left of the k least significant

digits, and rounding to an integer.

Proof

The proof breaks up into two cases, depending on whether or not the
computation of mx = kx + x has a carry-out or not.

Assume there is no carry out. It is harmless to scale x so that it is an
integer. Then the computation of mx = x + kx looks like this:
aa...aabb...bb

+ aa...aabb...bb
zz...zzbb...bb

where x has been partitioned into two parts. The low order k digits are

marked b and the high order p - k digits are marked a. To compute m x

from mx involves rounding off the low order k digits (the ones marked with b)

so
(32) m x = mx - x mod(k) + r k

The value of r is 1 if .bb...b is greater than and 0 otherwise. More precisely
(33) r = 1 if a.bb...b rounds to a + 1, r = 0 otherwise.

Next compute m x - x = mx - x mod(k) + r k - x = k(x + r) - x mod(k).

The picture below shows the computation of m x - x rounded, that is, (m

x) x. The top line is k(x + r), where B is the digit that results from adding

r to the lowest order digit b.
aa...aabb...bB00...00

- bb...bb
zz... zzZ00...00

If .bb...b < then r = 0, subtracting causes a borrow from the digit marked

B, but the difference is rounded up, and so the net effect is that the rounded

difference equals the top line, which is kx. If .bb...b > then r = 1, and 1 is

subtracted from B because of the borrow, so the result is kx. Finally

consider the case .bb...b = . If r = 0 then B is even, Z is odd, and the

difference is rounded up, giving kx. Similarly when r = 1, B is odd, Z is
even, the difference is rounded down, so again the difference is kx. To

summarize
(34) (m x) x = kx

Combining equations (32) and (34) gives (m x) - (m x x) = x - x mod(
k) + · k. The result of performing this computation is
r00...00

+ aa...aabb...bb

- bb...bb
aa...aA00...00

The rule for computing r, equation (33), is the same as the rule for rounding

a... ab...b to p - k places. Thus computing mx - (mx - x) in floating-point
arithmetic precision is exactly equal to rounding x to p - k places, in the case

when x + kx does not carry out.

When x + kx does carry out, then mx = kx + x looks like this:
aa...aabb...bb

+ aa...aabb...bb
zz...zZbb...bb

Thus, m x = mx - x mod(k) + w k, where w = -Z if Z < /2, but the exact

value of w is unimportant. Next, m x - x = kx - x mod(k) + w k. In a

picture
aa...aabb...bb00...00

- bb... bb

+ w
zz ... zZbb ...bb31

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#12192
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1337
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1343

Rounding gives (m x) x = kx + w k - r k, where r = 1 if .bb...b > or if

.bb...b = and b0 = 1.32 Finally,
(m x) - (m x x) = mx - x mod(k) + w k - (kx + w k - r k)

= x - x mod(k) + r k.

And once again, r = 1 exactly when rounding a...ab...b to p - k places

involves rounding up. Thus Theorem 14 is proven in all cases. z

Theorem 8 (Kahan Summation Formula)

Suppose that is computed using the following algorithm

S = X [1];

C = 0;

for j = 2 to N {

Y = X [j] - C;

 T = S + Y;

 C = (T - S) - Y;

 S = T;

}

Then the computed sum S is equal to S = xj (1 + j) + O(N 2) |xj|,

where | j| 2 .

Proof

First recall how the error estimate for the simple formula xi went.
Introduce s1 = x1, si = (1 + i) (si - 1 + xi). Then the computed sum is sn,

which is a sum of terms, each of which is an xi multiplied by an expression

involving j's. The exact coefficient of x1 is (1 + 2)(1 + 3) ... (1 + n),
and so by renumbering, the coefficient of x2 must be (1 + 3)(1 + 4) ... (1

+ n), and so on. The proof of Theorem 8 runs along exactly the same lines,
only the coefficient of x1 is more complicated. In detail s0 = c0 = 0 and

yk = xk ck - 1 = (xk - ck - 1) (1 + k)

sk = sk - 1 yk = (sk-1 + yk) (1 + k)

ck = (sk sk - 1) yk= [(sk - sk - 1) (1 + k) - yk] (1 + k)

where all the Greek letters are bounded by . Although the coefficient of x1
in sk is the ultimate expression of interest, in turns out to be easier to

compute the coefficient of x1 in sk - ck and ck.
When k = 1,

c1 = (s1(1 + 1) - y1) (1 + d1)

= y1((1 + s1) (1 + 1) - 1) (1 + d1)

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1345

= x1(s1 + 1 + s1g1) (1 + d1) (1 + h1)

s1 - c1 = x1[(1 + s1) - (s1 + g1 + s1g1) (1 + d1)](1 + h1)
= x1[1 - g1 - s1d1 - s1g1 - d1g1 - s1g1d1](1 + h1)

Calling the coefficients of x1 in these expressions Ck and Sk respectively,

then
C1 = 2 + O(2)

S1 = + 1 - 1 + 4 2 + O(3)

To get the general formula for Sk and Ck, expand the definitions of sk and ck,

ignoring all terms involving xi with i > 1 to get

sk = (sk - 1 + yk)(1 + k)
= [sk - 1 + (xk - ck - 1) (1 + k)](1 + k)

= [(sk - 1 - ck - 1) - kck - 1](1+ k)

ck = [{sk - sk - 1}(1 + k) - yk](1 + k)
= [{((sk - 1 - ck - 1) - kck - 1)(1 + k) - sk - 1}(1 + k) + ck - 1(1 + k)](1 +

k)
= [{(sk - 1 - ck - 1) k - kck-1(1 + k) - ck - 1}(1 + k) + ck - 1(1 + k)](1 +

k)
= [(sk - 1 - ck - 1) k(1 + k) - ck - 1(k + k(k + k + k k))](1 + k),

sk - ck = ((sk - 1 - ck - 1) - kck - 1) (1 + k)
- [(sk - 1 - ck - 1) k(1 + k) - ck - 1(k + k(k + k + k k)](1 + k)

= (sk- 1 - ck - 1)((1 + k) - k(1 + k)(1 + k))

+ ck - 1(- k(1 + k) + (k + k(k + k + k k)) (1 + k))

= (s- 1 - ck - 1) (1 - k(k + k + k k))
+ ck - 1 - [k + k + k(k + k k) + (k + k(k + k + k k)) k]

Since Sk and Ck are only being computed up to order 2, these formulas can

be simplified to
Ck= (k + O(2))Sk - 1 + (- k + O(2))Ck - 1

Sk= ((1 + 2 2 + O(3))Sk - 1 + (2 + (2))Ck - 1

Using these formulas gives
C2 = 2 + O(2)

S2 = 1 + 1 - 1 + 10 2 + O(3)

and in general it is easy to check by induction that
Ck = k + O(2)

Sk = 1 + 1 - 1 + (4k+2) 2 + O(3)

Finally, what is wanted is the coefficient of x1 in sk. To get this value, let
xn + 1 = 0, let all the Greek letters with subscripts of n + 1 equal 0, and

compute sn + 1. Then sn + 1 = sn - cn, and the coefficient of x1 in sn is less than

the coefficient in sn + 1, which is Sn = 1 + 1 - 1 + (4n + 2) 2 = (1 + 2 +

(n 2)). z

Differences Among IEEE 754
Implementations

Note – This section is not part of the published paper. It has been added to

clarify certain points and correct possible misconceptions about the IEEE
standard that the reader might infer from the paper. This material was not

written by David Goldberg, but it appears here with his permission.

The preceding paper has shown that floating-point arithmetic must be
implemented carefully, since programmers may depend on its properties for

the correctness and accuracy of their programs. In particular, the IEEE
standard requires a careful implementation, and it is possible to write useful

programs that work correctly and deliver accurate results only on systems
that conform to the standard. The reader might be tempted to conclude that

such programs should be portable to all IEEE systems. Indeed, portable

software would be easier to write if the remark "When a program is moved
between two machines and both support IEEE arithmetic, then if any

intermediate result differs, it must be because of software bugs, not from
differences in arithmetic," were true.

Unfortunately, the IEEE standard does not guarantee that the same program

will deliver identical results on all conforming systems. Most programs will
actually produce different results on different systems for a variety of

reasons. For one, most programs involve the conversion of numbers
between decimal and binary formats, and the IEEE standard does not

completely specify the accuracy with which such conversions must be

performed. For another, many programs use elementary functions supplied
by a system library, and the standard doesn't specify these functions at all.

Of course, most programmers know that these features lie beyond the scope
of the IEEE standard.

Many programmers may not realize that even a program that uses only the

numeric formats and operations prescribed by the IEEE standard can
compute different results on different systems. In fact, the authors of the

standard intended to allow different implementations to obtain different
results. Their intent is evident in the definition of the term destination in the

IEEE 754 standard: "A destination may be either explicitly designated by the

user or implicitly supplied by the system (for example, intermediate results
in subexpressions or arguments for procedures). Some languages place the

results of intermediate calculations in destinations beyond the user's control.
Nonetheless, this standard defines the result of an operation in terms of that

destination's format and the operands' values." (IEEE 754-1985, p. 7) In
other words, the IEEE standard requires that each result be rounded

correctly to the precision of the destination into which it will be placed, but
the standard does not require that the precision of that destination be

determined by a user's program. Thus, different systems may deliver their

results to destinations with different precisions, causing the same program
to produce different results (sometimes dramatically so), even though those

systems all conform to the standard.

Several of the examples in the preceding paper depend on some knowledge
of the way floating-point arithmetic is rounded. In order to rely on examples

such as these, a programmer must be able to predict how a program will be
interpreted, and in particular, on an IEEE system, what the precision of the

destination of each arithmetic operation may be. Alas, the loophole in the
IEEE standard's definition of destination undermines the programmer's

ability to know how a program will be interpreted. Consequently, several of

the examples given above, when implemented as apparently portable
programs in a high-level language, may not work correctly on IEEE systems

that normally deliver results to destinations with a different precision than
the programmer expects. Other examples may work, but proving that they

work may lie beyond the average programmer's ability.

In this section, we classify existing implementations of IEEE 754 arithmetic
based on the precisions of the destination formats they normally use. We

then review some examples from the paper to show that delivering results in
a wider precision than a program expects can cause it to compute wrong

results even though it is provably correct when the expected precision is

used. We also revisit one of the proofs in the paper to illustrate the
intellectual effort required to cope with unexpected precision even when it

doesn't invalidate our programs. These examples show that despite all that
the IEEE standard prescribes, the differences it allows among different

implementations can prevent us from writing portable, efficient numerical
software whose behavior we can accurately predict. To develop such

software, then, we must first create programming languages and
environments that limit the variability the IEEE standard permits and allow

programmers to express the floating-point semantics upon which their
programs depend.

Current IEEE 754 Implementations

Current implementations of IEEE 754 arithmetic can be divided into two
groups distinguished by the degree to which they support different floating-

point formats in hardware. Extended-based systems, exemplified by the

Intel x86 family of processors, provide full support for an extended double
precision format but only partial support for single and double precision:

they provide instructions to load or store data in single and double precision,
converting it on-the-fly to or from the extended double format, and they

provide special modes (not the default) in which the results of arithmetic

operations are rounded to single or double precision even though they are

kept in registers in extended double format. (Motorola 68000 series
processors round results to both the precision and range of the single or

double formats in these modes. Intel x86 and compatible processors round
results to the precision of the single or double formats but retain the same

range as the extended double format.) Single/double systems, including
most RISC processors, provide full support for single and double precision

formats but no support for an IEEE-compliant extended double precision
format. (The IBM POWER architecture provides only partial support for single

precision, but for the purpose of this section, we classify it as a single/double
system.)

To see how a computation might behave differently on an extended-based
system than on a single/double system, consider a C version of the example

from the section Systems Aspects:

int main() {

 double q;

 q = 3.0/7.0;

 if (q == 3.0/7.0) printf("Equal\n");

 else printf("Not Equal\n");

 return 0;

}

Here the constants 3.0 and 7.0 are interpreted as double precision floating-

point numbers, and the expression 3.0/7.0 inherits the double data type. On

a single/double system, the expression will be evaluated in double precision

since that is the most efficient format to use. Thus, q will be assigned the

value 3.0/7.0 rounded correctly to double precision. In the next line, the
expression 3.0/7.0 will again be evaluated in double precision, and of course

the result will be equal to the value just assigned to q, so the program will

print "Equal" as expected.

On an extended-based system, even though the expression 3.0/7.0 has type

double, the quotient will be computed in a register in extended double

format, and thus in the default mode, it will be rounded to extended double

precision. When the resulting value is assigned to the variable q, however, it

may then be stored in memory, and since q is declared double, the value will

be rounded to double precision. In the next line, the expression 3.0/7.0 may
again be evaluated in extended precision yielding a result that differs from

the double precision value stored in q, causing the program to print "Not

equal". Of course, other outcomes are possible, too: the compiler could

decide to store and thus round the value of the expression 3.0/7.0 in the

second line before comparing it with q, or it could keep q in a register in

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1015

extended precision without storing it. An optimizing compiler might evaluate

the expression 3.0/7.0 at compile time, perhaps in double precision or
perhaps in extended double precision. (With one x86 compiler, the program

prints "Equal" when compiled with optimization and "Not Equal" when
compiled for debugging.) Finally, some compilers for extended-based

systems automatically change the rounding precision mode to cause
operations producing results in registers to round those results to single or

double precision, albeit possibly with a wider range. Thus, on these systems,
we can't predict the behavior of the program simply by reading its source

code and applying a basic understanding of IEEE 754 arithmetic. Neither can
we accuse the hardware or the compiler of failing to provide an IEEE 754

compliant environment; the hardware has delivered a correctly rounded
result to each destination, as it is required to do, and the compiler has

assigned some intermediate results to destinations that are beyond the
user's control, as it is allowed to do.

Pitfalls in Computations on Extended-Based Systems

Conventional wisdom maintains that extended-based systems must produce

results that are at least as accurate, if not more accurate than those
delivered on single/double systems, since the former always provide at least

as much precision and often more than the latter. Trivial examples such as
the C program above as well as more subtle programs based on the

examples discussed below show that this wisdom is naive at best: some
apparently portable programs, which are indeed portable across

single/double systems, deliver incorrect results on extended-based systems
precisely because the compiler and hardware conspire to occasionally

provide more precision than the program expects.

Current programming languages make it difficult for a program to specify

the precision it expects. As the section Languages and Compilers mentions,
many programming languages don't specify that each occurrence of an

expression like 10.0*x in the same context should evaluate to the same

value. Some languages, such as Ada, were influenced in this respect by

variations among different arithmetics prior to the IEEE standard. More
recently, languages like ANSI C have been influenced by standard-

conforming extended-based systems. In fact, the ANSI C standard explicitly
allows a compiler to evaluate a floating-point expression to a precision wider

than that normally associated with its type. As a result, the value of the

expression 10.0*x may vary in ways that depend on a variety of factors:

whether the expression is immediately assigned to a variable or appears as

a subexpression in a larger expression; whether the expression participates
in a comparison; whether the expression is passed as an argument to a

function, and if so, whether the argument is passed by value or by

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1043

reference; the current precision mode; the level of optimization at which the

program was compiled; the precision mode and expression evaluation
method used by the compiler when the program was compiled; and so on.

Language standards are not entirely to blame for the vagaries of expression

evaluation. Extended-based systems run most efficiently when expressions
are evaluated in extended precision registers whenever possible, yet values

that must be stored are stored in the narrowest precision required.

Constraining a language to require that 10.0*x evaluate to the same value

everywhere would impose a performance penalty on those systems.

Unfortunately, allowing those systems to evaluate 10.0*x differently in

syntactically equivalent contexts imposes a penalty of its own on

programmers of accurate numerical software by preventing them from
relying on the syntax of their programs to express their intended semantics.

Do real programs depend on the assumption that a given expression always

evaluates to the same value? Recall the algorithm presented in Theorem 4
for computing ln(1 + x), written here in Fortran:

real function log1p(x)

real x

if (1.0 + x .eq. 1.0) then

 log1p = x

else

 log1p = log(1.0 + x) * x / ((1.0 + x) - 1.0)

endif

return

On an extended-based system, a compiler may evaluate the expression

1.0 + x in the third line in extended precision and compare the result with

1.0. When the same expression is passed to the log function in the sixth line,

however, the compiler may store its value in memory, rounding it to single

precision. Thus, if x is not so small that 1.0 + x rounds to 1.0 in extended

precision but small enough that 1.0 + x rounds to 1.0 in single precision, then

the value returned by log1p(x) will be zero instead of x, and the relative error

will be one--rather larger than 5 . Similarly, suppose the rest of the
expression in the sixth line, including the reoccurrence of the subexpression

1.0 + x, is evaluated in extended precision. In that case, if x is small but not

quite small enough that 1.0 + x rounds to 1.0 in single precision, then the

value returned by log1p(x) can exceed the correct value by nearly as much

as x, and again the relative error can approach one. For a concrete example,

take x to be 2-24 + 2-47, so x is the smallest single precision number such

that 1.0 + x rounds up to the next larger number, 1 + 2-23. Then log(1.0 + x)

is approximately 2-23. Because the denominator in the expression in the sixth

line is evaluated in extended precision, it is computed exactly and delivers x,

so log1p(x) returns approximately 2-23, which is nearly twice as large as the

exact value. (This actually happens with at least one compiler. When the
preceding code is compiled by the Sun WorkShop Compilers 4.2.1 Fortran 77

compiler for x86 systems using the -O optimization flag, the generated code

computes 1.0 + x exactly as described. As a result, the function delivers zero

for log1p(1.0e-10) and 1.19209E-07 for log1p(5.97e-8).)

For the algorithm of Theorem 4 to work correctly, the expression 1.0 + x

must be evaluated the same way each time it appears; the algorithm can fail

on extended-based systems only when 1.0 + x is evaluated to extended

double precision in one instance and to single or double precision in another.

Of course, since log is a generic intrinsic function in Fortran, a compiler could

evaluate the expression 1.0 + x in extended precision throughout, computing

its logarithm in the same precision, but evidently we cannot assume that the

compiler will do so. (One can also imagine a similar example involving a
user-defined function. In that case, a compiler could still keep the argument

in extended precision even though the function returns a single precision
result, but few if any existing Fortran compilers do this, either.) We might

therefore attempt to ensure that 1.0 + x is evaluated consistently by

assigning it to a variable. Unfortunately, if we declare that variable real, we

may still be foiled by a compiler that substitutes a value kept in a register in

extended precision for one appearance of the variable and a value stored in
memory in single precision for another. Instead, we would need to declare

the variable with a type that corresponds to the extended precision format.
Standard FORTRAN 77 does not provide a way to do this, and while Fortran

95 offers the SELECTED_REAL_KIND mechanism for describing various formats, it

does not explicitly require implementations that evaluate expressions in

extended precision to allow variables to be declared with that precision. In
short, there is no portable way to write this program in standard Fortran that

is guaranteed to prevent the expression 1.0 + x from being evaluated in a

way that invalidates our proof.

There are other examples that can malfunction on extended-based systems
even when each subexpression is stored and thus rounded to the same

precision. The cause is double-rounding. In the default precision mode, an
extended-based system will initially round each result to extended double

precision. If that result is then stored to double precision, it is rounded
again. The combination of these two roundings can yield a value that is

different than what would have been obtained by rounding the first result
correctly to double precision. This can happen when the result as rounded to

extended double precision is a "halfway case", i.e., it lies exactly halfway
between two double precision numbers, so the second rounding is

determined by the round-ties-to-even rule. If this second rounding rounds in

the same direction as the first, the net rounding error will exceed half a unit

in the last place. (Note, though, that double-rounding only affects double

precision computations. One can prove that the sum, difference, product, or
quotient of two p-bit numbers, or the square root of a p-bit number,

rounded first to q bits and then to p bits gives the same value as if the result

were rounded just once to p bits provided q 2p + 2. Thus, extended
double precision is wide enough that single precision computations don't

suffer double-rounding.)

Some algorithms that depend on correct rounding can fail with double-

rounding. In fact, even some algorithms that don't require correct rounding
and work correctly on a variety of machines that don't conform to IEEE 754

can fail with double-rounding. The most useful of these are the portable
algorithms for performing simulated multiple precision arithmetic mentioned

in the section Exactly Rounded Operations. For example, the procedure
described in Theorem 6 for splitting a floating-point number into high and

low parts doesn't work correctly in double-rounding arithmetic: try to split
the double precision number 252 + 3 × 226 - 1 into two parts each with at

most 26 bits. When each operation is rounded correctly to double precision,
the high order part is 252 + 227 and the low order part is 226 - 1, but when

each operation is rounded first to extended double precision and then to

double precision, the procedure produces a high order part of 252 + 228 and
a low order part of -226 - 1. The latter number occupies 27 bits, so its square

can't be computed exactly in double precision. Of course, it would still be
possible to compute the square of this number in extended double precision,

but the resulting algorithm would no longer be portable to single/double
systems. Also, later steps in the multiple precision multiplication algorithm

assume that all partial products have been computed in double precision.
Handling a mixture of double and extended double variables correctly would

make the implementation significantly more expensive.

Likewise, portable algorithms for adding multiple precision numbers

represented as arrays of double precision numbers can fail in double-
rounding arithmetic. These algorithms typically rely on a technique similar to

Kahan's summation formula. As the informal explanation of the summation

formula given on Errors In Summation suggests, if s and y are floating-point

variables with |s| |y| and we compute:

t = s + y;

e = (s - t) + y;

then in most arithmetics, e recovers exactly the roundoff error that occurred

in computing t. This technique doesn't work in double-rounded arithmetic,

however: if s = 252 + 1 and y = 1/2 - 2-54, then s + y rounds first to 252 +

3/2 in extended double precision, and this value rounds to 252 + 2 in double

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#704
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1262

precision by the round-ties-to-even rule; thus the net rounding error in

computing t is 1/2 + 2-54, which is not representable exactly in double

precision and so can't be computed exactly by the expression shown above.

Here again, it would be possible to recover the roundoff error by computing
the sum in extended double precision, but then a program would have to do

extra work to reduce the final outputs back to double precision, and double-
rounding could afflict this process, too. For this reason, although portable

programs for simulating multiple precision arithmetic by these methods work
correctly and efficiently on a wide variety of machines, they do not work as

advertised on extended-based systems.

Finally, some algorithms that at first sight appear to depend on correct

rounding may in fact work correctly with double-rounding. In these cases,
the cost of coping with double-rounding lies not in the implementation but in

the verification that the algorithm works as advertised. To illustrate, we
prove the following variant of Theorem 7:

Theorem 7'

If m and n are integers representable in IEEE 754 double precision with |m|
< 252 and n has the special form n = 2i + 2j, then (m n) n = m, provided

both floating-point operations are either rounded correctly to double

precision or rounded first to extended double precision and then to double
precision.

Proof

Assume without loss that m > 0. Let q = m n. Scaling by powers of two,

we can consider an equivalent setting in which 252 m < 253 and likewise

for q, so that both m and q are integers whose least significant bits occupy
the units place (i.e., ulp(m) = ulp(q) = 1). Before scaling, we assumed m <

252, so after scaling, m is an even integer. Also, because the scaled values of
m and q satisfy m/2 < q < 2m, the corresponding value of n must have one

of two forms depending on which of m or q is larger: if q < m, then evidently
1 < n < 2, and since n is a sum of two powers of two, n = 1 + 2-k for some

k; similarly, if q > m, then 1/2 < n < 1, so n = 1/2 + 2-(k + 1). (As n is the
sum of two powers of two, the closest possible value of n to one is n = 1 +

2-52. Because m/(1 + 2-52) is no larger than the next smaller double
precision number less than m, we can't have q = m.)

Let e denote the rounding error in computing q, so that q = m/n + e, and
the computed value q n will be the (once or twice) rounded value of m +

ne. Consider first the case in which each floating-point operation is rounded
correctly to double precision. In this case, |e| < 1/2. If n has the form 1/2 +

2-(k + 1), then ne = nq - m is an integer multiple of 2-(k + 1) and |ne| < 1/4 +

2-(k + 2). This implies that |ne| 1/4. Recall that the difference between m
and the next larger representable number is 1 and the difference between m

and the next smaller representable number is either 1 if m > 252 or 1/2 if m
= 252. Thus, as |ne| 1/4, m + ne will round to m. (Even if m = 252 and ne

= -1/4, the product will round to m by the round-ties-to-even rule.)
Similarly, if n has the form 1 + 2-k, then ne is an integer multiple of 2-k and

|ne| < 1/2 + 2-(k + 1); this implies |ne| 1/2. We can't have m = 252 in this
case because m is strictly greater than q, so m differs from its nearest

representable neighbors by ±1. Thus, as |ne| 1/2, again m + ne will round
to m. (Even if |ne| = 1/2, the product will round to m by the round-ties-to-

even rule because m is even.) This completes the proof for correctly rounded
arithmetic.

In double-rounding arithmetic, it may still happen that q is the correctly
rounded quotient (even though it was actually rounded twice), so |e| < 1/2

as above. In this case, we can appeal to the arguments of the previous
paragraph provided we consider the fact that q n will be rounded twice. To

account for this, note that the IEEE standard requires that an extended
double format carry at least 64 significant bits, so that the numbers m ± 1/2

and m ± 1/4 are exactly representable in extended double precision. Thus, if
n has the form 1/2 + 2-(k + 1), so that |ne| 1/4, then rounding m + ne to

extended double precision must produce a result that differs from m by at
most 1/4, and as noted above, this value will round to m in double precision.

Similarly, if n has the form 1 + 2-k, so that |ne| 1/2, then rounding
m + ne to extended double precision must produce a result that differs from

m by at most 1/2, and this value will round to m in double precision. (Recall

that m > 252 in this case.)

Finally, we are left to consider cases in which q is not the correctly rounded
quotient due to double-rounding. In these cases, we have |e| < 1/2 + 2-(d +

1) in the worst case, where d is the number of extra bits in the extended
double format. (All existing extended-based systems support an extended

double format with exactly 64 significant bits; for this format, d = 64 - 53 =
11.) Because double-rounding only produces an incorrectly rounded result

when the second rounding is determined by the round-ties-to-even rule, q
must be an even integer. Thus if n has the form 1/2 + 2-(k + 1), then ne = nq

- m is an integer multiple of 2-k, and

|ne| < (1/2 + 2-(k + 1))(1/2 + 2-(d + 1)) = 1/4 + 2-(k + 2) + 2-(d + 2) + 2-(k + d + 2).

If k d, this implies |ne| 1/4. If k > d, we have |ne| 1/4 + 2-(d + 2). In

either case, the first rounding of the product will deliver a result that differs
from m by at most 1/4, and by previous arguments, the second rounding

will round to m. Similarly, if n has the form 1 + 2-k, then ne is an integer

multiple of 2-(k - 1), and

|ne| < 1/2 + 2-(k + 1) + 2-(d + 1) + 2-(k + d + 1).

If k d, this implies |ne| 1/2. If k > d, we have |ne| 1/2 + 2-(d + 1). In
either case, the first rounding of the product will deliver a result that differs

from m by at most 1/2, and again by previous arguments, the second
rounding will round to m. z

The preceding proof shows that the product can incur double-rounding only

if the quotient does, and even then, it rounds to the correct result. The proof

also shows that extending our reasoning to include the possibility of double-
rounding can be challenging even for a program with only two floating-point

operations. For a more complicated program, it may be impossible to
systematically account for the effects of double-rounding, not to mention

more general combinations of double and extended double precision
computations.

Programming Language Support for Extended Precision

The preceding examples should not be taken to suggest that extended
precision per se is harmful. Many programs can benefit from extended

precision when the programmer is able to use it selectively. Unfortunately,
current programming languages do not provide sufficient means for a

programmer to specify when and how extended precision should be used. To
indicate what support is needed, we consider the ways in which we might

want to manage the use of extended precision.

In a portable program that uses double precision as its nominal working

precision, there are five ways we might want to control the use of a wider
precision:

1. Compile to produce the fastest code, using extended precision

where possible on extended-based systems. Clearly most

numerical software does not require more of the arithmetic than
that the relative error in each operation is bounded by the

"machine epsilon". When data in memory are stored in double
precision, the machine epsilon is usually taken to be the largest

relative roundoff error in that precision, since the input data are
(rightly or wrongly) assumed to have been rounded when they

were entered and the results will likewise be rounded when they
are stored. Thus, while computing some of the intermediate

results in extended precision may yield a more accurate result,

extended precision is not essential. In this case, we might prefer

that the compiler use extended precision only when it will not
appreciably slow the program and use double precision

otherwise.

2. Use a format wider than double if it is reasonably fast and wide
enough, otherwise resort to something else. Some computations

can be performed more easily when extended precision is
available, but they can also be carried out in double precision

with only somewhat greater effort. Consider computing the
Euclidean norm of a vector of double precision numbers. By

computing the squares of the elements and accumulating their

sum in an IEEE 754 extended double format with its wider
exponent range, we can trivially avoid premature underflow or

overflow for vectors of practical lengths. On extended-based
systems, this is the fastest way to compute the norm. On

single/double systems, an extended double format would have to
be emulated in software (if one were supported at all), and such

emulation would be much slower than simply using double
precision, testing the exception flags to determine whether

underflow or overflow occurred, and if so, repeating the
computation with explicit scaling. Note that to support this use of

extended precision, a language must provide both an indication
of the widest available format that is reasonably fast, so that a

program can choose which method to use, and environmental
parameters that indicate the precision and range of each format,

so that the program can verify that the widest fast format is

wide enough (e.g., that it has wider range than double).

3. Use a format wider than double even if it has to be emulated in
software. For more complicated programs than the Euclidean

norm example, the programmer may simply wish to avoid the
need to write two versions of the program and instead rely on

extended precision even if it is slow. Again, the language must
provide environmental parameters so that the program can

determine the range and precision of the widest available
format.

4. Don't use a wider precision; round results correctly to the
precision of the double format, albeit possibly with extended

range. For programs that are most easily written to depend on
correctly rounded double precision arithmetic, including some of

the examples mentioned above, a language must provide a way
for the programmer to indicate that extended precision must not

be used, even though intermediate results may be computed in

registers with a wider exponent range than double.
(Intermediate results computed in this way can still incur

double-rounding if they underflow when stored to memory: if the
result of an arithmetic operation is rounded first to 53 significant

bits, then rounded again to fewer significant bits when it must be
denormalized, the final result may differ from what would have

been obtained by rounding just once to a denormalized number.
Of course, this form of double-rounding is highly unlikely to

affect any practical program adversely.)

5. Round results correctly to both the precision and range of the

double format. This strict enforcement of double precision would
be most useful for programs that test either numerical software

or the arithmetic itself near the limits of both the range and
precision of the double format. Such careful test programs tend

to be difficult to write in a portable way; they become even more
difficult (and error prone) when they must employ dummy

subroutines and other tricks to force results to be rounded to a
particular format. Thus, a programmer using an extended-based

system to develop robust software that must be portable to all
IEEE 754 implementations would quickly come to appreciate

being able to emulate the arithmetic of single/double systems
without extraordinary effort.

No current language supports all five of these options. In fact, few languages
have attempted to give the programmer the ability to control the use of

extended precision at all. One notable exception is the ISO/IEC 9899:1999
Programming Languages - C standard, the latest revision to the C language,

which is now in the final stages of standardization.

The C99 standard allows an implementation to evaluate expressions in a
format wider than that normally associated with their type, but the C99

standard recommends using one of only three expression evaluation

methods. The three recommended methods are characterized by the extent
to which expressions are "promoted" to wider formats, and the

implementation is encouraged to identify which method it uses by defining

the preprocessor macro FLT_EVAL_METHOD: if FLT_EVAL_METHOD is 0, each

expression is evaluated in a format that corresponds to its type; if

FLT_EVAL_METHOD is 1, float expressions are promoted to the format that

corresponds to double; and if FLT_EVAL_METHOD is 2, float and double

expressions are promoted to the format that corresponds to long double. (An

implementation is allowed to set FLT_EVAL_METHOD to -1 to indicate that the

expression evaluation method is indeterminable.) The C99 standard also

requires that the <math.h> header file define the types float_t and double_t,

which are at least as wide as float and double, respectively, and are intended

to match the types used to evaluate float and double expressions. For

example, if FLT_EVAL_METHOD is 2, both float_t and double_t are long double.

Finally, the C99 standard requires that the <float.h> header file define

preprocessor macros that specify the range and precision of the formats
corresponding to each floating-point type.

The combination of features required or recommended by the C99 standard
supports some of the five options listed above but not all. For example, if an

implementation maps the long double type to an extended double format and

defines FLT_EVAL_METHOD to be 2, the programmer can reasonably assume that

extended precision is relatively fast, so programs like the Euclidean norm

example can simply use intermediate variables of type long double (or

double_t). On the other hand, the same implementation must keep

anonymous expressions in extended precision even when they are stored in

memory (e.g., when the compiler must spill floating-point registers), and it

must store the results of expressions assigned to variables declared double to

convert them to double precision even if they could have been kept in

registers. Thus, neither the double nor the double_t type can be compiled to

produce the fastest code on current extended-based hardware.

Likewise, the C99 standard provides solutions to some of the problems

illustrated by the examples in this section but not all. A C99 standard version

of the log1p function is guaranteed to work correctly if the expression 1.0 + x

is assigned to a variable (of any type) and that variable used throughout. A
portable, efficient C99 standard program for splitting a double precision

number into high and low parts, however, is more difficult: how can we split

at the correct position and avoid double-rounding if we cannot guarantee

that double expressions are rounded correctly to double precision? One

solution is to use the double_t type to perform the splitting in double

precision on single/double systems and in extended precision on extended-

based systems, so that in either case the arithmetic will be correctly
rounded. Theorem 14 says that we can split at any bit position provided we

know the precision of the underlying arithmetic, and the FLT_EVAL_METHOD and

environmental parameter macros should give us this information.

The following fragment shows one possible implementation:

#include <math.h>

#include <float.h>

#if (FLT_EVAL_METHOD==2)

#define PWR2 LDBL_MANT_DIG - (DBL_MANT_DIG/2)

#elif ((FLT_EVAL_METHOD==1) || (FLT_EVAL_METHOD==0))

#define PWR2 DBL_MANT_DIG - (DBL_MANT_DIG/2)

#else

#error FLT_EVAL_METHOD unknown!

#endif

...

 double x, xh, xl;

 double_t m;

 m = scalbn(1.0, PWR2) + 1.0; // 2**PWR2 + 1

 xh = (m * x) - ((m * x) - x);

 xl = x - xh;

Of course, to find this solution, the programmer must know that double

expressions may be evaluated in extended precision, that the ensuing
double-rounding problem can cause the algorithm to malfunction, and that

extended precision may be used instead according to Theorem 14. A more
obvious solution is simply to specify that each expression be rounded

correctly to double precision. On extended-based systems, this merely
requires changing the rounding precision mode, but unfortunately, the C99

standard does not provide a portable way to do this. (Early drafts of the
Floating-Point C Edits, the working document that specified the changes to

be made to the C90 standard to support floating-point, recommended that

implementations on systems with rounding precision modes provide

fegetprec and fesetprec functions to get and set the rounding precision,

analogous to the fegetround and fesetround functions that get and set the

rounding direction. This recommendation was removed before the changes

were made to the C99 standard.)

Coincidentally, the C99 standard's approach to supporting portability among
systems with different integer arithmetic capabilities suggests a better way

to support different floating-point architectures. Each C99 standard

implementation supplies an <stdint.h> header file that defines those integer

types the implementation supports, named according to their sizes and

efficiency: for example, int32_t is an integer type exactly 32 bits wide,

int_fast16_t is the implementation's fastest integer type at least 16 bits

wide, and intmax_t is the widest integer type supported. One can imagine a

similar scheme for floating-point types: for example, float53_t could name a

floating-point type with exactly 53 bit precision but possibly wider range,

float_fast24_t could name the implementation's fastest type with at least 24

bit precision, and floatmax_t could name the widest reasonably fast type

supported. The fast types could allow compilers on extended-based systems
to generate the fastest possible code subject only to the constraint that the

values of named variables must not appear to change as a result of register
spilling. The exact width types would cause compilers on extended-based

systems to set the rounding precision mode to round to the specified
precision, allowing wider range subject to the same constraint. Finally,

double_t could name a type with both the precision and range of the IEEE

754 double format, providing strict double evaluation. Together with
environmental parameter macros named accordingly, such a scheme would

readily support all five options described above and allow programmers to
indicate easily and unambiguously the floating-point semantics their

programs require.

Must language support for extended precision be so complicated? On
single/double systems, four of the five options listed above coincide, and

there is no need to differentiate fast and exact width types. Extended-based
systems, however, pose difficult choices: they support neither pure double

precision nor pure extended precision computation as efficiently as a mixture

of the two, and different programs call for different mixtures. Moreover, the
choice of when to use extended precision should not be left to compiler

writers, who are often tempted by benchmarks (and sometimes told outright
by numerical analysts) to regard floating-point arithmetic as "inherently

inexact" and therefore neither deserving nor capable of the predictability of
integer arithmetic. Instead, the choice must be presented to programmers,

and they will require languages capable of expressing their selection.

Conclusion

The foregoing remarks are not intended to disparage extended-based

systems but to expose several fallacies, the first being that all IEEE 754
systems must deliver identical results for the same program. We have

focused on differences between extended-based systems and single/double
systems, but there are further differences among systems within each of

these families. For example, some single/double systems provide a single

instruction to multiply two numbers and add a third with just one final
rounding. This operation, called a fused multiply-add, can cause the same

program to produce different results across different single/double systems,
and, like extended precision, it can even cause the same program to produce

different results on the same system depending on whether and when it is
used. (A fused multiply-add can also foil the splitting process of Theorem 6,

although it can be used in a non-portable way to perform multiple precision
multiplication without the need for splitting.) Even though the IEEE standard

didn't anticipate such an operation, it nevertheless conforms: the
intermediate product is delivered to a "destination" beyond the user's control

that is wide enough to hold it exactly, and the final sum is rounded correctly
to fit its single or double precision destination.

The idea that IEEE 754 prescribes precisely the result a given program must
deliver is nonetheless appealing. Many programmers like to believe that they

can understand the behavior of a program and prove that it will work

correctly without reference to the compiler that compiles it or the computer

that runs it. In many ways, supporting this belief is a worthwhile goal for the
designers of computer systems and programming languages. Unfortunately,

when it comes to floating-point arithmetic, the goal is virtually impossible to
achieve. The authors of the IEEE standards knew that, and they didn't

attempt to achieve it. As a result, despite nearly universal conformance to
(most of) the IEEE 754 standard throughout the computer industry,

programmers of portable software must continue to cope with unpredictable
floating-point arithmetic.

If programmers are to exploit the features of IEEE 754, they will need

programming languages that make floating-point arithmetic predictable. The

C99 standard improves predictability to some degree at the expense of
requiring programmers to write multiple versions of their programs, one for

each FLT_EVAL_METHOD. Whether future languages will choose instead to allow

programmers to write a single program with syntax that unambiguously

expresses the extent to which it depends on IEEE 754 semantics remains to
be seen. Existing extended-based systems threaten that prospect by

tempting us to assume that the compiler and the hardware can know better
than the programmer how a computation should be performed on a given

system. That assumption is the second fallacy: the accuracy required in a
computed result depends not on the machine that produces it but only on

the conclusions that will be drawn from it, and of the programmer, the
compiler, and the hardware, at best only the programmer can know what

those conclusions may be.

1
 Examples of other representations are floating slash and signed logarithm [Matula and

Kornerup 1985; Swartzlander and Alexopoulos 1975].
2
 This term was introduced by Forsythe and Moler [1967], and has generally replaced the

older term mantissa.
3
 This assumes the usual arrangement where the exponent is stored to the left of the

significand.
4
 Unless the number z is larger than +1 or smaller than . Numbers which are out of

range in this fashion will not be considered until further notice.
5
 Let z' be the floating-point number that approximates z. Then d.d...d - (z/ e) p-1 is

equivalent to z'-z /ulp(z'). A more accurate formula for measuring error is z'-z /ulp(z). -

Ed.
6
 700, not 70. Since .1 - .0292 = .0708, the error in terms of ulp(0.0292) is 708 ulps. - Ed.

7
 Although the expression (x - y)(x + y) does not cause a catastrophic cancellation, it is

slightly less accurate than x2 - y2 if or . In this case, (x - y)(x + y) has three

rounding errors, but x2 - y2 has only two since the rounding error committed when
computing the smaller of x2 and y2 does not affect the final subtraction.
8
 Also commonly referred to as correctly rounded. - Ed.

9
 When n = 845, xn= 9.45, xn + 0.555 = 10.0, and 10.0 - 0.555 = 9.45. Therefore, xn = x845

for n > 845.
10

 Notice that in binary, q cannot equal . - Ed.

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#683
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#10061
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#684
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#688
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#688
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#9518
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1393
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#705
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#11655
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#11706

11
 Left as an exercise to the reader: extend the proof to bases other than 2. - Ed.

12
 This appears to have first been published by Goldberg [1967], although Knuth ([1981], page 211) attributes this idea to

Konrad Zuse.
13

 According to Kahan, extended precision has 64 bits of significand because that was the widest precision across which

carry propagation could be done on the Intel 8087 without increasing the cycle time [Kahan 1988].
14

 Some arguments against including inner product as one of the basic operations are

presented by Kahan and LeBlanc [1985].
15

 Kirchner writes: It is possible to compute inner products to within 1 ulp in hardware in one partial product per clock

cycle. The additionally needed hardware compares to the multiplier array needed anyway for that speed.
16

 CORDIC is an acronym for Coordinate Rotation Digital Computer and is a method of computing transcendental functions

that uses mostly shifts and adds (i.e., very few multiplications and divisions) [Walther 1971]. It is the method additionally
needed hardware compares to the multiplier array needed anyway for that speed. d used on both the Intel 8087 and the
Motorola 68881.
17

 Fine point: Although the default in IEEE arithmetic is to round overflowed numbers to ,

it is possible to change the default (see Rounding Modes)
18

 They are called subnormal in 854, denormal in 754.
19

 This is the cause of one of the most troublesome aspects of the standard. Programs that frequently underflow often run

noticeably slower on hardware that uses software traps.
20

 No invalid exception is raised unless a "trapping" NaN is involved in the operation. See

section 6.2 of IEEE Std 754-1985. - Ed.
21

 may be greater than if both x and y are negative. - Ed.
22

 It can be in range because if x < 1, n < 0 and x-n is just a tiny bit smaller than the

underflow threshold , then , and so may not overflow, since in all IEEE

precisions, -emin < emax.
23

 This is probably because designers like "orthogonal" instruction sets, where the precisions

of a floating-point instruction are independent of the actual operation. Making a special case

for multiplication destroys this orthogonality.
24

 This assumes the common convention that 3.0 is a single-precision constant, while 3.0D0

is a double precision constant.
25

 The conclusion that 00 = 1 depends on the restriction that f be nonconstant. If this

restriction is removed, then letting f be the identically 0 function gives 0 as a possible value

for lim x 0 f(x)g(x), and so 00 would have to be defined to be a NaN.
26

 In the case of 00, plausibility arguments can be made, but the convincing argument is found in "Concrete Mathematics"

by Graham, Knuth and Patashnik, and argues that 00 = 1 for the binomial theorem to work. - Ed.
27

 Unless the rounding mode is round toward - , in which case x - x = -0.
28

 The VMS math libraries on the VAX use a weak form of in-line procedure substitution, in

that they use the inexpensive jump to subroutine call rather than the slower CALLS and

CALLG instructions.
29

 The difficulty with presubstitution is that it requires either direct hardware

implementation, or continuable floating-point traps if implemented in software. - Ed.
30

 In this informal proof, assume that = 2 so that multiplication by 4 is exact and doesn't

require a i.
31

 This is the sum if adding w does not generate carry out. Additional argument is needed

for the special case where adding w does generate carry out. - Ed.
32

 Rounding gives kx + w k - r k only if (kx + w k) keeps the form of kx. - Ed.

Sun Microsystems, Inc.

Copyright information. All rights reserved.

Feedback

Library | Contents | Previous | Next | Index

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#9922
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#807
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#853
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#12892
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#12892
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#873
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#919
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#984
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#936
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#936
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#5376
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#717
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#6183
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#12036
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1053
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1060
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1060
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1066
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1102
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1123
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1240
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1196
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1344
http://www.sun.com/
http://docs.oracle.com/cd/E19957-01/806-3568/PRN.html
http://www.sun.com/cgi-bin/comment-form.pl
http://docs.oracle.com/index.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncgTOC.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_x86.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_compliance.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncgIX.html

